GOVERNMENT COLLEGE OF ENGINEERING, BARGUR Regulation – 2018 AUTONOMOUS

Curriculum for Part Time – B.E. -EEE

From the Academic Year 2018-2019 onwards

PROGRAM OUTCOMES (POs)

PO1: An ability to apply knowledge of mathematics, science, and engineering,

PO2: An ability to design and conduct experiments, as well as to analyse and interpret data,

PO3: An ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability

PO4: An ability to function on multidisciplinary teams,

PO5: An ability to identify, formulate, and solve engineering problems,

PO6: An understanding of professional and ethical responsibility,

PO7: An ability to communicate effectively,

PO8 The broad education necessary to understand the impact of engineering solution in a global, economic, environmental, and societal context,

PO9: A recognition of the need for, and an ability to engage in life-long learning,

PO10: A knowledge of contemporary issues, and

PO11: An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice,

PO12: With basic understanding of electrical and electronics principles students can become a member and then a team leader to manage innovative projects.

PROGRAM SPECIFIC OUTCOMES (PSOs)

PSO1: Apply the fundamentals of mathematics, science and engineering knowledge to identify, formulate, design and investigate complex engineering problems of electric circuits, analog and digital electronic circuits, electrical machines and power systems.

PSO2: Apply appropriate techniques and modern Engineering hardware and software tools in power systems to engage in life- long learning and to successfully adapt in multi-disciplinary environments.

PSO3: Ability to understand the recent technological developments in Electrical & Electronics Engineering and develop products to cater the societal & Industrial needs.

ELECTRICAL AND ELECTRONICS ENGINEERING (UG)

CURRICULUM DESIGN

CREDIT SUMMARY

Name of the UG Programme: **B.E - ELECTRICAL AND ELECTRONICS ENGINEERING (Part Time)**

Credit Summary

S. No	Sub. Area			Credits	s per S	emeste	r		Credits Total	% of Total Credits	Total no. of subjects
		Ι	II	III	IV	V	VI	VII			
1	BS	9	3						12	12.5	4
2	ES	1.5							1.5	1.5	1
3	PC	3	12	13.5	13.5	10.5	7.5	3	63	65.6	23
4	PE					3	6	6	15	15.6	5
5	PROJ							4.5	4.5	4.7	1
	Total	13.5	15	13.5	13.5	13.5	13.5	13.5	96	100	34

GOVERNMENT COLLEGE OF ENGINEERING, BARGUR

(An Autonomous Institution Affiliated to Anna University) B.E ELECTRICAL AND ELECTRONICS ENGINEERING (Part Time) 2018 REGULATIONS

FIRST SEMESTER

SI No	Course Code	Course Name	Course Category	Contact Hours	L	Т	Р	С
TH	EORY							
1	18PTEBS101	Mathematics	BSC	45	3	0	0	3
2	18PTEBS102	Physics	BSC	45	3	0	0	3
3	18PTEBS103	Chemistry	BSC	45	3	0	0	3
4	18PTEPC104	Electric Circuit Analysis	PCC	45	2	1	0	3
PR A	ACTICALS							
5	18PTEES105	Computer Programming Laboratory	ESC	45	0	0	3	1.5
				TOTAL	11	1	3	13.5

SECOND SEMESTER

SI No	Course Code	Course Name	Course Category	Contact Hours	L	Т	Р	С
TH	EORY							
1	18PTEPC201	DC Machines and Transformers	PCC	45	3	0	0	3
2	18PTEPC202	Electromagnetic Theory	PCC	45	2	1	0	3
3	18PTEBS203	Environmental Science and Engineering	BSC	45	3	0	0	3
4	18PTEPC204	Analog Electronics	PCC	45	2	1	0	3
5	18PTEPC205	Digital Logic Circuits	PCC	45	2	1	0	3
				TOTAL	12	3	0	15

THIRD SEMESTER

SI Course Code Course Name Course Contact L T P C

No			Category	Hours				
TH	EORY							
1	18PTEPC301	Synchronous and Asynchronous Machines	PCC	45	2	1	0	3
2	18PTEPC302	Control Systems	PCC	45	2	1	0	3
3	18PTEPC303	Linear Integrated Circuits and Applications	PCC	45	3	0	0	3
4	18PTEPC304	Transmission and Distribution	PCC	45	2	1	0	3
PR	ACTICALS	·				•		
5	18PTEPC305	Electrical Machines Laboratory	РСС	45	0	0	3	1.5
	·	·		TOTAL	9	3	3	13.5

FOURTH SEMESTER

SI No	Course Code	Course Name	Course Category	Contact Hours	L	Т	Р	С
TH	EORY							
1	18PTEPC401	Protection and Switchgear	PCC	45	3	0	0	3
2	18PTEPC402	Power Electronics	PCC	45	3	0	0	3
3	18PTEPC403	Measurements and Instrumentation	PCC	45	3	0	0	3
4	18PTEPC404	Power System Analysis	PCC	45	2	1	0	3
PRA	ACTICALS							
5	18PTEPC405	Control and Instrumentation Laboratory	PCC	45	0	0	3	1.5
				TOTAL	11	1	3	13.5

FIFTH SEMESTER

SI No Course Code Course Name	Course Category	Contact Hours	L	Т	Р	С	
--	--------------------	------------------	---	---	---	---	--

TH	EORY							
	18PTEPC501	Microprocessors,	PCC	45	3	0	0	3
1		Microcontrollers and						
		Applications						
2	18PTEPC502	Power System Operation	PCC	45	3	0	0	3
2		and Control						
3	18PTEPC503	Electrical Machine	PCC	45	2	1	0	3
3		Design						
4		Professional Elective I	PEC	45	3	0	0	3
PR	ACTICALS							
	18PTEPC505	Power Electronics and	PCC	45	0	0	3	1.5
5		Power System						
		Laboratory						
				TOTAL	12	0	3	13.5

SIXTH SEMESTER

SI No	Course Code	Course Name	Course Category	Contact Hours	L	Т	Р	С
TH	EORY							
1	18PTEPC601	Special Electrical machines	PCC	45	3	0	0	3
2	18PTEPC602	High Voltage Engineering	РСС	45	3	0	0	3
3		Professional Elective II	PEC	45	3	0	0	3
4		Professional Elective III	PEC	45	3	0	0	3
PRA	ACTICALS							
5	18PTEPC605	Microprocessors, Microcontrollers and Applications Laboratory	PCC	45	0	0	3	1.5
				TOTAL	12	1	3	13.5

SEVENTH SEMESTER

Sem	ester VII							
SI No	Course Code	Course Name	Course Category	Contact Hours	L	Т	Р	С

TH	EORY							
1	18PTEPC701	Energy utilization, conservation and auditing	PCC	45	3	0	0	3
2		Professional Elective IV	PEC	45	3	0	0	3
3		Professional Elective V	PEC	45	3	0	0	3
PR A	ACTICALS							
4	18PTEPR704	Project Work	PROJ	135	0	0	9	4.5
				TOTAL	9	0	9	13.5

Grand Total Credits: 96

PROFESSIONAL ELECTIVES

SI No	Course Code	Course Name	Course Category	Contact Hours	L	Т	Р	С
1.	18PTEPE001	Applied Soft Computing	PEC	45	3	0	0	3
2.	18PTEPE002	Wind and Solar Energy Systems	PEC	45	3	0	0	3
3.	18PTEPE003	Biomedical Instrumentation	PEC	45	3	0	0	3
4.	18PTEPE004	Fundamentals of Nano Science	PEC	45	3	0	0	3
5.	18PTEPE005	Advanced Control System	PEC	45	2	1	0	3
6.	18PTEPE006	Power Quality and FACTS	PEC	45	3	0	0	3
7.	18PTEPE007	Microcontroller Based System Design	PEC	45	3	0	0	3
8.	18PTEPE008	High Voltage Direct Current Transmission	PEC	45	3	0	0	3
9.	18PTEPE009	Total Quality Management	PEC	45	3	0	0	3
10	18PTEPE010	Power Electronics for Renewable Energy Systems	PEC	45	3	0	0	3
11	18PTEPE011	Principles of Management	PEC	45	3	0	0	3
12	18PTEPE012	Power System Dynamics and Control	PEC	45	2	1	0	3
13.	18PTEPE013	Electrical and Hybrid	PEC	45	3	0	0	3

		Vehicles						
14.	18PTEPE014	Computer Aided Design of Electrical Apparatus	PEC	45	3	0	0	3
15.	18PTEPE015	Power System Transients	PEC	45	2	1	0	3
16	18PTEPE016	Solid State Drives	PEC	45	3	0	0	3
17.	18PTEPE017	Industrial Electrical Systems	PEC	45	3	0	0	3
18	18PTEPE018	Fibre Optics and Laser Instruments	PEC	45	3	0	0	3
19.	18PTEPE019	Micro Electro Mechanical Systems	PEC	45	3	0	0	3

LIST OF ENGINEERING SCIENCE COURSES

S.No	Subject Code	Course Title	Course Category	Contact Hours	L	Т	Р	C
1.	18PTEES105	Computer Programming Laboratory	ESC	45	0	0	3	1.5

LIST OF BASIC SCIENCE COURSES

S.No	Subject	Course Title	Course	Contact	L	Т	Р	С
	Code		Category	Hours				
1.	18PTEBS101	Mathematics	BSC	45	3	0	0	3
2.	18PTEBS102	Physics	BSC	45	3	0	0	3
3.	18PTEBS103	Chemistry	BSC	45	3	0	0	3
4.	18PTEBS203	Environmental Science and Engineering	BSC	45	3	0	0	3

LIST OF PROFESSIONAL CORE COURSES

S.No	Subject	Course Title	Course	Contact	L	Т	Р	C
	Code		Category	Hours				
1.	18PTEPC104	Electric Circuit Analysis	PCC	45	2	1	0	3
2.	18PTEPC201	DC Machines and Transformers	PCC	45	3	0	0	3

					-			
3.	18PTEPC202	Electromagnetic Theory	PCC	45	2	1	0	3
4.	18PTEPC204	Analog Electronics	PCC	45	2	1	0	3
5.	18PTEPC205	Digital Logic Circuits	PCC	45	2	1	0	3
6.	18PTEPC201	DC Machines and Transformers	PCC	45	3	0	0	3
7.	18PTEPC202	Electromagnetic Theory	PCC	45	2	1	0	3
8.	18PTEPC204	Analog Electronics	PCC	45	2	1	0	3
9.	18PTEPC205	Digital Logic Circuits	PCC	45	2	1	0	3
10.	18PTEPC301	Synchronous and Asynchronous Machines	PCC	45	2	1	0	3
11.	18PTEPC302	Control Systems	PCC	45	2	1	0	3
12.	18PTEPC303	Linear Integrated Circuits and Applications	PCC	45	3	0	0	3
13.	18PTEPC304	Transmission and Distribution	PCC	45	2	1	0	3
14.	18PTEPC305	Electrical Machines Laboratory	PCC	45	0	0	3	1.5
15.	18PTEPC401	Protection and Switchgear	PCC	45	3	0	0	3
16.	18PTEPC402	Power Electronics	PCC	45	3	0	0	3
17.	18PTEPC403	Measurements and Instrumentation	PCC	45	3	0	0	3
18.	18PTEPC404	Power System Analysis	PCC	45	2	1	0	3
19.	18PTEPC405	Control and Instrumentation Laboratory	PCC	45	0	0	3	1.5
20.	18PTEPC501	Microprocessors, Microcontrollers and Applications	PCC	45	3	0	0	3
21.	18PTEPC502	Power System Operation and Control	PCC	45	3	0	0	3
22.	18PTEPC503	Electrical Machine Design	PCC	45	3	0	0	3
23.	18PTEPC505	Power Electronics and Power System Laboratory	PCC	45	0	0	3	1.5
24.	18PTEPC601	Special Electrical machines	PCC	45	3	0	0	3
25.	18PTEPC602	High Voltage Engineering	PCC	45	3	0	0	3
						•	•	

26.	18PTEPC605	Microprocessors,	PCC	45	0	0	3	1.5
		Microcontrollers and						
		Applications Laboratory						
27.	18PTEPC701	Energy utilization,	PCC	45	3	0	0	3
		conservation and auditing						

SEMESTER-I

18PTE	BS101	MATHEMATICS	L	Т	Р	С		
			3	0	0	3		
OBJECTIVES:								
•	• To know vector calculus and their uses in various field theoretic subject							
•	• To know higher order and special type of linear differential equations and method to find solutions							

•		understand the Laplace transforms and properties and their appli-	cations in					
•	To k	now the Construction of analytic functions and concepts of concepts ormal mapping, complex integration and series solutions	of					
UNIT I	[MATRICES	9					
eigenvalu	ues ar	equation – Eigenvalues and Eigenvectors of a real matrix – Prond eigenvectors – Cayley-Hamilton Theorem – Diagonalization of quadratic form to canonical form by orthogonal transformation.	-					
UNIT I	Ι	FUNCTIONS OF SEVERAL VARIABLES	9					
Different different	Partial derivatives – Homogeneous functions and Euler's theorem – Total derivative – Differentiation of implicit functions – Change of variables – Jacobians – Partial differentiation of implicit functions –Taylor's series for functions of two variables - Maxima and minima of functions of two variables.							
UNIT IIIANALYTIC FUNCTION9								
Analytic functions – Necessary and sufficient conditions for analyticity – Properti Harmonic conjugates – Construction of analytic function – Conformal Mapping – Map by functions $w = a + z$, az , $1/z$ - Bilinear transformation.								
UNIT I	[V	COMPLEX INTEGRATION	9					
Singulari	ities-	 Cauchy's theorem and integral formula – Taylor's and Laurent' Residues – Residue theorem – Application of Residue theorem for s – Use of circular contour and semicircular contour with no pole on 	evaluation					
UNIT V	V	LAPLACE TRANSFORM	9					
of deriva	atives funct	ditions – Transforms of elementary functions – Basic properties – T and integrals –Inverse transforms – Convolution theorem – Tra ions– Application to solution of linear ordinary differential equa cients.	insform of					
		TOTAL: 45 P	ERIODS					
OUTC	OMF	ES:						
•		matrix algebra techniques for practical applications and undeportance of functions of several variables and their applications in en						
•	 understand the standard techniques of complex variable theory and apply them with confidence in areas such as heat conduction, elasticity, fluid dynamics and the flow of electric current 							

•	-	ms on Laplace transforms and use the transform techniques to find differential equations							
TEXT	BOOKS:								
1.	Grewal. B.S, Publications, I	"Higher Engineering Mathematics", 42 nd Edition, Khanna Delhi, 2012.							
2.	Ramana, B.V. Company, 200	, "Higher Engineering Mathematics" Tata McGraw Hill Publishing							
REFE	RENCES :								
1.	Dass, H.K., an Private Ltd., 2	d Er. Rajnish Verma," Higher Engineering Mathematics", S. Chand 011							
2.	Glyn James, " Education, 202	Advanced Modern Engineering Mathematics", 3rd Edition, Pearson 12.							
3.	Peter V. O'N learning, 2012	leil," Advanced Engineering Mathematics", 7th Edition, Cengage							
4.		shna Das P. and Rukmangadachari E., "Engineering Mathematics", ond Edition, PEARSON Publishing, 2011							
5.		Veerarajan, T.,"Engineering Mathematics(For first year)", Tata McGraw-Hill Pub. Pvt. Ltd., New Delhi, 2007.							

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3		2		3				3			2	3		2
CO2	3	2			2				3				3		
CO3	3		2		3				3			3	3		2

18PTEBS102					PE	HY	SI	CS					L	Т	l	Р	C
													3	0		0	3
OBJE	CTIVES:																
To develop knowledge on properties of solids																	
•	To underst	and the	e electi	rical	l pro	ope	ertie	es of	f ma	teri	als						
•	To know a	bout th	e prop	perti	ies c	of s	semi	icor	nduc	tors	5						
•	• To become proficient in magnetic and dielectric materials																
• To apply principles of quantum physics in the						ie ei	ngine	eerin	g fiel	d							
	1																

UNIT I

PROPERTIES OF MATTER

Elasticity – Hooke's law – Stress – Types of Stresses – Strain- Types of Strain -Young's Modulus – Rigidity Modulus – Bulk Modulus –Poisson's ratio – Relationship between three elastic constants and Poisson's ratio– Torsional Pendulum – Factors affecting elasticity of materials - Bending moment of a Beam – Depression of cantilever (Theory and Experiment) – Determination of Young's modulus – Uniform and non-uniform bending (Theory and Experiment).

UNIT II ELECTRICAL PROPERTIES OF MATERIALS

9

Conductors –Ohm's Law – Electrical conductivity – Relation between current density, drift velocity and mobility – Classical free electron theory of metals – Expression for electrical conductivity of a metal –Expression for thermal conductivity of a metal – Wiedemann – Franz law–Fermi distribution function – Effect of temperature on Fermi Function – Density of energy states.

UNIT III

PROPERTIES OF SEMICONDUCTING MATERIALS

9

Intrinsic semiconductor – Energy band diagram – Direct and indirect semiconductors – Carrier concentration in an intrinsic semiconductor (derivation) – Extrinsic semiconductors – n-type & p-type semiconductors – Determination of Bandgap of semiconductors (Experiment)

UNIT IV

MAGNETIC AND DIELECTRIC MATERIALS

9

Magnetism in materials – magnetic field and induction – magnetization – magnetic permeability and susceptibility – types of magnetic materials –microscopic classification of magnetic materials –Domain theory of ferromagnetism.

Dielectric materials: Polarization processes – dielectric loss – internal field – Clausius-Mosotti relation – dielectric breakdown – high-k dielectrics.

UNIT V

QUANTUM PHYSICS

9

Blackbody radiation – Wien's displacement law – Rayleigh-Jean's law - Planck's theory (derivation) – Deduction of Wien's displacement law and Rayleigh-Jean's law – Matter waves – De-Broglie's Hypothesis – Properties of matter waves - Wave-particle duality – Wavefunction and its physical Significance – Schrodinger wave equation – Time-dependent and time-independent – Application of Schrodinger wave equation: Particle in a 1 D box.

TOTAL: 45 PERIODS

OUTCOMES:

•	To learn about for different i	ut three types of elastic modulus and able to calculate them materials							
•		at the electrical properties of materials and able to derive ameters relevant to them							
•	To learn abo quantities rela	but the properties of semiconductors and able to calculate ated to them.							
•		at types of magnetic materials and their types and functional f dielectric materials							
•		o understand the quantum nature of materials and apply fundamental inciples of quantum physics to the engineering field							
TEXTB	OOKS:								
3.	P. Mani, "Er	ngineering physics", Dhanam Publications, 2017.							
4.	G. SenthilKu	umar, "Engineering physics", VRB Publishers							
5.	A.Marikani,	"Engineering Physics", PHI Learning Pvt., India 2009							
6.		A. "Solid state physics: Structure and properties of arosa publishing house, 2009							
REFER	ENCES:								
6.		and S.C. Gupta, "Engineering physics", DhanpatRai , New Delhi 2003.							
7.		hanulu and P. G. Kshirsagar, "A textbook of engineering Chand and Company Ltd, New Delhi, 2005.							
8.	K. Rajagopa	K. Rajagopal, "Engineering Physics", PHI, New Delhi, 2011.							
9.	P. K. Palani	K. Palanisamy, "Engineering Physics", SCITECH Publication, 2011							
10.	M. Arumuga	. Arumugam, "Engineering physics", Anuradha publishers							
	1								

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2								2			2	2		
CO2	2	2							2				3	1	
CO3	2											3	2		

004	Z					2	2		2	1	
CO5	2	2				2		2	2		

18PTE	CBS103	CHEMISTRY		T	Р	C
		3	0	0	3	
OBJE	CTIVES:					
•		tudents conversant with water parameters, boilers, and its merits and demerits.	need for w	ater		
•		ught to be aware of fundamental principles behind mical reactions, corrosion of materials and method		t cor	rosio	on.
•		ne chemistry behind polymers, synthesis, merits, de ns in various field.	merits and	its		
•	1	basic knowledge in renewable, non renewable and and the chemical reactions involved in cell, batterie				ıs.
٠	To learn the	ne working principle of various spectroscopy and it	s application	ons.		
•	To acquire	basic knowledge in Nano materials, synthesis, pro	poerties and	l use	S.	

UNIT I WATER TECHNOLOGY (CO-a &b)

Chararacteristics – alkalinity and its significance – hardness - types and estimation by EDTA method – specifications of drinking water (BIS and WHO standards) – potable water treatment – boiler feed water - requirements – disadvantages of using hard water in boilers – water treatment – Internal treatment – external treatment – zeolite method - Demineralization process – desalination – reverse osmosis.

9

9

9

9

UNIT II ELECTROCHEMISTRY AND CORROSION (CO-a &c)

Electrochemistry: Electrochemical cells – reversible and irreversible cells – EMF – measurement of EMF – single electrode potential – Nernst equation (Problems) – reference electrode – standard hydrogen electrode and calomel electrode – ion selective electrode – glass electrode and measurement of pH – electrochemical series and its applications.

Corrosion: Corrosion – Pilling Bedworth rule - dry corrosion - electrochemical corrosion and its mechanism – types (galvanic, pitting, differential aeration) – factors influencing corrosion – corrosion control methods - sacrificial anode method – impressed current method – corrosion inhibitors – protective coatings – paints – constituents – functions

UNIT III POLYMERS AND COMPOSITES (CO-a &d)

Polymers: Definition – classification – functionality – polymerization – degree of polymerization – types (addition, condensation, copolymerization) – mechanism (free radical) – plastics – thermoplastics and thermosetting plastics – preparation, properties and uses of individual polymers (PVC, TEFLON, Nylon-6,6, Nylon-6, PET, epoxy resin) – rubber - vulcanization of rubber – applications

Composites: definition – types polymer matrix composites – Fibre Reinforced Polymers – applications – advanced composite materials – physical and chemical properties – applications.

UNIT IV ENERGY SOURCES AND STORAGE DEVICES (CO-a &e)

Renewable and non renewable energy resources -Nuclear energy – fission fusion reactions – light water nuclear reactor for power generation – breeder reactor – solar energy conversion – solar cells – wind energy – batteries: alkaline batteries – lead –acid, Ni-Cd ,and Li-ion batteries – fuel cells – principles and applications – advantages and disadvantages.

UNIT V NANOCHEMISTRY (CO-a &f)

Nanomaterials: Introduction to nanotechnology in electronics - nanomaterials – fullerernes carbon nanotubes – nanowires – special properties - synthesis of nanomaterials – topdown and bottomup approach – applications of nanomaterials in electrical and electronic appliances (Semiconductors, LED & OLED) – electrical appliances – medicines.

9

	TOTAL : 45 PERIODS
CO	URSE OUTCOMES
At t	he end of the course students should be able to
a.	Ability to apply the knowledge of basic science in identifying, to formulate and to solve the engineering problems.
b.	Ability to analyze water borne problems faced in boilers, need for water treatment and various methods and techniques for treating hard water.
c.	Develop ability to advance polymer materials and its applications in engineering field.
d.	Ability to understand the mechanism behind various types of electrochemical reactions which in turn helps in understanding the causes for corrosion and prevention methods.
e.	Acquires Knowledge about energy conversion and chemical reaction taking place in nuclear, solar, wind energy, Batteries, fuel cells and its applications, merits and demerits.
f.	Acquires in-depth knowledge on various nanomaterials and its applications in electrical devices. Students get basic knowledge on advanced analytical techniques.
TE	XT BOOKS:
1	1. Vairam S, Kalyani P and SubaRamesh., "Engineering Chemistry"., Wiley India PvtLtd., New Delhi., 2011
2	2. Dara S.S, UmareS.S. "Engineering Chemistry", S. Chand & Company Ltd., New Delhi , 2010
RE	FERENCES:
1	1. Pahari A and Chauhan B., "Engineering Chemistry"., Firewall Media., New Delhi., 2010.
2	2. Rao, C. N. R.; Govindaraj, A. "Nanotubes and Nanowires" United Kingdom: Royal Society of Chemistry, 2005
3	3. Advanced Polymeric Materials: From Macro- to Nano-Length Scales edited by Sabu Thomas, Nandakumar Kalarikkal, Maciej Jaroszewski, Josmine P. Jose; Apple Academic press, Canada, 2016

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2				2			3	2				1	2	
CO2	3				2			2	2				2	1	
CO3	2				2			3	2				1	2	
CO4	2				2			3	2				1	1	
CO5	2				2			2	2				2	2	
CO6	2				2			3	2				1	2	
CO7	2				2			3	2				1	2	

18PTEP	C104	ELECTRIC CIRCUIT ANALYSIS	L	T	Р	С							
			2	1	0	3							
OBJEC	FIVES:												
•	To introdu	ce electric circuits and its analysis											
•	• To impart knowledge on solving circuits using network theorems												
•	To introduce the phenomenon of resonance in coupled circuits												
•	To educate on obtaining the transient response of circuits												
•	To Phasor	diagrams and analysis of three phase circuits											
UNIT I		BASIC CIRCUITS ANALYSIS				9							
current an		's laws–DC and AC Circuits–Resistors in series and para oltage analysis for D.C and A.C.circuits–Phasor D gy.											
UNIT IINETWORK REDUCTION AND NETWORK THEOREMS FOR DC AND AC CIRCUITS													

UNIT	ity Theorem		RESONANCE AND COUPLED CIRCUITS	9
Series a Circuits	and parallel and parallel and parallel and parallel and market selfand m	utual	ance-their frequency response- Quality factor and Bandwi inductance-Coefficient of coupling- Analysis of coupled collectuned circuits.	1
UNIT	IV		CIRCUIT TRANSIENTS	9
Decay o Over-da	of current in amped, Criti	RL (s-Advantages-Laplace transformation of some functions- Circuits-RC Transient: Decay of Current in RC Circuits-RI Damped and Underdamped-AC Transients-RL, RC and F Damping Ratio.	LC Transient
UNIT	V		THREE PHASE CIRCUITS	9
-	ison betwee	UL SH	ngle phase and poly phase systems-Three phase balanced	u пплятянсес
balanced	d and unb	alanc	ree phase and poly phase systems three phase summer ree phase 3-wire and 4-wire circuits with star and delta red loads— phasor diagram of voltages and current that in three phase circuits.	a connection
balanced	d and unb	alanc	ree phase 3-wire and 4-wire circuits with star and delta red loads— phasor diagram of voltages and current	a connection s-power and
balanceo powerfa	d and unb	alanc remen	ree phase 3-wire and 4-wire circuits with star and delta end loads— phasor diagram of voltages and current ats in three phase circuits.	a connection s-power and
balanceo powerfa	d and unb actor measur COMES: Explain c	alanc remen Afte	ree phase 3-wire and 4-wire circuits with star and delta end loads— phasor diagram of voltages and current thats in three phase circuits. TOTAL :45	a connection s–power and PERIODS
balanceo powerfa	d and unb actor measur COMES: Explain c using mes	Afte Sircuit	ree phase 3-wire and 4-wire circuits with star and delta eed loads— phasor diagram of voltages and current ints in three phase circuits. TOTAL :45 er successful completion of the course students able to t behaviour using ohm's law and Kirchhoff laws, hence solv	a connection s–power and PERIODS e the circuits
balanceo powerfa	d and unb actor measur COMES: Explain c using mea State vari theorems.	Afte circuit sh and ious c	ree phase 3-wire and 4-wire circuits with star and delta red loads— phasor diagram of voltages and current ints in three phase circuits. TOTAL :45 er successful completion of the course students able to t behaviour using ohm's law and Kirchhoff laws, hence solv d nodal analysis	a connection s–power and PERIODS e the circuits
balanced powerfa OUTC	d and unb actor measur COMES: Explain c using measure State vari theorems Explain theorems	After After	ree phase 3-wire and 4-wire circuits with star and delta red loads— phasor diagram of voltages and current in three phase circuits. TOTAL :45 er successful completion of the course students able to t behaviour using ohm's law and Kirchhoff laws, hence solv d nodal analysis circuit laws and theorems and perform the circuit analysis to	a connection s–power and PERIODS e the circuits prove the
balanced powerfa OUTC •	d and unb actor measur COMES: Explain c using mes State vari theorems. Explain theorems. Explain A for any fi	Afte Afte Afte Shan ious c he be AC ci rst or	ree phase 3-wire and 4-wire circuits with star and delta red loads— phasor diagram of voltages and current its in three phase circuits. TOTAL :45 er successful completion of the course students able to t behaviour using ohm's law and Kirchhoff laws, hence solv d nodal analysis circuit laws and theorems and perform the circuit analysis to thaviour of resonance and magnetically coupled circuits. rcuits using phasor techniques under steady stateand transier	a connection s–power and PERIODS e the circuits prove the
balanced powerfa OUTC • •	d and unb actor measur COMES: Explain c using mes State vari theorems. Explain theorems. Explain A for any fi	Afte Afte circuit sh an- ious c he be AC ci rst or AC ci	ree phase 3-wire and 4-wire circuits with star and delta red loads— phasor diagram of voltages and current its in three phase circuits. TOTAL :45 er successful completion of the course students able to t behaviour using ohm's law and Kirchhoff laws, hence solv d nodal analysis circuit laws and theorems and perform the circuit analysis to chaviour of resonance and magnetically coupled circuits. reuits using phasor techniques under steady stateand transier rder and second ordersystems using R, L, and C Circuits.	a connection s–power and PERIODS e the circuits prove the

2.	Sudhakar A and Shyam Mohan SP,"Circuits and Network Analysis and Synthesis",TataMcGraw Hill,2015.
REFEF	RENCES:
1.	Joseph A. Edminister, Mahmood Nahri, "Electric circuits", Schaum'sseries, TataMcGraw-Hill,New Delhi,2014.
2.	Paranjothi SR, "Electric Circuits Analysis," New Age International Ltd., New Delhi, 1996.
3.	Ashfaq Husain and Harroon Ashfaq, "Fundamentals of Electrical Engineering", Dhanpath Rai & Sons, New Delhi, 2016
4.	William H. Hayt Jr, Jack E. Kemmerly and Steven M. Durbin, "Engineering Circuits Analysis", Tata McGraw Hill publishers, 6 edition, New Delhi, 2003.
5.	CharlesK.Alexander,Mathew N.O.Sadiku, "Fundamentals of Electric Circuits",Second Edition, McGrawHill, 2013.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1					2				3		3	3	3	3	3
CO2					1				3		2	3	3	2	3
CO3					2				3		1	3	3	3	3
CO4					2				3		2	3	3	2	3
CO5	3				3							2			

17PTEES1(5	COMPUTER PROGRAMMING	L	Τ	P	С
		LABORATORY				
			0	0	3	1.5
OBJECTIV	ES:					
• Be	famili	ar with the use of Unix OS.				
• Be	expos	ed to presentation and visualization tools.				
• Be	expos	ed to problem solving techniques and flow charts.				
• Be	famili	ar with programming in C.				
• Lea	rn to i	use Arrays, strings, functions, structures and unions.				
LISTOFEXP	CRIM	ENTS:				
UNIX Comma	nds	k				
1. Study of	f UNI	IX OS.				
		commands.				
2. Dasie (commands.				
3. Directo	ry cor	nmands and Process Management commands.				
4. Study of	f vi E	ditor				
Shell Program	ming					
Simple Shell I	rogra	amming				
		or getting and displaying the academic and personal do o demonstrate the Arithmetic Operations.	etails.			
Conditional s		-				
6. a) Pro	gram	to find whether a number is odd or even				

a) Program to find whether a number is odd or evenb) Program to find whether a number is Positive (or) Negative

c) Program to find the biggest number among three numbers
d) Program to perform Arithmetic Operations using Switch Case
e) Program to find the area of Circle, Square, Rectangle, Triangle.
Testing and loops
7. a) Program to print the Fibonacci serious
b) Program to find whether a number is a Armstrong number
c) Program to find the Sum of even numbers up to N
d) Program to print the various Combinations of 123
e) Program to find the n th power of given number
<u>C Programming</u>
8. a) Program to check whether a sting is a Palindrome
b) Program to perform the Concatenation of two strings
9. Program to find the biggest number among n numbers using functions.
10. Program to swap of two numbers using pointers.
11. Program to read contents of a File and to Print the same.
12. Program to demonstrate Dynamic memory allocation.
TOTAL : 45 PERIODS
OUTCOMES:
1. An ability to do simple shell and C programming.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1				2		3			1		2			2	

