GOVERNMENT COLLEGE OF ENGINEERING, BARGUR Regulation – 2018

AUTONOMOUS

Curriculum for Full Time – B.E. -EEE

From the Academic Year 2018-2019 onwards

PROGRAM OUTCOMES (POs)

PO1: An ability to apply knowledge of mathematics, science, and engineering,

PO2: An ability to design and conduct experiments, as well as to analyse and interpret data,

PO3: An ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability

PO4: An ability to function on multidisciplinary teams,

PO5: An ability to identify, formulate, and solve engineering problems,

PO6: An understanding of professional and ethical responsibility,

PO7: An ability to communicate effectively,

PO8 The broad education necessary to understand the impact of engineering solution in a global, economic, environmental, and societal context,

PO9: A recognition of the need for, and an ability to engage in life-long learning,

PO10: A knowledge of contemporary issues, and

PO11: An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice,

PO12: With basic understanding of electrical and electronics principles students can become a member and then a team leader to manage innovative projects.

PROGRAM SPECIFIC OUTCOMES (PSOs)

PSO1: Apply the fundamentals of mathematics, science and engineering knowledge to identify, formulate, design and investigate complex engineering problems of electric circuits, analog and digital electronic circuits, electrical machines and power systems.

PSO2: Apply appropriate techniques and modern Engineering hardware and software tools in power systems to engage in life- long learning and to successfully adapt in multi-disciplinary environments.

PSO3: Ability to understand the recent technological developments in Electrical & Electronics Engineering and develop products to cater the societal & Industrial needs.

ELECTRICAL AND ELECTRONICS ENGINEERING (UG)

CURRICULUM DESIGN

CREDIT SUMMARY

Name of the UG Programme: **B.E - ELECTRICAL AND ELECTRONICS ENGINEERING (Full Time)**

CREDIT SUMMARY

S. No	Subject Category/ Semester	1	2	3	4	5	6	7	8	Total Credits	Credits as per AICTE
1.	HS	3			1.5	3		3		10.5	12
2.	BS	9.5	9.5	4	4					27	26
3.	ES	5	6	5						16	20
4.	PC		5	12.5	18.5	12	11	5		64	53
5.	PE					3	6	6	3	18	18
6.	OE					3	3	3	3	12	18
7.	PROJ					1.5		3	6	10.5	11
TOTAL								158	158		

GOVERNMENT COLLEGE OF ENGINEERING, BARGUR (An Autonomous Institution Affiliated to Anna University) B.E ELECTRICAL AND ELECTRONICS ENGINEERING 2018 REGULATIONS

FIRST SEMESTER

SI No	Course Code	Course Name	Course Category	Contact Hours	L	Т	Р	С
THF	ORY							
1	18EMS101	Engineering Physics	BSC	60	3	1	0	4
2	18ZBS102	Engineering Mathematics I	BSC	60	3	1	0	4
3	18ZHS103	Technical English	HSMC	30	2	0	0	2
4	18EES104	Programming in C	ESC	45	3	0	0	3
5	18ZMC105	Induction Program	MC	15	1	-	-	0
PRA	ACTICALS							
6	18ZBS106	Physics Laboratory	BSC	45	0	0	3	1.5
7	18ZHS107	Communication English Laboratory	HSMC	30	0	0	2	1
0	19755109	Programming in C	ESC	60	0	0	4	2
ð	10265100	Laboratory						
			TOTAL		12	2	9	17.5

SECOND SEMESTER

SI No	Course Code	Course Name	Course Category	Contact Hours	L	Т	Р	С
TH	EORY							
1	18EBS201	Engineering Chemistry	BSC	60	3	1	0	4
2	18ZBS202	Engineering Mathematics II	BSC	60	3	1	0	4
3	18EPC203	Electric Circuit Analysis	PCC	45	2	1	0	3
4	18ZES204	Engineering Graphics and Design	ESC	75	1	0	4	3
5	18ZMC205	Constitution of India	MC	15	1	-	-	0
PR A	ACTICALS							
6	18ZBS206	Chemistry Laboratory	BSC	45	0	0	3	1.5
7	18EPC207	Electric Circuits Laboratory	PCC	60	0	0	4	2
8	18ZES208	Workshop Practices	ESC	75	1	0	4	3
			TOTAL		11	3	15	20.5

THIRD SEMESTER

SI No	Course Code	Course Name	Course Catego ry	Contact Hours	L	Т	Р	С
TH	EORY							
1	18ZBS301	Transforms and Partial Differential Equations	BSC	60	3	1	0	4
2	18EES302	Object Oriented Programming	ESC	45	3	0	0	3
3	18EPC303	DC Machines and Transformers	PCC	45	2	1	0	3
4	18EPC304	Analog Electronics	PCC	45	3	0	0	3
5	18ZMC305	Environmental Science and Engineering	MC	15	1	-	-	0
6	18EPC306	Electromagnetic Theory	PCC	45	2	1	0	3
PR A	ACTICALS							
7	18EPC307	Analog Electronics Laboratory	PCC	45	0	0	3	1.5
8	18EPC308	DC Machines and Transformers Laboratory	PCC	60	0	0	4	2
9	18EES309	Object Oriented Programming Laboratory	ESC	60	0	0	4	2
			TOTAL		14	3	11	21.5

FOURTH SEMESTER

SI No	Course Code	Course Name	Course Category	Contact Hours	L	Т	Р	С
TH	EORY							
1	18EBS401	Numerical Methods	BSC	60	3	1	0	4
2	18EPC402	Digital Logic Circuits	PCC	45	2	1	0	3
3	18EPC403	Synchronous and Asynchronous Machines	PCC	45	2	1	0	3
4	18EPC404	Linear Integrated Circuits and Applications	PCC	45	3	0	0	3
5	18EPC405	Transmission and Distribution	PCC	45	2	1	0	3
6	18EPC406	Measurements and Instrumentation	PCC	45	3	0	0	3
PRA	ACTICALS							
7	18EPC407	Synchronous and Asynchronous Machines Laboratory	PCC	60	0	0	4	2
8	18EPC408	Linear and Digital Integrated Circuits Laboratory	PCC	45	0	0	3	1.5

9	18HSC409	Soft Skills and Personality Development Laboratory	HSMC	45	0	0	3	1.5
			TOTAL		15	4	10	24

FIFTH SEMESTER

SI No	Course Code	Course Name	Course Category	Contact Hours	L	Т	Р	С
TH	EORY							
1	18EPC501	Power System Analysis	PCC	45	2	1	0	3
2	18EPC502	Control Systems	PCC	45	2	1	0	3
3	18EPC503	Microprocessors, Microcontrollers and Applications	PCC	45	2	1	0	3
4	18EHS504	Principles of Management	HSMC	45	3	0	0	3
5		Professional Elective I	PEC	45	3	0	0	3
6		Open Elective I	OEC	45	3	0	0	3
PR A	ACTICALS							
7	18EPC507	Control and Instrumentation Laboratory	PCC	45	0	0	3	1.5
8	18EPC508	Microprocessors, Microcontrollers and Applications Laboratory	PCC	45	0	0	3	1.5
9	18EPR509	Project I	PROJ	45	0	0	3	1.5
			TOTAL		15	3	9	22.5

SIXTH SEMESTER

SI No	Course Code	Course Name	Course Category	Contact Hours	L	Т	Р	С
TH	EORY							
1	18EPC601	Power Electronics	PCC	45	3	0	0	3
2	18EPC602	Protection and Switchgear	PCC	45	3	0	0	3
3		Professional Elective II	PEC	45	3	0	0	3
4		Professional Elective III	PEC	45	3	0	0	3
5		Open Elective II	OEC	45	3	0	0	3
PRA	ACTICALS							
6	18EPC606	Power Electronics	PCC	60	0	0	4	2
0		Laboratory						
7	18EPC607	Power System Lab I	PCC	45	0	0	3	1.5
8	18EPC608	Mini Project	PCC	45	0	0	3	1.5
			TOTAL		15	0	10	20

SEVENTH SEMESTER

SI No	Course Code	Course Name	Course Category	Contact Hours	L	Т	Р	С
THEO	RY							
1	18ELS701	Professional Ethics	HSM	45	3	0	0	3
2	18EPC702	Power System Operation and Control	PCC	45	3	0	0	3
3		Professional Elective IV	PEC	45	3	0	0	3
4		Professional Elective V	PEC	45	3	0	0	3
5		Open Elective III	OEC	45	3	0	0	3
PRACT	TICALS							
6	18EPC706	Power System Laboratory II	PCC	60	0	0	4	2
7	18EPR707	Project II	PROJ	90	0	0	6	3
			TOTAL		15	0	10	20

EIGHTH SEMESTER

SI No	Course Code	Course Name	Course Category	Contact Hours	L	Т	Р	С
TH	EORY							
1		Professional elective VI	PEC	45	3	0	0	3
2		Open Elective IV	OEC	45	3	0	0	3
PRA	ACTICALS							
3	18EPR803	Project III	PROJ	180	0	0	12	6
			TOTAL		6	0	12	12

TOTAL NO. OF CREDITS: 158

OPEN ELECTIVE COURSES

(OFFERED TO TH	HE OTHER DE	CPARTMENTS)
-----------------------	-------------	---------------------

OPI	EN ELECTI	VES()						
SI No	Course Code	Course Name	Course Category	Contact Hours	L	Т	Р	С
1	18EOE001	Matlab Programming	OEC	45	2	0	1	3
2	18EOE002	Renewable Energy Sources	OEC	45	3	0	0	3
3	18EOE003	Energy Management and Auditing	OEC	45	3	0	0	3
4	18EOE004	Reliability Engineering	OEC	45	2	1	0	3
5	18EOE005	Disaster Management and Mitigation	OEC	45	3	0	0	3
6	18EOE006	Power Electronics and Drives	OEC	45	3	0	0	3