II SEMESTER

	DC MACHINES AND TRANSFORMERS	L	Т	Р	С								
		3	0	0	3								
OBJECTIVE:													
•	To introduce the concept of magnetic circuits and electromechan theory.	nica	l ene	ergy									
•	To study the construction, operation and characteristics of Dc G Motors	lene	rator	s and	t								
•	To study the construction, operation and characteristics of Trans	sfor	mers										
•	To determine the losses and efficiency in dc machines and transformers by conducting various tests. To test the DC Machines and Transformers												
•	To test the DC Machines and Transformers BASIC CONCEPTS OF ROTATING MACHINES 9												
UNIT I	INIT I BASIC CONCEPTS OF ROTATING MACHINES												
•	s - Principles of electromechanical energy conversion – Sin concept of co-energy– Generated voltage – Torque in DC machi	<u> </u>	and	mul	tiple								
UNIT II	DC GENERATORS				9								
generators - Char	tails – emf equation – Methods of excitation – Self and se racteristics of series, shunt and compound generators – Armat rallel operation of DC shunt and compound generators.												
	DC MOTORS				9								
compound motors shunt motors.	ation – Back emf and torque equation – Characteristics of s – Starting of DC motors – Types of starters – Speed control			eries	and								
	TRANSFORMERS		<u>р</u> .		9								
Constructional de operation – emf ec HV / LV winding	tails of core and shell type transformers – Types of winding quation – Transformation ratio – Transformer on no-load – Paran s – Equivalent circuit – Transformer on load – Regulation – Par	mete alle	ers re l ope	ncipl	le of ed to								
Constructional de operation – emf ec HV / LV winding	tails of core and shell type transformers – Types of winding quation – Transformation ratio – Transformer on no-load – Parar	mete alle	ers re l ope	ncipl eferre eratic	le of ed to								
Constructional de operation – emf ec HV / LV winding single phase transf	tails of core and shell type transformers – Types of winding quation – Transformation ratio – Transformer on no-load – Parar s – Equivalent circuit – Transformer on load – Regulation – Par formers – Auto transformer – Three phase transformers – Vector	mete alle	ers re l ope	ncipl eferre eratic	le of ed to on of								
Constructional de operation – emf ec HV / LV winding single phase transf UNIT V Losses and efficient Testing of DC ma Testing of transfo	tails of core and shell type transformers – Types of winding quation – Transformation ratio – Transformer on no-load – Paran s – Equivalent circuit – Transformer on load – Regulation – Par formers – Auto transformer – Three phase transformers – Vector TESTING OF DC MACHINES AND	mete alle gro num opk	ers re l ope up.	ncipl eferro eratic icien n's te	le of ed to on of 9 cy – est –								
Constructional de operation – emf ec HV / LV winding single phase transf UNIT V Losses and efficie Testing of DC ma	tails of core and shell type transformers – Types of winding quation – Transformation ratio – Transformer on no-load – Parar s – Equivalent circuit – Transformer on load – Regulation – Par Formers – Auto transformer – Three phase transformers – Vector TESTING OF DC MACHINES AND TRANSFORMERS ency in DC machines and transformers – Condition for maxin achines – Brake test, Swinburne's test, Retardation test and He	nete alle gro num opk t tes	ers re l ope up. n effi insor	ncipl eferro eratic icien n's to All	e of ed to on of 9 cy – est – day								
Constructional de operation – emf ec HV / LV winding single phase transf UNIT V Losses and efficie Testing of DC ma Testing of transfe	tails of core and shell type transformers – Types of winding quation – Transformation ratio – Transformer on no-load – Parar s – Equivalent circuit – Transformer on load – Regulation – Par Formers – Auto transformer – Three phase transformers – Vector TESTING OF DC MACHINES AND TRANSFORMERS ency in DC machines and transformers – Condition for maxim achines – Brake test, Swinburne's test, Retardation test and He prmers – Polarity test, load test, open circuit and short circuit	nete alle gro num opk t tes	ers re l ope up. in effi inson sts – PE	ncipl eferro eratic icien n's to All	e of ed to on of 9 cy – est – day								
Constructional de operation – emf ec HV / LV windings single phase transf UNIT V Losses and efficient Testing of DC ma Testing of transfor efficiency.	tails of core and shell type transformers – Types of winding quation – Transformation ratio – Transformer on no-load – Parar s – Equivalent circuit – Transformer on load – Regulation – Par formers – Auto transformer – Three phase transformers – Vector TESTING OF DC MACHINES AND TRANSFORMERS ency in DC machines and transformers – Condition for maxin achines – Brake test, Swinburne's test, Retardation test and He ormers – Polarity test, load test, open circuit and short circuit TOTAL :	num opki 45 le to	ers re l ope up. . effi insor sts –	ncipl eferro eratic icien n's to All	e of ed to on of 9 cy – est – day								
Constructional de operation – emf ec HV / LV winding single phase transf UNIT V Losses and efficie Testing of DC ma Testing of transfo efficiency. OUTCOMES: 1. Explain	tails of core and shell type transformers – Types of winding quation – Transformation ratio – Transformer on no-load – Parar s – Equivalent circuit – Transformer on load – Regulation – Par <u>Formers – Auto transformer – Three phase transformers – Vector</u> TESTING OF DC MACHINES AND TRANSFORMERS ency in DC machines and transformers – Condition for maxim achines – Brake test, Swinburne's test, Retardation test and He ormers – Polarity test, load test, open circuit and short circuit TOTAL : After successful completion of the course, the students able	num opk definition	ers re l ope up. n effi inson sts – PE ory.	ncipl eferro eratio icien n's te All RIC	e of ed to on of 9 cy – est – day DDS								
Constructional de operation – emf ec HV / LV windings single phase transf UNIT V Losses and efficient Testing of DC ma Testing of transfor efficiency. OUTCOMES: 1. Explain 2. Explain	tails of core and shell type transformers – Types of winding quation – Transformation ratio – Transformer on no-load – Parar s – Equivalent circuit – Transformer on load – Regulation – Par formers – Auto transformer – Three phase transformers – Vector TESTING OF DC MACHINES AND TRANSFORMERS ency in DC machines and transformers – Condition for maxim achines – Brake test, Swinburne's test, Retardation test and He ormers – Polarity test, load test, open circuit and short circuit TOTAL : After successful completion of the course, the students able in the concept of magnetic circuits and electromechanical energy	meter ralle gro opk t tes 45 le to theo s an	ers re l ope up. n effi inson sts – PE ory.	ncipl eferro eratio icien n's te All RIC	e of ed to on of 9 cy – est – day DDS								
Constructional de operation – emf ec HV / LV windings single phase transf UNIT V Losses and efficient Testing of DC ma Testing of transfor efficiency. OUTCOVES: 1. Explain 2. Explain 3. Explain	tails of core and shell type transformers – Types of winding quation – Transformation ratio – Transformer on no-load – Parar s – Equivalent circuit – Transformer on load – Regulation – Par formers – Auto transformer – Three phase transformers – Vector TESTING OF DC MACHINES AND TRANSFORMERS ency in DC machines and transformers – Condition for maxim achines – Brake test, Swinburne's test, Retardation test and He ormers – Polarity test, load test, open circuit and short circuit TOTAL : After successful completion of the course, the students able in the concept of magnetic circuits and electromechanical energy in the construction, operation and characteristics of Dc Generators in the construction, operation and characteristics of Transformers inne the losses and efficiency in dc machines and transformers by	num opki t tes theo s an	ers re l ope up. u eff inson sts – PE ory. d Me	ncipl eferro eratic icien n's to All RIC	le of ed to on of 9 cy – est – day								

TEXT B	OOKS:
1.	Fitzgerald A.E. Kingsly C., Umans S.D., 'Electrical Machinery' 6th edition, McGraw
	Hill International Edition, New York, 2002.
2.	Kothari D.P. and Nagrath I.J, "Electric Machines", Tata McGraw Hill, Fourth Ed.,
	2011.
3.	P. C. Krause, O. Wasynczuk and S. D. Sudhoff, "Analysis of electric machinery," IEEE
	Press, 1995.
REFERI	ENCES:
1.	D.P.Kothari, "Electrical Machines" 3 rd edition, TMH, New Delhi 2004.
2.	P.C.Sen, "Principles of Electrical Machines and Power Electronics", John-Wiley &
	Sons, Newyork.
3.	Cotton H, "Advanced Electrical Technology", CBS Publishers and Distributors, 1967.
4.	P.S.Bimbhra, 'Electrical Machinery', Khanna Publishers, 2003.
5.	Fitzgerald A.E., Kingsly C. and Kusko.A., "Electric Machinery", Tata McGraw Hill,
	2007.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1			2			3			2			2	2		3
CO2	2	2							2				3		
CO3			2			2						3			2
CO4	1								2	2				2	
CO5		2						2				2			2

18PTEPC202	ELECTROMAGNETIC THEORY	L	Τ	Ρ	C
		2	1	0	3

OBJECTIVES:		
•	To study the coordinate systems, vector calculus and theorems to el	ectric and
	magnetic fields.	
•	To compare the nature, characteristics, properties and applications of	of Electric
	and Magnetic fields with the help of fundamental laws of fields.	
•	To introduce voltage, and current using electric fields and Develop	resistance,
	capacitance and inductance of a given electrical component.	
•	To Relate electric and magnetic fields with help of Faraday's	Law and
	Maxwell's Equation, and, their applications to electrical machines.	Dennetine
•	To study Electromagnetic Wave propagation, Poynting Vector and Theorem and Appreciate the significance of electric and magnetic	• •
	electrical engineering	l licius ili
UNIT I	INTRODUCTION	9
	s of electromagnetic fields – Vector fields – Different co-ordinate	-
	radient, Divergence and Curl - Divergence theorem – Stoke's theorem	
		9
UNIT II	ELECTROSTATICS	
	Electric field intensity – Field due to point and continuous charges	
11	n – Electric potential – Electric field and equipotential plots – Electric tors dialoctric Dialoctric polarization Dialoctric strength Electric	
-	tors, dielectric - Dielectric polarization – Dielectric strength - Electric	
Energy density.	s – Boundary conditions, Poisson's and Laplace's equations – Ca	pacitance-
UNIT III	MAGNETOSTATICS	9
		-
	orce, magnetic field intensity – Biot–Savart Law - Ampere's Law –	-
-	t conductors, circular loop, infinite sheet of current – Magnetic flux d conductor, magnetic materials – Magnetization – Magnetic field in	• • •
_	conductor, magnetic materials – magnetization – magnetic field in conditions – Scalar and vector potential – Magnetic force – Torque – I	-
– Energy density –		nuuctance
UNIT IV	ELECTRODYNAMIC FIELDS	9
	nduced emf – Transformer and motional EMF – Forces and Energ	-
	nagnetic Fields - Maxwell's equations (differential and integral	
	ent – Relation between field theory and circuit theory.	ionins)
UNIT V	ELECTROMAGNETIC WAVES	9
	ave equations – Wave parameters; velocity, intrinsic impedance, pr	-
	n free space ,lossy and lossless dielectrics , conductors – skin depth.	
	ion lines – Line equations– Input impedances – Standing wave ratio as	
	TOTAL: 45 Pl	
OUTCOMES:	After completion of this course, the student will be able to:	
	the coordinate systems, vector calculus and theorems to electric and	magnetic
fields.	the coordinate systems, vector calculus and theorems to electric and	magnetie
	e the nature, characteristics, properties and applications of Electric and	Magnetic
	th the help of fundamental laws of fields.	
	voltage, and current using electric fields and Develop resistance, capac	itance and
	ce of a given electrical component.	
	ectric and magnetic fields with help of Faraday's Law and Maxwell's	Equation.
	r applications to electrical machines.	1,
, -	**	

5.	Explain Electromagnetic Wave propagation, Poynting Vector and Poynting Theorem and											
	Appreciate the significance of electric and magnetic fields in electrical engineering											
TEXT B	OOKS:											
1.	Mathew N. O. Sadiku, "Elements of Electromagnetics", Oxford University press Inc.											
	India Edition, 2014.											
2.	Joseph. A. Edminister, "Theory and Problems of Electromagnetics", 2nd Edition,											
	Schaum Series, Tata McGraw Hill, 1993.											
3.	K.A.Gangadhar, P.M.Ramanthan' Electromagnetic Field Theory (including Antennaes and											
	wave propagation)', 16 th Edition,KhannaPublications,2008.											
REFERN	NCE:											
1.	Ashutosh Pramanik, "Electromagnetism – Theory and Applications", Prentice-Hall of											
	India Private Limited, New Delhi, 2008.											
2.	William. H. Hayt, "Engineering Electromagnetics", Tata McGraw Hill, 2011											
3.	Kraus and Fleish, "Electromagnetics with Applications", McGraw Hill International											
	Editions, 5 th Edition, 1999.											
4.	Bhag Singh Guruand Hüseyin R. Hiziroglu "Electromagnetic field theory											
	Fundamentals", CambridgeUniversityPress;SecondRevisedEdition,2009.											
5.	S.P.Seth, "Elements of Electromagnetic Fields", Dhanpath Rai & Sons, New Delhi,											
	2001.											

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1		2	2		2			2					2	2	
CO2		2							2	2		2			2
CO3		1			3			2					2		
CO4			2		1							2		2	
CO5		2			2			2						3	

18PTE	BS203	ENVIRONMENTAL SCIENCE AND ENGG.	L	T	Р	C
			3	0	0	3
OBJEC	CTIVES	S:	•		•	
•	To find	ng and implementing scientific, technological, economic an	d pol	litica	al	

	solutions to environmental problems.
•	To study the interrelationship between living organism and environment.
•	To appreciate the importance of environment by assessing its impact on the human world; envision the surrounding environment, its functions and its value.
•	To study the dynamic processes and understand the features of the earth's interior and surface.
•	To study the integrated themes and biodiversity, natural resources, pollution control and waste management.

UNIT I ENVIRONMENT, **ECOSYSTEMS BIODIVERSITY** (CO-a &b)

Definition, scope and importance of Risk and hazards; Chemical hazards, Physical hazards, Biological hazards in the environment - concept of an ecosystem - structure and function of an ecosystem – producers, consumers and decomposers-Oxygen cycle and Nitrogen cycle energy flow in the ecosystem - ecological succession processes - Introduction, types, characteristic features, structure and function of the (a) forest ecosystem (b) grassland ecosystem (c) desert ecosystem (d) aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries) - Introduction to biodiversity definition: genetic, species and ecosystem diversity biogeographical classification of India – value of biodiversity: consumptive use, productive use, social, ethical, aesthetic and option values - Biodiversity at global, national and local levels – India as a mega-diversity nation – hot-spots of biodiversity – threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts - endangered and endemic species of India - conservation of biodiversity: In-situ and ex-situ conservation of biodiversity. Field study of common plants, insects, birds.

Field study of simple ecosystems – pond, river, hill slopes, etc.

UNIT II

ENVIRONMENTAL POLLUTION & HEALTH RISK 9 (CO-a &c)

Definition - causes, effects and control measures of: (a) Air Pollution: Causes, effects and prevention (b) Water pollution: Causes, effects and prevention (d) Marine pollution (f) Thermal pollution pollution - soil waste management: causes, effects and control measures of municipal solid wastes - case studies

Field study of local polluted site - Urban / Rural / Industrial / Agricultural.

UNIT III

NATURAL RESOURCES (CO-a &d)

11

AND

12

Forest resources: Use and over-exploitation, deforestation, case studies- timber extraction, mining, dams and their effects on forests and tribal people - Water resources: Use and overutilization of surface and ground water, dams-benefits and problems – Mineral resources:

Use and exploitation, environmental effects of extracting and using mineral resources, case studies – Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies – Energy resources: Growing energy needs, renewable and non renewable energy sources, use of alternate energy sources. Energy Conversion processes – Land resources: Land as a resource, land degradation, man induced landslides, soil erosion and desertification – role of an individual in conservation of natural resources – Equitable use of resources for sustainable lifestyles. **Field study of local area to document environmental assets – river / forest / grassland / hill**

UNIT IV SOCIAL ISSUES AND THE ENVIRONMENT (CO-a &e)

From unsustainable to sustainable development – urban problems related to energy – water conservation, rain water harvesting, watershed management – resettlement and rehabilitation of people; its problems and concerns, case studies – role of non-governmental organization environmental ethics: Issues and possible solutions – 12 Principles of green chemistry-wasteland reclamation – consumerism and waste products – environment production act – Air act – Water act – Wildlife protection act – Forest conservation act – The Biomedical Waste (Management and Handling) Rules; 1998 and amendments- scheme of labelling of environmentally friendly products (Ecomark). - Central and state pollution control boards-disaster management: floods, earthquake, cyclone and landslides. Public awareness.

UNIT V HUMAN POPULATION AND THE ENVIRONMENT (CO-a &f)

Population growth, variation among nations – population explosion – family welfare programme – environment and human health – human rights – value education – HIV / AIDS – women and child welfare –Environmental impact analysis (EIA) -GIS-remote sensing-role of information technology in environment and human health – Case studies.

TOTAL : 45 PERIODS

7

6

COURSE OUTCOMES

Environmental Pollution or problems cannot be solved by mere laws. Public participation is an important aspect which serves the environmental Protection. One will obtain knowledge on the following after completing the course.

a.	Ability to apply the knowledge of environmental science in identifying, to formulate
	and to solve the environmental problems.
b.	Public awareness of environmental function is at infant stage.
c.	Ignorance and incomplete knowledge has led to misconceptions.
d.	Development and improvement in std. of living has led to serious environmental
	disasters.
e.	Acquires Knowledge about environmental laws.
f.	Acquires in-depth knowledge on population explosion and role of IT in environmental
	management.

ТЕУ	KT B	OOK	S :												
1.	Gilt	ert M	.Maste	ers, 'Ir	ntrodu	ction	to Env	vironm	ental	Engine	ering a	nd Scie	ence', 2	nd	
	edition, Pearson Education, 2004.														
2.	Benny Joseph, 'Environmental Science and Engineering', Tata McGraw-Hill, New														
	Delhi, 2006.														
REI	FERI	ENCI	ES:												
1	R.K.	<i>R.K. Trivedi, 'Handbook of Environmental Laws, Rules, Guidelines, Compliances and</i>													
	Standards', Vol. I and II, Enviro Media.														
2	Cun	ningh	am, W	.P. Co	ooper,	Т.Н.	Gorha	ni, 'E	nviron	imental	Encyc	lopedia	a', Jaice	o Publ.,	
	Нои	se, Mi	umbai	, 2001	•										
3	Dha	rmenc	dra S.	Senga	r, 'En	vironi	nental	l law',	Prent	tice hal	l of Ind	lia PVT	TLTD, I	New	
	Dell	hi,200	7.												
4	0	01		?, 'En	vironn	nental	Stud	ies-Fr	om C	risis to	o Cure	', Oxfo	ord Un	iversity	,
		ss 200.													
COL	JRSE	ART	ICUL	ATIO	N MA	TRE	X								
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2		1		2			3	2				1	2	
002	2		2		2			2	2				2	1	

CO2	3		2		2		2	2		2	1	
CO3	2		1		2		3	2		1	2	
CO4	2		1		2		3	2		1	1	
CO5	2		2		2		2	2		2	2	
CO6	2		2		2		3	2		1	2	
CO7	2		1		2		3	2		1	2	
1 T	a)	Mada	moto (1	A a dim	2	IL: ale						

18PTEPC204	ANALOG ELECTRONICS	L	Т	Р	C					
		2	1	0	3					
OBJECTIVES										
• To introduce the concept of PN Diode and its applications.										
•	To study the the characteristics and applications BJTs, and M	OSF	ETs.							
•	To study the various biasing methods and circuits for the BJT amplifiers	and	MOS	SFEI	[
•	To introduce the characteristics and applications of feedback oscillators	ampl	ifiers	s and						