ALSO, STUDENTS ARE ENCOURAGED TO SELECT OPEN ELECTIVES FROM SWAYAM / NPTEL

PROFESSIONAL ELECTIVE COURSES

SI No	Course Code	Course Name	Course Category	Contact Hours	L	Т	Р	С
THEO	RY							
1.	18EPE001	Applied Soft Computing	PEC	45	3	0	0	3
2.	18EPE002	Wind and Solar Energy Systems	PEC	45	3	0	0	3
3.	18EPE003	Biomedical Instrumentation	PEC	45	3	0	0	3
4.	18EPE004	Fundamentals of Nanoscience	PEC	45	3	0	0	3
5.	18EPE005	High Voltage Engineering	PEC	45	3	0	0	3
6.	18EPE006	Advanced Control System	PEC	45	2	1	0	3
7.	18EPE007	Power Quality and FACTS	PEC	45	3	0	0	3
8.	18EPE008	Microcontroller Based System Design	PEC	45	3	0	0	3
9.	18EPE009	High Voltage Direct Current Transmission	PEC	3	0	0	3	
10.	18EPE010	Electrical Machine Design	PEC	45	2	1	0	3
11.	18EPE011	Power Electronics for Renewable Energy Systems	PEC	45	3	0	0	3
12.	18EPE012	Advanced Electric Drives	PEC	45	3	0	0	3
13.	18EPE013	Power System Dynamics and Control	PEC	45	2	1	0	3
14.	18EPE014	Electrical and Hybrid Vehicles	PEC	45	3	0	0	3
15.	18EPE015	Computer Aided Design of Electrical Apparatus	PEC	45	3	0	0	3
16.	18EPE016	Power System Transients	PEC	45	2	1	0	3
17.	18EPE017	Special electrical machines	PEC	45	3	0	0	3
18.	18EPE018	Industrial Electrical Systems	PEC	45	3	0	0	3
19.	18EPE019	Energy utilization,	PEC	45	3	0	0	3

		conservation and auditing						
20.	18EPE020	Solid State Drives	PEC	45	3	0	0	3
21.	18EPE021	Smart Grid	PEC	45	3	0	0	3
22.	18EPE022	Fundamentals of Digital Signal Processing	PEC	45	2	1	0	3

LIST OF MANDATORY COURSES

S.No	Subject Code	Course Title	CAT	Contact Hours	L	Τ	Р	С
1.	18ZMC105	Induction Program	MC	15	1	0	0	0
2.	18ZMC205	Constitution of India	MC	15	1	0	0	0
3.	18ZMC305	Environmental Science and Engineering	MC	15	1	0	0	0

LIST OF ENGINEERING SCIENCE COURSES

S.No	Subject	Course Title	CAT	Contact	L	Т	Р	С
	Code			Hours				
1.	18EES104	Programming in C	ESC	45	3	0	0	3
2.	187ES108	Programming in C	ESC	60	0	0	4	2
	10213100	Laboratory						
3.	18ZES204	Engineering Graphics and Design	ESC	75	1	0	4	3
4.	18ZES208	Workshop Practices	ESC	75	1	0	4	3
5.	18EES302	Object Oriented Programming	ESC	45	3	0	0	3
6.	18EES309	Object Oriented Programming Laboratory	ESC	60	0	0	4	2

LIST OF HUMANITIC SCIENCE AND MANAGEMENT COURSES

S.No	Subject	Course Title	CAT	Contact	L	Т	Р	С
	Code			Hours				
1.	18ZHS103	Technical English	HSMC	30	2	0	0	2
2.	18ZHS107	Communication English Laboratory	HSMC	30	0	0	2	1
3.	18HSC410	Soft Skills and Personality Development Laboratory	HSMC	45	0	0	3	1.5
4.	18EHS504	Principles of Management	HSMC	45	3	0	0	3
5.	18EHS701	Professional Ethics	HSMC	45	3	0	0	3

LIST OF BASIC SCIENCE COURSES

S.No	Subject	Course Title	CAT	Contact	L	Т	Р	С
	Code			Hours				
1.	18EMS101	Engineering Physics	BSC	60	3	1	0	4
2.	187BS102	Engineering	BSC	60	3	1	0	4
	10205102	Mathematics I						
3.	18ZBS106	Physics Laboratory	BSC	45	0	0	3	1.5
4.	18EBS201	Engineering Chemistry	BSC	60	3	1	0	4
5.	18ZBS202	Engineering Mathematics II	BSC	60	3	1	0	4
6.	18ZBS206	Chemistry Laboratory	BSC	45	0	0	3	1.5
7.	18ZBS301	Transforms and Partial Differential Equations	BSC	60	3	1	0	4
8.	18EBS401	Numerical Methods	BSC	60	3	1	0	4

LIST OF PROFESSIONAL CORE COURSES

S.No	Subject	Course Title	CAT	Contact	L	Т	P	С
	Code			Hours				
1.	18EPC203	Electric Circuit Analysis	PCC	45	2	1	0	3
2.	18EPC207	Electric Circuits Laboratory	PCC	60	0	0	4	2
3.	18EPC303	DC Machines and Transformers	PCC	45	2	1	0	3
4.	18EPC304	Analog Electronics	PCC	45	3	0	0	3
5.	18EPC306	Electromagnetic Theory	PCC	45	2	1	0	3
6.	18EPC307	Analog Electronics Laboratory	PCC	45	0	0	3	1.5
7.	18EPC308	DC Machines and Transformers Laboratory	PCC	60	0	0	4	2
8.	18EPC402	Digital Logic Circuits	PCC	45	2	1	0	3
9.	18EPC403	Synchronous and Asynchronous Machines	PCC	45	2	1	0	3
10.	18EPC404	Linear Integrated Circuits and Applications	PCC	45	3	0	0	3
11.	18EPC405	Transmission and Distribution	PCC	45	2	1	0	3
12.	18EPC407	Measurements and Instrumentation	PCC	45	3	0	0	3
13.	18EPC408	Synchronous and Asynchronous Machines Laboratory	PCC	60	0	0	4	2
14.	18EPC409	Linear and Digital Integrated Circuits Laboratory	PCC	45	0	0	3	1.5
15.	18EPC501	Power System Analysis	PCC	45	2	1	0	3
16.	18EPC502	Control Systems	PCC	45	2	1	0	3
17.	18EPC503	Microprocessors, Microcontrollers and Applications	PCC	45	2	1	0	3
18.	18EPC507	Control and Instrumentation Laboratory	PCC	45	0	0	3	1.5

19.	18EPC508	Microprocessors,	PCC	45	0	0	3	15
	1011 0500	Applications Laboratory		-15	U	U	5	1.5
20.	18EPC601	Power Electronics	PCC	45	3	0	0	3
21.	18EPC602	Protection and Switchgear	PCC	45	3	0	0	3
22.	18EPC606	Power Electronics Laboratory	PCC	60	0	0	4	2
23.	18EPC607	Power System Lab I	PCC	60	0	0	4	2
24.	18EPC608	Mini Project	PCC	45	0	0	3	1.5
25.	18EPC703	Power System Operation and Control	PCC	45	3	0	0	3
26.	18EPC707	Power System Laboratory II	PCC	60	0	0	4	2

Semester-I

18EMS	5101		ENGINEERING PHYSICS	L	Т	Р	C	
			Common to MECH, EEE, ECE & CSE	3	1	0	4	
OBJE								
To develop knowledge on properties of solids								
•	To und	lersta	nd the properties of conducting and semiconducting mat	erial	S			
•	To bec	ome	proficient in magnetic and dielectric materials					
•	To app	ly pri	inciples of quantum physics in the engineering field					
• To know about the fundamentals of LASER and fibre optics and its applications								

UNIT I

PROPERTIES OF MATTER

9+3

Elasticity – Hooke's law – Stress – Types of Stresses – Strain- Types of Strain - Young's Modulus – Rigidity Modulus – Bulk Modulus –Poisson's ratio – Relationship between three elastic constants and Poisson's ratio – Torsional Pendulum – Factors affecting elasticity of materials - Bending moment of a Beam – Depression of cantilever (Theory and Experiment) – Determination of Young's modulus – Uniform and non-uniform bending (Theory and Experiment).

UNIT II CONDUCTING AND SEMICONDUCTING MATERIALS

9+3

Conductors –Ohm's Law – Electrical conductivity – Relation between current density, drift velocity and mobility – Classical free electron theory of metals – Expression for electrical conductivity of a metal –Expression for thermal conductivity of a metal – Wiedemann – Franz law – Fermi distribution function – Effect of temperature on Fermi Function – Density of energy states.

Intrinsic semiconductor – Energy band diagram – Direct and indirect semiconductors – Carrier concentration in an intrinsic semiconductor (derivation) – Extrinsic semiconductors – n-type & p-type semiconductors (Qualitative) – Determination of Bandgap of semiconductors (Experiment)

UNIT III MAGNETIC AND DIELECTRIC MATERIALS

9+3

Magnetism in materials – magnetic field and induction – magnetization – magnetic permeability and susceptibility – types of magnetic materials –microscopic classification of magnetic materials – Domain theory of ferromagnetism.

Dielectric materials: Polarization processes – dielectric loss – internal field – Clausius-Mosotti relation – dielectric breakdown – high-k dielectrics.

UNIT IV QUANTUM PHYSICS

Blackbody radiation – Wien's displacement law – Rayleigh-Jean's law - Planck's theory (derivation) – Deduction of Wien's displacement law and Rayleigh-Jean's law – Matter waves – De-Broglie's Hypothesis – Properties of matter waves - Wave-particle duality – Wavefunction and its physical Significance – Schrodinger wave equation – Time-dependent and time-independent – Application of Schrodinger wave equation: Particle in a 1 D box.

UNIT V LASER PHOTONICS AND FIBRE OPTICS

9+3

LASER – Interaction of light radiation with materials – Einstein's A and B coefficient derivation – Concept of LASER – Population inversion – Pumping action – Methods for pumping action – Characteristics of LASER – Principle, construction and working of Nd-YAG – Industrial and medical applications of lasers.

Structure of Optical Fibre – Guiding mechanism – Total internal reflection – Critical Angle – Conditions for total internal reflection – Principle and Propagation of light in Optical Fibres – Numerical aperture and acceptance angle – Types of optical fibres (Material, refractive index and mode) – their characteristics and applications.

TOTAL: 60 PERIODS

OUTCO	MES:								
1.	To learn al different ma	bout three types of elastic moduli and able to calculate them for aterials							
2.	To learn abo different par	out conducting and semiconducting materials and able to derive cameters relevant to them							
3.	To learn a knowledge	bout types of magnetic materials and their types and functional of dielectric materials							
4.	4. To understand the quantum nature of materials and apply fundamental principles of quantum physics to the engineering field								
5.	5. To understand the working principles of lasers and their types and also to know about fibre optics and mechanism of propagation of light through them.								
TEXTB	OOKS:								
1.	P. Mani, "H	Engineering physics", Dhanam Publications, 2017.							
2.	G. Senthil	Kumar, "Engineering physics", VRB Publishers							
3.	A. Marikan	i, "Engineering Physics", PHI Learning Pvt., India 2009							
4. Wahen M. A. "Solid state physics: Structure and properties of materials" Narosa publishing house, 2009									
REFER	REFERENCES:								

1.	<i>R. K. Gaur and S.C. Gupta, "Engineering physics", Dhanpat Rai publications, New Delhi 2003.</i>
2.	<i>M. N. Avadhanulu and P. G. Kshirsagar, "A textbook of engineering physics", S. Chand and Company Ltd, New Delhi, 2005.</i>
3.	K. Rajagopal, "Engineering Physics", PHI, New Delhi, 2011.
4.	P. K. Palanisamy, "Engineering Physics", SCITECH Publication, 2011
5.	M. Arumugam, "Engineering physics", Anuradha publishers

COURSE ARTICULATION MATRIX

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2				2								2		
CO2		3			2								2		2
CO3						2					2	2			2
CO4	2		2								2			2	2
CO5	2							1			2	2	3		1

1-Low, 2-Moderate (Medium), 3-High

18ZBS1	.02	EN	GINEERING MATHEMATICS I	L	Т	P	С				
(Common	n to I	MEC	CH, EEE, ECE & CSE)	3	1	0	4				
OBJECT	TVE	CS:				II					
•	Mat	rix A	lgebra And Techniques And Using Them In Engineer	ring A	Appl	icati	ons				
•	The Fam Solu	Con iliar itions	cept Of Infinite Series And Their Convergence So With Limitations Of Using Infinite Series Ap s Arising In Mathematical Modelling	That oprox	The tima	y W tion	ill Be s For				
•	Diff Eng	erent ineer	ial And Integral Calculus And Their Applica ing Applications	tions	In	V	arious				
UNIT I	[]	MA	TRICES				9+6				
Eigenvalue eigenvalue Diagonaliz transforma	igenvalues and Eigenvectors of a real matrix – Characteristic equation – Properties genvalues and eigenvectors – Statement and applications of Cayley-Hamilton Theorem iagonalization of matrices – Reduction of a quadratic form to canonical form by orthogonal ansformation – Nature of quadratic forms.										
UNIT I	UNIT II SEQUENCES AND SERIES 9-										
Sequences: terms – Tes Alternating conditional	Defi sts of serie conv	nition conv es – I verge	n and examples – Series: Types and Convergence – Series: Types and Convergence – Series of test, Integral test and D'Alembe Leibnitz's test – Series of positive and negative terms – nce.	eries ert's - Ab	of portion ration solut	ositi test te an	ve : id				
UNIT II		APP	LICATIONS OF DIFFERENTIAL CALC	ULU	JS		9+6				
Curvature Evolutes –	in Ca Enve	rtesia lopes	an co-ordinates – Centre and radius of curvature – Ci s - Evolute as envelope of normals.	ircle	of c	urva	ture –				
UNIT I	V]	FUN	ICTIONS OF SEVERAL VARIABLES				9+6				
Limits and functions – and minima	Con Jaco a of fi	tinui bian uncti	ty – Partial derivatives – Total derivative – Different and properties – Taylor's series for functions of two v ons of two variables – Lagrange's method of undetern	ntiati varial ninec	on c oles - 1 mu	of in – M ltipl	nplicit axima iers.				
UNIT V	/ 1	MU	LTIPLE INTEGRALS				9+6				
Double interest of the enclosed by - Triple interest.	egrals y plar egrals	s in C ne cur s - V	Cartesian and polar coordinates – Change of order of rves – Change of variables in double integrals – Area olume of Solids.	integof a	grati curv	on – ed s	- Area urface				
			TOTAL : 60(45	+15) PF	ERI	ODS				
OUTCO	MES	5:	After successful completion of the course students abl	le to							
1.	Solv	ve pr	oblems on matrices and to apply concepts of matrix	x the	eory	whe	enever				

	applicable in the field of engineering.
2.	Solve problems using convergence tests on sequences and series and to apply them in engineering field appropriately.
3.	Write short essays of a general kind and personal letters and emails in English.
TEXT B	OOKS:
1.	Bali N. P and Manish Goyal, "A Text book of Engineering Mathematics", Eighth Edition, Laxmi Publications Pvt Ltd., 2011.
2.	Grewal. B.S, "Higher Engineering Mathematics", 41 st Edition, Khanna Publications, Delhi, 2011.
REFERI	ENCES:
1.	Dass, H.K., and Er. Rajnish Verma, "Higher Engineering Mathematics", S. Chand Private Ltd., 2011
2.	<i>Glyn James, "Advanced Modern Engineering Mathematics", 3rd Edition, Pearson Education, 2012.</i>
3.	Peter V. O'Neil, "Advanced Engineering Mathematics", 7th Edition, Cengage learning, 2012
4.	Ramana B.V, "Higher Engineering Mathematics", Tata McGraw Hill Publishing Company, New Delhi, 2008.
5.	Sivarama Krishna Das P. and Rukmangadachari E., "Engineering Mathematics", Volume I, Second Edition, Pearson Publishing, 2011.

COU	COURSE ARTICULATION MATRIX:														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
604	2	1	1	2									2	1	
01	3	1	1	2									3	1	
CO2	2	2	1	1									2	2	1
CO3	3	2	1				1						3	2	
(L- L	ow, M-	Mode	rate, H-	High)											

18ZHS103	TECHNICAL ENGLISH	L	T	Р	C					
		2	0	0	2					
OBJECTIV	'ES:	I	1							
•	To be able to acquire vocabulary by way of reading skills.									
•	To be able to write iterative as well as recursive programs.									
٠	To be able to represent data in arrays, strings and structures as through a program.	nd n	nanij	pulat	e them					
•	To be able to declare pointers of different types and use them referential structures.	in d	efin	ing s	elf-					
•	To be able to create, read and write to and from simple text fi	les.								
UNIT I	UNIT I Vocabulary Building									
1.1 The concept of Word Formation 1.2 Root words from foreign languages and										
English 1.3 Ac derivatives. 1.4	equaintance with prefixes and suffixes from foreign languages 4 Synonyms, antonyms, and standard abbreviations.	s in 1	Engl	lish t	o form					
UNIT II	Basic Writing Skills				6					
2.1 Sentence S	tructures 2.2 Use of phrases and clauses in sentences 2.3 Impo	rtan	ce of	f pro	per					
punctuation 2.4 2.6 Technique	4 Creating coherence 2.5 Organizing principles of paragraphs is for writing precisely.	n do	cum	nents						
UNIT III	Identifying Common Errors in Writing				6					
3.1 Subject-ver	rb agreement 3.2 Noun-pronoun agreement 3.3 Misplaced mod	lifie	S							
3.4 Articles 3.5	5 Prepositions 3.6 Redundancies 3.7 Clichés.									
UNIT IV	Nature and Style of sensible Writing				6					
4.1 Describing	4.2 Defining 4.3 Classifying 4.4 Providing examples or evider	nce								
4.5 Writing int	roduction and conclusion.									
UNIT V	Writing Practices				6					
5.1 Comprehen	nsion 5.2 Précis Writing 5.3 Essay Writing.									
	TOTAL:30 PERI	OD	S							

OUTCO	OMES:	At the end of the course, the students will be able to :								
1.	Acquire basi writing and s	c proficiency in English including reading and listening comprehension, peaking skills.								
2.	Participate effective end of the second seco	ffectively in formal and informal conversations; introduce themselves and opinions in English.								
3.	Comprehend	conversations and deliver short talks in English.								
4.	Write essays	and descriptions of any kind in English.								
5.	Prepare repo	rts, graph presentation and Technical writing.								
TEXT I	BOOKS:									
1.	On Writing	g Well. William Zinsser. Harper Resource Book. 2001								
2.	Study Wri 2006.	ting. Liz Hamp-Lyons and Ben Heasly. Cambridge University Press.								
3.	Communic 2011.	ation Skills. Sanjay Kumar and PushpLata. Oxford University Press.								
REFER	ENCES:									
1.	Richards, C	. Jack .Interchange Students' Book-2 New Delhi: CUP, 2015.								
2.	Bailey ,Step Rutledge, 20	hen. Academic Writing: A Practical guide for students .New York: 011.								
3.	Seely, John.	The Oxford guide to writing & Speaking. New York. 1998.								