UNIT I PN DIODE AND ITS APPLICATIONS 9 PN junction diode -VI characteristics - Resistance - temperature effects - Drift and diffusion currents - Rectifiers: HW, FW, Bridge Rectifiers, filters - Zener diode - Characteristics - LED - Regulators (series and shunt) - Introduction to Switched mode power supply(Quanitative treatment only). 9 UNIT II BJT AND FETS 9 Bipolar junction transistor - Construction - Input and output characteristics - CE, CB and CC configurations - hybrid model - Analytical expressions - JFET - VI characteristics, Pinch off Voltage-small signal model - MOSFET - Characteristics - enhancement and depletion mode. 9 NNTI II BIASING AND AMPLIFIERS 9 Need for biasing - Different types of biasing circuits -BJT-FET-Small signal analysis. 9 Classification of amplifiers -CE CB amplifier - frequency response - Class A, B, AB, C and D -RC and transformer coupled power amplifiers - Class B complementary- symmetry, push-pull power Amplifiers-Darlington connection. 9 UNIT IV FEEDBACK AMPLIFIERS AND OSCILLATORS 9 Differential amplifiers: Common Mode and Differential Mode - CMRR - feedback amplifiers - Voltage / current, series / shunt feedback -condition for oscillators - LC, RC, crystal oscillators. 9 RC wave shaping circuits - Diode clampers and clippers - Monostable, Astable and Bistable Multivibrators - Schmitt triggers - UIT based sav tooth oscillators. 9 OUTCOMES: After comple		•	To introduce the characteristics and applications of pulse circuits	
currents – Rectifiers: HW, FW, Bridge Rectifiers, filters - Żener diode – Characteristics - LED – Regulators (series and shunt) - Introduction to Switched mode power supply(Quantitative treatment only). UNIT II BJT AND FETS 9 Bipolar junction transistor – Construction – Input and output characteristics – CE, CB and CC configurations – hybrid model – MOSFET - Characteristics – enhancement and depletion mode. UNIT III BLASING AND AMPLIFIERS 9 Need for biasing – Different types of biasing circuits –BJT-FET-Small signal analysis: Classification of amplifiers -CE CB amplifier - frequency response - Class A, B, AB, C and D - MOSFET - Characteristics – enhancement and depletion mode. UNIT IV FEEDBACK AMPLIFIERS AND OSCILLATORS 9 Differential amplifiers: Common Mode and Differential Mode - CMRR – feedback amplifiers - Voltage / current, series / shunt feedback – condition for oscillation - oscillators – LC, RC, crystal oscillators. UNIT V PULSE CIRCUITS 9 RC wave shaping circuits – Diode clampers and clippers – Monostable, Astable and Bistable Multivibrators – Schmitt triggers – UJT based saw tooth oscillators. UNIT ON PULSE CIRCUITS 9 OUTCOMES: After completion of this course, the student will be able to: 1. Explain the characteristics and applications of PN Diode and its applications 2. Explain the characteristics and applications of feedback amplifiers 4. Explain the characteristics and applications of feedback amplifiers 4. Explain the characteristics and applications of feedback amplifiers 4. Explain the characteristics and applications of pulse circuits 5. Explain the characteristics and applications of pulse and its applications. 5. Explain the characteristics and applications of pulse circuits 7. Explain the characteristics	UNI	ГΙ	PN DIODE AND ITS APPLICATIONS	9
Regulators (series and shunt) - Introduction to Switched mode power supply(Quantitative treatment only). UNIT II BJT AND FETS 9 Bipolar junction transistor - Construction - Input and output characteristics - CE, CB and CC configurations - hybrid model - Analytical expressions - JFET - VI characteristics, Pinch off Voltage- small signal model - MOSFET - Characteristics - enhancement and depletion mode. 9 UNIT III BIASING AND AMPLIFIERS 9 Need for biasing - Different types of biasing circuits -BJT-FET-Small signal analysis: Classification of amplifiers - CE CB amplifier - frequency response - Class A, B, AB, C and D -RC and transformer coupled power amplifiers - Cass B complementary- symmetry, push-pull power Amplifiers-Darlington connection. 9 UNIT IV FEEDBACK AMPLIFIERS AND OSCILLATORS 9 Differential amplifiers: Common Mode and Differential Mode - CMRR – feedback amplifiers - Voltage / current, series / shunt feedback -condition for oscillator - oscillators - LC, RC, crystal oscillators. 9 UNIT V PULSE CIRCUITS 9 RC wave shaping circuits - Diode clampers and clippers – Monostable, Astable and Bistable Multivitards - Schmitt triggers - UJT based saw tooth oscillators. 9 OUTCOMES: After completion of this course, the student will be able to: 1. 1. Explain the characteristics and applications of PN Diode and its applications 2. 2. Explain the characteristics and applications of feedbac			▲	
treatment only). UNIT II BJT AND FETS 9 Bipolar junction transistor – Construction – Input and output characteristics – CE, CB and CC configurations – hybrid model – Analytical expressions - JFET – VI characteristics, Pinch off Voltage– small signal model - MOSFET - Characteristics – enhancement and depletion mode. UNIT III BIASING AND AMPLIFIERS 9 Need for biasing - Different types of biasing circuits –BJT-FET-Small signal analysis- Classification of amplifiers -CE CB amplifier - frequency response - Class A, B, AB, C and D -RC and transformer coupled power amplifiers - CIAS B complementary- symmetry, push-pull power Amplifiers-Darlington connection. UNIT IV FEEDBACK AMPLIFIERS AND OSCILLATORS 9 Differential amplifiers: Common Mode and Differential Mode - CMRR – feedback amplifiers Voltage / current, series / shunt feedback –condition for oscillation - oscillators – LC, RC, crystal oscillators. UNIT V PULSE CIRCUITS 9 RC wave shaping circuits – Diode clampers and clippers – Monostable, Astable and Bistable Multivibrators – Schmitt triggers – UIT based saw tooth oscillators. UNTCOMES: After completion of this course, the student will be able to: 1. Explain the characteristics and applications of PN Diode and its applications 2. Explain the characteristics and applications of feedback amplifiers 3. Compare various biasing methods and circuits", PHI, 2006. 3. Explain the characteristics and applications of pulse circuits TEXT BOOKS: 1. Paynter, "Introductory electronic devices and circuits", PHI, 2007. REFERNCE: 1. Theodre F. Boghert, "Electronic Devices & Circuits" Pearson Education, 6 th Edition, 2003. 3. Singh. B.P and Rekha Singh, "Electronic Devices and Integrated Circuits", Pearson Education, 2006. 4. Salivahanan, S, Suresh Kumar, N and Vallavaraj, A, "Electronic Devices and circuits", Tata McGraw Hill, 2003.				
UNIT II BJT AND FETS 9 Bipolar junction transistor – Construction – Input and output characteristics – CE, CB and CC configurations – hybrid model – Analytical expressions - JFET – VI characteristics, Pinch off Voltage-small signal model – MOSFET - Characteristics – enhancement and depletion mode. UNIT III BIASING AND AMPLIFIERS 9 Need for biasing - Different types of biasing circuits –BJT-FET-Small signal analysis-Classification of amplifiers -CE CB amplifier - frequency response - Class A, B, AB, C and D -RC and transformer coupled power amplifiers - Class B complementary- symmetry, push-pull power Amplifiers-Darlington connection. 9 UNIT IV FEEDBACK AMPLIFIERS AND OSCILLATORS 9 Differential amplifiers: Common Mode and Differential Mode - CMRR – feedback amplifiers - Voltage (current, series / shunt feedback – condition for oscillatorn - oscillators – LC, RC, crystal oscillators. 9 RC wave shaping circuits – Diode clampers and clippers – Monostable, Astable and Bistable Multivibrators – Schmitt triggers – UJT based saw tooth oscillators. 9 COUTCOMES: After completion of this course, the student will be able to: 1. 1. Explain the characteristics and applications of PN Diode and its applications 2. 2. Explain the characteristics and applications of feedback amplifiers and oscillators. 5. 3. Compare various biasing methods and circuits for the BJT and MOSFET amplifiers 4.	-		s and shunt) - Introduction to Switched mode power supply(Q	uantitative
Bipolar junction transistor – Construction – Input and output characteristics – CE, CB and CC configurations – hybrid model – Analytical expressions - JFET – VI characteristics, Pinch off Voltage– small signal model - MOSFET - Characteristics – enhancement and depletion mode. UNIT III BIASING AND AMPLIFIERS 9 Need for biasing – Different types of biasing circuits –BJT-FET-Small signal analysis. 9 Classification of amplifiers -CE CB amplifier - frequency response - Class A, B, AB, C and D -RC and transformer coupled power amplifiers - Class B complementary- symmetry, push-pull power Amplifiers-Darlington connection. 9 Differential amplifiers: Common Mode and Differential Mode - CMRR – feedback amplifiers - Voltage / current, series / shunt feedback –condition for oscillation - oscillators – LC, RC, crystal oscillators. 9 RC wave shaping circuits – Diode clampers and clippers – Monostable, Astable and Bistable Multivibrators – Schmitt triggers – UJT based saw tooth oscillators. 9 RC wave shaping circuits – Diode clampers and clippers – Monostable, Astable and Bistable Multivibrators – Schmitt triggers – UJT based saw tooth oscillators. 9 RC wave shaping circuits – Diode clampers and circuits for the BJT and MOSFETs. 3 0 Q Explain the characteristics and applications BJTs, and MOSFETs. 3 Compare various biasing methods and circuits for the BJT and MOSFET amplifiers 4. Explain the characteristics and applications of pulse circuits 7 7		•		
configurations – hybrid model – Analytical expressions - JFET – VI characteristics, Pinch off Voltage– small signal model - MOSFET - Characteristics – enhancement and depletion mode. UNIT III BIASING AND AMPLIFIERS 9 Need for biasing - Different types of biasing circuits –BJT-FET-Small signal analysis- Classification of amplifiers -CE CB amplifier - frequency response - Class A, B, AB, C and D -RC and transformer coupled power amplifiers - Class B complementary- symmetry, push-pull power Amplifiers-Darlington connection. 9 UNIT IV FEEDBACK AMPLIFIERS AND OSCILLATORS 9 Differential amplifiers - Common Mode and Differential Mode - CMRR – feedback amplifiers - Voltage / current, series / shunt feedback –condition for oscillation - oscillators – LC, RC, crystal oscillators. 9 UNIT V PULSE CIRCUITS 9 RC wave shaping circuits – Diode clampers and clippers – Monostable, Astable and Bistable Multivibrators – Schmitt triggers – UJT based saw tooth oscillators. 9 OUTCOMES: After completion of this course, the student will be able to: 1. 1. Explain the characteristics and applications BJTs, and MOSFETs. 3. 2. Explain the characteristics and applications of feedback amplifiers and oscillators. 5. 5. Explain the characteristics and applications of pulse circuits 7. 7. Paynter, "Introductory electronic devices and circuits", PHI,				-
Voltage - small signal model - MOSFET - Characteristics – enhancement and depletion mode. UNIT III BIASING AND AMPLIFIERS 9 Need for biasing - Different types of biasing circuits –BJT-FET-Small signal analysis- Classification of amplifiers -CE CB amplifier - frequency response - Class A, B, AB, C and D -RC and transformer coupled power amplifiers - Class B complementary- symmetry, push-pull power Amplifiers-Darlington connection. 9 UNIT IV FEEDBACK AMPLIFIERS AND OSCILLATORS 9 Differential amplifiers: Common Mode and Differential Mode - CMRR – feedback amplifiers - Voltage / current, series / shunt feedback –condition for oscillation - oscillators – LC, RC, crystal oscillators. 9 UNIT V PULSE CIRCUITS 9 RC wave shaping circuits – Diode clampers and clippers – Monostable, Astable and Bistable Multivibrators – Schmitt triggers – UJT based saw tooth oscillators. 9 OUTCOMES: After completion of this course, the student will be able to: 1. 1. Explain the characteristics and applications BJTs, and MOSFETs. 3. 2. Explain the characteristics and applications of pulse circuits 5. 3. Compare various biasing methods and circuits for the BJT and MOSFET amplifiers 4. Explain the characteristics and applications of pulse circuits 5. Explain the characteristics and applications of pulse circuits 7				
UNIT III BIASING AND AMPLIFIERS 9 Need for biasing or biasing or biasing circuits -BJT-FET-Small signal analysis. Classification of amplifiers -CE CB amplifier - frequency response - Class A, B, AB, C and D - RC and transformer connection. ABU - RC and D - RC and D - RC and transformer connection. UNIT IV FEEDBACK AMPLIFIERS AND OSCILLATORS 9 Differential amplifiers -Darlington connection. 9 UNIT V FEEDBACK AMPLIFIERS AND OSCILLATORS 9 Differential amplifiers - Connection. 9 9 Differential amplifiers - bounde and Differential Mode - CMRR – feedback amplifiers - Voltage / current, series / shunt feedback -condition for oscillators - LC, RC, crystal oscillators. 9 VINT V PULSE CIRCUITS 9 OUTCOMES: After completion of this course, the student will be able to: 9 1. Explain tearacteristics and applications of PN Diode and its applications. 9 2. Explain tearacteristics and applications of reedback amplifiers and oscillators. 9 3. Compare terristics and applications or pulse circuits. 9 4. Explain tearacteristics and applications or pulse circuits. 9 5. Explain tearacteristics and applications or pulse circuits. 9 2. Davit				
Need for biasing - Different types of biasing circuits -BJT-FET-Small signal analysis- Classification of amplifiers -CE CB amplifier - frequency response - Class A, B, AB, C and D -RC and transformer coupled power amplifiers - Class B complementary- symmetry, push-pull power Amplifiers-Darlington connection. UNIT IV FEEDBACK AMPLIFIERS AND OSCILLATORS 9 Differential amplifiers: Common Mode and Differential Mode - CMRR - feedback amplifiers - Voltage / current, series / shunt feedback -condition for oscillation - oscillators - LC, RC, crystal oscillators. 9 UNIT V PULSE CIRCUITS 9 RC wave shaping circuits - Diode clampers and clippers - Monostable, Astable and Bistable Multivibrators - Schmitt triggers - UJT based saw tooth oscillators. 9 OUTCOMES: After completion of this course, the student will be able to: 1 1. Explain the characteristics and applications of PN Diode and its applications 9 2. Explain the characteristics and applications of feedback amplifiers and oscillators. 5 3. Compare various biasing methods and circuits for the BJT and MOSFET amplifiers 4 4. Explain the characteristics and applications of pulse circuits 5 5. Explain the characteristics and applications of pulse circuits 2 6 Explain the characteristics and applications of pulse circuits 2 7 Explain				
Classification of amplifiers -CE CB amplifier - frequency response - Class A, B, AB, C and D -RC and transformer coupled power amplifiers - Class B complementary- symmetry, push-pull power Amplifiers-Darlington connection. UNIT IV FEEDBACK AMPLIFIERS AND OSCILLATORS 9 Differential amplifiers: Common Mode and Differential Mode - CMRR – feedback amplifiers - Voltage / current, series / shunt feedback -condition for oscillators - LC, RC, crystal oscillators. 9 UNIT V PULSE CIRCUITS 9 RC wave shaping circuits – Diode clampers and clippers – Monostable, Astable and Bistable Multivibrators - schmitt triggers – UJT based saw tooth oscillators. 9 OUTCOMES: After completion of this course, the student will be able to: 1. 1. Explain the characteristics and applications BJTs, and MOSFETs. 3. 3. Compare various biasing methods and circuits for the BJT and MOSFET amplifiers 4. 4. Explain the characteristics and applications of pulse circuits 5. 5. Explain the characteristics and applications of pulse circuits 7. 7. Paynter, "Introductory electronic devices and circuits", PHI, 2006. 2. 2. David Bell, "Electronic Devices & Circuits" Pearson Education, 6 th Edition, 2003. 2. 2. Rashid, "Microelectronic circuits", Thomson Publication, 1999. 3.				-
and transformer coupled power amplifiers - Class B complementary- symmetry, push-pull power Amplifiers-Darlington connection. UNIT IV FEEDBACK AMPLIFIERS AND OSCILLATORS 9 Differential amplifiers: Common Mode and Differential Mode - CMRR – feedback amplifiers - Voltage / current, series / shunt feedback –condition for oscillation - oscillators – LC, RC, crystal oscillators. 9 UNIT V PULSE CIRCUITS 9 RC wave shaping circuits – Diode clampers and clippers – Monostable, Astable and Bistable Multivibrators – Schmitt triggers – UJT based saw tooth oscillators. 9 OUTCOMES: After completion of this course, the student will be able to: 1 1. Explain the characteristics and applications of PN Diode and its applications 2 2. Explain the characteristics and applications of feedback amplifiers and oscillators. 5 3. Compare various biasing methods and circuits for the BJT and MOSFET amplifiers 4 4. Explain the characteristics and applications of pulse circuits 5 5. Explain the characteristics and applications of pulse circuits 7 TEXT BOOKS: 1. Paynter, "Introductory electronic devices and circuits", PHI, 2006. 2 2. David Bell, "Electronic Devices & Circuits" Pearson Education, 6 th Edition, 2003.				
Amplifiers-Darlington connection. UNIT IV FEEDBACK AMPLIFIERS AND OSCILLATORS 9 Differential amplifiers: Common Mode and Differential Mode - CMRR – feedback amplifiers - Voltage / current, series / shunt feedback – condition for oscillaton - oscillators – LC, RC, crystal oscillators. 9 UNIT V PULSE CIRCUITS 9 RC wave shaping circuits – Diode clampers and clippers – Monostable, Astable and Bistable Multivibrators – Schmitt triggers – UJT based saw tooth oscillators. 9 OUTCOMES: After completion of this course, the student will be able to: 1. 1. Explain the characteristics and applications of PN Diode and its applications 2. Explain the characteristics and applications of feedback amplifiers and oscillators. 5. Explain the characteristics and applications of feedback amplifiers and oscillators. 5. Explain the characteristics and applications of pulse circuits TEXT BOOKS: Image: Plant the characteristics and applications of pulse circuits 1. Paynter, "Introductory electronic devices and circuits", PHI, 2006. 2. David Bell, "Electronic Devices & Circuits", PHI, 2007. REFERNCE: Image: Plant Rekha Singh, "Electronic Devices and Integrated Circuits", Pearson Education, 6 th Edition, 2003. 2. Rashid, "Microelectronic circuits", Thomson Publication, 1999. S				
UNIT IVFEEDBACK AMPLIFIERS AND OSCILLATORS9Differential amplifiers: Common Mode and Differential Mode - CMRR – feedback amplifiers - Voltage / current, series / shunt feedback – condition for oscillation - oscillators – LC, RC, crystal oscillators.9UNIT VPULSE CIRCUITS9RC wave shaping circuits – Diode clampers and clippers – Monostable, Astable and Bista Multivitors – Schmitt triggers – UJT based saw tooth oscillators.9 $MI = 00000000000000000000000000000000000$				Juli power
Differential amplifiers: Common Mode and Differential Mode - CMRR – feedback amplifiers - Voltage / current, series / shunt feedback –condition for oscillation - oscillators – LC, RC, crystal oscillators. UNIT V PULSE CIRCUITS 9 RC wave shaping circuits – Diode clampers and clippers – Monostable, Astable and Bistable Multivibrators – Schmitt triggers – UJT based saw tooth oscillators. 9 OUTCOMES: After completion of this course, the student will be able to: 1. Explain the characteristics and applications of PN Diode and its applications 2. Explain the characteristics and applications BJTs, and MOSFETs. 3. Compare various biasing methods and circuits for the BJT and MOSFET amplifiers 4. Explain the characteristics and applications of pulse circuits 5. Explain the characteristics and applications of pulse circuits 7. TEXT BOOKS: 1. Paynter, "Introductory electronic devices and circuits", PHI, 2006. 2. David Bell, "Electronic Devices & Circuits" Pearson Education, 6 th Edition, 2003. 2. Rashid, "Microelectronic circuits", Thomson Publication, 1999. 3. Singh. B.P and Rekha Singh, "Electronic Devices and Integrated Circuits", Pearson Education, 2006. 4. Salivahanan. S, Suresh Kumar. N and Vallavaraj. A, "Electronic Devices and circuits", Tata McGraw Hill, 2003.				0
Voltage / current, series / shunt feedback -condition for oscillation - oscillators - LC, RČ, crystal oscillators. 9 UNIT V PULSE CIRCUITS 9 RC wave shaping circuits - Diode clampers and clippers - Monostable, Astable and Bistable Multivibrators - Schmitt triggers - UJT based saw tooth oscillators. 9 OUTCOMES: After completion of this course, the student will be able to: 1 1. Explain the characteristics and applications of PN Diode and its applications 2 2. Explain the characteristics and applications of feedback amplifiers and oscillators. 5 3. Compare various biasing methods and circuits for the BJT and MOSFET amplifiers 4 4. Explain the characteristics and applications of pulse circuits 1 7. Paynter, "Introductory electronic devices and circuits", PHI, 2006. 2 2. David Bell, "Electronic Devices and Circuits", PHI, 2007. 2003. 2. Rashid, "Microelectronic circuits", Thomson Publication, 1999. 3 3. Singh. B.P and Rekha Singh, "Electronic Devices and Integrated Circuits", Pearson Education, 2006. 4. Salivahanan. S, Suresh Kumar. N and Vallavaraj. A, "Electronic Devices and circuits", Tata McGraw Hill, 2003.				-
oscillators. PULSE CIRCUITS 9RC wave shaping circuits – Diode clampers and clippers – Monostable, Astable and Bistable Multivibrators – Schmitt triggers – UJT based saw tooth oscillators. TOTAL : 45 PERIODS OUTCOMES:After completion of this course, the student will be able to:1.Explain the characteristics and applications of PN Diode and its applications2.Explain the characteristics and applications BJTs, and MOSFETs.3.Compare various biasing methods and circuits for the BJT and MOSFET amplifiers4.Explain the characteristics and applications of pulse circuitsTEXT BOOKS:1.Paynter, "Introductory electronic devices and circuits", PHI, 2006.2.David Bell, "Electronic Devices and Circuits", PHI, 2007.REFERNCE:1.Theodre F. Boghert, "Electronic Devices & Circuits" Pearson Education, 6 th Edition, 2003.2.Rashid, "Microelectronic circuits", Thomson Publication, 1999.3.Singh. B.P and Rekha Singh, "Electronic Devices and Integrated Circuits", Pearson Education, 2006.4.Salivahanan. S, Suresh Kumar. N and Vallavaraj. A, "Electronic Devices and circuits", Tata McGraw Hill, 2003.				
UNIT V PULSE CIRCUITS 9 RC wave shaping circuits – Diode clampers and clippers – Monostable, Astable and Bistable Multivibrators – Schmitt triggers – UJT based saw tooth oscillators. Multivibrators – Schmitt triggers – UJT based saw tooth oscillators. TOTAL : 45 PERIODS OUTCOMES: After completion of this course, the student will be able to: 1. 1. Explain the characteristics and applications of PN Diode and its applications 2. 2. Explain the characteristics and applications BJTs, and MOSFET amplifiers 3. Compare various biasing methods and circuits for the BJT and MOSFET amplifiers 4. Explain the characteristics and applications of pulse circuits TEXT BOOKS: Implemented the characteristics and applications of pulse circuits 1. Paynter, "Introductory electronic devices and circuits", PHI, 2006. 2. David Bell, "Electronic Devices and Circuits", PHI, 2007. REFERNCE: 1. Theodre F. Boghert, "Electronic Devices & Circuits" Pearson Education, 6 th Edition, 2003. 2. Rashid, "Microelectronic circuits", Thomson Publication, 1999. 3. Singh. B.P and Rekha Singh, "Electronic Devices and Integrated Circuits", Pearson Education, 2006. 4. Salivahanan. S, Suresh Kumar. N and Vallavaraj. A, "Electronic Devices and circuit			series / shall recubler condition for obeination obeinators inc, r	ie, erystar
RC wave shaping circuits – Diode clampers and clippers – Monostable, Astable and Bistable MUItivibrators – Schmitt triggers – UJT based saw tooth oscillators. TOTAL : 45 PERIODS OUTCOMES: After completion of this course, the student will be able to: 1. Explain the characteristics and applications of PN Diode and its applications 2. Explain the characteristics and applications BJTs, and MOSFETs. 3. Compare various biasing methods and circuits for the BJT and MOSFET amplifiers 4. Explain the characteristics and applications of pulse circuits TEXT BOOKS: 1. Paynter, "Introductory electronic devices and circuits", PHI, 2006. 2. David Bell, "Electronic Devices and Circuits", PHI, 2007. REFERNCE: 1. Theodre F. Boghert, "Electronic Devices & Circuits" Pearson Education, 6 th Edition, 2003. 2. Rashid, "Microelectronic circuits", Thomson Publication, 1999. 3. Singh. B.P and Rekha Singh, "Electronic Devices and Integrated Circuits", Pearson Education, 2006. 4. Salivahanan. S, Suresh Kumar. N and Vallavaraj. A, "Electronic Devices and circuits", Tata McGraw Hill, 2003.			PULSE CIRCUITS	9
Multivibrators – Schmitt triggers – UJT based saw tooth oscillators. TOTAL : 45 PERIODS OUTCOMES: After completion of this course, the student will be able to: 1. Explain the characteristics and applications of PN Diode and its applications 2. Explain the characteristics and applications BJTs, and MOSFETs. 3. Compare various biasing methods and circuits for the BJT and MOSFET amplifiers 4. Explain the characteristics and applications of feedback amplifiers and oscillators. 5. Explain the characteristics and applications of pulse circuits TEXT BOOKS: 1. Paynter, "Introductory electronic devices and circuits", PHI, 2006. 2. David Bell, "Electronic Devices and Circuits", PHI, 2007. REFERNCE: 1. Theodre F. Boghert, "Electronic Devices & Circuits" Pearson Education, 6 th Edition, 2003. 2. Rashid, "Microelectronic circuits", Thomson Publication, 1999. 3. Singh. B.P and Rekha Singh, "Electronic Devices and Integrated Circuits", Pearson Education, 2006. 4. Salivahanan. S, Suresh Kumar. N and Vallavaraj. A, "Electronic Devices and circuits", Tata McGraw Hill, 2003.				-
TOTAL : 45 PERIODS OUTCOMES: After completion of this course, the student will be able to: 1. Explain the characteristics and applications of PN Diode and its applications 2. Explain the characteristics and applications BJTs, and MOSFETs. 3. Compare various biasing methods and circuits for the BJT and MOSFET amplifiers 4. Explain the characteristics and applications of feedback amplifiers and oscillators. 5. Explain the characteristics and applications of pulse circuits TEXT BOOKS: 1. Paynter, "Introductory electronic devices and circuits", PHI, 2006. 2. David Bell, "Electronic Devices and Circuits", PHI, 2007. REFERNCE: 1. Theodre F. Boghert, "Electronic Devices & Circuits" Pearson Education, 6 th Edition, 2003. 2. Rashid, "Microelectronic circuits", Thomson Publication, 1999. 3. Singh. B.P and Rekha Singh, "Electronic Devices and Integrated Circuits", Pearson Education, 2006. 4. Salivahanan. S, Suresh Kumar. N and Vallavaraj. A, "Electronic Devices and circuits", Tata McGraw Hill, 2003.				
 Explain the characteristics and applications of PN Diode and its applications Explain the characteristics and applications BJTs, and MOSFETs. Compare various biasing methods and circuits for the BJT and MOSFET amplifiers Explain the characteristics and applications of feedback amplifiers and oscillators. Explain the characteristics and applications of pulse circuits Paynter, "Introductory electronic devices and circuits", PHI, 2006. David Bell, "Electronic Devices and Circuits", PHI, 2007. REFERNCE: Theodre F. Boghert, "Electronic Devices & Circuits" Pearson Education, 6th Edition, 2003. Rashid, "Microelectronic circuits", Thomson Publication, 1999. Singh. B.P and Rekha Singh, "Electronic Devices and Integrated Circuits", Pearson Education, 2006. Salivahanan. S, Suresh Kumar. N and Vallavaraj. A, "Electronic Devices and circuits", Tata McGraw Hill, 2003. 				
 Explain the characteristics and applications BJTs, and MOSFETs. Compare various biasing methods and circuits for the BJT and MOSFET amplifiers Explain the characteristics and applications of feedback amplifiers and oscillators. Explain the characteristics and applications of pulse circuits TEXT BOOKS: Paynter, "Introductory electronic devices and circuits", PHI, 2006. David Bell, "Electronic Devices and Circuits", PHI, 2007. REFERNCE: Theodre F. Boghert, "Electronic Devices & Circuits" Pearson Education, 6th Edition, 2003. Singh. B.P and Rekha Singh, "Electronic Devices and Integrated Circuits", Pearson Education, 2006. Salivahanan. S, Suresh Kumar. N and Vallavaraj. A, "Electronic Devices and circuits", Tata McGraw Hill, 2003. 	OUT	COMES:	After completion of this course, the student will be able to:	
 Compare various biasing methods and circuits for the BJT and MOSFET amplifiers Explain the characteristics and applications of feedback amplifiers and oscillators. Explain the characteristics and applications of pulse circuits TEXT BOOKS: Paynter, "Introductory electronic devices and circuits", PHI, 2006. David Bell, "Electronic Devices and Circuits", PHI, 2007. REFERNCE: Theodre F. Boghert, "Electronic Devices & Circuits" Pearson Education, 6th Edition, 2003. Rashid, "Microelectronic circuits", Thomson Publication, 1999. Singh. B.P and Rekha Singh, "Electronic Devices and Integrated Circuits", Pearson Education, 2006. Salivahanan. S, Suresh Kumar. N and Vallavaraj. A, "Electronic Devices and circuits", Tata McGraw Hill, 2003. 	1.	Explain t	he characteristics and applications of PN Diode and its applications	
 4. Explain the characteristics and applications of feedback amplifiers and oscillators. 5. Explain the characteristics and applications of pulse circuits TEXT BOOKS: Paynter, "Introductory electronic devices and circuits", PHI, 2006. 2. David Bell, "Electronic Devices and Circuits", PHI, 2007. REFERNCE: Theodre F. Boghert, "Electronic Devices & Circuits" Pearson Education, 6th Edition, 2003. 2. Rashid, "Microelectronic circuits", Thomson Publication, 1999. 3. Singh. B.P and Rekha Singh, "Electronic Devices and Integrated Circuits", Pearson Education, 2006. 4. Salivahanan. S, Suresh Kumar. N and Vallavaraj. A, "Electronic Devices and circuits", Tata McGraw Hill, 2003. 	2.	Explain t	he characteristics and applications BJTs, and MOSFETs.	
 5. Explain the characteristics and applications of pulse circuits TEXT BOOKS: Paynter, "Introductory electronic devices and circuits", PHI, 2006. 2. David Bell, "Electronic Devices and Circuits", PHI, 2007. REFERNCE: Theodre F. Boghert, "Electronic Devices & Circuits" Pearson Education, 6th Edition, 2003. 2. Rashid, "Microelectronic circuits", Thomson Publication, 1999. 3. Singh. B.P and Rekha Singh, "Electronic Devices and Integrated Circuits", Pearson Education, 2006. 4. Salivahanan. S, Suresh Kumar. N and Vallavaraj. A, "Electronic Devices and circuits", Tata McGraw Hill, 2003. 	3.	Compare	various biasing methods and circuits for the BJT and MOSFET amplit	iers
TEXT BOOKS: 1. Paynter, "Introductory electronic devices and circuits", PHI, 2006. 2. David Bell, "Electronic Devices and Circuits", PHI, 2007. REFERNCE: 1. 1. Theodre F. Boghert, "Electronic Devices & Circuits" Pearson Education, 6 th Edition, 2003. 2. Rashid, "Microelectronic circuits", Thomson Publication, 1999. 3. Singh. B.P and Rekha Singh, "Electronic Devices and Integrated Circuits", Pearson Education, 2006. 4. Salivahanan. S, Suresh Kumar. N and Vallavaraj. A, "Electronic Devices and circuits", Tata McGraw Hill, 2003.	4.	Explain t	he characteristics and applications of feedback amplifiers and oscillato	rs.
TEXT BOOKS: 1. Paynter, "Introductory electronic devices and circuits", PHI, 2006. 2. David Bell, "Electronic Devices and Circuits", PHI, 2007. REFERNCE: 1. 1. Theodre F. Boghert, "Electronic Devices & Circuits" Pearson Education, 6 th Edition, 2003. 2. Rashid, "Microelectronic circuits", Thomson Publication, 1999. 3. Singh. B.P and Rekha Singh, "Electronic Devices and Integrated Circuits", Pearson Education, 2006. 4. Salivahanan. S, Suresh Kumar. N and Vallavaraj. A, "Electronic Devices and circuits", Tata McGraw Hill, 2003.	5.	Explain t	he characteristics and applications of pulse circuits	
 Paynter, "Introductory electronic devices and circuits", PHI, 2006. David Bell, "Electronic Devices and Circuits", PHI, 2007. REFERNCE: Theodre F. Boghert, "Electronic Devices & Circuits" Pearson Education, 6th Edition, 2003. Rashid, "Microelectronic circuits", Thomson Publication, 1999. Singh. B.P and Rekha Singh, "Electronic Devices and Integrated Circuits", Pearson Education, 2006. Salivahanan. S, Suresh Kumar. N and Vallavaraj. A, "Electronic Devices and circuits", Tata McGraw Hill, 2003. 				
REFERNCE: 1. Theodre F. Boghert, "Electronic Devices & Circuits" Pearson Education, 6 th Edition, 2003. 2. Rashid, "Microelectronic circuits", Thomson Publication, 1999. 3. Singh. B.P and Rekha Singh, "Electronic Devices and Integrated Circuits", Pearson Education, 2006. 4. Salivahanan. S, Suresh Kumar. N and Vallavaraj. A, "Electronic Devices and circuits", Tata McGraw Hill, 2003.				
REFERNCE: 1. Theodre F. Boghert, "Electronic Devices & Circuits" Pearson Education, 6 th Edition, 2003. 2. Rashid, "Microelectronic circuits", Thomson Publication, 1999. 3. Singh. B.P and Rekha Singh, "Electronic Devices and Integrated Circuits", Pearson Education, 2006. 4. Salivahanan. S, Suresh Kumar. N and Vallavaraj. A, "Electronic Devices and circuits", Tata McGraw Hill, 2003.	2. I	David Bell "	Electronic Devices and Circuits" PHI 2007	
 Theodre F. Boghert, "Electronic Devices & Circuits" Pearson Education, 6th Edition, 2003. Rashid, "Microelectronic circuits", Thomson Publication, 1999. Singh. B.P and Rekha Singh, "Electronic Devices and Integrated Circuits", Pearson Education, 2006. Salivahanan. S, Suresh Kumar. N and Vallavaraj. A, "Electronic Devices and circuits", Tata McGraw Hill, 2003. 				
 Rashid, "Microelectronic circuits", Thomson Publication, 1999. Singh. B.P and Rekha Singh, "Electronic Devices and Integrated Circuits", Pearson Education, 2006. Salivahanan. S, Suresh Kumar. N and Vallavaraj. A, "Electronic Devices and circuits", Tata McGraw Hill, 2003. 			Roghert "Electronic Devices & Circuits" Pearson Education 6th Editi	on 2003
 Singh. B.P and Rekha Singh, "Electronic Devices and Integrated Circuits", Pearson Education, 2006. Salivahanan. S, Suresh Kumar. N and Vallavaraj. A, "Electronic Devices and circuits", Tata McGraw Hill, 2003. 	1. 1	neoure r. D	ogneri, Electronic Devices & Circuits Teurson Education, o Educi	<i>JH</i> , 2005.
 <i>Education, 2006.</i> 4. Salivahanan. S, Suresh Kumar. N and Vallavaraj. A, "Electronic Devices and circuits", Tata McGraw Hill, 2003. 	2. 1	Rashid, "Mic	croelectronic circuits", Thomson Publication, 1999.	
4. Salivahanan. S, Suresh Kumar. N and Vallavaraj. A, "Electronic Devices and circuits", Tata McGraw Hill, 2003.				, Pearson
McGraw Hill, 2003.				
				iits", Tata
J. KobertL. Doylesiaa, Electronic Devices and Circullineory ,2002.				
	J. I	NoveriL.BOy	iesiaa, ElectronicDevicesanaCircuittneory ,2002.	

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1			2			2		2					2		2
CO2			2			2		2				2	2		2
CO3					2			2		2			2		2
CO4			2			2				2		2	3		2
CO5			2			2				2			1		2

18P	TEPC205	DIGITAL LOGIC CIRCUITS	L	T	Р	C							
			2	1	0	3							
OB	OBJECTIVES:												
•	•	rious number systems and simplify the logical expressions u	ising										
•	Boolean fur	ctions											
•	To study combinational circuits												
•	To design v	arious synchronous and asynchronous circuits											
•	To introduc	e asynchronous sequential circuits and PLDs											
•	To introduc	e digital simulation for development of application oriented	logi	c cir	cuits								
J	UNIT I	NUMBER SYSTEMS AND DIGITAL LOGIC				9							
FAMILIES													

Review of numb	per systems, binary codes, error detection and correction codes (Parity	v and
	– Digital Logic Families – Comparison of RTL, DTL, TTL, ECL and	
•	ion, characteristics of digital logic family.	10100
UNIT II	COMBINATIONAL CIRCUITS	9
	ogic – Representation of logic functions – SOP and POS forms – K	-map
	- Minimization using K maps – Simplification and implementation	-
_	gic – Multiplexers and de multiplexers – Code converters, adders, subtra	
Encoders and Dec		
UNIT III	SYNCHRONOUS SEQUENTIAL CIRCUITS	9
Sequential logic -	- SR, JK, D and T flip flops – Level triggering and edge triggering – Coun	ters –
1 0	nd synchronous type – Modulo counters – Shift registers – Desig	
-	iential circuits – Moore and Melay models – Counters – State diagram –	
reduction – State		
UNIT IV	ASYNCHRONOUS SEQUENTIAL CIRCUITS AND	9
	PROGRAMMABILITY LOGIC DEVICES	
Asynchronous se	quential logic circuits – Transition stability, flow stability – Race condi	tions.
-	in digital circuits – Analysis of asynchronous sequential logic circu	
	ogrammability Logic Devices: PROM – PLA – PAL – CPLD – FPGA	
UNIT V	VHDL	9
	mbinational logic – Sequential circuit – Operators – Introduction to Packa	iges –
	Test bench. (Simulation / Tutorial Examples: adders, counters, flip	
Multiplexers & D		1
-	TOTAL :45 PER	IODS
OUTCOMES:	After completion of this course, the student will be able to:	
1 Design com	ibinational and sequential Circuits	
2 Illustrate va	arious number systems and simplify the logical expressions using Bool	lean
² functions		
	ous synchronous and asynchronous circuits.	
	nchronous sequential circuits and PLDs	
	gital simulation for development of application oriented logic circuits.	
TEXTBOOKS		
	Bignel, Digital Electronics, Cengage learning, 5 th Edition, 2007.	
$\begin{array}{c c} 2 & M. Morris \\ 2013. \end{array}$	Mano, 'Digital Design with an introduction to the VHDL', Pearson Education	ation,
	gital Logic & State Machine Design, Oxford, 2012.	
REFERENCE	28:	
1 Mandal, "L	Digital Electronics Principles & Application, McGraw Hill Edu, 2013.	
	ngital Electronics Principles & Application, McGraw Hill Edu, 2013. itz, "Digital Electronics-A Practical Approach with VHDL", Pearson, 201	3.
2 William Ke		3.
2 William Ke 3 Thomas L.H	itz, "Digital Electronics-A Practical Approach with VHDL", Pearson, 201 Floyd, "Digital Fundamentals", 11th edition, Pearson Education, 2015. Roth, Jr, Lizy Lizy Kurian John, "Digital System Design using VHI	

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1			2					2		2			3		2
CO2						2						2			
CO3								2				2		2	
CO4			2			2				2			2		
CO5			2					2				2		2S	

1-Low, 2-Moderate (Medium), 3-High

III SEMESTER

18F	PTEPC301	SYNCHRONOUS AND ASYNCHRONOUS MACHINES	L	Т	Р	С						
			2	1	0	3						
OB.	JECTIVES :											
	To study Construction and performance of salient and non – salient type synchronous											
•	generators.											
•	To understan	d Principle of operation and performance of synchronous n	noto	r.								
•	To study Construction, principle of operation and performance of induction machines.											
•	To understand Starting and speed control of three-phase induction motors.											
•	To understand Construction, principle of operation and performance of single phase											

induction motors and special machines. **THREE PHASE INDUCTION MOTOR** 09 UNIT I Constructional details – Types of rotors – Principle of operation – Slip –cogging and crawling-Equivalent circuit - Torque-Slip characteristics - Condition for maximum torque - Losses and efficiency – Load test - No load and blocked rotor tests - Circle diagram – Separation of losses – Double cage induction motors –Induction generators – Synchronous induction motor. **UNIT II** STARTING AND SPEED CONTROL OF THREE 09 PHASE INDUCTION MOTOR Need for starting - Types of starters - DOL, Rotor resistance, Autotransformer and Star-delta starters - Speed control - Voltage control, Frequency control and pole changing - Cascaded connection-V/f control - Slip power recovery scheme-Braking of three phase induction motor: Plugging, dynamic braking and regenerative braking. 09 **UNIT III** SYNCHRONOUS GENERATOR Constructional details – Types of rotors –winding factors- emf equation – Synchronous reactance - Armature reaction - Phasor diagrams of non salient pole synchronous generator connected to infinite bus--Synchronizing and parallel operation - Synchronizing torque -Change of excitation and mechanical input- Voltage regulation - EMF, MMF, ZPF and A.S.A methods - steady state power- angle characteristics- Two reaction theory -slip test -short circuit transients - Capability Curves. 09 **UNIT IV** SYNCHRONOUS MOTOR Principle of operation - Torque equation - Operation on infinite bus bars - V and Inverted V curves - Power input and power developed equations - Starting methods - Current loci for constant power input, constant excitation and constant power developed-Hunting - natural frequency of oscillations - damper windings- synchronous condenser. SINGLE PHASE INDUCTION MOTORS AND 09 UNIT V **SPECIAL MACHINES** Constructional details of single phase induction motor - Double field revolving theory and operation – Equivalent circuit – No load and blocked rotor test – Performance analysis – Starting methods of single-phase induction motors - Capacitor-start capacitor run Induction motor-Shaded pole induction motor - Linear induction motor - Repulsion motor - Hysteresis motor -AC series motor- Servo motors- Stepper motors - introduction to magnetic levitation systems. **TOTAL:45 PERIODS OUTCOMES:** After completion of this course, the student will be able to: Explain the construction and working principle of Synchronous Generator 1 2 Explain the construction and working principle of Synchronous motor 3 Explain the construction and working principle of Three phase Induction Motor 4 Determine the performance characteristics of Synchronous Machines Explain the construction and working principle of Special Machines 5 **TEXTBOOKS**: A.E. Fitzgerald, Charles Kingsley, Stephen. D. Umans, "Electric Machinery", Mc Graw 1 Hill publishing Company Ltd, 2003. Vincent Del Toro, "Basic Electric Machines", Pearson India Education, 2016. 2 Stephen J. Chapman, "Electric Machinery Fundamentals", 4th edition, McGraw Hill 3 Education Pvt. Ltd, 2010. 34

RE	FERENCES :
1	D.P. Kothari and I.J. Nagrath, "Electric Machines", McGraw Hill Publishing Company
1	Ltd, 2002.
2	P.S. Bhimbhra, "Electrical Machinery", Khanna Publishers, 2003.
3	M.N. Bandyopadhyay, "Electrical Machines Theory and Practice", PHI Learning PVT
5	LTD.,New Delhi, 2009.
4	B.R.Gupta, "Fundamental of Electric Machines" New age International Publishers, 3 rd
7	Edition, Reprint 2015.
5	Murugesh Kumar, "Electric Machines", Vikas Publishing House Pvt. Ltd, 2002.
6	Alexander S. Langsdorf, "Theory of Alternating-Current Machinery", McGraw Hill
6	Publications, 2001.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1		2	2					2		2				3	
CO2	2								2				2		
CO3		2	2					2							2
CO4	2		2							2			2		
CO5		2						2					2		

18PTEPC3	02 CONTROL SYSTEMS]	L	Т	P	C							
		, ,	2	1	0	3							
OBJECTIV	ES:												
•	To understand the use of transfer function model	s for analysis phys	sical	l sys	tems								
	and introduce the control system components.												
•	To provide adequate knowledge in the time response of systems and steady state error analysis.												
•	To accord basic knowledge in obtaining the open loop and closed–loop												
	frequency responses of systems.	_		-									
•	To introduce stability analysis and design of con	npensators											
•	To introduce state variable representation of peffect of state feedback	hysical systems a	und	stu	idy t	he							
UNIT I	SYSTEMS AND THEIR REPRESENT	ATION			9								
Basic elemen	s in control systems - Open and closed loc	p systems – Ele	ctric	cal a	analc	ogy							
of mechanical	and thermal systems - Transfer function - Sync	hros – AC and DC	c ser	rvon	notor	s –							
Block diagram	reduction techniques – Signal flow graphs.												
UNIT II	TIME RESPONSE				9								

Time res	sponse – Time domain specifications – Types of test input – I and II	order system
	- Error coefficients - Generalized error series - Steady state error -	
	ion- Effects of P, PI, PID modes of feedback control –Time response analy	
UNIT I	II FREQUENCY RESPONSE	9
Frequenc	y response – Bode plot – Polar plot – Determination of closed loop respon	se from open
	onse - Correlation between frequency domain and time domain specification	ons- Effect of
	and lag-lead compensation on frequency response- Analysis	1
	V STABILITY AND COMPENSATOR DESIGN	9
	ristics equation - Routh Hurwitz criterion - Nyquist stability criterion-	
criteria –	Lag, lead and lag-lead networks - Lag/Lead compensator design using boo	le plots
UNIT V	V STATE VARIABLE ANALYSIS	9
	of state variables - State models for linear and time invariant Systems	
	l output equation in controllable canonical form - Concepts of control	ollability and
observab	ility – Effect of state feedback	
	TOTAL : 45	5 PERIODS
OUTCO	OMES: After completion of this course, the student will be able to:	
1.	Apply basic science, circuit theory, theory control theory	
	Apply Signal processing to electrical engineering problems	
2.	Demonstrate time response and Effects of P, PI, PID controllers.	
3.	Demonstrate frequency response, stability and compensator design.	
4.	Analyse the state variable of the linear and time invariant Systems.	
5.	Analyse the concept of state variables, controllability and observerbility	
TEXT	BOOKS:	
1.	I.J.Nagrath and M. Gopal, 'Control Systems Engineering', 6 th Edition, N	Jew Age
	International Publishers, 2018	
2.	Richard C. Dorf and Robert H. Bishop, "Modern Control Systems", Per	arson Prentice
	Hall, 2012.	
REFER	RENCES:	
1.	Arthur, G.O.Mutambara, Design and Analysis of Control; Systems, CRC	Press, 2009
2.	S.K.Bhattacharya, Control System Engineering, 3 rd Edition, Pearson, 2013.	
З.	Benjamin C. Kuo, Automatic Control systems, 7th Edition, PHI, 2010.	
4.	Dhanesh. N. Manik, Control System, Cengage Learning, 2012.	
5.	K. Ogata, 'Modern Control Engineering', 5th edition, PHI, 2012	

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2				2						1	2	3		1
CO2															
CO3			3			2			1		2		2	3	

CO4	2	3		1		3			2	3		1
CO5		3	2			2		1	2	2	1	

18P'	ГЕРС303	LINEAR INTEGRATED CIRCUITS AND APPLICATIONS	L	Т	Р	С						
			3	0	0	3						
OBJ	ECTIVES	:										
•	To acquire	knowledge in IC fabrication procedure.										
•	To analyse	the characteristics of Op-Amp.										
•	To understa	nd the importance of Signal analysis using Op-amp based c	ircui	ts.								
٠	•	out Functional blocks and the applications of special ICs likulator Circuits.	te Ti	ners	, PLL	T						
•	To understa	nd and acquire knowledge on the Applications of Op-amp										
UNI	ΤI	IC FABRICATION				09						
IC cl	assification -	- Fundamental of monolithic IC technology - Epitaxial groups	owth	– M	askin	g and						
etchi	ng – Diffusio	n of impurities - Realisation of monolithic ICs and packag	ging -	- Fał	oricati	on of						
diode	diodes, capacitance, resistance, FETs and PV Cell.											
UNI	TII	CHARACTERISTICS OF OPAMP				09						

Ideal OP-AMP characteristics – DC characteristics – AC characteristics – Differential amplifie	or
- Frequency response of OP-AMP – Basic applications of op-amp – Inverting and Nor	
	11-
inverting Amplifiers – Summer, differentiator and integrator – V/I, I/V and F/V converters.	00
	09
Instrumentation amplifier and its applications for transducer Bridge - Log and Antilo	<u> </u>
Amplifiers – Analog multiplier & Divider – First and second order active filters – Comparator	
- Multivibrators - waveform generators - Clippers - Clampers - Peak detector - S/H circuit	-
D/A converter (R- 2R ladder and weighted resistor types) – A/D converters using op-amps.	
UNIT IV SPECIAL ICs	09
Functional block and characteristics of 555 Timer - PWM application - IC 566 volta	age
controlled oscillator – IC 565-phase locked loop IC – AD633 Analog multiplier ICs	
UNIT V APPLICATION ICs	09
AD623 Instrumentation Amplifier and its application as load cell weight measurement -	IC
voltage regulators – LM78XX, LM79XX Fixed voltage regulators its application as Linear pov	
supply – LM317, 723 Variability voltage regulators – Switching regulator – SMPS – ICL 80	
function generator IC.	
TOTAL :45 PERIO	DDS
OUTCOMES: After completion of this course, the student will be able to:	
1 Explain IC fabrication procedure.	
2 Analyse the characteristics of Op-Amp.	
3 Analysis of Signal using Op-amp based circuits.	
Design of Functional blocks and the applications of special ICs like Timers PLL circuits	s,
4 regulator Circuits.	
5 Apply the ICs in various Electronic Circuits	
TEXTBOOKS :	
1 David A. Bell, "Op-amp & Linear ICs", Oxford, 2013	
2 D. Roy Choudhary, Sheil B. Jani, "Linear Integrated Circuits", II edition, New Age, 2003.	
3 Ramakant A.Gayakward, "Op-amps and Linear Integrated Circuits", IV edition, Pearson Educati 2003 / PHI. 2000.	ion,
REFERENCES :	
<i>1</i> Fiore, "Opamps & Linear Integrated Circuits Concepts & applications", Cengage, 2010.	
2 Floyd ,Buchla, "Fundamentals of Analog Circuits, Pearson, 2013.	
Iacob Millman Christos C Halkias "Integrated Electronics - Analog and Digital circuits system	n"
3 McGraw Hill, 2003.	<i>iv</i> ,
4 Robert F.Coughlin, Fredrick F. Driscoll, "Op-amp and Linear ICs", Pearson, 6th edition, 2012.	

CO/PO PO1 P	PO2 PO3 I	PO4 PO5	PO6 F	PO7 PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
-------------	-----------	---------	-------	---------	-----	------	------	------	------	------	------

CO1	2	2					2			2	
CO2			2		2			1			2
CO3	2									2	
CO4		2				2	3			3	
CO5			2			2					2

18PTE	PC304	TRANSMISSION AND DISTRIBUTION	L	Т	Р	С
			2	1	0	3
OBJE	CTIVES	:				
Тс	study the	structure of electric power system and to develop expressi	ons f	or th	ie	
		of transmission line parameters.				
Тс	obtain th	e equivalent circuits for the transmission lines based on dis	tance	e and	l to	
de	termine v	oltage regulation and efficiency.				
To	understa	nd the mechanical design of transmission lines and to analy	ze th	e vo	ltage	
dis	stribution	in insulator strings to improve the efficiency.			-	
• To	study the	types, construction of cables and methods to improve the e	effici	ency	<i>.</i>	
Тс	study ab	out distribution systems, types of substations, methods of g	round	ling,		
• EF	IVAČ, H	VDC and FACTS.		•		
UNIT	[TRANSMISSION LINE PARAMETERS				09
Structure	e of Powe	r System – Parameters of single and three phase transmiss	ion li	ines	with	single
		ts - Resistance, inductance and capacitance of solid, str				
		metrical and unsymmetrical spacing and transposition – Ap				
mutual (GMD – S	Skin and proximity effects – Typical configurations – C	londu	ictor	type	s and

electrical parameters of EHV lines.

UNIT II MODELLING AND PERFORMANCE OF TRANSMISSION LINES

Performance of Transmission lines – Short line, medium line and long line – Equivalent circuits, phasor diagram, attenuation constant, phase constant, surge impedance – Transmission efficiency and voltage regulation – Real and reactive power flow in lines – Power Circle diagrams – Formation of Corona – Critical Voltages – Effect on Line Performance.

UNIT III MECHANICAL DESIGN OF LINES

Mechanical design of OH lines – Line Supports – Types of towers – Stress and Sag Calculation – Effects of Wind and Ice loading. – Insulators: Types – Voltage distribution in insulator string – Improvement of string efficiency – Testing of insulators.

UNIT IV UNDER GROUND CABLES

Underground cables – Types of cables – Construction of single core and 3 core cables – Insulation Resistance – Potential Gradient – Capacitance of Single-core and 3 core cables – Grading of cables – Power factor and heating of cables – DC cables.

UNIT V DISTRIBUTION SYSTEMS

Distribution Systems – General Aspects – Kelvin's Law – AC and DC distributions – Techniques of Voltage Control and Power factor improvement – Distribution Loss –Types of Substations – Methods of Grounding – Trends in Transmission and Distribution: EHVAC, HVDC and FACTS (Qualitative treatment only).

TOTAL :45 PERIODS

09

09

09

09

- **OUTCOMES:** After completion of this course, the student will be able to:
- 1 Explain the importance and the functioning of transmission line parameters.
- 2 Demonstrate the performance of Transmission lines.
- 3 Explain the importance of distribution of the electric power in power system.
- 4 Identify the Underground cables
- Familiarise with the function of different components used in Transmission and
- 5 Distribution levels of power system and Modelling of these components.

TEXTBOOKS :

- 1 D.P.Kothari, I.J. Nagarath, "Power System Engineering", Mc Graw-Hill Publishing Company limited, New Delhi, Second Edition, 2008.
- 2 C.L.Wadhwa, "Electrical Power Systems", New Academic Science Ltd, 2009.
- 3 S.N. Singh, "Electric Power Generation, Transmission and Distribution", Prentice Hall of India Pvt. Ltd, New Delhi, Second Edition, 2011.

REFERENCES:

- 1
 B.R.Gupta, "Power System Analysis and Design", S. Chand, New Delhi, Fifth Edition, 2008.

 1
 B.R.Gupta, "Evolven horm, Walter Coffee, "Electrical Power Distribution and Transmission".
- 2 *Luces M.Fualken berry, Walter Coffer, "Electrical Power Distribution and Transmission", Pearson Education, 2007.*
- *3 Arun Ingole, "Power Transmission and Distribution" Pearson Education, 2017*
- 4 J.Brian, Hardy and Colin R.Bayliss, "Transmission and Distribution in Electrical

	Engineering", Newnes; Fourth Edition, 2012.
5	G.Ramamurthy, "Handbook of Electrical Power Distribution," Universities Press, 2013.
6	V.K.Mehta, Rohit Mehta, "Principles of Power System", S. Chand & Company Ltd, New
0	Delhi, 2013

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1		2	2					2		2				3	
CO2	2								2				2		
CO3		2	2					2							2
CO4	2		2							2			2		
CO5		2						2					2		

1-Low, 2-Moderate (Medium), 3-High

18PTEPC	305		TRICAL MACHINES RATORY	L	T	Р	C
				0	0	3	1.5
OBJEC	ΓIVE	S :					
•		pose the s imental sl	students to the operation of various D.C. generator cill.	s an	d gi	ve th	iem
•		pose the s imental sl	students to the operation of various D.C. motors an kill.	ıd gi	ve t	hem	
•		-	students to the operation transformers and give the efficiency , losses and to draw the equivalent circu		kper	rimei	ntal
•	To stu	dy the var	rious methods of regulation calculation of alternate	or.			
			various losses takes place in Induction Motor and arrive at their performance.	to st	udy	the	load
LISTOFEX							
2. Open circ	uit and		rters. racteristics of D.C shunt generator. Id Series Motor.				

4. Load test on Alternator.

5. Swinburne's test and speed control of D.C shunt motor

6. Hopkinson's test on D.C. Motor generation set.

7. Load test on single phase and three phase transformer.

8.Open circuit and short circuit tests on single phase transformer.

9. Load test on single phase induction motor.

- 10. No load and blocked rot or tests on three phase induction motor.
- 11. Load test on Three phase induction motor.
- 12. V-Curve and inverted V-Curve of synchronous Motor.

LISTOFEQUIPMENTSFORABATCHOF30STUDENTS:

1.DCShuntMotor withLoadingArrangement-3Nos

- 2.SinglePhaseTransformer –4Nos
- 3. DC Series Motor with Loading Arrangement-1 No
- 4. Three Phase Induction Motor with Loading Arrangement–2 Nos
- 5. Single Phase Induction Motor with Loading Arrangement-1 No.
- 6. DC Shunt Motor Coupled With DC Shunt Generator-1 No
- 7.Tachometer -Digital/Analog-8Nos
- 8.Single Phase Auto Transformer 2 Nos
- 9. Three Phase Auto Transformer-1 No

10.Single Phase Resistive Loading Bank –2 Nos

- 11. Three Phase ResistiveLoadingBank.-2 Nos
- 12.SPST switch-2Nos
- 13. Single Phase Transformer -1No
- 14. Three Phase Transformer -1 No
- 15. Three Phase Alternator -1 No

TOTAL : 45 PERIODS

OUTCO	OMES:
•	Able to draw the characteristics of DC Generators and Motors and determine the
	losses and efficiency.
•	Able to draw the equivalent circuit and characteristics of transformers and
	determine the losses and efficiency.
•	Able to draw the characteristics of Induction Motors and determine the losses and
	efficiency.
•	Able to draw the characteristics of Synchronous Motors and Alternators and
	determine the Voltage regulation and efficiency.

COURSE ARTICULATION MATRIX

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	3		1	3				2		2	3	3	2	3
CO2	2	3		1	2				2		3	3	2	1	3
CO3	2	3		1	3				2		3	3	2	2	3
CO4	2	3		1	2				2		2	3	3	1	3

1-Low, 2-Moderate (Medium), 3-High

IV SEMESTER

18PTEPC40			PRO	OTE	ECI	TI	ON	AN	ND	DS	SW	/IT	CH	IG	E	AR		L	,	T	Р		C
																		3		0	0		3
OBJECTIV	ES:																						
• To U	dersta	anc	the d	diffe	erent	t co	ompo	onen	ents	s of	of a p	prot	ecti	on	sy	stem	۱.						
• To Ev	aluate	e fa	ult cu	urrer	nt du	ue t	to dif	iffere	rent	nt ty	type	s of	fau	ılt i	in a	a net	work						
• To U	dersta	anc	l the p	prote	ectio	on s	schei	emes	s fc	for o	diff	ferer	nt po	ow	/er	syst	em c	ompo	one	ents	•		
• To U	dersta	anc	the t	basic	c pri	inci	iples	s of o	dig	igita	tal p	prote	ectio	on.	•								
• To U	dersta	anc	l syste	em p	prote	ecti	ion s	sche	eme	nes,	s, an	d th	e us	se o	of v	wide	-area	mea	asu	iren	nents	5.	
UNIT I	NTR	RO	DU	CTI	ION	ΝT	ГО І	PR	RO ')TI	EC	CTI	ON	I S	SC]	HE	ME	5					9
Principles of Pov	er Sys	vste	em Pro	otect	tion	ı — F	Rela	ays –	– It	Inst	strur	nent	t tra	ins	for	mer	s – C	ircui	t E	Brea	kers	– T	ypes
of Circuit Breake	rs - Ar	Attr	ibutes	s of]	Prot	tect	tion s	sche	nem	mes	s – 1	Bacl	k-up	рP	rot	ectio	on.						
UNIT II	FAUI	L]	FS A	ND	0	VE	ERC	CUF	RR	RE	EN	ТP	RC)T	E	CTI	[ON						9
Review of Fault	•	•		leque	ence	e N	letwo	orks	(s –	– Iı	Intro	oduc	ctior	n t	:o (Over	cur	ent]	Pro	otec	tion	_	Over
current relay co-	rdinat	tio	n.																				
UNIT III	EQUI	IP	ME	NT	PR	RO'	TE(CT]	FIC	ON	N S	CH	E	MI	ES								9
Directional, Dist																						Bu	s bar
Protection – Bus	Bar ar	rra	ngem	ent s	sche	eme	es –	Eff	ffec	ect c	of P	Powe	er S	wi	ngs	s on	Dist	ance	Re	elay	ing		
UNIT IV	DIGI	IT	AL F	PRC)TI	EC	CTI(ON	I														9
Computer-aided							•															-	0
aliasing issues -	Under	r-fr	requer	ncy,	und	der-	-volta	tage	e an	and	l df/	dt re	elay	/s -	- 0	ut-o	f-ste	p pro	ote	ctio	n – S	Syn	chro-

phasors – Phasor Measurement Units and Wide-Area Measurement Systems (WAMS) – Application of WAMS for improving protection systems

CT/PT Modelling and standards – Simulation of transients using Testing – Hardware and Software Simulation of Air and Vacuum Cir	-	– Relav
Testing – Hardware and Software Simulation of Air and Vacuum Cir	and Due alrens	ittitay
	cuit Breakers	
	TOTAL : 45 PE	RIODS
OUTCOMES: At the end of this course, students will able to		
1. Apply relays and circuit breakers in various networks to en	sure the protection	
2. Apply protection techniques to mitigate overcurrents		
3. Apply protection techniques to various electrical equipment	ts	
4. Design numerical protective relays for protection		
5. Design and simulate various protective relays		
TEXT BOOKS:		
J. L. Blackburn, "Protective Relaying: Principles and App	plications", Marcel Dekke	er, New
1. York, 1987.	- ·	
Y. G.Paithankar and S. R. Bhide, "Fundamentals of power	system protection", Prenti	ce
^{2.} Hall, India, 2010.		
REFERENCES:		
1. A. G. Phadke and J. S. Thorp, "Computer Relaying for Pov	ver Systems", John Wiley	&
Sons, 1988.		
<i>A. G. Phadke and J. S. Thorp, "Synchronized Phasor Meas</i>	urements and their	
Applications", Springer, 2008.		
<i>D. Reimert, "Protective Relaying for Power Generation Sy.</i>	stems", Taylor and France	is,
3. 2006.		
4. Sunil S.Rao, 'Switchgear And Protection', Khanna Publish	ers, New Delhi, 2008.	
5. Ravindra P.Singh, 'Switchgear And Power System Protect	ion', PHI Learning Privat	e Ltd.,
^{5.} New Delhi, 2009.		

COURSE ARTICULATION MATRIX

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1	2	1	2			2	1	1	1	3	3	3	3
CO2	2	1	2	1	2			2	1	1	1	3	3	3	3
CO3	2	1	2	1	2			2	1	1	1	3	3	3	3
CO4	2	1	2	1	2			2	1	1	1	3	3	3	3
CO5	2	1	2	1	2			2	1	1	1	3	3	3	3

18PTEP	C402	POWER ELECTRONICS	L	T	Р	С
			3	0	0	3
OBJEC	TIVES:					
• 1	Understand	the differences between signal level and power level devi	ces.			
•	Analyse co	ntrolled rectifier circuits.				
•	Analyse the	e operation of DC-DC choppers, AC-AC converters.				
•	Analyse the	e operation of AC voltage controllers and cyclo converters	•			
•	Analyse the	e operation of voltage source inverters.				
UNIT I	POV	VER SWITCHING DEVICES				9
Diode – BJ	T – Thyri	stor - MOSFET - IGBT - I-V Characteristics - Firing	circu	iit fo	or th	yristor –
Voltage and	l current co	mmutation of a thyristor - Gate drive circuits for MOSFE	T an	d IG	BT.	
UNIT I	I THY	RISTOR RECTIFIERS				9
		e and full-wave rectifiers - Single-phase full-bridge thyr				
	•••	tive load - Three-phase full-bridge thyristor rectifier wi				U .
	-	t current wave shape and power factor - SMPS (Flybac	ck, F	orw	ard a	and Half
Bridge meth						0
		- DC CONVERTERS				9
		er – Elementary chopper with an active switch and diod				
	-	age – Power circuit of a buck converter – Analysis and				-
		ntrol of output voltage – Power circuit of a boost conv		r — .	Anal	ysis and
		ate – Relation between duty ratio and average output volta	ige.			0
		AC CONVERTERS				9
		e phase AC voltage controllers – Control strategy – Power				
		control - Single phase Cyclo converters - Single phase	e Cy	vclo	conv	verters –
Introduction						
UNIT V	V VOL	TAGE SOURCE INVERTER				9

Single-phase voltage source inverter – Switch states and instantaneous output voltage – Square wave operation of the inverter – Concept of average voltage over a switching cycle – Bipolar sinusoidal modulation and unipolar sinusoidal modulation – Modulation index and output voltage –Three-phase voltage source inverter – Switch states – Instantaneous output voltages – Average output voltages over a sub-cycle – Three-phase sinusoidal modulation

TOTAL : 45 PERIODS

OUTC	OMES:	At the end of this course, students will able to
1.	Utilize the	various power semiconductor devices in various circuits
2.	Apply thyri	istor convertors in power circuits and analyze the performance
3.	Apply DC -	- DC convertors in power circuits and analyze the performance
4.	Apply AC -	- AC convertors in power circuits and analyze the performance
5.	Apply volta	age source inverters in power circuits and analyze the performance
TEXT	BOOKS:	
1.	M. H. Rasl India, 2009	hid, "Power electronics: circuits, devices, and applications", Pearson Education
2.		and T. M. Undeland, "Power Electronics: Converters, Applications and Design", & Sons, 2007.
REFEI	RENCES:	
1.		son and D. Maksimovic, "Fundamentals of Power Electronics", Springer Business Media, 2007
2.	L. Umanan	d, "Power Electronics: Essentials and Applications", Wiley India, 2009.
3.	P.C.Sen, "I New york.	Principles of Electrical Machines and Power Electronics", John-Wiley & Sons,
4.	P.S.Bimbra	" "Power Electronics" Khanna Publishers, third Edition, 2003.
5.	Joseph Vith 6th Reprint	nayathil, ' Power Electronics, Principles and Applications', McGraw Hill Series, , 2013.

COURSE ARTICULATION MATRIX

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2		1	1				2	1	1	1	2	3	2
CO2	3	3	2	2	3				2	1	2	3	3	3	2
CO3	3	3	2	2	3				2	1	2	3	3	3	2
CO4	3	3	1	2	3				2	1	2	3	3	3	2
CO5	3	3	2	2	3				2	1	2	3	3	3	2

18PTEPC403

MEASUREMENTS AND INSTRUMENTATION

С Т Ρ L 3 3 0 0

09

09

09

OBJECTIVES:

- To introduce the basic functional elements of instrumentation •
- To understand the fundamentals of electrical and electronic instruments •
- To compare between various measurement techniques •
- To understand the operation of various storage and display devices •
- To understand the operation of various transducers and the data acquisition systems •

UNIT I INTRODUCTION

Functional elements of an instrument - Static and dynamic characteristics - Errors in measurement - Statistical evaluation of measurement data - Standards and calibration - Principle and types of analog and digital voltmeters, ammeters.

UNIT II ELECTRICAL AND ELECTRONIC INSTRUMENTS

Principle and types of multi meters - Single and three phase watt meters and energy meters -Magnetic measurements - Determination of B-H curve and measurements of iron loss -Instrument transformers - Instruments for measurement of frequency and phase. 09

UNIT III COMPARATIVE METHODS OF MEASUREMENTS

D.C potentiometers - D.C (Wheat stone, Kelvin and Kelvin Double bridge) - A.C bridges (Maxwell, Anderson and Schering bridges) - Transformer ratio bridges - Self-balancing bridges - Interference & screening - Multiple earth and earth loops - Electrostatic and electromagnetic Interference – Grounding techniques.

STORAGE AND DISPLAY DEVICES UNIT IV

Magnetic disk and tape - Recorders - Digital plotters and printers - CRT display - Digital CRO - LED, LCD & Dot matrix display - TFT&OLED-Data Loggers.

UNIT V	TRANSDUCERS AND DATA ACQUISITION	09
	SYSTEMS	

Classification of transducers – Selection of transducers – Resistive, capacitive & inductive Transducers – Piezoelectric, Hall effect, optical and digital transducers – Elements of data acquisition system – Smart sensors – Thermal Imagers.

TOTAL :45 PERIODS

OUTCOMES: After completion of this course, the student will be able to:

- 1. Explain the basic functional elements of instrumentation
- 2. Explain the concepts of Fundamentals of electrical and electronic instruments
- 3. Compare between various measurement techniques
- 4. Explain the operation of various storage and display devices
- 5. Explain the operation of various transducers and the data acquisition systems

TEXTBOOKS :

- 1A.K. Sawhney, "A Course in Electrical & Electronic Measurements & Instrumentation",
Dhanpat Rai and Co, 2010.
- ² J. B. Gupta, "A Course in Electronic and Electrical Measurements", S. K. Kataria & Sons, Delhi, 2013.
- ³ Doebelin E.O. and Manik D.N., "Measurement Systems Applications and Design", Special Indian Edition, McGraw Hill Education Pvt. Ltd., 2007.

REFERENCES:

- H.S. Kalsi, "Electronic Instrumentation", McGraw Hill, III Edition 2010
 D.V.S. Murthy, "Transducers and Instrumentation", Prentice Hall of India Pvt Ltd, 2015.
 David Bell, "Electronic Instrumentation & Measurements", Oxford University Press, 2013.
 Martin Reissland, "Electrical Measurements", New Age International (P) Ltd., Delhi, 2001.
- 5 Alan. S. Morris, "Principles of Measurements and Instrumentation", 2nd Edition, Prentice Hall of India, 2003.

COURSE ARTICULATION MATRIX

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1		2	2					2		2				3	
CO2	2								2				2		
CO3		2						1							2
CO4	2		3							3					3
CO5		2						2					2		

18PTEPC404	POWER SYSTEM ANALYSIS	L	Т	Р	C
		2	1	0	3
OBJECTIVE	S:				
•	To model the power system under steady state operating condit	ion.	1		
•	To apply numerical methods to solve the power flow problem.				
•	To model and analyse the system under faulted conditions for b	balan	ced	fault	s
•	To model and analyse the system under faulted conditions for u	ınba	lance	ed fa	ults
•	To model and analyse the transient behaviour of power system subjected to a fault	whe	n it i	s	
UNIT I	INTRODUCTION			9	
		CVCT	em (studie	<u>- عد</u>
	transmission line and load representation for different power k - construction of Y-bus using inspection and singular transfor	•			
Primitive networ	1 1	•			
Primitive networ – <u>z-bus</u> . UNIT II Importance of po flow problem - cl iterative solution	A construction of Y-bus using inspection and singular transfor POWER FLOW ANALYSIS wer flow analysis in planning and operation of power systems - sta assification of buses - development of power flow model in complex using Gauss-Seidel method - Q-limit check for voltage controlled bu	rmat atem	ion r ent c iable	9 of poves form	wer m -
Primitive networ – <u>z-bus</u> . UNIT II Importance of po flow problem - cl iterative solution	A construction of Y-bus using inspection and singular transfor POWER FLOW ANALYSIS wer flow analysis in planning and operation of power systems - sta assification of buses - development of power flow model in complex	rmat atem	ion r ent c iable	9 of poves form	wer m -
Primitive networ – <u>z-bus</u> . UNIT II Importance of po flow problem - cl iterative solution model in polar for UNIT III Importance of sl theorem - Z-bu	A construction of Y-bus using inspection and singular transfor POWER FLOW ANALYSIS wer flow analysis in planning and operation of power systems - sta assification of buses - development of power flow model in complex using Gauss-Seidel method - Q-limit check for voltage controlled bu m - iterative solution using Newton-Raphson method .	atem x var ises -	ion 1 ent c iable - pov	9 of poves for wer fl 9 eveni	wer m - .ow n's
Primitive networ – <u>z-bus</u> . UNIT II Importance of po flow problem - cl iterative solution model in polar for UNIT III Importance of sl theorem - Z-bu	 ck - construction of Y-bus using inspection and singular transfor POWER FLOW ANALYSIS wer flow analysis in planning and operation of power systems - sta assification of buses - development of power flow model in complex using Gauss-Seidel method - Q-limit check for voltage controlled bu m - iterative solution using Newton-Raphson method . FAULT ANALYSIS – BALANCED FAULTS nort circuit analysis - assumptions in fault analysis - analysis u s building algorithm - fault analysis using Z-bus – computer solution with the second s	atem x var ises -	ion 1 ent c iable - pov	9 of poves for wer fl 9 eveni	wer m - .ow n's
Primitive networ <u>- z-bus</u> . UNIT II Importance of po flow problem - cl iterative solution model in polar for UNIT III Importance of sl theorem - Z-bus circuit capacity, UNIT IV Introduction to synchronous ma	 ck - construction of Y-bus using inspection and singular transfor POWER FLOW ANALYSIS wer flow analysis in planning and operation of power systems - sta assification of buses - development of power flow model in complex using Gauss-Seidel method - Q-limit check for voltage controlled bu m - iterative solution using Newton-Raphson method . FAULT ANALYSIS – BALANCED FAULTS nort circuit analysis - assumptions in fault analysis - analysis u s building algorithm - fault analysis using Z-bus – comput post fault voltage and currents. 	atem x var ises - ising tatio	ion 1 ent c iable - pov The ns c circ ana	9 of power fl wer fl 9 eveni of sh 9 cuits lysis	wer m - ow n's ort

Importance of stability analysis in power system planning and operation - classification of power system stability - angle and voltage stability – Single Machine Infinite Bus (SMIB) system: Development of swing equation - equal area criterion - determination of critical clearing angle and time – solution of swing equation by modified Euler method and Runge-Kutta fourth order method.