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1				1						3		3	1	2	
CO2				2						3		3	3	2	
CO3				1						3		3	3	2	
CO4				1						3		3	3	1	
CO5				1						3		3	3	1	

18EES104	PROGRAMMING IN C	L	Τ	P	С
	1	3	0	0	3
OBJECTIV	/ES:				<u> </u>
•	Learn the organization of a digital computer				
•	Be exposed to the number systems.				
•	Learn to think logically and write pseudo code or draw flow of	chart	s fo	r pro	blems.
•	Be exposed to the syntax of C.				
•	Learn to use arrays, strings, functions, pointers, structures and	d un	ons	in C	
UNIT I	INTRODUCTION				8
System – Bina Algorithm –Ps	ary – Decimal – Conversion – Problems. Need for logical ana seudo code – Flow Chart.	lysis	anc	l thir	ıking –
UNIT II	C PROGRAMMING BASICS				10
Problem form structure of a Types – Expre Making and B	ulation – Problem Solving - Introduction to 'C' programmi 'C' program – compilation and linking processes – Constant essions using operators in 'C' – Managing Input and Output op ranching – Looping statements – solving simple scientific and	ng – ts, V perat stati	fund aria ions stica	lame bles – D al pro	ntals – – Data ecision blems.
UNIT III	ARRAYS AND STRINGS				9
Arrays – Initi String operation	alization – Declaration – One dimensional and Two dimensions – String Arrays. Simple programs- sorting- searching – mat	onal trix (arr	ays. ation	String- s.
UNIT IV	FUNCTIONS AND POINTERS				9
Function – de	finition of function – Declaration of function – Pass by value –	Pass	s by	refer	ence –
Recursion – I Example Prob	Pointers - Definition – Initialization – Pointers arithmetic – I lems.	Poin	ters	and	arrays-
UNIT V	STRUCTURES AND UNION				9
Introduction - Structure with Pre processor	 need for structure data type – structure definition – Stru in a structure - Union - Programs using structures and Union directives. 	ictur 18 –	e de Stor	eclara age o	ation – classes,

			TOTAL: 45 PERIODS							
OUTCO	DMES:	On completion of this course,	students will be able to							
1.	Know the va	rious number systems and their	r conversion.							
2.	Write simple	programs in C.								
3.	Write progra	ms based on arrays.								
4.	Write progra	ams using functions and pointers concepts								
5.	Write progra	ms using Structures and Files.								
TEXT I	BOOKS:									
1.	Anita Goe Dorling Ki	l and Ajay Mittal, "Computer Fundamentals and Programming in C", ndersley (India) Pvt. Ltd., Pearson Education in South Asia, 2011.								
2.	Pradip Dey First Editio	y, Manas Ghosh, "Fundamenta n, Oxford University Press, 20	lls of Computing and Programming in C", 09.							
3.	Yashavant	P. Kanetkar. "Let Us C", BPB	Publications, 2011.							
REFER	ENCES:									
1.	Byron S Got McGraw-Hi	tfried, "Programming with C" 11, 2006.	', Schaum's Outlines, Second Edition, Tata							
2.	Dromey R.C 2007.	R.G., "How to Solve it by Computer", Pearson Education, Fourth Reprint								
3	Kernighan,I Pearson Ed	3.W and Ritchie,D.M, "The C ucation, 2006.	Programming language", Second Edition,							

	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	3	3	1								3	2	1
CO2	3	2	3	3	1								3	2	1
CO3	3	2	3	3	1								3	2	1
CO4	3	2	3	3	1						1		3	1	
CO5	3	2	3	3	1						1		3	1	
(1-Lo	ow, 2-1	Modera	ite, 3-H	igh)	1	1	1	1		1	1	1	1	1	1

18ZMC105	IN	DUCTION	PROGRAM	ME	L	Τ	P	C
					1	-	-	0
OBJECTIV	S							
•	nduction progr	am for students	to be Offered	right at the start	of th	e fir	st ye	ar.
Physical	activity							
Creative	Arts							
• Univers	Human Value	s						
• Literary								
Proficie	y Modules							
• Lecture:	by Eminent Pe	ople						
• Visits to	ocal Areas	1						
• Familia	zation to Dept.	Branch & Inno	vations					
	1							
OUTCOME								
•	Understand th	e human values	and familiarize	the college envi	ronn	nent		
-				-				

CO	COURSE ARTICULATION MATRIX:														
CO/ PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO 2	PSO3
CO1	3	2	2			2	2						3	2	3

r																
187	ZBS	106	PHY	SICS	5 LAI	BOR	АТО	RY]	L	Т	Р	С
		(Comm	non to) ME	CH, I	EEE,	ECE	& C.	SE			0	0	3	1.5
OB	JEC	CTIV	ES													
	•	To in appli	troduc ed in c	e diffortics,	erent e therm	experinal phy	ments /sics, j	to tes propei	t basic ties of	e under f matte	standi r and l	ng of p iquids	hys	sics	conc	epts
LIS EX	ST C PEF	OF EX RIME	KPER ENTS	RIME)	ENTS	:PF	IYSI	CS L	ABC	ORAT	ORY	(AN	Y 5	5		
]	1.	Det	ermina	ation c	of rigio	lity m	odulu	s : Toi	rsion H	Pendulu	ım					
2	2.	Det	Determination of Young's modulus by non-uniform bending method													
	3.	(a)] (b)]	(a) Determination of wave length and particle size using LASER(b) Determination of acceptance angle in an optical fibre													
2	4.	Determination of thermal conductivity of a bad conductor – Lee's Disc method														
4	5.	Det inte	ermina rferon	ation c neter	of velo	city o	f soun	d and	comp	ressibi	lity of	fluid –	Ul	tras	onic	
6	5.	Det	ermina	ation c	of wav	elengt	h of n	nercur	y spec	- ctrum	- Spect	romete	er g	rati	ng	
	7.	Det	ermina	ation c	of band	l gap	of a se	emicor	nducto	or						
							TO	TAL	45	PER	IODS)				
CO	UR	SE O	UTC	OMI	E: Aft	er the	cours	e the s	studen	ts will	be able	e to				
-	1. <i>A</i>	Apply application	Princij tions.	ples of	f elasti	icity, o	optical	l and t	herma	ıl prope	erties f	or engi	inee	erin	g	
	2. 7	Fo kno	w abo	ut Las	ser wa	veleng	gth and	d ultra	sonic	interfe	romete	er.				
	3. $\begin{bmatrix} 0\\s \end{bmatrix}$	Classif emico	y solic	ls on t ors	he bas	sis of l	oand t	heory	and to	calcul	late co	nductiv	vity	of		
CO	COURSE ARTICULATION MATRIX:															
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PS	01	PSO 2	PSO3
CO1	3	2	2			2	2						3		2	3
CO2				1			2		1				1			2
CO3	1				2			2					1			2

		COMMUNICATION ENGLISH							
18ZHS1	.07	LABORATORY	L	Т	P	С			
Commo	n to EC	E & EEE	0	0	2	1			
OBJEC	TIVES:								
•	To deve speaking	lop their communicative competency in English with spec g and listening.	ific refe	erence (to the	r			
• To enhance their ability to communicate effectively in interviews.									
To strengthen their prospects of success in competitive examinations.									
•	To Stree	igthen a good command over of the language proficiency.							
• To comprehend a different types of accent and use them in their communication									
UNIT I PRONUNCIATTION PRATICE									
Verbal At Various le	Verbal Ability, Articulation of sounds- Intonation-Stress and Rhythm-Conversation practice-listening Various lectures								
UNIT II	C C	OMMUNICATION AT WORKPLACE				6			
Creative v abstracts-	writing. V summarie	Vriting job applications - cover letter- resume- e-mails- es- interpreting visual texts.	memos	- repor	ts.W	riting			
UNIT II		CNGLISH FOR NATIONAL AND INTERNATIONAL CXAMINATIONS AND PLACEMENTS							
Internation (TOEFL)-	nal Engli - Civil Se	sh Language Testing System (IELTS)- Test of English rvice(Language related part) –English for competitive examples	as a F minatio	oreign ons	Lang	guage			
UNIT I	V IN	TERVIEW SKILLS				6			
Different Body lang	types of guages.	Interview format- answering questions- offering inform	ation- 1	nock ii	nterv	iews-			
UNIT V	S	OFT SKILLS				6			
Motivatio leadership	n- emotio straits- to	onal intelligence-Multiple intelligences- managing chan eam work- career planning- creative and critical thinking	ges- tii	ne mai	nagei	nent-			
		TOTAL:30 PI	ERIO	DS					
OUTCO	OMES: A	At the end of the course, the students will be able	to						

1.	Face interviews, group discussions and other language parameters in the job market
2.	Write any competitive examinations which cover language part in it.
3	Take part in any English conversations of any kind in English. Flawlessly without fear and
5.	shyness.
4	Write articles for newspapers and magazines or any write-up in English without grammar
	mistakes.
5	Come out with leadership qualities, team work and career planning and will also possess
З.	critical and creative thinking.
TEXT	BOOKS
1.	Communication Skills for Engineers and Scientists, PHI Learning PVT.LTD, Delhi, 2014.
2.	Communication Skills and Soft Skills An Integrated Approach, Dorling Kindersley
	(INDIA) PVT.LTD, New Delhi, 2012.
3.	Soft Skills, MJP Publishers, Chennai, 2010.
REFER	RENCES:
1.	Craven, Miles. Listening Extra-A resource book of multi-level skills activities. Cambridge
	University Press, 2004.
2.	Seely, John. The Oxford guide to writing & Speaking. New Delhi: Oxford University Press,20
2	
3.	Comfort, Jeremy, et al. Speaking Effectively: Developing speaking skills for Business
	English. Cambridge University Press, Cambridge: Reprint 2011.
4.	Dutt P. Kiranmai and RajeevanGeetha. Basic Communication Skills, Foundation
	Books:2013

COURSE ARTICULATION MATRIX

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2			2			2				3			2	
CO2		2					2			2					2
CO3		2					2			2	3				3
CO4	2			2						3		2		2	
CO5		2			2				3				2		

1-Low, 2-Moderate (Medium), 3-High

18ZES108	PROGRAMMING IN C LABORATORY	L	Т	Р	C				
		0	0	4	2				
OBJECTI	VES:	I							
•	• Be familiar with the use of Office software.								
•	• Be exposed to presentation and visualization tools.								
•	• Be familiar with programming in C.								
•	Be exposed to Decision making, Looping constructs.								
•	Learn to use Arrays, strings, functions.								
•	Implement the concepts of structure, Union and file organiza	tion							
LIST OF I	XPERIMENTS:								
1. Search	generate, manipulate data using MS office/ Open Office								
2. Presen	ation and Visualization – graphs, charts, 2D, 3D								
3. Proble	n formulation, Problem Solving and Flowcharts								
4. C Prog	ramming using Simple statements and expressions								
5. Scienti	fic problem solving using decision making and looping.								
6. Simple	programming for one dimensional and two dimensional arrays	•							
7. Solvin	problems using String functions								
8. Progra	ns with user defined functions – Includes Parameter Passing								
9. Progra	ns with Pointers.								
9. Progra	n using Recursive Function.								
10. Progra	m using structures and unions.								
	TOTAL: 60 PER	RIO	DS						
OUTCOM	ES: On completion of this course, students will be able to								
1. Appl	good programming design methods for program development	•							
2. Desig	2. Design and implement C programs for simple applications.								

3.	Write C programs, which involve decision making and arrays and strings.
4.	Develop programs using functions and pointers.
5.	Develop programs using structures and unions.

COL	COURSE ARTICULATION MATRIX:														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO 1	PSO	PSO 2
CO1	3	2	1	1						0	1	2	3	3	3
CO2	3	2	2	1							1		3	3	
CO3	3	2	2	1							2		2	1	
CO4	3	2	2	2							2		2	1	
CO5	3	2	2	2							2		3	1	
(L- Lo	(L- Low, M- Moderate, H-High)														

SEMESTER II

18EBS201		ENGINEERING CHEMISTRY	L	T	P	C			
		(Common for ECE / EEE / CSE)	3	1	0	4			
OBJECTIV	ES:					1			
• To n treat	To make students conversant with water parameters, boilers, need for water treatment and its merits and demerits.								
• Stud	Students ought to be aware of fundamental principles behind different electrochemical reactions, corrosion of materials and methods to prevent corrosion.								
To le appl	To learn the chemistry behind polymers, synthesis, merits, demerits and its applications in various field.								
• To a reso	To acquire basic knowledge in renewable, non-renewable and alternate energy resources and the chemical reactions involved in cell, batteries and its applications								
• To le	earn the	working principle of various spectroscopy and its ap	plicatio	ons.					
• To a	To acquire basic knowledge in Nano materials, synthesis, properties and uses.								

UNIT I

WATER TECHNOLOGY

12

Characteristics – alkalinity and its significance – hardness (problems) - types and estimation by EDTA method – specifications of drinking water (BIS and WHO standards) – potable water treatment – boiler feed water - requirements – disadvantages of using hard water in boilers (Scales & Sludge, Boiler corrosion, Priming & Foaming, Caustic embrittlement) – water treatment – Internal treatment – external treatment – zeolite method - Demineralization process – desalination – reverse osmosis.

UNIT II

ELECTROCHEMISTRY AND CORROSION

12

Electrochemistry: Electrochemical cells – reversible and irreversible cells – EMF – measurement of EMF – single electrode potential – Nernst equation (Problems) – reference electrode – standard hydrogen electrode and calomel electrode – ion selective electrode – glass electrode and measurement of pH – electrochemical series and its applications.

Corrosion: Corrosion – Pilling Bedworth rule - dry corrosion and its mechanism - electrochemical corrosion and its mechanism – types (galvanic, pitting, differential aeration) – factors influencing corrosion – corrosion control methods – sacrificial anode method – impressed current method – corrosion inhibitors – protective coatings – paints – constituents – functions – metallic coatings – electroplating (Cu) and electro less plating (Ni).

UNIT III

POLYMERS AND COMPOSITES

Polymers: Definition – classification – functionality – polymerization – degree of polymerization – types (addition, condensation, copolymerization) – mechanism (free radical) – plastics – thermoplastics and thermosetting plastics – preparation, properties and uses of individual polymers (PVC, TEFLON, Nylon-6,6, Nylon-6, PET, epoxy resin) – rubber - vulcanization of rubber – applications - Advanced polymeric materials and electronic devices – conducting and semiconducting polymers – liquid crystal properties – dendrimers and their difference from polymers.

Composites: definition – types polymer matrix composites – Fibre Reinforced Polymers – applications – advanced composite materials – physical and chemical properties – applications.

UNIT IV ENERGY SOURCES AND STORAGE DEVICES

12

12

Nuclear energy – fission fusion reactions – light water nuclear reactor for power generation – breeder reactor – solar energy conversion – solar cells – wind energy – batteries: alkaline batteries – lead –acid, Ni-Cd, and Li-ion batteries – fuel cells – principles and applications – advantages and disadvantages.

UNIT V ANALYTICAL TECHNIQUES AND NANOMATERIALS

Spectroscopy: Electromagnetic spectrum - Fundamentals of spectroscopy – Instrumentation, working principle and applications of UV-Visible spectrophotometer, Atomic Absorbance Spectrophotometer, Flame photometer.

Nanomaterials: Introduction to nanotechnology in electronics - nanomaterials – fullerernes carbon nanotubes – nanowires – Electronics and mechanical properties - synthesis of nanomaterials – topdown and bottomup approach – applications of nanomaterials in electronic devices (Semiconductors, LED & OLED) – electronics and telecommunication – medicines.

TOTAL: 60(45+15) PERIODS

COURSE OUTCOMES

At the end of the course students should be able to

1.	Ability to apply the knowledge of basic science in identifying, to formulate and to
	solve the engineering problems.
2.	Ability to analyze water borne problems faced in boilers, need for water treatment and
	various methods and techniques for treating hard water.
3.	Develop ability to understand polymerization reactions and its applications in engineering
	field.
4.	Ability to understand the mechanism behind various types of electrochemical reactions
	which in turn helps in understanding the causes for corrosion and prevention methods.
5.	Acquires Knowledge about energy conversion and chemical reaction taking place in nuclear,
	solar, wind energy, Batteries, fuel cells and its applications, merits and demerits.
6.	Acquires in-depth knowledge on various nanomaterials and its applications in

	electronic devices. Students get basic knowledge on advanced analytical techniques.
TEX	AT BOOKS:
1.	Vairam S, Kalyani P and Suba Ramesh.,"Engineering Chemistry"., Wiley India
	PvtLtd.,New Delhi., 2011
2.	Dara S.S,UmareS.S."Engineering Chemistry", S. Chand & Company Ltd., New Delhi,
	2010
REF	'ERENCES:
1.	Pahari A and Chauhan B., "Engineering Chemistry"., Firewall Media., New Delhi., 2010.
2.	Rao, C. N. R.; Govindaraj, A. "Nanotubes and Nanowires" United Kingdom: Royal
	Society of Chemistry, 2005
3.	Advanced Polymeric Materials: From Macro- to Nano-Length Scales edited by Sabu
	Thomas, Nandakumar Kalarikkal, Maciej Jaroszewski, Josmine P. Jose; Apple
	Academic press, Canada, 2016
4.	Jain and jain, 16 th editin, "Engineering Chemistry" Dhanpat Rqai Publishing Co.

COURSE ARTICULATION MATRIX:

CO1 3					 100	107	F 00	105	P010	FOII	F012	F301	F302	F303
	3				1	1						3		
CO2		2	2		1	1						3	1	
CO3 2	2	1										3	2	
CO4 2	2	1			2							3	1	
CO5 3	3				2	2						1		

18ZBS	5202	EN	GINEERING MATHEMATICS II	L	Т	Р	С			
(Comn	non to	MEC	CH, EEE, ECE & CSE)	3	1	0	4			
OBJEC	CTIVE	S:								
•	Vector Calculus And Their Uses In Various Field Theoretic Subjects									
•	Higher Order And Special Type Of Linear Differential Equations And Methods To Find Solutions									
•	Laplac	e Tra	nsforms And Properties And Their Applications In En	ginee	ering	5				
•	Constr Mappi	uction ng, C	n Of Analytic Functions And Concepts Of Concep omplex Integration And Series Solutions	ts O	f Co	onfo	rmal			
UNIT		VEC	TOR CALCULUS	OR CALCULUS						
curl – Di Green's	curl – Directional derivative – Irrotational and solenoidal vector fields – Vector integration – Green's theorem in a plane, Gauss divergence theorem and Stokes'theorem (excluding									

Green's theorem in a plane, Gauss divergence theorem and Stokes'theorem (excludin proofs) – Simple applications involving cubes and rectangular parallelopipeds.

UNIT II ORDINARY DIFFERENTIAL EQUATIONS

9+3

9+3

Higher order linear differential equations with constant coefficients – Method of variation of parameters – Cauchy's and Legendre's linear equations – Simultaneous first order linear equations with constant coefficients.

UNIT III LAPLACE TRANSFORMS

Laplace transform – Sufficient condition for existence – Transform of elementary functions – Basic properties – Transforms of derivatives and integrals of functions - Derivatives and integrals of transforms - Transforms of unit step function and impulse functions – Transform of periodic functions. Inverse Laplace transform -Statement of Convolution theorem – Initial and final value theorems – Solution of linear ODE of second order with constant coefficients using Laplace transformation techniques.

UNIT IV ANALYTIC FUNCTIONS

9+3

9+3

Functions of a complex variable – Analytic functions: Necessary conditions – Cauchy-Riemann equations and sufficient conditions (excluding proofs) – Harmonic and orthogonal properties of analytic function – Harmonic conjugate – Construction of analytic functions – Conformal mapping: w = z+k, kz, 1/z, z^2 , e^z and bilinear transformation.

UNIT V COMPLEX INTEGRATION

Complex integration – Statement and applications of Cauchy's integral theorem and Cauchy's integral formula – Taylor's and Laurent's series expansions – Singular points – Residues – Cauchy's residue theorem – Evaluation of real definite integrals as contour integrals around unit circle and semi-circle (excluding poles on the real axis).