Itunge I	
	TOTAL : 45 PERIODS
OUTC	OMES: After completion of this course, the student will be able to:
1.	Explain the power system operation and control.
2.	Apply the various power flow methods for power system optimization problems.
3.	Analyze the balanced faults for various power systems to design protective devices.
4.	Analyze the Unbalanced faults for various power systems.
5.	Analyze the stability of single machine and Multi machine infinite bus system.
TEXT	BOOKS:
1.	Nagrath I.J. and Kothari D.P., 'Modern Power System Analysis', Tata McGraw-Hill, Fourth Edition, 2011.
2.	John J. Grainger and W.D. Stevenson Jr., 'Power System Analysis', Tata McGraw-Hill, Sixth reprint, 2010.
REFE	RENCES:
1.	Hadi Saadat, 'Power System Analysis', Tata McGraw Hill Education Pvt. Ltd., New Delhi, 21st reprint, 2010.
2.	<i>Kundur P., 'Power System Stability and Control, Tata McGraw Hill Education Pvt.</i> <i>Ltd., New Delhi, 10th reprint, 2010.</i>
3.	Pai M A, 'Computer Techniques in Power System Analysis', Tata Mc Graw-Hill Publishing Company Ltd., New Delhi, Second Edition, 2007.
4.	J. Duncan Glover, Mulukutla S. Sarma, Thomas J. Overbye, 'Power System Analysis & Design', Cengage Learning, Fifth Edition, 2012.
5.	P. Venkatesh, B.V. Manikandan, S. Charles Raja, A. Srinivasan, 'Electrical Power Systems Analysis, Security and Deregulation', PHI Learning Private Limited, New Delhi, 2012.

COURSE ARTICULATION MATRIX

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1		3			2	1					2	1	3		1
CO2	2				2			1			2			3	2
CO3					2				2		1	2		3	1
CO4	2										2	1	3	2	
CO5		3			1			2			1	2	2		1

18PT	TEPC405	CONTRO		NSTRUMI RATORY	ENTATION	L	T	P	С
						0	0	3	1.5
OBJI	ECTIVES	:							
•	To ana	lysis and desig	gn of contro	ollers, stabili	ty				
•	To desi	gn and test the	various electr	rical paramet	ers				
•	To desi	gn the different	types Comp	ensators and	Modelling of S	Systems			
LIST	OFEXPERI	MENTS							
CONT	FROL SYST	ΓΕΜ							
1.	P, PI and Pl	D controllers							
2.	Stability A	nalysis							
3.	Modelling of	of Systems – Ma	chines, Sense	ors and Tran	sducers (TF &	SS Anal	ysis)		
4.	Design of I	ag, Lead and La	ig-Lead Com	pensators					
5.	Position Co	ontrol Systems							
6.	Synchro-Tr	ansmitter- Recei	ver and Cha	racteristics					
7.	Simulation	of Control Syste	ms by Mathe	ematical dev	elopment tools				
8.	Process Sin	nulation.							
INST	RUMENTA	FION:							
9.	Bridge Net	works –AC and 1	DC Bridges						
10.	Dynamics of	of Sensors/Trans	ducers						
	a. Temper	ature							
	b. Pressure	e							
	c. Displace	ement							
	d. optical								
	e. Strain								

f. Flow

- 11. Power and Energy Measurement
- 12. Signal Conditioning
 - a. Instrumentation Amplifier
 - b. Analog Digital and Digital –Analog converters (ADC and DACs)

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

CONTROL SYSTEMS:

- 1. PID kit 1 No. DSO – 1 No. CRO Probe – 2 nos
- 2. Personal computers
- DC motor 1 No. Generator – 1 No. Rheostats – 2 nos Ammeters Voltmeters Connecting wires (3/20)
- CRO 30MHz 1 No.
 2MHz Function Generator 1No.
- 5. Position Control Systems Kit (with manual) 1 No., Tacho Generator Coupling set
- 6. AC Synchro transmitter& receiver 1No. Digital multi meters

INSTRUMENTATION:

- 7. R, L, C Bridge kit (with manual)
- 8. a) Electric heater 1No.
 Thermometer 1No.Thermistor (silicon type) RTD nickel type 1No.

b) 30 psi Pressure chamber (complete set) – 1No. Current generator (0 - 20mA)Air foot pump – 1 No. (with necessary connecting tubes)

- c) LVDT20mm core length movable type 1No. CRO 30MHz 1No.
- d) Optical sensor 1 No. Light source

e) Strain Gauge Kit with Handy lever beam – 1No. 100gm weights – 10 nos

f) Flow measurement Trainer kit – 1 No. (1/2 HP Motor, Water tank, Digital Milliammeter, complete set)

9. Single phase Auto transformer – 1No.
 Watthour meter (energy meter) – 1No. Ammeter
 Voltmeter Rheostat Stop watch

Connecting wires (3/20)

10. IC Transistor kit – 1No.

			TOTAL:45 PERIODS						
OUTO	COMES:	After successful completion of the cour	se students able to						
1.	Analysis a	lysis and design of controllers, stability							
2.	Design and	test the various electrical parameters							
3.	Design the	Design the different types Compensators and Modelling of Systems							
4.	Design and study the various controllers								
5.	Simulate and analyse the various graphical methods in time and frequency response								

COURSE ARTICULATION MATRIX

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1		3			2						1	2	1		3
CO2					2			2			1	2	2	3	
CO3		3			2						2	1		1	3
CO4		1	3		2							2	3		1
CO5		1	2		2							2	2		1

V SEMESTER

18PTEPC	501	MICROPROCESSORS, MICROCONTROLLERS AND APPLICATIONS	L	T	Р	С	
			3	0	0	3	
OBJECTI	VES	•					
• T	To stud	ly the Architecture of uP8085 & uC 8051					
• T	To stud	ly the addressing modes & instruction set of 8085 & 8051					
• T							
• T	To dev	elop skill in simple applications development with programm	ing 8	085	& 80	151	
• T	To intr	oduce commonly used peripheral / interfacing					
UNIT I INTRODUCTION TO MICROPROCESSORS							
	ming	cture pin outs - Signals – Memory interfacing – I/O ports and o Diagram – Interrupt structure. Introduction to 8086 processor ation only).					
UNIT II	I	PROGRAMMING OF 8085 PROCESSOR					
manipulation	n& coi	and addressing modes – Assembly language format – Data transformation of the programming: Loop structure with counting proutine instructions - stack.				-	
UNIT III		8051 MICRO CONTROLLER			9		
		iagram - Instruction format and addressing modes – Timing D -I/O ports – Serial communication.	Diagr	am I	nterr	upt	
UNIT IV	I	PERIPHERAL INTERFACING-8051			9		
board display	hitect y cont	ure and programming of ICs: 8255 PPI, 8259 PIC, 8251 USA roller and 8253 Timer/ Counter-A/D and D/A converter interf IOs, keypad and memory.					
UNIT V		MICRO CONTROLLER PROGRAMMING AND APPLICATIONS)		9		
		nipulation, Control & I/O instructions - Simple programming					
	1 V	interface – Design of PID controller - Closed loop control of s	ervo	mot	or -		
Stepper moto	or con	trol - Washing Machine Control.	4 -	DE		Da	
	ma	TOTAL :	45	PE	KIQ	D 2	
		After completion of this course, the student will be able to:					
1. Ex	plain	the architecture of Microprocessors and its blocks.					

2.	Demonstrate the program for various functions using 8085 processor.
3.	Explain the architecture, Program structure, and peripheral interfacing of 8051
	Microcontrollers.
4.	Apply the 8051 microcontroller into various applications.
5.	Understand the micro controller programming and applications
TEXT	BOOKS:
1.	Ramesh Gaonkar, 'Microprocessor Architecture Programming and Application', CBS Publishers 2011.
2.	B.Ram, "Fundamentals of Microprocessor and Microcontrollers", Dhanpat Rai Publications, 2015
3.	Senthilkumar N. and Saravanan M. "Microprocessor and Microcontrollers", Oxford University Press, 2011
REFER	RENCES:
1.	Ankaj Gupta "Microcontroller and Embedded System" S.K.Kataria and Sons Publishers 2013
2.	Muhammad Ali Mazidi & Janice GilliMazidi, R.D.Kinely "The 8051 Micro Controller and Embedded Systems" (Using Assembly Language and C), PHI Pearson Education, 2011
3.	The 8088 & 8086 Microprocessors, Walter A Tribal & Avtar Singh, Pearson, 200
4.	Singh B.P., Renu Singh "Advanced Microprocessors and Microcontrollers", New Age International Private Limited, 2009.
5.	Krishna Kant "Microprocessor and Microcontrollers" Eastern Company Edition, Prentice – Hall of India, New Delhi, 2007

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2							2	1	1			2	1	
CO2						2		3			1		3		1
CO3				3				2			1	2	2	1	
CO4								3			2	1	3	2	
CO5		1						3			2	1		2	1

18PTEPC	2502	POWER SYSTEM OPERATION AND CONTROL	L	Т	Р	С
			3	0	0	3
OBJECT	IVES :					
• To	o have an	overview of power system operation and control.				
• To	o study th	e economic operation of power system				
• To	o model p	power-frequency dynamics and to design power-frequency	y cont	rolle	er.	
• To	o model 1	reactive power-voltage interaction and the control actions	s to be	e imp	oleme	ented
fo	r maintai	ning the voltage profile against varying system load.				
• To	teach al	pout SCADA and its application for real time operation a	nd co	ntrol	of p	ower
sy	stems					
UNIT I	CHA	RACTERISTICS OF LOADS				9
Basics of Po	ower syst	em control and operation – Real and Reactive power of I	Loads	- Sy	stem	load
variation -	Load c	haracteristics - Load curves and Load Duration curve	- lo	ad f	actor	and
•		serve requirements: Installed reserves, spinning reserves				
reserves -	Overvie	ew of system operation: Load forecasting, technique	les o	f fo	recas	sting,
Importance	of load f	precasting.				
UNIT II	POW	VER SYSTEM OPERATION			(9
Statement o	f Unit C	ommitment problem - Constraints - Solution methods: P	riority	/-list	metl	hods,
forward dyn	amic pro	ogramming approach – Formulation of economic Dispatc	h pro	blem	with	n and
without loss	es - Solu	tion by direct method and λ -iteration method Base point	nt an	d pai	ticip	ation
factors – Hy	ydrothern	nal scheduling problem – Short term and long term mo	del an	d al	goritl	hm –
Dynamic P	rogramm	ing solution methods for hydrothermal scheduling (Q	ualita	tive	treat	ment
only).						
UNIT III	ACT	IVE POWER FREQUENCY CONTROL			(9
Basics of	speed g	overning mechanism and Modelling- speed-load cha	racter	istic	s–Pa	rallel
operation of	Alternat	ors- LFC control of a single-area system-Static and Dyn	amic	char	acter	istics
– PI control	ler in LF	C-LFC in Two area system - Static analysis with uncon	trolle	d cas	e- tie	e line
with frequer	ncy bias o	control- State model- LFC with Economic dispatch control	oller.			
UNIT IV	RE A	ACTIVE POWER VOLTAGE CONTROL				9
Generation,	Absorpt	ion and control of reactive power- Modelling of excitati	on sy	stem	s – S	Static
and dynami	c charact	eristics-Stability compensation - Secondary voltage cont	trol –	Тар	char	nging
-		tage control - FACTS applications to reactive power co		-		
SVC, TCS a	and TSC.					

Need for smart control of power systems –concept of energy control centre- functions-system monitoring –data acquisition and control-system hardware configuration–SCADA and EMS functions-network topology-state estimation–WLSE-Contingency Analysis-state transition diagram showing various state transitions and control strategies. Recent trends in power system control.

			TOTAL : 45 PERIODS
OUTC	OMES:	After successful completion of the	course students able to
1.	Analyse th	he loads and apply forecasting metho	ods for power system restructuring.
2.	Operate th	ne generating units in an efficient wa	ay to reduce fuel cost.
3.	Design loa	ad frequency controller to regulate the	he frequency and speed.
4.	Design the	e excitation systems with appropriate	e voltage controllers to regulate voltage
	and compe	ensate reactive power.	
5.	Apply sm	art techniques in power system secu	rity.
TEXT	BOOKS:		
1.	Allen. J.V	Woodand BruceF. Wollenberg, 'Pov	verGeneration, Operation and Control',
		ley &Sons,Inc.,2003.	
2.	•		ystem Analysis Operation and Control',
		ing Pvt.Ltd., NewDelhi, ThirdEditic	on,2010.
REFEI	RENCES:		
1.			System Protection and Switchgear' Tata
1.	McGraw	<i>y-Hill Education, 2001.</i>	
2.		· ·	ntrol, Tata McGraw' Hill Education Pvt.
2.		w Delhi ,10threprint, 2010.	
3.	N.V.Ram	nana, "Power System Operation and	d Control," Pearson,2011.
4.	Sunil S	Rao, "Switch gear Protection An	nd Power Systems (Theory, Practice &
7.	Solved P	Problems)", Khanna Publishers,200	98
5.			'A Course in Electrical Power" Dhanpat
5.	Rai, 198	7.	

COURSE ARTICULATION MATRIX

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2				2					1			2		1
CO2		2	3								2	1		2	
CO3		2	3								2	1		1	2
CO4	2				1					1	2		2		
CO5		2	3							2	1			2	1

	EPC503		ELE	CTRI	CAL N	МАСН	INE I	DESI	GN	L	T	F)	C
2										2	1	0)	3
OBJE (CTIVES	:									1			
•	• To study mmf calculation and thermal rating of various types of electrical										ma	chiı	nes	5
•	To desig	gn arm	ature and	l field s	ystems	for D.C.	machi	nes						
•	To desig	gn cor	e, yoke, v	vinding	s and co	ooling sy	stems	of trai	sforme	rs.				
•	To desig	gn stat	or and ro	tor of in	nduction	n machir	nes.							
•	To desi behavior		ator and	rotor	of syn	nchronou	is mac	hines	and s	tudy t	neir	the	ern	nal
UNIT I	[]	INTI	RODUC	TION	1								9)
-	ion - Te	mpera	-	trical a dient ii	nd Mag 1 cores	slots	adings and wi	– Th nding	ermal c s - Rat	onsider ing of	atio ma	n - chir	He	eat
-	l specifica	mpera	ture gra	trical a dient ii	nd Mag 1 cores	gnetic lo slots	adings and wi	– Th nding	ermal c s - Rat	onsider ing of	atio ma	n - chir	He	eat
Standard	l specifica nt).	emperations.	ture gra	trical a dient in tion to	nd Mag 1 cores	gnetic lo slots	adings and wi	– Th nding	ermal c s - Rat	onsider ing of	atio ma	n - chir	He	eat ; – ple
Standard Treatmen UNIT I Output H Net leng	l specifica nt).	emperations. DC N – Ma –Rea	ture gra Introduc IACHI in Dime	trical a dient in tion to NES nsions - urent flu	nd Mag n cores Comput	etic circu ities – S	adings and wi l Desig uit calc election	– Th nding n in E culatio	ermal c s - Rat lectrica ns - Ca umber c	onsider ing of l Mach	atio ma ines	n - chir (Si	Homes mp 9	eat
Standard Treatmen UNIT I Output H Net leng	l specifica nt). II] Equations th of Iron e – Design	DC N – Ma – Rea n of co	ture gra Introduc IACHI in Dime	trical a dient in tion to NES nsions - urent flu or and b	nd Mag n cores Comput · Magne ux densi orushes -	etic circu ities – S	adings and wi l Desig uit calc election	– Th nding n in E culatio	ermal c s - Rat lectrica ns - Ca umber c	onsider ing of l Mach	atio ma ines	n - chir (Si	Homes mp 9	eat ple t – of
Standard Treatmen UNIT I Output F Net leng Armaturd	l specifica nt). II] Equations th of Iron e – Design	mperations. DC N – Ma –Rea n of co	ture gra Introduc IACHI in Dime & Appa ommutate	trical a dient in tion to NES nsions - urent flu or and b	nd Mag cores Comput · Magne ix densi rushes - S	gnetic lo slots ter aidec etic circu ities – Su – Design	and wi and wi l Desig uit calc election	– Th nding n in E culatio n of nu ld win	ermal c s - Rat lectrica ns - Ca umber c ding.	onsider ing of l Mach rter's (of poles	ratio ma ines Coef	n - chir (Si fici Desi	Henes mp 9 ent gn 9	eat ple t - of
Standard Treatmen UNIT I Output E Net leng Armature UNIT I Output E	l specifica nt). II] Equations th of Iron e – Design III]	DC N – Ma – Rea n of co TRA – Mai	ture gra Introduc IACHI in Dime & Appa ommutato NSFOH n Dimen	trical a dient in tion to NES nsions - ment flu or and b RMER sions - 1	nd Mag n cores Comput - Magne ix densi orushes - S KVA ou	gnetic lo slots ter aideo etic circu ities – So – Design	adings and wi l Desig uit calc election n of fiel	– Th nding n in E culation n of nu d win and th	ermal c s - Rat lectrica ns - Ca umber c ding.	onsider ing of l Mach rter's (of poles	ratio ma ines Coef	n - chir (Si fici Desi	$\frac{1}{9}$	eat ple t - of
Standard Treatmen UNIT I Output E Net leng Armaturd UNIT I Output E Window	I specifica nt). II] Equations th of Iron e – Design III / Equations – space fac nture rise i	DC N – Ma – Rea n of co TRA – Mai etor – 1	ture gra Introduc IACHI in Dime & Appa ommutate NSFOI n Dimen Design o	trical a dient in tion to NES nsions - urent flu or and b RMER sions - 1 f core at	nd Mag n cores Comput · Magne ix densi rushes - S KVA ou nd wind	gnetic lo slots ter aidec etic circu ities – S – Design utput for lings - C	adings and wi l Desig uit calc election n of fiel single	- Th nding n in E culation n of nu d win and th dimen	ermal c s - Rat lectrica ns - Ca umber c ding. uree pha sions –	onsider ing of l Mach rter's (of poles se tran No loa	ratio ma ines Coef - D	n - chir (Si fici Desi mer	$\frac{1}{9}$	eat ple t – of

Output equation of Induction motor – Main dimensions – Length of air gap- Rules for selecting rotor slots of squirrel cage machines – Design of rotor bars & slots – Design of end rings – Design of wound rotor – Magnetic leakage calculations – Leakage reactance of polyphase machines - Magnetizing current - Short circuit current .

UNIT	V
	•

SYNCHRONOUS MACHINES

Output equations – choice of loadings – Design of salient pole machines – Short circuit ratio – shape of pole face – Armature design – Armature parameters – Estimation of air gap length – Design of rotor –Design of damper winding – Design of field winding – Design of turbo alternators – Rotor design.

		TOTAL : 45 PERIODS						
OUTC	OMES:	After successful completion of the course students able to						
1.	Formulate AC machi	Specific Electrical and Magnetic loadings for various electrical DC and nes.						
2.	Devise main dimensions (D, L) of armature and field systems for D.C. m							
3.	Design overall Dimensions of single and three phase transformers core, windings cooling systems for transformers							
4.	Design ma	in dimensions of squirrel cage and Slip ring induction machines.						
5.	Design ma	in dimensions of Synchronous machines.						
TEXT	BOOKS:							
1.	Sawhney New Delh	A.K., "A Course in Electrical Machine Design", Dhanpat Rai & Sons, i, 2006.						
2.	-	"Principles of Electrical Machine Designs with Computer Programmes", d IBH Publishing Co. Pvt. Ltd., New Delhi, 2009.						
REFE	RENCES:							
1.		"The Performance and Design of Alternating current Machines", can & sons Limited, 1995.						
2.	0	sundaram A., Gangadharan G. and Palani R., "Electrical Machine ta Book", New Age International Pvt. Ltd., Reprint 2007.						
3.		ga Sundaram, G.Gangadharan, R.Palani 'Electrical Machine Design Data v Age International Pvt. Ltd., Reprint, 2007						
4.	R.K.Agarv 2002.	val "Principles of Electrical Machine Design" Esskay Publications, Delhi,						
5.	"Electrica	l machine design" Balbir singh Brite Publications, Pune						

9

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2		2						1		3	1	
CO2	3	2	2		2						1		3	1	
CO3	3	2	2		2						1		3	1	
CO4	3	2	2		2						1		3	1	
CO5	3	2	2		2						1		3	1	

1-Low, 2-Moderate (Medium), 3-High

18PTEPC505	
-------------------	--

POWER ELECTRONICS AND POWER SYSTEM LABORATORY

L	Т	P	С

		1			0	0)	3	1.5				
OBJEC	CTIVES:												
•	To provid devices	de	e	Experiment test bench to learn the characteristics of	power	sei	mi	con	ducto				
•	-			ands on experience with power electronic AC to DC to determine the control characteristics	conv	verte	er	and	dc to				
•	To provid testing	de	e	nands on experience with various power electronic	inver	ters	d	esig	n and				
•	To perform the Load flow, Fault analysis and stability analysis in Power system												
•	To Model	l a	a	d simulate the Load frequency control of Single Area	systen	n							
LIST ()F EXPEI	R	R]	MENTS									
1. Charac	cteristics of H	Po	0	ver semiconductor devices.									
2. Determ	nination of C	Co	0	trol Characteristics of AC to DC fully controlled three	phase	e co	nv	verte	r.				
3. Detern	nination of C	Co	0	trol Characteristics of Step down and Step up chopper	•								
4. IGBT	based PWM	1 tł	tł	ee phase inverter.									
5. AC Vo	oltage Contro	oll	11	r.									
6. Cycloc	converter.												
7. Design	n and simulat	atic	ic	of Transmission Lines.									
8. Forma	tion of Netw	NO	01	Matrixes.									
9. Load f	low Analysi	is ı	5 1	sing Gauss Seidal method.									
10.Simul	ation of Fau	ılts	ts										
11. Load	Frequency c	co	0	trol of Single Area System.									
12. Stabi	lity Analysis	s o	0	Single Machine Infinite bus system.									
LIST O	FEQUIP	PN	V	ENT FOR A BATCH OF 30 STUDENTS:									
1. Device	e characterist	stic	ic	(for SCR, MOSFET, TRIAC and IGBT kit with built	in / di	scre	ete	pov	ver				
supply ar	nd meters) - 2	2	2 (ach									
-	phase SCR nd meter – 2			sed fully controlled converter along with built-in / sep ch	oarate	/ fii	rin	ıg ci	rcuit				
3. MOSF	FET based ste	tep	p	ip and step down choppers (Built in/ Discrete) – 1 eac	h								
4. IGBT	based three p	ph	h	se PWM inverter module / Discrete Component – 2									
5. SCR &	ETRIAC bas	sed	ed	1 phase AC controller along with lamp or rheostat load	d - 2								
6. Cyclo	converter kit	it v	V	th firing module -2									

- 7. Dual regulated Dc power supply with common ground
- 8. Cathode ray Oscilloscope –10

9. Isolation Transformer – 5

10. Single phase Auto transformer -3

11. Components (Inductance, Capacitance) 3 set for each

12. Multimeter – 5

13.Power system software Package (MATLAB, MiPower etc.,)

	TOTAL:45 PERIODS									
OUTC	COMES:	After successful completion of the cour	se students able to							
1.	Compare the characteristics of various power semiconductor devices.									
2.	Apply the Po	Apply the Power Electronic Circuits in Power System.								
3.	Model and simulate the Power Networks.									
4.	Design the L	oad Frequency controller.								

COURSE ARTICULATION MATRIX

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1		3			2						1	2	1		3
CO2					2			2			1	2	2	3	
CO3		3			2						2	1		1	3
CO4		1	3		2							2	3		1

1-Low, 2-Moderate (Medium), 3-High

VI SEMESTER

18PTEPC601	SPECIAL ELECTRICAL MACHINES	L	Т	Р	С
		3	0	0	3

OBJEC	TIVES:						
•	-	knowledge on Construction, principle of operation and performa	nce of				
•	•	e Construction, principle of operation, control and performance	of				
	stepping m	otors					
•		he Construction, principle of operation, control and performance	of				
		eluctance motors knowledge on the Construction, principle of operation, control a	nd				
•		ce of permanent magnet brushless D.C. motors	iu				
•	-	knowledge on the Construction, principle of operation and perfor	mance				
	of Permane	ent magnet synchronous motors.					
UNIT I		SYNCHRONOUS RELUCTANCE MOTORS	9				
Variable I		es – Types – Axial and Radial flux motors – Operating principles Motors – Voltage and Torque Equations - Phasor diagram - perfo ications					
UNIT I	[STEPPER MOTORS	9				
Single and Character	d multi stack istics – Driv	es – Principle of operation – Variable reluctance motor – Hybrid a configurations – Torque equations – Modes of excitation – e circuits – Microprocessor control of stepper motors – Closed lo ad angle– Applications	юр				
UNIT I	II	SWITCHED RELUCTANCE MOTORS (SRM)	9				
- Steady s	state perform s – Methods	es – Rotary and Linear SRM - Principle of operation – Torque pr nance prediction- Analytical method -Power Converters and their of Rotor position sensing – Sensor less operation – Characterist Applications	•				
UNIT I	V	PERMANENT MAGNET BRUSHLESS D.C. MOTORS	9				
Permeance torque equ	e coefficient uations –Cor	aterials – Minor hysteresis loop and recoil line-Magnetic Charact t -Principle of operation – Types – Magnetic circuit analysis – El nmutation - Power Converter Circuits and their controllers – Mo ntrol– Applications	MF and				
UNIT V PERMANENT MAGNET SYNCHRONOUS MOTORS (PMSM)							
Synchron	ous Reactan	– Ideal PMSM – EMF and Torque equations – Armature MMF ce – Sine wave motor with practical windings - Phasor diagram - eristics - Power controllers - Converter Volt-ampere requirement	-				
		TOTAL : 45 PERIODS					

OUTC	COMES:	After successful completion of the course students able to											
1.	Explain ab	out the Constructional features of synchronous Reluctance Motors											
2.	Explain ab	out the Constructional features of stepper motor											
3.	Explain ab	out the Constructional features of switched Reluctance Motors											
4.	Explain about the Constructional features of permanent magnet brushless D.C. Motors												
5.	Explain ab	out the Constructional features of permanent magnet Synchronous Motors											
TEXT	BOOKS:												
1	K.Venkata Limited, 2	aratnam, 'Special Electrical Machines', Universities Press (India) Private 008											
2		ller, 'Brushless Permanent Magnet and Reluctance Motor Drives', Press,Oxford, 1989											
REFE	RENCES												
1.		n, 'Switched Reluctance Motor Drives – Modelling, Simulation, Analysis, d Application', CRC Press, New York, 2001											
2.		rnley, 'Stepping Motors – A Guide to Motor Theory and Practice', Peter us London, 1982											
3.	T. Kenjo a	nd S. Nagamori, 'Permanent Magnet and Brushless DC Motors', Press, London, 1988.											
4.	E.G. Janar 2014.	rdanan, 'Special electrical machines', PHI learning Private Limited, Delhi,											
5.	<i>T. Kenjo, 'Stepping Motors and Their Microprocessor Controls', Clarendon Press</i> London, 1984												

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1		3			2						2		2		

CO2		3		2				2	1		2	
CO3	2	1						1			2	1
CO4		3				2				1		2
CO5		2				1			2		2	

18PTE	PC60)2 H	HI	GH V	OLTA	GE EI	NGIN	EER	ING			L	T	Р	C
												3	0	0	3
OBJE	CTIV	ES:											<u> </u>		1
•	To u methe		stan	the	various	types o	of over	r volta	iges i	n pow	er syst	em a	ind j	prote	ctio
•	Gene	eneration of over voltages in laboratories.													
•	Meas	Measurement of over voltages.													
•	Natur	Nature of Breakdown mechanism in solid, liquid and gaseous dielectrics.													
•	Testi	ng of	pov	ver app	oaratus	and insul	lation o	coordi	nation						
UNIT I OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS										9)				
Causes o	of over	volta							~1. 4 m .					d	
temporar	ry over	r volta	ages	, Coro	na and	on power	-		-	-	-	-			ves-
temporar Protectio	ry over on agai	r volta inst ov	ages ver	, Coro voltage	na and : s	-	s–Refl	ection	-	-	-	-			
temporar Protectio UNIT I Gaseous breakdov	ry over on agai II I break wn– Co	r volta inst ov DIEL down onduc	ages ver LE(n in ction	, Coro voltage C TRI uniforn a and b	na and s C BRI n and n reak do	tts effects EAKDC on-unifo wn in pu	s-Refle DWN orm fiel ure and	ection lds–Co	and I	Refract discha l liquid	ion of 7	Frave	lling	g wa 9)
temporar Protection UNIT I Gaseous breakdow Quality -	ry over on agai II I break wn– Co –Break	r volta inst ov DIEL down onduc cdown	ages ver LEC n in ction n me	, Coro voltage CTRI uniform and b echanis ATIC	na and ars C BRI n and n reak do arms in s	tts effects EAKDC on-unifo wn in pu	S-Refle DWN orm fiel ure and compo	ection lds–Cc l comm osite di	and 1 prona hercia	discha l liquic ics.	ion of 7 rges–Va ls, Mair	Frave	lling	g wa 9)
temporar Protection UNIT I Gaseous breakdow Quality - UNIT I Generation Generation voltages	ry over on agai II I break wn– Co –Break III C Con of I	r volta inst ov DIEL down onduc cdown GENI GENI CURI High I High	ages ver LE(n in ction n mo ER RE DC AC	, Coro voltage CTRI uniform and b echanis ATIC NTS Volta C Case	na and a c BRI n and n reak do oms in s DN OF ge doul	AKDC CAKDC on-unifo wn in pu olid and HIGH oler, Voltansforme	S-Refle DWN orm fiel are and compo I VOI tage m er and	ection lds–Cc l comm osite di LTA(Reson	and l prona hercia ielectr GES er circo hant tr	discha l liquic ics. AND cuits ar	rges–Va ls, Mair HIGH nd Van mer, Ca	Frave acuur ntenan I de G	nnce of raff	g wa 9 of oil 9 gene)) rato
temporar Protection UNIT I Gaseous breakdow Quality - UNIT I Generation	ry over on agai II I break wn– Co -Break III C ton of I ton of and cu	r volta inst ov DIEL down onduc cdown GENI CURI High I High I High	ages ver LE(n in ction n mo ER RE DC AC s ge SU	, Coro voltage CTRI uniforn and b echanis ATIC NTS Volta C Case neration REM	na and as C BRI n and n reak do ms in s DN OF ge doul cade Tr on- Trip	AKDC CAKDC on-unifo wn in pu olid and HIGH oler, Voltansforme	s-Refle DWN orm fiel ure and compo I VOI tage m er and l contro	ection lds–Co l comn osite di LTAC Reson ol of ir	and I prona hercia ielectri GES er circo hant tri npulso	discha l liquic ics. AND cuits ar cansfor e gener	rges–Va Is, Mair HIGH nd Van mer, Ca rator.	Trave	nnce of raff	g wa 9 of oil 9 gene) rato puls
temporar Protection UNIT I Gaseous breakdow Quality - UNIT I Generation Generation voltages	ry over on agai II I break wn– Co –Break III C Con of I and cu IV N C sistance er, Ger	r volta inst ov DIEL down onduc adown GENI GURI High High urrents VIEAS CURI ewiths neratir	ages ver LE(n in ction n me ER ER DC AC s gee SC SU RE serie	, Coro voltage CTRI uniforn and b echanis ATIC NTS Volta C Case neration REM NTS esamm /oltme	na and a c BRI n and n reak do oms in s DN OF ge doul ade Tr on- Trip ENT eter-Di ters-Ca	AKDC on-unifo wn in pu olid and 'HIGH oler, Volt ansforme ping and OF HIC viders,R pacitance	s-Refle DWN orm fiel are and compo I VOI tage m er and l contro GH V	ection lds–Cc l comm osite di LTAC LTAC Reson ol of ir VOLT	and I prona hercia ielectr GES er circo hant tr npulso AGI pacita ransfo	discha l liquic ics. AND cuits ar cansfor e gener ES AN nceano prmers,	ion of 7 rges–Va ls, Mair HIGH nd Van mer, Ca rator. ID HI G	Trave	Illing n n nce o raff s fo ers-	gene: r im	rato puls

High voltage testing of electrical power apparatus as per International and Indian standards– Power frequency, impulse voltage and DC testing of Insulators, circuit breakers, bushing, isolators and transformers- Insulation Coordination.

		TOTAL : 45 PERIODS										
OUT	COMES:	After successful completion of the course students able to										
1.	Explain the	causes and effects of over voltages and transients										
2.	Explain the	electrical breakdown on various medium										
3.	Design the g	generation circuit of overvoltage, impulse voltage and Current.										
4.	weasure the overvoltage and current using various components.											
5.	Test the elec	ctrical apparatus against over voltages and impulse current.										
TEX	T BOOKS	:										
1.	M.S.Naidu a Edition, 201	and V.Kamaraju, 'High Voltage Engineering', Tata McGraw Hill, Fifth 3.										
2.		d W.S.Zaengl, J.Kuffel, 'High voltage Engineering fundamentals', Newnes ion Elsevier, NewDelhi,2005.										
REFE	ERENCES:											
1.	L.L.Alston, 2011.	'High Voltage Technology', Oxford University Press, First Indian Edition,										
2.		a, 'High voltage Engineering', NewAge International ThirdEdition,2010										
3.	•	An Introduction to High Voltage Engineering' PHI Learning Private Limited, Second Edition, 2013.										
4	E.Kuffel,W.S Publisher	S.Zaengl,J.Kuffel, 'High Voltage Engineering fundamentals 'Newnes										
5.	Farouk.A.M	. Rizk, Giao N. Trinh, 'High Voltage Engineering' CRC Press.										

COURSE ARTICULATION MATRIX

CO/PO	PO1 PC	O2 PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3]
-------	--------	--------	-----	-----	-----	-----	-----	-----	------	------	------	------	------	------	---

CO1	2			2			1			2		1
CO2		2	3					2	1		2	
CO3		2	3					2	1		1	2
CO4	2			1			1	2		2		
CO5		2	3				2	1			2	1

18PTEPC605	MICROPROCESSORS,	L	Τ	Р	С
	MICROCONTROLLERS AND				
	APPLICATIONS LABORATORY				
		0	0	3	1.5

OBJECTIVES	
• 1	vide training on programming of microprocessors and microcontrollers and tand the interface requirements.
	dy the architecture and addressing modes of 8085 & 8051
• To stu	dy the need and use of Interrupt structure 8085 & 8051.
• To app	ly the 8085 microprocessor for various applications
• To app	bly the 8051 microcontroller for various applications
LISTOFEXPER	IMENTS
1. Simple arithme	tic operations: addition / subtraction / multiplication / division.
2. Programming	with control instructions:
(i) Asc	ending / Descending order, Maximum / Minimum of numbers
(ii) Pro	grams using Rotate instructions
(iii) Hez	A / ASCII / BCD code conversions.
3. Interface Expen	iments: with 8085
(i) A/D I	nterfacing. & D /A Interfacing.
4. Traffic light co	ntroller.
5. I/O Port / Seria	l communication
6. Programming H	ractices with Simulators/Emulators/open source
7. Read a key ,int	erface display
8. Demonstration	of basic instructions with 8051 Micro controller execution,
including: (i) Con	ditional jumps, looping
	ling authoriting

(ii) Calling subroutines.

- 9.. Programming I/O Port 8051
 - (i) study on interface with A/D & D/A
 - (ii) study on interface with DC & AC motor .
- 10. Mini project development with processors.

LISTOFEQUIPMENTFORABATCHOF30STUDENTS:

Sl.No.	Description of Equipment	Quantity required
1.	8085 Microprocessor Trainer with Power Supply	15
2.	8051 Micro Controller Trainer Kit with power supply	15
3.	8255 Interface board	5
4.	8251 Interface board	5
5.	8259 Interface board	5
6.	8279 Keyboard / Display Interface board	5
7.	8254 timer counter	5
8.	ADC and DAC card	5
9.	AC & DC motor with Controller	5
10.	Traffic Light Control System	5

			TOTAL:45 PERIODS		
OUTC	COMES:	After successful completion of the course	students able to		
1.	Write the p	rogram for various functions using 8085 m	icroprocessor.		
2.	Write the p	rogram for various functions using 8085 m	icroprocessor.		
3.	Use of Inter	rrupt structure 8085 & 8051			
4.	Apply the 8085 microprocessor for various applications				
5.	Apply the 8051 microcontroller for various applications				

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1		3			2			2			1	1		2	1
CO2		2	1		2						2	1	3	2	
CO3		3			1			2			2	1		3	1
CO4		2	1		2			1			2	1	3	1	
CO5		2	3								2	1		2	3

1-Low, 2-Moderate (Medium), 3-High

VII SEMESTER

18PTEPC701	ENERGY UTILIZATION CONSERVATION AND AUDITING	L	Т	Р	С
		3	0	0	3

OBJEC	TIVES:		
•	To study i	importance of energy and its various forms	
•	To analys	e energy management & audit	
•	To analys	e energy efficiency in electrical systems	
•	To impart	knowledge on energy efficiency in industrial systems	
•	To Provie systems	de knowledge about various energy efficient technologies in	electrical
UNIT I		RGY SCENARIO AND BASICS OF ENERGY ITS VARIOUS FORMS	10
production scenario, o energy co Strategy f Features. Electricity improvem contents o	n, final ene energy pric nservation or the futur / tariff, load nent, selection of fuel, temp	n-commercial energy, primary energy resources, commercial ener rgy consumption, energy needs of growing economy, long term e ing, energy sector reforms, energy and environment, energy secur and its importance, restructuring of the energy supply sector, ener re, air pollution, climate change. Energy Conservation Act-2001 a d management and maximum demand control, power factor on & location of capacitors, Thermal Basics-fuels, thermal energy perature & pressure, heat capacity, sensible and latent heat, evapor moist air and humidity & heat transfer, units and conversion	nergy rity, rgy and its
UNIT II		RGY MANAGEMENT & AUDIT	9
		KGI MANAGEMENI & AUDII	,
understand requireme & energy	n, energy a ding energ ent, maximi substitution	udit, need, types of energy audit. Energy management (audit) y costs, bench marking, energy performance, matching energy zing system efficiencies, optimizing the input energy requiremen n, energy audit instruments. Material and Energy balance: Facility ods for preparing process flow, material and energy balance diagr	approach gy use to ts, fuel y as an
understand requireme & energy	n, energy a ding energ ent, maximi substitution stem, meth	udit, need, types of energy audit. Energy management (audit) y costs, bench marking, energy performance, matching energy zing system efficiencies, optimizing the input energy requiremen n, energy audit instruments. Material and Energy balance: Facility	approach gy use to ts, fuel y as an
understand requireme & energy energy sys UNIT II Electrical control, po performan motors: T performan	a, energy a ding energ ent, maximi substitution stem, methe II ENE system: El ower factor nce assessm ypes, losse	udit, need, types of energy audit. Energy management (audit) by costs, bench marking, energy performance, matching energy zing system efficiencies, optimizing the input energy requirement n, energy audit instruments. Material and Energy balance: Facility ods for preparing process flow, material and energy balance diagr RGY EFFICIENCY IN ELECTRICAL SYSTEMS ectricity billing, electrical load management and maximum demates improvement and its benefit, selection and location of capacitors nent of PF capacitors, distribution and transformer losses. Electric is in induction motors, motor efficiency, factors affecting motor ing and motor replacement issues, energy saving opportunities with	approach gy use to ts, fuel y as an rams. 9 nd
understand requireme & energy energy sys UNIT II Electrical control, po performan motors: T performan	a, energy a ding energy ent, maximi substitution stem, metho II ENE system: El ower factor ince assessm ypes, losse ince, rewind ficient moto	udit, need, types of energy audit. Energy management (audit) by costs, bench marking, energy performance, matching energy zing system efficiencies, optimizing the input energy requirement n, energy audit instruments. Material and Energy balance: Facility ods for preparing process flow, material and energy balance diagr RGY EFFICIENCY IN ELECTRICAL SYSTEMS ectricity billing, electrical load management and maximum demates improvement and its benefit, selection and location of capacitors nent of PF capacitors, distribution and transformer losses. Electric is in induction motors, motor efficiency, factors affecting motor ing and motor replacement issues, energy saving opportunities with	approach gy use to ts, fuel y as an rams. 9 nd

efficient system operation, flow control strategies and energy conservation opportunities Cooling Tower: Types and performance evaluation, efficient system operation, flow control strategies and energy saving opportunities, assessment of cooling towers. 8 UNIT V **ENERGY EFFICIENT TECHNOLOGIES IN** ELECTRICAL SYSTEMS Maximum demand controllers, automatic power factor controllers, energy efficient motors, soft starters with energy saver, variable speed drives, energy efficient transformers, electronic ballast, occupancy sensors, energy efficient lighting controls, energy saving potential of each technology. **TOTAL : 45 PERIODS** After successful completion of the course students able to **OUTCOMES:** 1. Explain the current energy scenario and importance of energy conservation 2. Explain the concepts of energy management. 3. Explain the methods of improving energy efficiency in different electrical systems 4. Explain the concepts of different energy efficient devices 5. Explain the concepts of different energy efficient technologies **TEXT BOOKS:** S. C. Tripathy, "Utilization of Electrical Energy and Conservation", McGraw Hill, 1 1991. Guide books for National Certification Examination for Energy Manager / Energy 2 Auditors Book-1, General Aspects (available online) Guide books for National Certification Examination for Energy Manager / Energy 3 Auditors Book-3, Electrical Utilities (available online). **REFERENCES:** Success stories of Energy Conservation by BEE, New Delhi (www.bee-india.org) 1. *Guide books for National Certification Examination for Energy Manager / Energy* 2. Auditors Book-3, Electrical Utilities (available online). Sivaganaraju.S "Utilization of Electrical Energy and Conservation" Pearson, New 3. Delhi Paul O Callaghan, energy management, McGraw Hill, New Delhi. 4. V.K.Mehta, Electrical power by Khanna Publishes New Delhi. 5.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1		2							2				2		
CO2			3						2				2		
CO3	2							3							1
CO4	1										2		1		
CO5	2					2					2				2

18PTEI	PR704 PROJECT WORK	L	Т	Р	С
		0	0	9	4.5
OBJEC	TIVES				
	To provide opportunity to explore a problem or issue of papersional interest.	artic	ular	perso	onal or
	To address the problem or issue through focused study and applied direction of a faculty member.	ed re	esear	ch un	der the
	To synthesize and apply the knowledge and skills acquired program to real-world issues and problems.	in 1	nis/h	er ac	ademic

•	To improve ability to think critically and creatively, to solve practical problems,
•	To make reasoned and ethical decisions, and to communicate effectively.

It is intended to start the project work carry out both design and fabrication of an Electrical and Electronic device whose working can be demonstrated. The design, the fabrication and demonstration has to be carried out.

The students in a group of 3 to 4 works on a topic approved by the head of the department under the guidance of a faculty member and prepare a comprehensive project report after completing the work to the satisfaction of the supervisor. The progress of the project is evaluated based on a minimum of three reviews.

The review committee may be constituted by the Head of the Department. A project report is required at the end of the semester. The project work is evaluated based on oral presentation and the project report jointly by external and internal examiners constituted by the Head of the Department.

					TOTAL : 135 PERIOD	S		
OU	FCOMES:	On completion	n of this course	e, stude	ents will be able to			
1	1 Identify the real time Engineering problems in their day to day life.							
2	Apply the knowledge and skills acquired in their courses to a specific problem or issue							
3	Think critically and creatively to address and help solve these professional or soci issues and to further development.							
4	Refine resear		demonstrate	their	proficiency in written and or	ral		
5		nallenges of tea all aspects of de	· • •	re a pr	resentation in a professional manne	er,		

COURSE ARTICULATION MATRIX

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	3	1	1	2	3	3	2	3	2	3	3	2
CO2	3	3	3	3	1	1	2	3	3	2	3	2	3	3	2
CO3	3	3	3	3	2	2	2	3	3	3	3	2	3	3	2
CO4	3	3	3	3	2	2	2	3	3	3	3	2	3	3	2
CO5	2	2	2	1	2	2	3	3	3	2	3	2	3	3	2

PROFESSIONAL ELECTIVES

18PTE	PE001	APPLIED SOFT COMPUTING	L	Τ	Р	C		
			3	0	0	3		
OBJE	CTIVES:							
•	To expose	To expose the students to the concepts of feed forward neural networks.						
•	To provide adequate knowledge about feedback neural networks							
•	To provide	e adequate knowledge about fuzzy and neuro-fuzzy system	ms					

	r	ADCHITECTUDES ANN	9						
	economic dispatch and unit commitment problems.								
•	• To provide adequate knowledge of genetic algorithms and its applic								
•	То р	To provide comprehensive knowledge of fuzzy logic control to real time systems.							

UNIT I ARCHITECTURES-ANN

Introduction–Biological neuron–Artificial neuron–Neuron model –Supervised and unsupervised learning-Single layer–Multi layer feed forward network–Learning algorithm-Perceptron Network-Back propagation Network.

UNIT II NEURAL NETWORKS FOR CONTROL

9

9

Feedback networks–Discrete time Hopfield networks– Transient response of continuous time system–Applications of artificial neural network-Process identification–Neuro controller for inverted pendulum.

UNIT III FUZZY SYSTEMS

Classical sets– Fuzzy sets –Fuzzy relations– Fuzzification – Defuzzification – Fuzzy rules – Membershipfunction–Knowledgebase–Decision-makinglogic–Introductiontoneurofuzzy system- Adaptive fuzzy system.

UNIT IV APPLICATION OF FUZZY LOGIC SYSTEMS

9

Fuzzylogiccontrol:Homeheatingsystem-liquidlevelcontrol-aircraftlanding-invertedpendulum-fuzzyPIDcontrol,Fuzzy based motor control.

UNIT V GENETIC ALGORITHMS

9

Introduction-Gradient Search–Non-gradient search–Genetic Algorithms :binary and real representation schemes, selection methods, crossover and mutation operators for binary and real coding-constraint handling methods–applications to economic dispatch and unit commitment problems

TOTAL : 45 PERIODS

OUTC	OMES:	After successful completion of the course students able to				
1. Design an algorithm for Artificial Neural Network Controller						
2.	Design a Genetic algorithm					
3.	Design an algorithm for Fuzzy Logic Controller					
4.	Apply Fuzzy Logic Controller for specific applications					

5.	Apply Genetic algorithm for specific applications
TEXT	BOOKS:
1.	Laurance Fausett, Englewood cliffs,N.J., 'Fundamentals of Neural Networks', PearsonEducation, 1992
2.	S.N.Sivanandam and S.N.Deepa, Principles of Soft computing, Wiley India Edition, 2 nd Edition, 2013.
REFE	RENCES:
1.	Simon Haykin, 'Neural Networks', Pearson Education, 2003.
2.	Timothy J Ross, 'Fuzzy Logic with Engineering Applications', Tata McGraw Hill, 1997.
3.	M.Gen and R,Cheng, Genetic algorithms and Optimization, Wiley Series in Engineering Design and Automation, 2000.
4.	Hagan, Demuth, Beale, "Neural Network Design", Cengage Learning, 2012.
5.	N.P.Padhy, "Artificial IntelligenceandIntelligentSystems", Oxford, 2013

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1			3		2						1		3	1	
CO2			3		2						1		3	1	
CO3			3		2						1		3	1	
CO4				2	1						1		2		
CO5				2	1						1		2		

181	PTEPE002	WIND AND SOLAR ENERGY SYSTEMS	L	Т	Р	С
			3	0	0	3
OB.	JECTIVES:					
٠	To learn the d	esign and control principles of Wind turbine.				
•	To understand	l the concepts of fixed speed and variable speed, wind ene	ergy o	conv	ersior	1
٠	To analyze the	e grid integration issues in wind energy system.				
•	To learn the d	esign of standalone PV system.				
•	To analyze the	e grid integration issues in PV system.				
UN	ΤΙ	INTRODUCTION				09
Aero		of WECS - WECS schemes - Power obtained from wind Vind turbine. HAWT – VAWT - Thrust – Efficiency - R Regulation.				
	r: Characteris	tics of sunlight-behaviour of solar cells-cell p	orope	rties	–PV	cell
UN	IT II	FIXED SPEED AND VARIABLE SPEED W	IN)		09

	SYSTEMS	
Deciding Speed - I wind spe	ng Systems - Constant speed constant frequency systems - Choice of Generator g factors - Synchronous Generator - Squirrel Cage Induction Generator - Model of W Model wind turbine rotor - Drive Train model. Need of variable speed systems – Pow ed characteristics - Variable speed constant frequency systems synchronous generator PMSG - Variable speed generators modelling - Variable speed variable frequency	ind er - or –
UNIT I	II GRID CONNECTED WIND SYSTEMS	09
and supp industry power sy	erconnection requirements –low-voltage ride through (LVRT) – ramp rate limitation only of ancillary services for frequency and voltage control – current practices trends wind inter connection impact on steady-state and dynamic performance of stem including modelling issue.	and
UNIT I	IV STANDALONE PV SYSTEM	09
	modules-storage systems-power conditioning and regulation-MPPT-protection PV systems design-sizing	ion–
UNIT V		09
	ms in buildings–design issues for central power stations–safety–Economic aspec y and performance- International PV programs – Synchronization issues	
	TOTAL :45 PERIC	JDS
	DMES: After completion of this course, the student will be able to:	
	plain the basic concepts of Wind and solar energy conversion system.	
	velop the design of Fixed speed and Variable speed system	
	plain about Grid connected Wind system.	
	sign a standalone PV system.	
	plain about Grid integration issues and current practices of PV interconnections. BOOKS:	
	L. Freris "Wind Energy conversion Systems", Prentice Hall, 1990	
	N.Bhadra, D.Kastha, S.Banerjee, "Wind Electrical Sytems", Oxford University Pr	ess,
3	lanki C.S., "Solar Photovoltaics: Fundamentals, Technologies And Applications", Tarning Pvt. Ltd., 2015.	PHI
1	art R.Wenham, Martin A. Green, Muriel E. Watt and Richard Corkish, "App ptovoltaics", 2007, Earthscan, UK.	lied
REFER	RENCES:	
1. Ion	Boldea, "Variable speed generators", Taylor & Francis group, 2006	
	Ieir "Grid Integration of WECS", Wiley 1998	
$\stackrel{\mathbf{S}.}{=} Pro$	uardo Lorenzo G. Araujo, "Solar electricity engineering of photovoltaic systems", ogensa, 1994.	
4	ank S. Barnes & Jonah G. Levine, "Large Energy storage Systems Handbook", CRC ess, 2011.	
5. Mc	Neils, Frenkel, Desai, "Solar &Wind Energy Technologies", Wiley Eastern, 1990 P.Sukhatme, "Solar Energy", Tata McGraw Hill, 1987	

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1			3		2			2			1		3	1	
CO2	2					3			2		1			3	1
CO3		2	3					2			3	1		2	3
CO4	1				2					2	1		3	1	
CO5		3	2									2		3	2

18PTE	PE003	B	BIOMEDICAL INSTRUMENTATION	L	T	P	C	
				3	0	0	3	
OBJEC	CTIVE	S:		I			<u> </u>	
•	To Intr	oduce	e Fundamentals of Biomedical Engineering					
●	To Intr	oduce	e various bio potential electrodes used in Biomedical Er	iginee	ring			
•	To stuc	ly the	heart system and its measurements					
•	To stuc	ly the	measurement of electrical activity in neuromuscular sys	tem ar	nd bi	ain		
•	To hav	e a ba	asic knowledge in life assisting and therapeutic devices					
UNIT I			DAMENTALS OF BIOMEDICAL			9		
]	ENC	INEERING					
respiratory systems; the nature of bioelectricity, action events of nerve; the origin of potentials. Basic components of a biomedical system-Kidney and blood flow - Biomech of bone - Biomechanics of soft tissues - Basic mechanics of spinal column and limbs.								
UNIT I	I]	BIO	POTENTIAL ELECTRODES			9		
preparati Internal	ion, elec electrod	trode es; e	lectrodes for biophysical sensing; electrode-electroly s-skin interface and motion artifact; surface electrodes lectrode arrays; electrodes for electric stimulation of l interference problems in biopotential measurement; ele	micr tissue	oele s; el	ctrod lectro	les;	
UNIT I	(II /	THF	C HEART SYSTEM AND ITS MEASUREMI	ENTS	5	9)	
The heart; electro conduction system of the heart; the ECG waveform; the standard lead system; the ECG preamplifier; ECG machines; Cardiac monitors; Transient protection; common-mode and other interference-reduction circuits, Measurement of blood pressure spirometer – Photo Plethysmography, Body Plethysmography, finger-tip oxymeter measurement of blood pCO2, pO2								
UNIT I			ASUREMENT OF ELECTRICAL ACTIVITY IROMUSCULAR SYSTEM AND BRAIN	Y IN		9)	
EEG ele simplifie	ctrodes a d block	and th diag	cle potential; electromyography (EMG); electroenceph ne 10-20 system; EEG amplitude and frequency bands; ram; preamplifiers and EEG system specifications; EE sual and auditory evoked potential recordings; EEG syst	the EE G diag	EG s gnos	yster tic u	n –	

9 UNIT V IMAGING, LIFE ASSISTING, THERAPEUTIC AND **ROBOTIC DEVICES** Computer tomography - MRI - Ultrasonography - Endoscopy, Pacemakers - Defibrillators -Ventilators - Nerve and muscle stimulators - Diathermy - Heart - Lung machine - Audio meters - Dialysers - Lithotripsy - ICCU patient monitoring system - Nano Robots - Robotic surgery - Advanced 3D surgical techniques- Orthopedic prostheses fixation. **TOTAL : 45 PERIODS** After successful completion of the course students able to **OUTCOMES:** ٠ Explain about electrical signal production and its conduction in human body. • Select proper electrode for signal pick up from human body • Trace cardiac waveform and characterise its condition • Trace brain waveform and characterise its condition . Explain about the different life saving, therapeutic and imaging bio medical systems its importance to patients **TEXT BOOKS:** 1. Joseph J.carr and John M. Brown, Introduction to Biomedical Equipment Technology, John Wiley and sons, New York, 4th Edition, 2012. 2. Khandpur R.S, Handbook of Biomedical Instrumentation, , Tata McGraw-Hill, New Delhi, 2nd Edition, 2003 **REFERENCES:** 1. John G. Webster, Medical Instrumentation Application and Design, John Wiley and sons, New York, 1998 2. Duane Knudson, Fundamentals of Biomechanics, Springer, 2nd Edition, 2007. 3. Ed. Joseph D. Bronzino, The Biomedical Engineering Hand Book, Third Edition, Boca Raton, CRC Press LLC, 2006. 4. M.Arumugam, 'Bio-Medical Instrumentation', Anuradha Agencies, 2003. 5. Leslie Cromwell, Biomedical Instrumentation and Measurement, Prentice hall of India, New Delhi, 2007.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3			2				2					3	1	
CO2	3			2				2					3	1	
CO3	3			2				2					3	1	
CO4	3			2				2					3	1	
CO5	3			2				2					3	1	

18PTEPE004	FUNDAMENTALS OF NANOSCIENCE	L	Τ	Р	С
		3	0	0	3

	CTIVES:					
•	To learn al	bout basis of nanomaterial science				
•	To learn al	bout nanomaterial preparation methods				
•	To learn al	bout basis of nanomaterial science, preparation method and types	5			
•	To learn al	bout nanomaterial characterization techniques				
•	To study v	arious application fields of nano materials				
UNITI		INTRODUCTION	9			
Enginee wires-u properti	ering- Class ltra-thin fil ies: Mech	ce and Technology-Implications for Physics, Chemistry, Bi ifications of nano structured materials-nano particles-quantum ms- multi-layered materials. Length Scales involved and anical, Electronic, Optical, Magnetic and Thermal perties and motivation for study (qualitativeonly).	dots, nan			
UNITII GENERAL METHODS OF PREPARATION						
-	ation, Molec	routes, Self-assembly, Vapour phase deposition, MOCVD, sular Beam Epitaxy, Atomic Layer Epitaxy, MOMBE.	9			
carbon synthes property nanoalu	Nano tube is(arc-growt yRelationshi umina, Ca	rbon-Buckminster fullerene-graphene and carbon nano tube, s(SWCNT) and Multi wall carbon nano tubes(MWCNT)-r h, laser ablation,CVDroutes,PlasmaCVD psapplications-Nanometal oxides- ZnO, TiO2,MgO,ZrO O,AgTiO2,Ferrites, Nanoclays- functionalizationanda ntumdots-preparation,properties and applications.	nethods o),structure D2, NiC			
UNITI	V	CHARACTERIZATION TECHNIQUES	9			
	diffraction	technique, Scanning Electron Microscopy- environmental				
Transm	ission Elec	tron Microscopy including high-resolution imaging, Surface PM, STM,SNOM,ESCA,SIMS-Nano indentation.	-			
Transm	ission Elec ues-AFM,SI	tron Microscopy including high-resolution imaging, Surfac	-			

Syste crysta	medicines, Targetted drug delivery, Bioimaging - Micro Electro Mechanical ms(MEMS), Nano Electro Mechanical Systems(NEMS)-Nano sensors, nano allinesilver for bacterialinhibition, Nano particles for sunbarrier products- In Photostat, ing, solar cell, battery.									
	TOTAL:45PERIODS									
OUT	TCOMES: After successful completion of the course students able to									
1.	Familiarize about the science of nanomaterial.									
2.	Demonstrate the preparation of nanomaterial.									
3.	Explain about nanomaterial.									
4.	Develop knowledge in characteristic nanomaterial.									
5.	Apply Nano Science into the applications.									
TEX	XTBOOKS:									
1.	A.S.Edelsteinand, R.C.Cammearata,eds., "Nanomaterials: Synthesis, Properties and Applications", Institute of Physics Publishing, Bristol and Philadelphia, 1996									
2.	N John Dinardo, "Nanoscale Charecterisation of surfaces & Interfaces", 2 nd edition, Weinheim Cambridge, Wiley-VCH, 2000.									
REF	TERENCES:									
1.	G Timp, "Nanotechnology", AIP press/Springer, 1999									
2.	Akhlesh Lakhtakia, "The HandBook of Nano Technology, Nanometer Structure, Theory, Modelling and Simulations". Prentice-Hall of India(P) Ltd,NewDelhi,2007.									

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3		2	2				2					2	2	
CO2	3		2	2				2					2	2	
CO3	3		2	2				2					2	2	
CO4			3	2				2					3	1	
CO5			3	2				2					3	1	

18PTE	PE005	ADVANCED CONTROL SYSTEM	L	T	Р	C
			2	1	0	3
OBJE	CTIVES:		1			I
•	To provid	e knowledge on design in state variable form				
•	To provid	e knowledge in phase plane analysis				
•	To give ba	asic knowledge in describing function analysis				

•	To s	tudy the design of optimal controller			
•	To s	tudy the design of optimal estimator including Kalman Filter			
UNIT	I	STATE VARIABLE CONTROLLER DESIGN	9		
Arbitrar	y Pole	o state Model- effect of state Feedback- Necessary and Sufficient Cond e-placement- pole placement Design- design of state Observers- se o design: -State Feedback with integral control.			
UNIT	II	PHASE PLANE ANALYSIS	9		
lineariza	ation (hear and non-linear systems - Common physical non-linearities – Me Concept of phase portraits – Singular points – Limit cycles – Constru – Phase plane analysis of linear and non-linear systems – Isocline meth	ction of		
UNIT	III	DESCRIBING FUNCTION ANALYSIS	9		
	analy	s, derivation of describing functions for common non-linearities – De sis of non-linear systems – limit cycles – Stability of oscillations-Lyap y.			
UNIT IV OPTIMAL CONTROL					
		-Continuous Time Linear State Regulator – Discrete Time Lines olution of Ricatti'sequation.	ar Stat		
UNIT	V	OPTIMAL ESTIMATION	9		
Optimal Kalman		ation – Kalman- Bucy Filter-Solution by duality principle-Discrete s	system		
		TOTAL : 45 PERIODS			
OUTC	COMI	ES: After successful completion of the course students able to			
1.	Desi	gn the controller in state variable form.			
2.		ain the concepts about the phase plane analysis.			
<u>3.</u> 4.		ain the concepts about the describing function analysis. gn of optimal controller.			
<u>4.</u> 5.		gn of optimal estimator including Kalman Filter.			
TEXT					
1.		opal, "Digital Control & State Variable Methods", Tata McGraw Hill, 4 TION, 2012	4th		
2.	I.J. 1	Nagrath and M.Gopal, "Control Systems Engineering", New Age Intern ishers, 5 th Edition, 2010.	ational		
	-	87			

REFE	RNCES:
1.	K.Ogatta, "Discrete time control system", PHI, 2010.
2.	B.C.Kuo," Digital Control Systems", SRL Publication, 1997.
3.	M. Gopal, "Control Systems Principles and Design", TATA Mcgraw hill, 3 Edition, 2010
4.	M.Gopal," Modern control system theory", New Age International Publishers, 2002
5.	Richard C. Dorf, "Modern control systems",8th Edition, Addison Wesley, 2012.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1		3	2		1						1		1	2	1
CO2	2	3									2		1	2	1
CO3	2	3									2		1	2	1
CO4	3	2		1						1		1	2	1	3
CO5	3	2		1						1		1	2	1	3

18PTE	EPE006	POWER QUALITY AND FACTS	L	Т	Р	С					
			3	0	0	3					
OBJEC	FIVES:		-1			•					
•	• To introduce the power quality problem										
•	To educate on production of voltages sags, over voltages and harmonics and methods of control.										
•	To study t	he sources and effect of harmonics in power system									
•	To underst	and the need for static compensators									
•	• To develop the different control strategies used for compensation										
UNITIINTRODUCTION TO POWER QUALITY9											

Terms and definitions: Overloading - under voltage - over voltage. Concepts of transients - short duration variations such as interruption – long duration variation such as sustained interruption. Sags and swells – voltage sag – voltage swell – voltage imbalance – voltage fluctuation - power frequency variations. International standards of power quality. Computer Business Equipment Manufacturers Associations (CBEMA) curve.

UNITII VOLTAGESAGS, INTERRUPTIONS AND OVERVOLTAGES

9

Sources of sags and interruptions- estimating voltage sag performance. Thevenin's equivalent source –analysis and calculation of various faulted condition. Voltage sag due to induction motor starting. Estimation of the sag severity- mitigation of voltage sags, active series compensators. Sources of over voltages - Capacitor switching – lightning - ferro resonance. Mitigation of voltage swells - surge arresters - low pass filters - power conditioners. Lightning protection – shielding – line arresters - protection of transformers and cables.

UNITIII HARMONICS

Harmonic sources from commercial and industrial loads, locating harmonic sources. Power system response characteristics- Harmonics Vs transients. Effect of harmonics- harmonic distortion-voltage and current distortion - harmonic indices - inter harmonics – resonance. Harmonic distortion evaluation -devices for controlling harmonic distortion – passive and active filters.