TOTAL : 60(45+15) PERIODS

OUTCO	MES:	After successful completion of the course students able to							
1.	Solve pr related s	oblems on vector calculus and to apply them in any other field theory ubjects							
2.	Solve difields of	fferential equations and will be exposed to their applications in various engineering							
3.	Solve pr in findir applicati	roblems on Laplace transforms and will be able to use Laplace transform ag solutions of differential and integral equations and other engineering tons.							
4.	Solve co of analyt	Solve complex integration problems and will be exposed to various applications of analytic functions and conformal mapping in engineering.							
TEXT B	OOKS:								
1.	Bali N. P and Manish Goyal, "A Text book of Engineering Mathematics", Eighth Edition, Laxmi Publications Pvt Ltd., 2011.								
2.	Grewal. B.S, "Higher Engineering Mathematics", 41 st Edition, Khanna Publications, Delhi, 2011.								
REFERI	ENCES:								
1.	Dass, H. Chand F	K., and Er. Rajnish Verma, "Higher Engineering Mathematics", S. Private Ltd., 2011.							
2.	Glyn Jar Pearson	nes, "Advanced Modern Engineering Mathematics", 3rd Edition, Education, 2012							
3.	Peter V. learning	O'Neil, "Advanced Engineering Mathematics", 7th Edition, Cengage , 2012.							
4.	Ramana Compan	B.V, "Higher Engineering Mathematics", Tata McGraw Hill Publishing y, New Delhi, 2008.							
5.	Sivarama Krishna Das P. and Rukmangadachari E., "Engineering Mathematics", Volume II, Second Edition, Pearson Publishing, 2011								

	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	1									3	1	
CO2	3	2	2	1									2	1	1
CO3	3	2	2	1									2	1	1
CO4	3	2	2	1									2	1	

18EPC203			ELECTRIC CIRCUIT ANALYSISLT											
				2	1	0	3							
OBJE	CTI	VES:			1		<u> </u>							
•	To i	ntroduce	electric circuits and its analysis											
•	To i	mpart kr	nowledge on solving circuits using network theorems	its using network theorems										
•	To i	ntroduce	the phenomenon of resonance in coupled circuits											
•	То	To educate on obtaining the transient response of circuits												
•	Tos	To study Phasor diagrams and analysis of two port network												
UNIT I	NIT I DC and AC CIRCUITS						9							
Node and power tr current at	Node and Mesh Analysis. Superposition theorem, Thevenin theorem, Norton theorem, Maxim power transfer theorem, Reciprocity theorem, Compensation theorem. Analysis with dependent of duality and dual networks.													
UNIT I	Ι	THR	EE PHASE CIRCUIT ANALYSIS											
Represen analysis, coupled o	Representation of sine function as phasor, phasor diagrams, impedances and admittances, AC circuit analysis, effective or RMS values, average power and complex power. Three-phase circuits. Mutual coupled circuits, Dot Convention in coupled circuits, Ideal Transformer.													
UNIT I	II	TRAN	NSIENT ANALYSIS OF ELECTRIC CIRCUIT	'S			9							
Solution circuits, steady sta	of fir initial ate and	st and s and fina transier	econd order differential equations for Series and parallel conditions in network elements, forced and free responst state response.	el R se, ti	-L, R me C	-C, F Consta	₹LC ints,							
UNIT I	UNIT IV ELEC		TRICAL CIRCUIT ANALYSIS USING LAPLACE											
Review of Laplace Transform, Analysis of electrical circuits using Laplace Transform for standard inputs, convolution integral, inverse Laplace transform, transformed network with initial conditions. Transfer function representation. Poles and Zeros. Frequency response (magnitude and phase plots), series and parallel resonances.														
UNIT V	UNIT V TWO PORT NETWORK AND NETWORK FUNCTIONS													
Two Port	Two Port Networks, terminal pairs, relationship of two port variables, impedance parameters,													
admittand networks	ce para	ameters,	transmission parameters and hybrid parameters, interconn	ectio	ns of	two	port							
			TOTAI	.:4	5 PE	RIO	DS							
OUTCO	OME	S: A	At the end of this course, students will able to											
1.	Appl	y networ	k theorems for the analysis of electrical circuits.											
2.	Analy	yze the ci	ircuits of single-phase and three-phase circuits using sinuso	idal i	input.									

3.	Obtain the transient and steady-state response of electrical circuits.
4.	Obtain the solution of electric circuit using Laplace transform.
5.	Analyze the two port networks and network functions to get network parameters solutions.
TEXT	BOOKS:
1.	M. E. Van Valkenburg, "Network Analysis", Prentice Hall, 2006.
2.	D. Roy Choudhury, "Networks and Systems", New Age International Publications, 1998.
3.	Sudhakar and ShyamMohan.Sp,"Circuits and Networks Analysis and Synthesis", Tata Mc Graw hill, 2015.
REFE	RENCES:
1.	W. H. Hayt and J. E. Kemmerly, "Engineering Circuit Analysis", McGraw Hill Education, 2013.
2.	C. K. Alexander and M. N. O. Sadiku, "Electric Circuits", McGraw Hill Education, 2004.
3.	K. V. V. Murthy and M. S. Kamath, "Basic Circuit Analysis", Jaico Publishers, 1999.

COURSE ARTICULATION MATRIX

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1		2			2							2	2		2
CO2		3			2			2							2
CO3					2					2		2		2	
CO4		2			3			2					2	3	
CO5	3				3							2			

1-Low, 2-Moderate (Medium), 3-High

18ZES2	04	ENGINEERING GRAPHICS AND DESIGN	L	Т	Р	С					
	1	0	4	3							
COUR	SE OI	BJECTIVES:									
•	This course aims to introduce the concept of graphic communication, develop the drawing skills for communicating concepts, ideas and designs of engineering products and to expose them to existing national standards related to technical drawings										
•	To draw the projection of simple solids like prisms, pyramids, cylinder etc.										
•	To draw the development of surfaces to estimate the sheet metal requirement and to prepare sectional views of solids.										
•	To develop skills in three-dimensional visualization of engineering components and to draw isometric views of simple solids.										

CONCEPTS AND CONVENTIONS (Not for Examination)

Importance of graphics in engineering applications – use of drafting instruments – BIS / ISO conventions and specifications – size, layout and folding of drawing sheets – lettering and dimensioning.

UNIT I PLANE CURVES AND FREE-HAND SKETCHING

6+9

6+9

Basic geometrical constructions, curves used in engineering. Conics – construction of ellipse, parabola and hyperbola by eccentricity method – drawing of tangents and normal to the above curves. Visualization concepts and free hand sketching: visualization principles –representation of three dimensional objects – layout of views- freehand sketching of multiple views from pictorial views of objects.

UNIT II PROJECTION OF POINTS, LINES AND PLANE SURFACES

Orthographic projection – Principles-principal planes - First angle projection - Projection of points - Projection of straight lines inclined to both the principal planes - determination of true lengths and true inclinations by rotating line method - traces. Projection of planes (polygonal and circular surfaces) inclined to both the principal planes by rotating object method.

UNIT III PROJECTION OF SOLIDS

Projection of simple solids like prisms, pyramids, cylinder, cone and truncated solids, when the axis is inclined to both the principal planes by rotating object method.

UNIT IV PROJECTION OF SECTIONED SOLIDS AND DEVELOPMENT OF SURFACES

6+9

6+9

Sectioning of prisms, pyramids, cylinders and cones in simple vertical position when the cutting plane is inclined to the one of the principal planes and perpendicular to the other – obtaining true
shape of section. Development of lateral surfaces of simple and sectioned solids – prisms, pyramids cylinders and cones.

UNIT V ISOMETRIC PROJECTION AND OVERVIEW OF COMPUTER GRAPHICS

6+9

Principles of isometric projection – isometric scale –isometric projections of simple solids and truncated solids - prisms, pyramids, cylinders, cones- combination of two solid objects in simple vertical positions – Introduction to CAD - The Menu System, Toolbars (Standard, Object Properties, Draw, Modify and Dimension), Drawing Area (Background, Crosshairs, Coordinate System), Dialog boxes and windows, Shortcut menus (Button Bars), The Command Line (where applicable), The Status Bar, Different methods of zoom as used in CAD- (CAD – evaluation during CA only)

Lecture: 15 Periods Tutorial: 0 Periods Practical: 60 Periods Total: 75 Periods

OUTCO	DMES:	On completion of this course, students will be able to
1.	Familiari freehand	ze with the fundamentals, standards of Engineering graphics and Perform sketching of multiple views of basic geometrical constructions.
2.	Draw ort	hographic projections of points, lines and plane surfaces.
3.	Draw pro	ojections of solids.
4.	Draw pro	pjection of sectioned solids and development of surfaces.
5.	Visualize	e and draw isometric views of simple solids.
6.	Apprecia	te the use of computers in drawing and modelling of simple objects.

TEXT BOOKS:

1.	Natrajan K. V., "A text book of Engineering Graphics", Dhanalakshmi Publishers, Chennai, 2016.
2.	Venugopal K. and Prabhu Raja V., "Engineering Graphics", New Age International (P) Limited, 2016.
3.	Shah, M. B. and Rana B. C. "Engineering Drawing and Computer Graphics", Pearson Education, 2010
REFER	ENCES:
1.	N S Parthasarathy and Vela Murali, "Engineering Graphics", Oxford University, Press, New Delhi, 2015.
2.	Gopalakrishna K.R., "Engineering Drawing" (Vol. I&II combined), Subhas publications, Bangalore, 2014.

3. Basant Agarwal and Agarwal C.M., "Engineering Drawing", Tata McGraw Hill Publishing Company Limited, New Delhi, 2013.

4.	Luzzader, Warren J. and Duff John M., "Fundamentals of Engineering Drawing with an introduction to Interactive Computer Graphics for Design and Production", Eastern Economy Edition, Prentice Hall of India Pvt. Ltd, New Delhi, 2005
5.	Bhatt N. D. and Panchal V. M., "Engineering Drawing", Charotar Publishing House, 53 rd Edition, 2014.