UNITIV REACTIVE POWER COMPENSATION

9

9

9

Reactive power flow control in Power Systems – Control of dynamic power unbalances in Power System – Power flow control – Constraints of maximum transmission line loading – Benefits of FACTS Transmission line compensation – Uncompensated line – Shunt compensation – Series compensation – Phase angle control – Reactive power compensation – Shunt and Series compensation principles – Reactive compensation at transmission and distribution level-Power Factor Correction methods .

UNITV STATIC SHUNT AND SERIES COMPENSATORS

Shunt Compensator: SVC and STATCOM – Operation and control of TSC, TCR and STATCOM – Compensator control – Comparison between SVC and STATCOM.

Series Compensator: TSSC, SSSC -Static voltage and phase angle regulators – TCVR and TCPAR Operation and Control –Applications – Static series compensation – GCSC,TSSC, TCSC and Static synchronous series compensators and their Control – SSR and its damping.

			TOTAL:45PERIODS							
OUTCO	DMES:	After successful completion of the	course students able to							
1.	Classify the power quality issues.									
2.	Analyze	Analyze and mitigate the voltage sag, over voltages and interruptions.								
3.	Analyze	Analyze the harmonic distortion and design the components to reduce harmonics.								
4.	Explain a	bout the fundamental principles of	Reactive Power Compensation.							
5.	Demonst	Demonstrate various Static shunt and series VAR Compensation Schemes.								
TEXTB	OOKS:									

1.	Roger. C. Dugan, Mark. F. McGranagham, Surya Santoso, H.Wayne Beaty, 'Electrical Power
	Systems Quality' McGrawHill,2003.
2.	Edward.F.Fucks and M.A.S.Masoum, "Power Quality in Power System and Electrical
	Machines," Elsevier Academic Press, 2013.
3.	J.Arrillaga, N.R.Watson, S.Chen, 'Power System Quality Assessment', Wiley, 2011.
4.	K R Padiyar, "FACTS Controllers in Power Transmission and Distribution", New
	Age International Publishers, 2007.
5.	X P Zhang, C Rehtanz, B Pal, "Flexible AC Transmission Systems- Modelling and
	Control", Springer Verlag, Berlin, 2006.
REFER	ENCES:
1.	G. T.Heydt, "Power Quality", McGraw-Hill Professional, 2007.
2.	M.H.J Bollen, 'Understanding Power Quality Problems: Voltage Sags and
	Interruptions', (New York: IEEE Press, 1999)
3.	G.J.Wakileh, "Power Systems Harmonics–Fundamentals, Analysis and Filter Design,"
	Springer 2007.
4.	N.G. Hingorani, L. Gyugyi, "Understanding FACTS: Concepts and Technology of
	Flexible AC Transmission Systems", IEEE Press Book, Standard Publishers and
	Distributors, Delhi, 2001.
5.	K.S.Sureshkumar, S.Ashok, "FACTS Controllers & Applications", E-book edition,
	Nalanda Digital Library, NIT Calicut, 2003.
6.	S.Vedam, M.S.Sarma, "Power Quality-VAR Compensation in Power Systems," CRC
	Press 2013.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2				2					1			2		1
CO2		2	3								2	1		2	
CO3		2	3								2	1		1	2
CO4	2				1					1	2		2		
CO5		2	3							2	1			2	1

18PTE	CPE007	MICROCONTROLLER BASED SYSTEM DESIGN	L	Т	Р	С					
			3	0	0	3					
OBJE	OBJECTIVES:										
•	To introduce the architecture of PIC microcontroller										
•		e on use of interrupts and timers To educate on the perip ation and transfer	hera	l dev	vices	for data					
•	To introduce the functional blocks of ARM processor										
•	To educate on the architecture of ARM processors										
•	To educate on design applications of ARM processors										

UNITI INTRODUCTION TO PIC MICROCONTROLLER

Introduction to PIC Microcontroller – PIC16C6x and PIC16C7x Architecture – PIC16cxx – Pipelining - Program Memory considerations – Register File Structure - Instruction Set - Addressing modes – Simple Operations.

UNITII INTERRUPTS AND PERIPHERALS INTERFACING

9

9

9

9

9

PIC microcontroller Interrupts - External Interrupts - Interrupt Programming – Loop time subroutine – Timers - Timer Programming – Front panel I/O - Soft Keys – State machines and key switches – Display of Constant and Variable strings - I^2C Bus for Peripherals Chip Access – Bus operation - Bus subroutines – Serial EEPROM — Analog to Digital Converter – UART - Baud rate selection – Data handling circuit – Initialization - LCD and keyboard Interfacing - ADC, DAC, and Sensor Interfacing.

UNITIII INTRODUCTION TO ARM PROCESSOR

ARM Architecture–ARM programmer's model – ARM Development tools - Memory Hierarchy – ARM Assembly Language Programming – Simple Examples – Architectural Support for Operating systems.

UNITIV ARM ORGANIZATION

3-Stage Pipeline ARM Organization – 5-Stage Pipeline ARM Organization – ARM Instruction Execution - ARM Implementation – ARM Instruction Set – ARM co processor interface – Architectural support for High Level Languages – Embedded ARM Applications.

UNITV DESIG

DESIGN APPLICATIONS

Generation of Gate signals for converters and Inverters – Motor Controls – Controlling of DC/ AC appliances –Temperature Control Applications- Monitoring: Overvoltage, Under voltage and Overcurrent- Measurement of frequency – Stand-alone Data Acquisition System applications.

	TOTAL:45 PERIODS								
OUTO	COMES:	After successful completion of the course students able to							
1.	Explain the architecture and programming of PIC microcontrollers.								
2.	Interface various peripherals to PIC microcontrollers.								
3.	Explain ar	chitecture, Programming of ARM pr	rocessor.						

Explain organization of ARM processor.
Apply ARM processor to Various applications
BOOKS:
Peatman, J.B., "Design with PIC Micro Controllers" PearsonEducation, 3 rd Edition, 2004.
Furber,S., "ARM System on Chip Architecture" Addison Wesley trade Computer Publication
RENCES:
<i>Rajkamal, "Microcontrollers-Architecture, Programming, Interfacing & System Design",</i> 2 nd edition, Pearson, 2012.
Mazidi, M.A., "PIC Microcontroller" Rollin Mckinlay, Danny causey Printice Hall of India, 2007.
John Pietman Design with microcontrollers McGraw Hill, 1995
Microprocessor and Microcomputer based system design by Mohammed Rafiquzzaman.
Microcontroller/ Dsp controller reference manual.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1			3		2						1		3	1	
CO2			3		2						1		3	1	
CO3			3		2						1		3	1	
CO4				2	1						1		2		
CO5				2	1						1		2		

18PTEPE	2008	HIGH VOLTAGE DIRECT CURRENT TRANSMISSION	L	T	Р	C
			3	0	0	3
OBJECT	IVES:					
		tand the concept, planning of DC power transmission and consmission.	mpar	ison	with	AC
• To	o analyz	e HVDC converters.				
• To	o study a	about the HVDC system control.				
• To	o analyz	e harmonics and design of filters.				
• To	o model	and analysis the DC system under study state.				
UNITI					9	
DC Power		ssion technology – Comparison of AC and DC transmissi			catio	n of D

DC Power transmission technology – Comparison of AC and DC transmission–Application of DC transmission – Description of DC transmission system– Planning for HVDC transmission–Modern trends in HVDC technology– DC breakers – Operating problems – HVDC transmission based on VSC – Types and applications of MTDC systems.

UNITI	I	ANALYSIS OF HVDC CONVERTERS	9
Choice of	of converte	converter – Analysis of Graetz circuit with and without overlap – Pulser configuration – Converter bridge characteristics – Analysis of a 12 pulse topologies and firing schemes.	
UNITI	II	CONVERTER AND HVDC SYSTEM CONTROL	9
angle co	ntrol – Cu	ink control – Converter control characteristics – System control hierard rrent and extinction angle control – Starting and stopping of DC link – Pe trollers – Control of VSC based HVDC link.	
UNITI	V	REACTIVE POWER AND HARMONICS CONTROL	9
		equirements in steady state – Sources of reactive power – SVC and Stanonics – Design of AC and DC filters – Active filters.	ГАТСОМ –
UNITV		POWER FLOWANALYSIS IN AC/DC SYSTEMS	9
Per unit Case stu	•	r DC quantities – DC system model – Inclusion of constraints – Power f	low analysis
		TOTAL:45 PERIODS	
OUTO	COMES	After successful completion of the course students able to	
1.	Demons	trate the concepts of DC transmission Technology	
2.	Apply an	nd Analysis of HVDC Converters	
3.	Explain	about HVDC system control	
4.	Explain	about Reactive Power control	
5.	Explain	about Harmonics control	
TEXT	BOOKS	:	
1.	•	K.R., "HVDC power transmission system", New Age International (Pecond Edition,2010.	P) Ltd., New
2.		Wilson Kimbark, "Direct Current Transmission", Vol.I, Wiley ik, London, Sydney, 1971.	interscience,
REFE	CRENCE	ZS:	
1.	KundurH	P., "Power System Stability and Control", McGraw-Hill, 1993.	
2.		damson and Hingorani NG, "High Voltage Direct Current Power Tra 1y Limited, London, 1960	insmission",

З.	Rakosh Das Begamudre, "Extra High Voltage AC Transmission Engineering", New Age International (P) Ltd., New Delhi, 1990.
4.	Arrillaga, J., "High Voltage Direct Current Transmission", Peter Pregrinus, London, 1983.
5.	HVDC transmission by Kamakshaih and V.Kamarraju., Tata McGraw-Hill 2017.

Г

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2				2					1			2		1
CO2		2	3								2	1		2	
CO3		2	3								2	1		1	2
CO4	2				1					1	2		2		
CO5		2	3							2	1			2	1

18PTEPE009	TOTAL QUALITY MANAGEMENT	L	T	Р	С							
		3	0	0	3							
OBJECTIVES												
• To facilitate the understanding of total quality management principles and processes												
UNIT I			9									
service quality; Ba Crosby. Barriers to	for quality, evolution of quality; Definitions of quality, p sic concepts of TQM, TQM framework, contributions of TQM; Quality statements, customer focus, customer orienta s, customer retention; costs to quality.	Der	ning	, Jur	an and							
UNIT II	TQM PRINCIPLES				9							
leadership, strategi	c quality planning; Quality councils- employee involv	eme	ent,	moti	vation;							
Empowerment; Te	am and Teamwork; Quality circles, recognition and re	war	d, p	perfor	mance							
appraisal; Continue	appraisal; Continuous process improvement; PDCE cycle, 5S, Kaizen; Supplier partnership,											
Partnering, Supplie	rating & selection.											
UNIT III	NIT III TOOLS OF QUALITY											

The seven traditional tools of quality; New management tools; Six sigma- concepts, methodology, applications to manufacturing, service sector including IT, Bench marking process; FMEA- stages, types.

UNIT IV

TQM TOOLS AND TECHNIQUES

9

9

TQM tools and techniques, control charts, process capability, concepts of six sigma, Quality Function Development (QFD), Taguchi quality loss function; TPM- concepts, improvement needs, performance measures.

UNIT V QUALITY SYSTEMS

Quality systems, need for ISO 9000, ISO 9001-9008; Quality system- elements, documentation,; Quality auditing, QS 9000, ISO 14000- concepts, requirements and benefits; TQM implementation in manufacturing and service sectors.

l	e		
			TOTAL : 45 PERIODS
OUTC	OMES	After successful completion of the course, The	student will be able to
•	Use the to	ols and techniques of TQM in manufacturing and	l service sectors.
TEXT	BOOKS		
1	Besterfield 2006.	I D.H. et al., Total quality Management, 3rd ed.,	Pearson Education Asia,
2		and Lindsay W.M., The management and Contraction, Cengage Learning, 2012.	ol of Quality, 8th ed., first
REFER	RENCE B	OOKS	
1	Janakiram 2006.	an B. and Gopal R.K., Total Quality Manage	ement, Prentice Hall India,
2	Suganthi L	. and Samuel A., Total Quality Management, Pre	entice Hall India, 2006.
3	James R. Quality",	Evans and William M. Lindsay, "The Managen 8 th Edition, First Indian Edition, Cengage Lea	nent and Control of wrning, 2012.

COURSE ARTICULATION MATRIX

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1		1	2			1			1	3	3		2

18PTE	PE010	POWER ELECTRONICS FOR RENEWABLE ENERGY SYSTEMS	L	Т	Р	С					
			3								
OBJEC	CTIVES	3:									
•	To stud	ly importance of renewable energy systems in distributed ge	enera	tion							
•		lyse and comprehend the various operating modes of sole sole sole sole sole sole sole sole	ar er	ergy	y syst	tems					
•		alyse and comprehend the various operating modes o tors and develop maximum power point tracking algorithm	f wi	ind	elect	rica					
٠	To imp	art knowledge on fuel cell systems									
٠	To Pro	vide knowledge about various hybrid renewable energy syst	ems								
UNIT I		INTRODUCTION:			9	9					
-		ewable energy, renewable energy systems in distributed po neration, current scenario in Distributed Generation, Plannir		-		Need					
UNIT II PHOTOVOLTAIC SYSTEMS AND ITS GRID INTEGRATION											

Basics of Photovoltaic, Maximum Power Point Tracking (MPPT) techniques, Sizing of stand-Alone PV systems, Inverters for grid-connected PV system: Line commutated, self-

UNIT	III	WIND POWER SYSTEMS	9
techniqu	les Induct	ower, Fixed speed and variable speed wind turbines, storm strateg ion generators, synchronous generators, half scale, full scale and ms, Stand-alone systems, and grid connected wind power systems.	
UNIT	IV	FUEL CELL SYSTEMS	9
		el cell systems, types of fuel cell systems, Power Electronic Interfac cell/Battery Hybrid systems.	e of fuel
UNIT	V	HYBRID RENEWABLE ENERGY SYSTEMS	9
		Systems- Range and type of Hybrid systems, wind-diesel system lro-PV system, biomass-PV-diesel system, PV-Fuel cell hybrid syst	
		TOTAL : 45 PERIODS	
OUTC	OMES:	After successful completion of the course students able to	
•	Apply D	istributed generation in existing power systems.	
•	Design F	PV cell integrated solar power system	
•	Design c	controllers for wind power systems.	
•	Apply fu	el cells in renewable energy integrated power systems.	
•	Design t	he converter system for hybrid renewable energy sources.	
TEXT	BOOKS	5:	
1.	Volker (Earth sca	Quaschning, James & James, "Understanding Renewable Energy an, 2005.	Systems",
2.		bySimoes, Felix A. Farret, "Renewable Energy Systems – D with Induction Generators", CRC press, 2nd edition 2007	esign and
REFE	RENCE	S:	
1.	Mohamn	ned H. Rashid, "Power Electronics Handbook", Elsevier, 2011.	
2.	Nick Je	nkins, Ron Allan, Peter Crossley, David Kirchen and Go ded Generation" IET Power and Energy series, London-2000.	ranStrbac,
3.		Kazmierkowski, R. Krishnan, J.D. Irwin, "Control in Power E Problems", Academic Press; 2002.	lectronics:
4.	Iames I	arminie and Andrew Dicks, "Fuel Cell Systems Explained", Joh	n Wiley &

5. Siegfried Heir, "Grid Integration of Wind Energy Systems", John Willey & Sons; 2nd Edition, 2006.

COURSE ARTICULATION MATRIX

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1			3		2			2			1		3	1	
CO2	2					3			2		1			3	1
CO3		2	3					2			3	1		2	3
CO4	1				2					2	1		3	1	
CO5		3	2									2		3	2

18PTEPE011	PRINCIPLES OF MANAGEMENT	L	Τ	P	C			
		3	0	0	3			
OBJECTIVE	S:							
1. To e	nable the students to study the evolution of Management.							
2. To st	tudy the functions and principles of Planning							
3. To st	tudy the functions and principles of Organising							
	tudy the functions and principles of Directing							
5. To st	tudy the functions and principles of Controlling		1					
UNIT I	INTRODUCTION TO MANAGEMENT AND			9				
ORGANIZATIONS								
Definition of M	Management – Science or Art – Manager Vs Entrepren	eur	- ty	vpes	of			
managers - ma	nagerial roles and skills – Evolution of Management – So	cient	ific,	hum	nan			
relations, system	n and contingency approaches - Types of Business organ	nizat	ion	- S	ole			
	partnership, company-public and private sector enterprises	- (Orgai	nizati	ion			
	ironment – Current trends and issues in Management.		1					
011111	PLANNING			9				
Nature and purp	pose of planning – planning process – types of planning	- (objec	tives	, —			
	s – policies – Planning premises – Strategic Management – Pla	nnin	g To	ols a	ind			
	cision making steps and process.			9				
	ORGANISING			· ·				
	ose – Formal and informal organization – organization char							
	- Line and staff authority - departmentalization - delegation							
	d decentralization – Job Design - Human Resource Man	-						
Career planning	uitment, selection, Training and Development, Performance		mage	men	ι,			
	DIRECTING			9				
• - · = = - ·		tion	4 1	-				
	individual and group behaviour – motivation – motivation							
	niques – job satisfaction – job enrichment – leadership – types							
readership – com	munication – process of communication – barrier in communic	allo	1 - e	nect	ive			

commur	ication – communication and IT.
UNIT	V CONTROLLING 9
	and process of controlling - budgetary and non-budgetary control techniques -
	computers and IT in Management control - Productivity problems and management -
control a	and performance – direct and preventive control – reporting.
	TOTAL : 45 PERIODS
OUTC	OMES: After completion of the course, students will be able to:
]	Explain the evolution of Management.
	Explain the functions and principles of Planning
-	Explain the functions and principles of Organising
4	Explain the functions and principles of Directing
4	
	Explain the functions and principles of Directing Explain the functions and principles of Controlling BOOKS: Stephen P. Robbins & Mary Coulter, " Management", Prentice Hall (India) Pvt. Ltd., 10 th Edition,2009
TEXT	Explain the functions and principles of Directing Explain the functions and principles of Controlling BOOKS:
<u>TEXT</u> 1. 2.	 Explain the functions and principles of Organising Explain the functions and principles of Directing Explain the functions and principles of Controlling BOOKS: Stephen P. Robbins & Mary Coulter, "Management", Prentice Hall (India) Pvt. Ltd., 10th Edition,2009 JAF Stoner, Freeman R.E and Daniel R Gilbert "Management", Pearson Education
<u>TEXT</u> 1. 2.	Explain the functions and principles of Organiong Explain the functions and principles of Directing Explain the functions and principles of Controlling BOOKS: Stephen P. Robbins & Mary Coulter, " Management", Prentice Hall (India) Pvt. Ltd., 10 th Edition,2009 JAF Stoner, Freeman R.E and Daniel R Gilbert "Management", Pearson Education 6th Edition, 2004 RENCES: Stephen A. Robbins & David A. Decenzo & Mary Coulter, "Fundamentals of Management" Pearson Education, 7th Edition, 2011.
Z TEXT 1. 2. REFE.	Explain the functions and principles of Directing Explain the functions and principles of Directing Explain the functions and principles of Controlling BOOKS: Stephen P. Robbins & Mary Coulter, " Management", Prentice Hall (India) Pvt. Ltd., 10 th Edition,2009 JAF Stoner, Freeman R.E and Daniel R Gilbert "Management", Pearson Education 6th Edition, 2004 RENCES: Stephen A. Robbins & David A. Decenzo & Mary Coulter, "Fundamentals of
Image: constraint of the second sec	Explain the functions and principles of Organiong Explain the functions and principles of Directing Explain the functions and principles of Controlling BOOKS: Stephen P. Robbins & Mary Coulter, "Management", Prentice Hall (India) Pvt. Ltd., 10 th Edition,2009 JAF Stoner, Freeman R.E and Daniel R Gilbert "Management", Pearson Education 6th Edition, 2004 RENCES: Stephen A. Robbins & David A. Decenzo & Mary Coulter, "Fundamentals of Management" Pearson Education, 7th Edition, 2011.
Image: constraint of the second sec	 Explain the functions and principles of Organising Explain the functions and principles of Directing Explain the functions and principles of Controlling BOOKS: Stephen P. Robbins & Mary Coulter, "Management", Prentice Hall (India) Pvt. Ltd., 10th Edition,2009 JAF Stoner, Freeman R.E and Daniel R Gilbert "Management", Pearson Education 6th Edition, 2004 RENCES: Stephen A. Robbins & David A. Decenzo & Mary Coulter, "Fundamentals of Management" Pearson Education, 7th Edition, 2011. Robert Kreitner & Mamata Mohapatra, "Management", Biztantra, 2008.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1	2	3		3	2		3				2		
CO2	3	3	2	2		2	1		2				3		
CO3	1		3	3			3		3				1		
CO4			3				2		2				2		
CO5	2	2				1									2

18PTEP POWER SYSTEM DYNAMICS AND L С Т F E012 **CONTROL** 2 1 03 **OBJECTIVES:** • To study the problem of power system stability and its impact on the system. To analyse linear dynamical systems and use of numerical integration methods. ٠ • To Model different power system components for the study of stability To study the methods to improve stability analysis ٠ To enhance the system stability • 9 **INTRODUCTION TO POWER SYSTEM OPERATIONS,** UNIT I AN ANALYSIS OF LINEAR DYNAMICAL SYSTEM AND NUMERICAL METHODS Introduction to power system stability. Power System Operations and Control. Stability problems in Power System. Impact on Power System Operations and control. Analysis of dynamical System, Concept of Equilibrium, Small and Large Disturbance Stability. Modal Analysis of Linear System. Analysis using Numerical Integration Techniques. Issues in Modelling: Slow and Fast Transients, Stiff System 12 UNIT II MODELLING OF SYNCHRONOUS MACHINES AND ASSOCIATED CONTROLLERS Modelling of synchronous machine: Physical Characteristics. Rotor position dependent model. D-Q Transformation. Model with Standard Parameters. Steady State Analysis of Synchronous Machine. Short Circuit Transient Analysis of a Synchronous Machine. Synchronization of Synchronous Machine to an Infinite Bus. Modelling of Excitation and Prime Mover Systems. Physical Characteristics and Models. Excitation System Control. Automatic Voltage Regulator. Prime Mover Control Systems. Speed Governors.

UNIT III MODELLING OF OTHER POWER SYSTEM

Modelling of Transmission Lines and Loads. Transmission Line Physical Characteristics. Transmission Line Modelling. Load Models - induction machine model. Frequency and Voltage Dependence of Loads. Other Subsystems – HVDC and FACTS controllers, WindEnergy Systems

UNIT IV STABILITY ANALYSIS

10

4

Angular stability analysis in Single Machine Infinite Bus System. Angular Stability in multi machine systems – Intra-plant, Local and Inter-area modes. Frequency Stability: Centre of Inertia Motion. Load Sharing: Governor droop. Single Machine Load Bus System: Voltage Stability. Introduction to Torsional Oscillations and the SSR phenomenon. Stability Analysis Tools: Transient Stability Programs, Small Signal Analysis Programs.

UNIT V ENHANCING SYSTEM STABILITY

Planning Measures. Stabilizing Controllers (Power System Stabilizers). Operational Measures-Preventive Control. Emergency Control.

TOTAL : 45 PERIODS

OUTC	OMES:	After successful completion of the course students able to
1.	Explain at numerical	bout power system operations, an analysis of linear dynamical system and methods.
2.	Design of	synchronous machines and associated controllers
3.	Design of	power system controllers
4.	Illustrate tl	he stability analysis of power system
5.	Design a s	tabilizing controllers

TEXT BOOKS:

- 1 K.R. Padiyar, "Power System Dynamics, Stability and Control", B. S. Publications, 2002.
- 2 P. Kundur, "Power System Stability and Control", McGraw Hill, 1995

REFERENCES:

1.	P. Sauer and M. A. Pai, "Power System Dynamics and Stability", Prentice Hall,
	1997.
2.	James A.Momoh, Mohamed. E. EI-Hawary. " Electric Systems, Dynamics and
	Stability with Artificial Intelligence applications", Marcel Dekker, USA First
	Edition, 2000.
3.	C.A.Gross, "Power System Analysis," Wiley India, 2011.
4.	B.M.Weedy, B.J.Lory, N.Jenkins, J.B.Ekanayake and G.Strbac," Electric Power
	Systems", Wiley India, 2013.
5.	K.Umarao, "Computer Techniques and Models in Power System," I.K.
	International, 2007.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2				2					1			2		1
CO2		2	3								2	1		2	
CO3		2	3								2	1		1	2
CO4	2				1					1	2		2		
CO5		2	3							2	1			2	1

18PTEPI	ELECTRICAL AND HYBRID					D VF	EHI	CL	ES	L	Τ	P	C		
												3	0	0	3
OBJECT	IVES :	:													
•	To Study	ly the H	Electric v	vehicles	and th	heir p	berform	mance	e						
•	Го study	y abou	t Electric	c Trains	5										
•	Го study	y the d	lifferent	possible	e ways	s of er	nergy	stora	ge.						
• 7	Го study	y the d	lifferent	strategie	es relat	ated to	o energ	gy stc	orage	e sys	tems				
• 7	To Study	ly the h	hybrid ve	hicles a	and the	eir pe	rform	ance							
UNIT I		INTE	RODU	CTION	N										9
Convention Characteriz performanc	ation, 1 e.	transm	nission	characte	eristics				-			desc	ribe		hicle 9
UNIT II]	ELE	CTRIC	TRA	INS									-	7
Electric Dr. train topolo .Electric Pr. vehicles, C Induction drives,Conf	ogies, po ropulsio Configur Motor	ower f on unit ration drive	flow con t: Introd and con es, con	trol in e uction t ntrol of figuratic	electric to ele f DC on a	ic driv ectric 2 Mot and 6	ve-trai comp tor dr contro	in top ponen rives, ol of	oolog nts u Con f P	jies, sed nfigu erma	fuel in h iratio	effici ybrid n an Ma	ency and d co agnet	ana d ele ontro t M cienc	lysis ctric l of lotor y.
UNIT III		ENE	RGY S	TORA	AGE										9
Energy Stor Battery bas Super Capa analysis, Hy the electric	ed energ icitor ba ybridiza machin	gy stor ased en ation on ne and	orage and nergy sto of differe	its anal brage an nt energ ernal cor	llysis, 1 nd its a gy stor mbust	Fuel analy orage of tion e	Cell b ysis, F device engine	based Flywhe es. Siz e (ICE	ener eel b zing E), S	rgy s asec the izing	storag l enei drive g the	ge and gy st syste prop	d its torag em: l ulsic	anal ge an Matc on m	ysis, d its hing otor,

supporting subsystems.

UNIT IV ENERGY MANAGEMENT STRATEGIES

9

9

Energy Management Strategies: Introduction to energy management strategies used in hybrid and electric vehicles, classification of different energy management strategies, comparison of different energy management strategies, implementation issues of energy management Strategies.

UNIT V HYBRID ELECTRIC VEHICLES	
---------------------------------	--

Introduction to Hybrid Electric Vehicles: History of hybrid and electric vehicles, social and environmental importance of hybrid and electric vehicles, impact of modern drive-trains on energy supplies. Hybrid Electric Drive-trains: Basic concept of hybrid traction, introduction to various hybrid drive-train topologies, power flow control in hybrid drive-train topologies, fuel efficiency analysis

			TOTAL : 45 PERIODS						
OUTC	OMES:	After successful completion of th	e course students able to						
1.	Explain the basic concepts of electric vehicles								
2.	Explain the concept of electric traction existing power systems drives								
3.	Explain ab	out Energy Storage Requirements	in Hybrid and Electric Vehicles						
4.	Explain ab	out Energy Management strategies	5						
5.	Explain ab	out hybrid and electric vehicles							
TEXT	BOOKS:								
1		A. Masrur and D. W. Gao, "Hybrid ns with Practical Perspectives", Jo	d Electric Vehicles: Principles and hn Wiley & Sons, 2011						
2		L. Serrao and G. Rizzoni, "Hybrid ', Springer, 2015.	Electric Vehicles: Energy Management						
REFE	RENCES :	:							
1.		i, Y. Gao, S. E. Gay and A. Emadi, Vehicles: Fundamentals, Theory, a	"Modern Electric, Hybrid Electric, and nd Design", CRC Press, 2004.						
2.	T. Denton,	"Electric and Hybrid Vehicles", I	Routledge, 2016						
З.	Iqbal Huse	ain, "Electric and Hybrid Vehicles	" ", CRC Press, 2004						
4.	Chris Mi a 2011	nd M.Abdul Masrur, "Electric and	d Hybrid Vehicles" by Willey & Sons						
5.	Amir Khaj	epour, , "Electric and Hybrid Vehi	icles" John Wiley & Sons, 2011						

COURSE ARTICULATION MATRIX

CO/PO PO	1 PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
----------	-------	-----	-----	-----	-----	-----	-----	-----	------	------	------	------	------	------

CO1	3		2	1						2		2		2
CO2		2		2						2	1		2	3
CO3							2				1	2		1
CO4					2	1			3			3	1	
CO5			2					2			1			2

18PTEPE014		COMPUTER AIDED DESIGN OF ELECTRICAL APPARATUS	L 3	Т 0	P 0	C 3				
OBJECTIVE	5:									
• To intr	oduc	the importance of computer aided design method.								
• To pro applica		basic electromagnetic field equations and the problem formul s.	atio	n fo	r CA	D				
• To ge Engine		miliarized with Finite Element Method as applicable g.	for	Ele	ctric	al				
• To intr	• To introduce the organization of a typical CAD package.									
• To intr	oduc	e Finite Element Method for the design of different Electrical	app	arat	us.					
UNIT I	Ι	INTRODUCTION		9						
		procedures–Limitations–Need for field analysis based designergy conversion– Development of Torque/Force.	gn—l	Revi	ew o	of				
UNIT II		MATHEMATICAL FORMULATION OF FIELD PROBLEMS)	ļ)					
potential-Stored	ener	d Equations – Magnetic Vector/Scalar potential – Electrical rgy in Electric and Magnetic fields–Capacitance-Inductance Energy functional.								
UNIT III	I	PHILOSOPHY OF FEM		9						
method-Energy	min	s–Differential/Integral equations–Finite Difference method–Inimization –Variational method-2D field problems–Discret natrix–Solution techniques.								
UNIT IV	(CAD PACKAGES		9						
		System–Pre-processing–Modelling–Meshing–Material propertup solution–Post processing.	ties-	Bou	ndar	y				

UNIT V	DESIGN APPLICATIONS 9						
-	Insulators–Capacitance calculation- Design of Solenoid Actuator –Inductance tion–Torque calculation in Switched Reluctance Motor.						
	TOTAL :45 PERIODS						
OUTCOMES:	After successful completion of the course students able to						
1.	Explain the CAD Software						
2.	Formulate mathematical problem.						
3.	Analyse using finite element method.						
4.	Use of the CAD packages.						
5.	Design Electrical machine design using CAD packages.						
TEXT BOOKS	S:						
1.	S.JSalon, 'Finite Element Analysis of Electrical Machines', Springer, Yes DEE publishers, Indian reprint, 2007						
2.	Nicola Bianchi, 'Electrical Machine Analysis using Finite Elements', CRC Taylor & Francis, 2005.						
REFERENCE	S:						
1.	Joao Pedro, A.Bastos and Nelson Sadowski, 'Electromagnetic Modelling by Finite Element Methods', Marcell Dekker Inc., 2003.						
2.	M Ramamoorthy, "Computer Aided, Analysis and Design of Electrical equipment"						
3.	P.P.Silvester and Ferrari, 'Finite Elements for Electrical Engineers', Cambridge University Press, 1983.						
4.	D.A.Lowther and P.PSilvester, 'Computer Aided Design in Magnetics', Springer Verlag, NewYork, 1986.						
5.	S.R.H.Hoole, 'Computer Aided Analysis and Design of Electromagnetic Devices', Elsevier, NewYork, 1989.						
6.	<i>George, Omura, "Mastering AutoCAD", BPB Publications, New Delhi, 1988.</i>						
7.	User Manuals of MAGNET, MAXWELL & ANSYS Softwares.						

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1						2						2		3	
CO2	3				2						1		2		2
CO3					2					1		1		2	
CO4					2						3	1		1	2

	CO5			3		2						1	2			2
--	-----	--	--	---	--	---	--	--	--	--	--	---	---	--	--	---

18PTEP	E015	POWER SYSTEM TRANSIENTS	L	Т	Р	C				
			2	1	0	3				
OBJECTI	VES:			I						
•	To study	the importance, causes and effects of transients								
•	-	the generation of switching transients and their co al concept.	ntro	l us	ing	circuit -				
•	To study	the mechanism of lighting strokes and the production of	light	ing	surge	es.				
•	To study	the propagation, reflection and refraction of travelling wa	aves	•						
•	To study the impact of voltage transients caused by faults, circuit breaker action, load rejection on integrated power system.									
UNIT I	UNIT I INTRODUCTION 9									
study of tr	ansients in	ower system transients- effect of transients on power system planning.	syste	-1115-		9 of the				
UNIT II	UNIT II SWITCHING TRANSIENTS									
interrupting voltage ac suppression source reg	g the resis ross the l n - curren ulation - c	b switching transients - resistance switching and the option current - load switching and equivalent circuit - wa oad and the switch - normal and abnormal switching t chopping - effective equivalent circuit. Capacitance scapacitance switching with a restrike, with multiple restrinsients - ferro resonance.	vefo g tra swite	rms ansie ching	for t ents. g - e	transient Current effect of				
UNIT III	LIGHT	'NING TRANSIENTS				9				
clouds-med lightning s	chanism o troke- fact	s in the formation of clouds and charge formation-rate of f lightning discharges and characteristics of lightning tors contributing to good line design- protection using teraction between lightning and power system.	g sti	roke	s–mo	odel for				
UNIT IV	TRAV LINES	ELING WAVES ON TRANSMISSION				9				

UNIT V	TRANSIENTS IN INTEGRATED POWER SYSTEM9
load reject	line and kilometric fault- distribution of voltages in a power system-Line dropping and ion-voltage transients on closing and reclosing lines- over voltage induced by faults- surges on integrated system Qualitative application of EMTP for transient computation.
	TOTAL:45PERIODS
OUTCO	MES: After successful completion of the course students able to
1.	Explain the importance of transients
2.	Explain the causes and analyse the switching transients
3.	Explain the lightning transients and protection methods.
4.	Explain the effect of travelling waves on transmission lines.
5.	Explain the effect of transient in integrated power system.
ТЕХТВ	DOKS:
1.	Allan Greenwood, 'Electrical Transients in Power Systems', WileyInte Science,NewYork,2 Edition, 1991.
2.	PritindraChowdhari, "ElectromagnetictransientsinPowerSystem", JohnWileyandSons nc., SecondEdition, 2009
3.	C.S.Indulkar, D.P.Kothari, K.Ramalingam, 'Power System Transients Astatistic approach', PHI Learning Private Limited, Second Edition, 2010
4.	R.D. Begamudre, "Extra High Voltage AC Transmission Engineering", NewAg International.
REFER	ENCES:
1.	M.S.Naidu and V.Kamaraju, 'High Voltage Engineering', Tata McGraw Hill, Fift Edition, 2013.
2.	R.D.Begamudre, 'Extra High Voltage AC Transmission Engineering', WileyEaster Limited, 1986.
3.	Y.Hase, Handbook of Power System Engineering, "Wiley India,2012.
4.	J.L.Kirtley, "Electric Power Principles, Sources, Conversion, Distribution and use, Wiley, 2012.
5.	Allan Greenwood ,Electricel transients in power systems, Wiley India,2012

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2				2			1			2				3
CO2				2							2	1	1		
CO3	1	2			1				2		1		1		2
CO4		2					2	1							3
CO5	2				1			2			1			2	

18PTEPE016

SOLID STATE DRIVES

L	Т	Р	С
3	0	0	3

		03									
OBJECTI	VES:										
• Te	o understand steady state operation and transient dynamics of a motor loa	d syster									
	o study and analyze the operation of the converter/chopper fed dc drive, b alitatively and quantitatively.	oth									
	o study and understand the operation and performance of Induction motor	drives									
	• To study and understand the operation and performance of Synchronous model drives										
• To analyze and design the current and speed controllers for a closed loop so DC motor drive.											
UNIT I	DRIVE CHARACTERISTICS	9									
quadrant Dyn	e – Equations governing motor load dynamics – steady state stability – me namics: acceleration, deceleration, starting & stopping – typical load torques – Selection of motor										
UNIT II	CONVERTER / CHOPPER FED DC MOTOR DRIVE	9									
Drive – conti	analysis of the single and three phase converter fed separately excited DC nuous and discontinuous conduction– Time ratio and current limit contro ration of converter / chopper fed drive.										
UNIT III	INDUCTION MOTOR DRIVES	9									
	e control–energy efficient drive–v/f control–constant airgap flux–field we ge / current fed inverter – closed loop control	eakening									
UNIT IV	SYNCHRONOUS MOTOR DRIVES	9									
	nd self control of synchronous motor: Margin angle control and power fac	ctor									
control – per	manent magnet synchronous motor.										
control – per	DESIGN OF CONTROLLERS FOR DRIVES	9									
UNIT V Transfer fund speed feedba		it and									
UNIT V Transfer fund speed feedba	DESIGN OF CONTROLLERS FOR DRIVES etion for DC motor / load and converter – closed loop control with Current ck–armature voltage control and field weakening mode – Design of control	it and									
UNIT V Transfer fund speed feedba	DESIGN OF CONTROLLERS FOR DRIVES etion for DC motor / load and converter – closed loop control with Current ck–armature voltage control and field weakening mode – Design of contro oller and speed controller- converter selection and characteristics TOTAL : 45 PERIODS	it and									
UNIT V Transfer fund speed feedba current contr OUTCOME	DESIGN OF CONTROLLERS FOR DRIVES etion for DC motor / load and converter – closed loop control with Current ck–armature voltage control and field weakening mode – Design of contro oller and speed controller- converter selection and characteristics TOTAL : 45 PERIODS	it and									

3.	Explain the concepts of Induction motor drives
4.	Explain the concepts of synchronous motor drives
5.	Design of controllers for Drives
TEXT	BOOKS:
1	Gopal K.Dubey, Fundamentals of Electrical Drives, Narosa Publishing House, 1992.
2	Bimal K.Bose. Modern Power Electronics and AC Drives, Pearson Education, 2002
3	R.Krishnan, Electric Motor & Drives: Modelling, Analysis and Control, Prentice hall of India, 2001.
REFER	RENCES:
1.	John Hindmarsh and Alasdain Renfrew, "Electrical Machines and Drives System," Elsevier 2012.
2.	Shaahin Felizadeh, "Electric Machines and Drives", CRC Press(Taylor and Francis Group),2013.
3.	S.K.Pillai, A First course on Electrical Drives, Wiley Eastern Limited, 1993
4.	S. Sivanagaraju, M. Balasubba Reddy, A. Mallikarjuna Prasad "Power semiconductor drives" PHI, 5th printing, 2013
5	Vedam Subramanyam, "Thyristor Control of Electric Drives", Tata McGraw Hill, 2007

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2				3						1		3		
CO2											2			2	
CO3	1	2									1				2
CO4		2								2			1		
CO5					1						2			2	

18PTEPE017	INDUSTRIAL ELECTRICAL SYSTEMS	L	Т	Р	С
		3	0	0	3

OBJEC	TIVES								
ODJEC	Γ	next an af all attriced exertant accuracy of the							
•		ortance of electrical system components							
•	•	and comprehend the various residential and commercial electric	al system						
•	•	various illumination systems							
•		knowledge on industrial electrical systems							
•	To impart	knowledge on Automation for industrial electrical systems	0						
UNIT I		ELECTRICAL SYSTEM COMPONENTS	9						
system, T characteri	ariff structur stics, symbo	nponents, selection of cables, wires, switches, distribution box, n re, protection components- Fuse, MCB, MCCB, ELCB, inverse c ols, single line diagram (SLD) of a wiring system, Contactor, Isol ric shock and Electrical safety practices	urrent						
UNIT II	[RESIDENTIAL AND COMMERCIAL ELECTRICAL SYSTEMS	9						
installatio protection deciding l	n, load calcu devices, ea	nd commercial wiring systems, general rules and guidelines for alation and sizing of wire, rating of main switch, distribution boa rthing system calculations, requirements of commercial installation me and number of lamps, earthing of commercial installation, se ents.	on,						
UNIT I	I	ILLUMINATION SYSTEMS	9						
specific co various ill their oper	onsumption, lumination s ation, energy	s terms regarding light, lumen, intensity, candle power, lamp effi glare, space to height ratio, waste light factor, depreciation factor chemes, Incandescent lamps and modern luminaries like CFL, L y saving in illumination systems, design of a lighting scheme for ercial premises, flood lighting.	or, ED and						
UNIT I		INDUSTRIAL ELECTRICAL SYSTEMS	9						
of motors Power fac	, SLD, Cable etor correction	trial substation, Transformer selection, Industrial loads, motors, se and Switchgear selection, Lightning Protection, Earthing design – kVAR calculations, type of compensation, Introduction to Pe ations of LT Breakers, MCB and other LT panel components	1,						
		ations of ET Dreakers, web and other ET parer components	9						
UNIT V INDUSTRIAL ELECTRICAL SYSTEM AND AUTOMATION									
DG Syste DG, UPS	ms, UPS Sys	stem, Electrical Systems for the elevators, Battery banks, Sizing	the						

automati	ion	
		TOTAL : 45 PERIODS
OUTC	OMES:	After successful completion of the course students able to
1	Identify va	arious components of industrial electrical systems
2	Illustrate th	he electrical wiring systems for residential, commercial and industrial
	Consumers	S
3	Design Of	Illumination Systems
4	Construct	the industrial electrical systems
5	Construct	the Automation for industrial electrical systems
TEXT		al and G. C. Garg, "Electrical Wiring, Estimating & Costing", Khanna
_	publishers,	, 2008.
2	K. B. Ra 2007.	aina, "Electrical Design, Estimating & Costing", New age International
REFEI	RENCES :	:
1.	H. Joshi, Education,	"Residential Commercial and Industrial Systems", McGraw Hill , 2008.
2.	Web site f	for IS Standards.
3.	S. Singh ar	nd R. D. Singh, "Electrical estimating and costing", Dhanpat Rai and Co.,
э.	0	

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1			3	2	1			2			2	3	2	3	2
CO2		2	3	2	1			1				2	1	3	2
CO3			3								2	3	3	3	2
CO4		2	3	2	1			1			3	2	1	3	3
CO5		2	3	2	1			1			3	2	1	3	2

18PTEI	PE018	FIBRE OPTICS AND LASER INSTRUMENTS	L	Т	Р	С
			3	0	0	3
OBJEC	TIVES:					
•	To provide	adequate knowledge about holography and Medica	ıl ap	plic	ation	s of

UNIT I	OPTICAL FIBRES AND THEIR PROPERTIES 9										
•	To expose the students to the basic concepts of optical fibres and their properties.										
•	To provide adequate knowledge about the Industrial applications of optical fibres.										
•	To expose the students to the Laser fundamentals										
•	To provide adequate knowledge about Industrial application of lasers										
	Lasers										

OPTICAL FIBRES AND THEIR PROPERTIES

Construction of optical fiber cable: Guiding mechanism in optical fiber and Basic component of optical fiber communication, -Principles of light propagation through a fibre: Total internal reflection, Acceptance angle (θa), Numerical aperture and Skew mode, –Different types of fibres and their properties: Single and multimode fibers and Step index and graded index fibers,- fibre characteristics: Mechanical characteristics and Transmission characteristics, -Absorption losses - Scattering losses - Dispersion - Connectors and splicers -Fibre termination – Optical sources: Light Emitting Diode (LED), – Optical detectors: PIN Diode.

UNIT II INDUSTRIAL APPLICATION OF OPTICAL **FIBRES**

Fibre optic sensors: Types of fiber optics sensor, Intrinsic sensor- Temperature/ Pressure sensor, Extrinsic sensors, Phase Modulated Fibre Optic Sensor and Displacement sensor (Extrinsic Sensor) - Fibre optic instrumentation system: Measurement of attenuation (by cut back method), Optical domain reflectometers, Fiber Scattering loss Measurement, Fiber Absorption Measurement, Fiber dispersion measurements, End reflection method and Near field scanning techniques - Different types of modulators: Electro-optic modulator (EOM) -Interferometric method of measurement of length - Moire fringes - Measurement of pressure, temperature, current, voltage, liquid level and strain.

UNIT III

LASER FUNDAMENTALS

Fundamental characteristics of lasers – Level Lasers: Two-Level Laser, Three Level Laser, Quasi Three and four level lasers - Properties of laser: Mono chromaticity, Coherence, Divergence and Directionality and Brightness -Laser modes - Resonator configuration - Qswitching and mode locking – Cavity damping – Types of lasers; – Gas lasers, solid lasers, liquid lasers and semiconductor lasers.

UNIT IV

INDUSTRIAL APPLICATION OF LASERS

9

9

9

Laser for measurement of distance, Laser for measurement of length, Laser for measurement of velocity, Laser for measurement of acceleration, Laser for measurement of current, voltage and Laser for measurement of Atmospheric Effect: Types of LIDAR, Construction And Working, and LIDAR Applications - Material processing: Laser instrumentation for material processing, Powder Feeder, Laser Heating, Laser Welding, Laser Melting, Conduction Limited Melting and Key Hole Melting - Laser trimming of material: Process Of Laser Trimming, Types Of Trim, Construction And Working Advantages – Material Removal and vaporization: Process

Of Material Removal.

UNIT V

HOLOGRAM AND MEDICAL APPLICATIONS

9

Holography: Basic Principle, Holography vs. photography, Principle Of Hologram Recording, Condition For Recording A Hologram, Reconstructing and viewing the holographic image– Holography for non-destructive testing – Holographic components – Medical applications of lasers, laser-Tissue Interactions Photochemical reactions, Thermalisation, collisional relaxation, Types of Interactions and Selecting an Interaction Mechanism – Laser instruments for surgery, removal of tumors of vocal cards, brain surgery, plastic surgery, gynaecology and oncology.

TOTAL : 45 PERIODS

OUTCOMES: After successful completion of the course students able to 1 Understand the principle, transmission, dispersion and attenuation characteristics of optical fibers 2 Apply the gained knowledge on optical fibers for its use as communication medium and as sensor as well which have important applications in production, manufacturing industrial and biomedical applications. 3 Understand laser theory and laser generation system. 4 Students will gain ability to apply laser theory for the selection of lasers for a specific Industrial and medical application.

TEXT BOOKS:

1	J.M. Senior, 'Optical Fibre Communication – Principles and Practice', Prentice Hall of India,1985.
2	J. Wilson and J.F.B. Hawkes, 'Introduction to Opto Electronics', Prentice Hall of India, 2001.
3	Eric Udd, William B., and Spillman, Jr., "Fiber Optic Sensors: An Introduction for

Engineers and Scientists ", John Wiley & Sons, 2011.

REFERENCES:

1.	G. Keiser, 'Optical Fibre Communication', McGraw Hill, 1995.
2.	M. Arumugam, 'Optical Fibre Communication and Sensors', Anuradha Agencies, 2002.
3.	John F. Ready, "Industrial Applications of Lasers", Academic Press, Digitized in 2008.
4.	Monte Ross, 'Laser Applications', McGraw Hill, 1968.
5.	John and Harry, "Industrial lasers and their application", McGraw-Hill, 2002.
6.	Keiser, G., "Optical Fiber Communication", McGraw-Hill, 3rd Edition, 2000.
7.	http://nptel.ac.in/courses/117101002/

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1		2				3	2		3	3	3		2
CO2	3			2	2			3	3		3	2	2		2
CO3	2	1		1	1			2	2		3	3	2		1
CO4	3			2				3	2		2	2	3		2

18PTE	PE019	MICRO ELECTRO MECHANICAL SYSTEMS	L	Τ	Р	С
	·		3	0	0	3
OBJEC	OBJECTIVES:					
•	To provide devices.	To provide knowledge of semiconductors and solid mechanics to fabricate MEMS devices.				
•	To educate on the rudiments of Micro fabrication techniques.					
•	To introduce various sensors and actuators					
٠	To introduce different materials used for MEMS					

UNIT I INTRODUCTION 9 Intrinsic Characteristics of MEMS – Energy Domains and Transducers- Sensors and Actuata – Introduction to Micro fabrication - Silicon based MEMS processes – New Materials Review of Electrical and Mechanical concepts in MEMS – Semiconductor devices – Stra and strain analysis – Flexural beam bending- Torsional deflection 9 UNIT II SENSORS AND ACTUATORS-I 9 Electrostatic sensors – Parallel plate capacitors – Applications – Interdigitated Fing capacitor – Comb drive devices – Micro Grippers – Micro Motors - Thermal Bimorph Applications – Magnetic Actuators – Micromagnetic components – Case studies of MEM in magnetic actuators - Actuation using Shape Memory Alloys. 9 UNIT III SENSORS AND ACTUATORS-II 9 Piezoresistive sensors – Piezoresistive sensor materials - Stress analysis of mechanic elements – Applications to Inertia, Pressure, Tactile and Flow sensors – Piezoelectric senso and actuators – piezoelectric materials – Applications to Inertia Acoustic, Tactile and Flow sensors. 9 Silicon Anisotropic Etching – Anisotrophic Wet Etching – Dry Etching of Silicon – Plasn Etching – Deep Reaction Ion Etching (DRIE) – Isotropic Wet Etching – Gas Phaz Etchants – Case studies - Basic surface micro machining processes – Structural ar Sacrificial Materials – Acceleration of sacrificial Etch – Striction and Antistriction method – LIGA Process - Assembly of 3D MEMS – Foundry process. 9 Polymers in MEMS– Polimide - SU-8 - Liquid Crystal Polymer (LCP) – PDMS – PMMA Parylene – Fluorocarbon - Application to Acceleration, P	•	To educe Mechani	ate on the applications of MEMS to disciplines beyond Electrical an cal engineering.	nd			
- Introduction to Micro fabrication - Silicon based MEMS processes - New Materials Review of Electrical and Mechanical concepts in MEMS - Semiconductor devices - Stra and strain analysis - Flexural beam bending- Torsional deflection UNIT II SENSORS AND ACTUATORS-I 9 Electrostatic sensors - Parallel plate capacitors - Applications - Interdigitated Fing capacitor - Comb drive devices - Micro Grippers - Micro Motors - Thermal Sensing at Actuation - Thermal expansion - Thermal couples - Thermal resistors - Thermal Bimorph Applications - Magnetic Actuators - Micromagnetic components - Case studies of MEM in magnetic actuators - Actuation using Shape Memory Alloys. UNIT III SENSORS AND ACTUATORS-II 9 Piezoresistive sensors - Piezoresistive sensor materials - Stress analysis of mechanic elements - Applications to Inertia, Pressure, Tactile and Flow sensors - Piezoelectric senso and actuators - piezoelectric effects - piezoelectric materials - Applications to Inertia Acoustic, Tactile and Flow sensors. 9 Silicon Anisotropic Etching - Anisotrophic Wet Etching - Dry Etching of Silicon - Plasm Etching - Deep Reaction Ion Etching (DRIE) - Isotropic Wet Etching - Gas Phat Etchants - Case studies - Basic surface micro machining processes - Structural ar Sacrificial Materials - Acceleration of sacrificial Etch - Stric	UNIT			9			
ONTLIN SENSORS AND ACTUATORS-I Electrostatic sensors – Parallel plate capacitors – Applications – Interdigitated Fing. capacitor – Comb drive devices – Micro Grippers – Micro Motors - Thermal Sensing at Actuation – Thermal expansion – Thermal couples – Thermal resistors – Thermal Bensing hApplications – Magnetic Actuators – Micromagnetic components – Case studies of MEM in magnetic actuators- Actuation using Shape Memory Alloys. UNIT III SENSORS AND ACTUATORS-II 9 Piezoresistive sensors – Piezoresistive sensor materials - Stress analysis of mechanic elements – Applications to Inertia, Pressure, Tactile and Flow sensors – Piezoelectric senso and actuators – piezoelectric effects – piezoelectric materials – Applications to Inertia Acoustic, Tactile and Flow sensors. 9 Silicon Anisotropic Etching – Anisotrophic Wet Etching – Dry Etching of Silicon – Plasm Etching – Deep Reaction Ion Etching (DRIE) – Isotropic Wet Etching – Gas Phase Etchants – Case studies - Basic surface micro machining processes – Structural ar Sacrificial Materials – Acceleration of sacrificial Etch – Striction and Antistriction method – LIGA Process - Assembly of 3D MEMS – Foundry process. 9 Polymers in MEMS– Polimide - SU-8 - Liquid Crystal Polymer (LCP) – PDMS – PMMA Parylene – Fluorocarbon - Application to Acceleration, Pressure, Flow and Tactile sensor Optical MEMS – Lenses and Mirrors – Actuators for Active Optical MEMS. 9 OUTCOMES: After successful completion of the course students able to 1 1 Ability to understand the operation of micro devices 2 2 Ability to design the micro d	IntrodReview	uction to of Electric	Micro fabrication - Silicon based MEMS processes – New Ma al and Mechanical concepts in MEMS – Semiconductor devices	aterials –			
capacitor – Comb drive devices – Micro Grippers – Micro Motors - Thermal Sensing ar Actuation – Thermal expansion – Thermal couples – Thermal resistors – Thermal Bimorph Applications – Magnetic Actuators – Micromagnetic components – Case studies of MEM in magnetic actuators- Actuation using Shape Memory Alloys. UNIT III SENSORS AND ACTUATORS-II Piezoresistive sensors – Piezoresistive sensor materials - Stress analysis of mechanic elements – Applications to Inertia, Pressure, Tactile and Flow sensors – Piezoelectric senso and actuators – piezoelectric effects – piezoelectric materials – Applications to Inertia Acoustic, Tactile and Flow sensors. UNIT IV MICROMACHINING Silicon Anisotropic Etching – Anisotrophic Wet Etching – Dry Etching of Silicon – Plasn Etching – Deep Reaction Ion Etching (DRIE) – Isotropic Wet Etching – Gas Phaz Etchants – Case studies - Basic surface micro machining processes – Structural ar Sacrificial Materials – Acceleration of sacrificial Etch – Striction and Antistriction method – LIGA Process - Assembly of 3D MEMS – Foundry process. UNIT V POLYMER AND OPTICAL MEMS Polymers in MEMS – Polimide - SU-8 - Liquid Crystal Polymer (LCP) – PDMS – PMMA Parylene – Fluorocarbon - Application to Acceleration, Pressure, Flow and Tactile sensor Optical MEMS – Lenses and Mirrors – Actuators for Active Optical	UNIT II		SENSORS AND ACTUATORS-I				
UNIT III SENSORS AND ACTUATORS-II Piezoresistive sensors – Piezoresistive sensor materials - Stress analysis of mechanic elements – Applications to Inertia, Pressure, Tactile and Flow sensors – Piezoelectric senso and actuators – piezoelectric effects – piezoelectric materials – Applications to Inertia Acoustic, Tactile and Flow sensors. Piezoresistive sensor – Piezoelectric effects – piezoelectric materials – Applications to Inertia Acoustic, Tactile and Flow sensors. UNIT IV MICROMACHINING 9 Silicon Anisotropic Etching – Anisotrophic Wet Etching – Dry Etching of Silicon – Plasm Etching – Deep Reaction Ion Etching (DRIE) – Isotropic Wet Etching – Gas Phase Etchants – Case studies - Basic surface micro machining processes – Structural ar Sacrificial Materials – Acceleration of sacrificial Etch – Striction and Antistriction method – LIGA Process - Assembly of 3D MEMS – Foundry process. 9 Polymers in MEMS- Polimide - SU-8 - Liquid Crystal Polymer (LCP) – PDMS – PMMA Parylene – Fluorocarbon - Application to Acceleration, Pressure, Flow and Tactile sensor Optical MEMS – Lenses and Mirrors – Actuators for Active Optical MEMS. 9 OUTCOMES: After successful completion of the course students able to 1 1 Ability to understand the operation of micro devices 2 2 Ability to understand the concept of Piezo electric effect 4	capacito Actuati Applica	or – Comb on – Thern ations – Ma	o drive devices – Micro Grippers – Micro Motors - Thermal Sen nal expansion – Thermal couples – Thermal resistors – Thermal B agnetic Actuators – Micromagnetic components – Case studies of	sing and imorph -			
elements – Applications to Inertia, Pressure, Tactile and Flow sensors – Piezoelectric senso and actuators – piezoelectric effects – piezoelectric materials – Applications to Inertia Acoustic, Tactile and Flow sensors. UNIT IV MICROMACHINING 9 Silicon Anisotropic Etching – Anisotrophic Wet Etching – Dry Etching of Silicon – Plasm Etching – Deep Reaction Ion Etching (DRIE) – Isotropic Wet Etching – Gas Phase Etchants – Case studies - Basic surface micro machining processes – Structural ar Sacrificial Materials – Acceleration of sacrificial Etch – Striction and Antistriction method – LIGA Process - Assembly of 3D MEMS – Foundry process. 9 UNIT V POLYMER AND OPTICAL MEMS 9 Polymers in MEMS– Polimide - SU-8 - Liquid Crystal Polymer (LCP) – PDMS – PMMA Parylene – Fluorocarbon - Application to Acceleration, Pressure, Flow and Tactile sensor Optical MEMS – Lenses and Mirrors – Actuators for Active Optical MEMS. OUTCOMES: After successful completion of the course students able to 1 Ability to understand the operation of micro devices 2 2 Ability to design the micro devices 3	UNIT	II	SENSORS AND ACTUATORS-II	9			
Silicon Anisotropic Etching – Anisotrophic Wet Etching – Dry Etching of Silicon – Plasm Etching – Deep Reaction Ion Etching (DRIE) – Isotropic Wet Etching – Gas Phase Etchants – Case studies - Basic surface micro machining processes – Structural ar Sacrificial Materials – Acceleration of sacrificial Etch – Striction and Antistriction method – LIGA Process - Assembly of 3D MEMS – Foundry process. UNIT V POLYMER AND OPTICAL MEMS Polymers in MEMS– Polimide - SU-8 - Liquid Crystal Polymer (LCP) – PDMS – PMMA Parylene – Fluorocarbon - Application to Acceleration, Pressure, Flow and Tactile sensor Optical MEMS – Lenses and Mirrors – Actuators for Active Optical MEMS. TOTAL : 45 PERIODS 0UTCOMES: 1 Ability to understand the operation of micro devices 2 Ability to design the micro devices 3 Ability to understand the concept of Piezo electric effect	elements and actu	a – Applica ators – pi	tions to Inertia, Pressure, Tactile and Flow sensors – Piezoelectric ezoelectric effects – piezoelectric materials – Applications to	e sensors			
Etching – Deep Reaction Ion Etching (DRIE) – Isotropic Wet Etching – Gas Phase Etchants – Case studies - Basic surface micro machining processes – Structural ar Sacrificial Materials – Acceleration of sacrificial Etch – Striction and Antistriction method – LIGA Process - Assembly of 3D MEMS – Foundry process. UNIT V POLYMER AND OPTICAL MEMS Polymers in MEMS – Polimide - SU-8 - Liquid Crystal Polymer (LCP) – PDMS – PMMA Parylene – Fluorocarbon - Application to Acceleration, Pressure, Flow and Tactile sensor Optical MEMS – Lenses and Mirrors – Actuators for Active Optical MEMS. OUTCOMES: After successful completion of the course students able to 1 Ability to understand the operation of micro devices 2 Ability to design the micro devices 3 Ability to understand the concept of Piezo electric effect	UNIT	[V	MICROMACHINING	9			
UNIT V POLYMER AND OPTICAL MEMS 9 Polymers in MEMS- Polimide - SU-8 - Liquid Crystal Polymer (LCP) – PDMS – PMMA Parylene – Fluoroarbon - Application to Acceleration, Pressure, Flow and Tactile sensor Optical MEMS – Lenses and Mirrors – Actuators for Active Optical MEMS. Image: Complexity of the complex	Etching Etchant Sacrific	g – Deep s – Case tial Materia	Reaction Ion Etching (DRIE) – Isotropic Wet Etching – Ga studies - Basic surface micro machining processes – Structu als – Acceleration of sacrificial Etch – Striction and Antistriction	s Phase ural and			
Parylene – Fluorocarbon - Application to Acceleration, Pressure, Flow and Tactile sensor Optical MEMS – Lenses and Mirrors – Actuators for Active Optical MEMS. TOTAL : 45 PERIODS OUTCOMES: After successful completion of the course students able to 1 Ability to understand the operation of micro devices 2 Ability to design the micro devices 3 Ability to understand the concept of Piezo electric effect			POLYMER AND OPTICAL MEMS	9			
OUTCOMES: After successful completion of the course students able to 1 Ability to understand the operation of micro devices 2 Ability to design the micro devices 3 Ability to understand the concept of Piezo electric effect	Parylen	e – Fluoro	carbon - Application to Acceleration, Pressure, Flow and Tactile				
1 Ability to understand the operation of micro devices 2 Ability to design the micro devices 3 Ability to understand the concept of Piezo electric effect			TOTAL : 45 PERIODS				
 2 Ability to design the micro devices 3 Ability to understand the concept of Piezo electric effect 	OUTCOMES:		After successful completion of the course students able to				
3 Ability to understand the concept of Piezo electric effect	1	Ability to understand the operation of micro devices					
3 Ability to understand the concept of Piezo electric effect	2	-	• •				
4 Ability to design the micro machine	3	Ability to u					
	4		pility to design the micro machine				
5 Ability to understand the Application of micro electro mechanical system	5	Ability to u	inderstand the Application of micro electro mechanical system				
TEXT BOOKS:	TEXT	BOOKS					

1	Chang Liu, 'Foundations of MEMS', Pearson Education Inc., 2012.				
2	Stephen D Senturia, 'Microsystem Design', Springer Publication, 200				
3	Tai Ran Hsu, "MEMS & Micro systems Design and Manufacture" Tata McGraw Hill, New Delhi, 2002				
REFE	REFERENCES:				
1.	Nadim Maluf, "An Introduction to Micro Electro Mechanical System Design", Artech House, 2000.				
2.	Mohamed Gad-el-Hak, editor, "The MEMS Handbook", CRC press Baco Raton, 2001.				
3.	Julian w. Gardner, Vijay K. Varadan, Osama O.Awadelkarim, Micro Sensors MEMS and Smart Devices, John Wiley & Son LTD, 2002.				
4.	James J.Allen, Micro Electro Mechanical System Design, CRC Press Publisher, 2005.				
5.	Thomas M.Adams and Richard A.Layton, "Introduction MEMS, Fabrication and Application, "Springer, 2010.				
COURS	COURSE ARTICULATION MATRIX				

CO/PO PO1 PO2 PO3 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3 PO7 PO4 PO5 PO6 CO1 CO2 CO3 CO4 CO5