CO	COURSE ARTICULATION MATRIX:														
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	1										3	1	
CO2	CO2 3 2 1 3 2														
CO3	3	2	1										3	2	
CO4	3	2	1										3	2	
CO5	3	2	2										1	1	1
CO6	CO6 3 1 2 1 2 1 2														
(1-Lo	w, 2- N	Aodera	te, 3-Hi	igh)	•	•	•	•	•						

18ZMC20	ZMC205CONSTITUTION OF INDIALTPC													
Co	nmon to	MECH, EEE, ECE and CSE Branches	1	-	-	0								
Course O	ojective	:			J									
• To p organ	To provide understanding of basic concepts of Indian Constitution and various organs created by the constitution including their functions.													
UNIT I	INTR	ODUCTION			3									
Constitution Sources and Preamble, F - Separation	Definit constitu indamen of powe	tion and Classification -Constitutional Organ ational history, Salient features of Indian Co tal Rights and Duties, Directive Principles of S ers Constitution - Doctrine of Basic Structure.	- India stitution tate Poli	n Co - Ci cy Ru	nstitu itizen le of	tion: ship, Law								
UNIT II	UNIO GOVI ADM	N GOVERNMENT & STATE ERNMENT AND THEIR INISTRATION			4									
ADMINISTRATIONDistribution of Powers between Center and States Structure of the Indian Union: Federalism, Centre- State -relationship, President: Role, power and position, PM and Council of ministers, Cabinet and Central Secretariat, Lok Sabha, Rajya Sabha. Governor: Role and Position, CM and Council of ministers, State Secretariat: Organisation, Structure and Functions														
UNIT III	LOCA	AL ADMINISTRATION			5									
District's A and role of Introduction Position and level: Role Emergency	Iministra f Electe PRI: Z role, B of Elec Provision	ation head: Role and Importance, Municipalities and Representative, CEO of Municipal Co Cila Pachayat, Elected officials and their role block level: Organizational Hierarchy (Different ted and Appointed officials, Importance of the second second second second second second second second second test and the second second test and second	es: Intro poration s, CEO nt depar grass r	luctic Pac Zila tment pot d	on, M chaya Pach s),Vi emod	layor tiraj: ayat: llage cracy								
UNIT IV	ELEC	TION COMMISSION			3									
Election Co Commission the welfare of REFERE	nmission ers, State f SC/ST NCES:	n: Role and Functioning, Chief Election Con e Election Commission: Role and Functioning, /OBC and women.	missione Institute	er and and I	l Ele Bodie	ction s for								
1. V	.N. Shul	kla, Constitution of India												
2. H	.M.Seer	vai : Constitution of India												
3. N	I.P. Jain	– Indian Constitutional Law.												
4. I	.D.Basu	: Shorter Constitution of India												
5. k	agzi : In	dian Constitution												
6. F	ylee : Th	e History of Indian Constitution												
		TOTAL PERIODS	15 PI	ERIC	DDS									

18ZB	S206		C	HE	M	[]	S	T	ſF	RJ	Y]	L	A	B	0	R	A	T	0	R	Y				L	4	Т]	P	С
					(I	E(C	E	E/I	EF	EE	2/0	CS	SE,	/M	1E	C	H)						0		0		3	1.5
OBJI	ECTIV	ES:																												
•	Tom	nake stu	ude	ents o	cor	nv	ve	ers	sa	ant	t w	vit	h	ha	nd	ls	or	1 V	va	te	p:	ar	am	iet	era	an	alv	sis.		
•	To m	ake the	ne st	tude	nt 1	to) (ac	cq	lui	ire	p	ra	cti	ca	ul s	ski	i11	s i	n	the	c	or	ros	sio	n i	n n	neta	als	
•	To ac polyr	cquaint mer by	t th	e stu stwal	ude Id	en vi	nts is	s v sco	wi	ith me	h tl ete	he er.	e d	let	erı	mi	ina	ati	or	0	f r	no	le	cul	lar	w	eigl	nt c	of	a
•	To m	hake the	ne st	tude	nt a	ac	cg	qu	uir	re	pr	ac	cti	ca	1 s	ki	lls	i	n a	in	aly	tic	al	in	str	ur	nen	ts.		
	_																													
1.	Determ	ination	n of	tota	al h	ha	rc	dr	ne	ess	5 0	of g	giv	ve	n v	wa	ite	rs	sa	mp	ole	b	y I	ED	ΤA	1	net	hoo	1.	
2.	Determ	ination	n of	falka	alii	ni	ity	y	in	ı g	giv	er	n v	wa	teı	r s	ar	np	ole	•										
3	Determ	ination	n of	mo	olec	cul	112	ar	r w	ve	igl	ht	of	fn	റി	V	vir	īv	1 a	lc	oh		115	in	σ ()st	wa	ld		
	viscom	eter.		mo		Ju	110	<u> </u>			151	<u> </u>		1 P		.y `	v 11	I y	1 0	.10		<u></u>	u	<u> </u>	50		l vv u	iu -		
4.	Conduc	ctometr	ric	titrat	tio	n	u	ısi	in	ng I	mi	ix	tu	re	of	a	ci	ds	a	nd	st	[0]	ng	ba	ase	•				
5.	Determ	ination	n of	stre	eng	gth	h	0	of i	in	gi	ive	en	h	yd	ro	ch	lc	ori	c a	ici	d ı	ısi	ng	g pl	H	met	er.		
6.	Estimat	tion of s	soc	dium	n p	ore	es	sei	nt	t ir	n w	va	te	rυ	ısi	ng	g f	la	m	e p	hc	oto	m	ete	er.					
7.	Estimat Spectro	tion of Z	Zn (A/	pres	sen	nt	iı	n	ef	ffl	lue	ent	t u	isi	ng	, A	Ato	m	nic	A	bs	or	pt	ior	ı					
	-species		(10)																										
8.	Corrosi	on exp	peri	men	nt –	- v	we	vei	igl	,ht	lo	DSS	s n	ne	the	od	l					_								
9.	Estimat	tion of i	iro	n co	onte	en	nt	t o	of	th	ne g	gi	ve	en	SO.	lu	tic	n	u	sin	g	20	ter	nti	om	net	er r	net	er	•
10.	Estimat (thiocya	tion of i	iro met	n co hod)	onte).	en	nt	t o	of	th	ne g	gi	ve	en	sai	mj	plo	eι	ısi	ng	g S	pe	ct	ro	ph	ot	om	ete	r	

COURSE OUTCOMES
At the end of the course students should be able to
a. The students will be outfitted with hands-on knowledge in the qualitative and quantitative chemical analysis of water quality related parameters, corrosion studies, heavy metal analysis, etc.
REFERENCES:
1. Furniss B.S. Hannaford A.J, Smith P.W.G and Tatchel A.R., "Vogel's Textbook of practical organic chemistry", LBS Singapore 1994.
2. Jeffery G.H., Bassett J., Mendham J.and Denny vogel's R.C, "Text book of quantitative analysis chemical analysis", ELBS 5th Edn. Longman, Singapore publishers, Singapore, 1996.
3. Kolthoff I.M., Sandell E.B. et al. "Quantitative chemical analysis", Mcmillan, Madras 1980.
4. Daniel R. Palleros, "Experimental organic chemistry" John Wiley & Sons, Inc., New York 2001.
COURSE ADTICUL ATION MATDIN.

COU	COURSE ARTICULATION MATRIX:														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO1	PSO2	PSO3
										0	1	2			
CO1	3	2	2			2	2						3	2	
(1-Lov	(1-Low, 2- Moderate, 3-High)														

18EPC20	07 EL	ECTRIC C	IRCUITS	S LABO	RATORY		L	T	Р	C
	I						0	0	4	2
OBJECT	TVES:									<u> </u>
•	To solve theorem	DC and AC es.	lectric circui	its using	mesh analysis, n	odal analysi	s, an	id ne	twor	k
•	To cond response	uct experimen	t on DC and	d AC elec	etric circuits to	know the tin	ne a	nd fi	reque	ency
•	To Desig	gn and simulat	e resonance	circuits,	filter circuits, an	d three phase	e cir	cuits	5	
•	To fabri	cate electrical	and electron	nics circui	its.					
LIST OF I	EXPERI	MENTS								
1. Experim	ental ver	ification of Ki	rchhoffs vol	ltage and	current laws					
2. Experim Power Trar	ental ver nsfer The	ification of ne corem).	twork theore	ems (The	venins, Norton, S	Super position	n an	d Ma	ximu	m
3. Experim	ental det	ermination of	time constar	nt of serie	es R-C circuits.					
4. Experim	ental det	ermination of	frequency re	esponse o	f RLC circuits.					
5. Design a	nd Simu	lation of series	s resonance	circuit.						
6. Design a	nd Simu	lation of paral	el resonant	circuits.						
7. Simulati	on of low	v pass and higl	n pass passiv	ve filters.						
8. Simulati	on of thr	ee phases bala	nced and un	balanced	star, delta netwo	orks circuits.				
9. Experim	ental det	ermination of	power in th	ree phase	circuits by two	-wattmeter r	neth	od.		
10. Determ	ination o	of two port netw	vork parame	eters.						
11. Transie	nt analys	sis of second o	rder under d	damped s	ystem.					
LIST OF	EQUI	PMENT FO	OR A BAT	CH OI	5 30 STUDEN	NTS:				
1. Regula	ted Powe	er Supply:0–1:	5VD.C-10 N	Nos/Distri	buted Power So	urce.				
2. Functio	n Genera	ator (1MHz)			- 10Nos.					
3. Oscillos	scope (20	OMHz) -	10Nos.							
4. Digital	Storage	Oscilloscope (3	20MHz)		-1 No.					

5.Circu	5. Circuit Simulation Software(5Users) (Pspice/Matlab/other Equivalent software												
	Package) wi	th PC (5Nos.) and Printer	(1 No.)									
6.AC/I	DC- Voltmet	ers(10Nos.),Ammeters(10Nos	s.) and Multi-r	neters(10Nos.)									
7. Sing	le Phase Wa	uttmeter-3 Nos.											
8.Dout	ole- element	wattmeter	- 2 No	DS									
9. Deca	ade Resistan	ce Box, Decade Inductance Bo	x, Decade Cap	acitanceBoxEach-6Nos.									
10. Cir	10. Circuit Connection Boards- 10Nos.												
12.PSp	12.PSpice or its equivalent software - 10 users												
				TOTAL:60 PERIODS									
OUTC	OMES:	After successful completion	of the course	students able to									
1.	Solve DC theorems.	and AC electric circuits us	ing mesh ana	llysis, nodal analysis, and network									
2.	Analyse the	time and frequency response	of DC and A	C electric circuits.									
3.	Design and	simulate resonance circuits, f	ilter circuits, a	and three phase circuits									
4.	Fabricate el	ectrical and electronics circui	its.										
5.	Analyse tra	nsients in electrical circuits.											

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1		2			2					2		2	2		2
CO2		2		2						2		2	2		2
CO3	2		2				2		2				3		1
CO4		2		2						2			2		
CO5		3			2									2	

18ZES2	08	WORKSHOP P	RACTICES	L	T	Р	С					
	Common to M	ECH, EEE, ECE and	CSE Branches	1	0	4	3					
COURS	E OBJECTIVES	•										
•	To make various joint, Dove tail jo	s basic prototypes in pint, Mortise & Tenor	the carpentry trade such as n joint and Cross-Lap joint	Lap	joii	nt, La	ap Tee					
•	To make various and Corner joint.	welding joints such	as Lap joint, Lap Tee joint, l	Edge	join	t, Bu	tt joint					
LIST OF	EXPERIMENT	S:										
 Weldi Prepa Fabric Fabric Electr Plumb CNC N Additi 	ng of Lap joint, Bu ration of Sand mo ation of parts like ical wiring – simp bing Aachines demons ve manufacturing e: 15 Periods	utt joint and T-joint old for cube, conical k e tray, frustum of con le house wiring tration and lecture o g demonstration and	bush, pipes and V pulley he and square box in sheet m n working principle. lecture on working principle Practical: 60 Periods	etal Tota	1: 75	5 Per	iods					
COURSE	OUTCOMES:	On completion of	this course, students will be a	ıble t	0							
CO1.	Use tools and equ	uipment used in Carp	entry, Welding, Foundry and	She	et m	etal.						
CO2.	Make half lap joi	nt and dovetail joint	in carpentry.									
CO3.	Make welded lap	joint, butt joint and '	T-joint.									
CO4.	Prepare sand mo	uld for cube, conical	bush, pipes and V pulley.									
CO5.	Fabricate parts like tray, frustum of cone and square box in sheet metal											
CO6	Carry out minor	works/repair related t	to electrical wiring and plum	oing.								

CO	URSE	E AR'	ΓΙΟυ	LAT	ION	MAT	RIX	•							
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
CO1	2												2	1	2
CO2	2	1											2	1	2
CO3	2	1	2										2	2	2
CO4	2	1	2										3	2	2
CO5	2	2	2			1							3	2	2
CO6	2		2										2		1
(1-Lo	w, 2- M	oderate	, 3-Higl	ı)											

SEMESTER III

18ZBS301 TRANSFORMS AND PARTIAL DIFFERENTIAL L T F	C
EQUATIONS	
) 4
OBJECTIVES:	
• To introduce Fourier series analysis which is central to many applications in	
engineering apart from its use in solving boundary value problems.	
• To acquaint the student with Fourier transform techniques used in wide varie	ty of
situations.	
• To introduce the effective mathematical tools for the solutions of partial diffe	erential
equations that model several physical processes and to develop Z transform	
Inite in the system is the	0+2
UNIT PARTIAL DIFFERENTIAL EQUATIONS	9+3
Formation of partial differential equations – Singular integrals Solutions of standard types	OI IIISt
equations of second and higher order with constant coefficients of both homogeneous an	d non
homogeneous types	u non-
UNIT II FOURIER SERIES	9+3
Dirichlet's conditions – General Fourier series – Odd and even functions – Half range sine s	series –
Half range cosine series – Complex form of Fourier series – Parseval's identity – Ha	rmonic
analysis.	
UNIT III APPLICATIONS OF PARTIAL DIFFERENTIAL	9+3
EQUATIONS	
Classification of PDE – Method of separation of variables - Solutions of one dimensiona	1 wave
equation – One dimensional equation of heat conduction – Steady state solution of two dimensional	nsional
equation of heat conduction (excluding insulated edges).	
UNIT IV FOURIER TRANSFORMS	9+3
	10
Statement of Fourier integral theorem – Fourier transform pair – Fourier sine and cosine tran	sforms
– Properties – Transforms of simple functions – Convolution theorem – Parseval's identity.	
UNIT V Z - TRANSFORMS AND DIFFERENCE EQUATIONS	9+3
Z- transforms - Elementary properties – Inverse Z - transform (using partial fraction and resid	dues) –
Convolution theorem - Formation of difference equations – Solution of difference equation	s using
Z - transform.	U
TOTAL $\cdot (L \cdot 45 + T \cdot 15) \cdot 60$ PFI	
OUTCOMES: Upon completion of the course students will be able to:	
1 The understanding of the mathematical principles on transforms and partial difference	ential
equations would provide them the ability to formulate and solve some of the physic	ical
problems of engineering.	
TEXT BOOKS:	
1. Veerarajan T., "Transforms and Partial Differential Equations", Tata McGraw H	ill
Education Pvt. Ltd., New Delhi, 3 rd Edition, 2016.	

2.	Grewal B.S., "Higher Engineering Mathematics", 44 th Edition, Khanna Publishers,										
	Delhi, 2017.										
3.	Narayanan S., Manicavachagom Pillay.T.K and Ramanaiah.G "Advanced Mathematics										
	for Engineering Students" Vol. II & III, S.Viswanathan Publishers Pvt Ltd., 1998.										
REFEREN	NCES:										
1.	Bali. N.P and Manish Goyal, "A Textbook of Engineering Mathematics", Laxmi										
	Publications Pvt Ltd, 9 th Edition 2016.										
2.	Ramana. B.V., "Higher Engineering Mathematics", Tata McGraw Hill Publishing										
	mpany Limited, New Delhi, 2018.										
З.	Glyn James, "Advanced Modern Engineering Mathematics", 4 th Edition, Pearson										
	Education, 2016.										
4.	Erwin Kreyszig, "Advanced Engineering Mathematics", 10 th Edition, Wiley India,										
	2011.										
5.	Ray Wylie C and Barrett .L.C, "Advanced Engineering Mathematics", 6 th Edition,										
	Tata McGraw Hill Education Pvt Ltd, New Delhi, 2012.										
6.	Datta K.B., "Mathematical Methods of Science and Engineering", Cengage Learning										
	India Pvt Ltd, Delhi, 2013.										

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1				2			2		2		3			2	2

OBJECT ORIENTED PROGRAMMING

OBJECTIVES: To u Java To ku			0 3
OBJECTIV	ES:		
•	To un	derstand Object Oriented Programming concepts and basic character	istics of
	Java		
•	To kno	by the principles of packages, inheritance and interfaces	
•	To det	fine exceptions and use I/O streams	
•	To dev	velop a java application with threads and generics classes	
	TT 1		
•	To des	ign and build simple Graphical User Interfaces	
UNIT I	INTR	ODUCTION TO OOP AND JAVA	9
	FUNI	DAMENTALS	
Object Oriente	d Progra	amming - Abstraction – objects and classes - Encapsulation- Inherita	nce -
Polymorphism	- OOP in	n Java – Characteristics of Java – The Java Environment - Java Sour	ce File
-Structure – Co	ompilatio	on. Fundamental Programming Structures in Java – Defining classes	s in
Java– construc	tors, me	thods -access specifiers - static members -Comments, Data Types,	
Variables. Ope	rators. C	Control Flow, Arrays, Packages – Java Doc comments.	
IINIT II	INHE	RITANCE AND INTERFACES	9
			,
Inharitanaa S	upor olo	assas, sub classas. Protocted members constructors in sub classas	tha
Inheritance – S	uper cla	isses- sub classes – Flotected members – constructors in sub classes	the
$\frac{1}{2}$	abatraat	alasses and methods, final methods and alasses. Interfaces, defini-	
interface impl	austiact	g interface, differences between classes and interfaces and extending	ing an
interface, mpr	ioot olor	g interface, differences between classes and interfaces and extending	
		EXCEPTION HANDI INC. AND LO	0
	1	EXCEPTION HANDLING AND I/O	9
Exceptions - ex	xception	hierarchy - throwing and catching exceptions – built-in exceptions,	creating
own exception	s, Stack	Trace Elements. Input / Output Basics – Streams – Byte streams and	
Character strea	ıms – Re	eading and Writing Console – Reading and Writing Files.	
UNIT IV	MUL	TITHREADING AND GENERIC PROGRAMMING	9
Differences be	tween m	nulti-threading and multitasking, thread life cycle, creating threads,	
synchronizing	threads,	Inter-thread communication, daemon threads, thread groups. Generi	c
Programming	– Gene	eric classes - generic methods - Bounded Types - Restricti	ons and
Limitations.			
UNIT V	EVE	NT DRIVEN PROGRAMMING	9
Graphics progr	amming	g - Frame – Components - working with 2D shapes - Using color, for	nts, and
images - Basic	s of even	nt handling - event handlers - adapter classes - actions - mouse event	s AWT
event hierarchy	y - Introd	duction to Swing – layout management - Swing Components – Text	
Fields , Text A	reas – B	Buttons- Check Boxes - Radio Buttons - Lists- choices- Scrollbars -	
Windows-Mer	nus – Di	alog Boxes.	
		TOTAL : 45 PE	RIODS
OUTCOME	·S·	Upon completion of the course, students will be able to:	>
	10 •	por completion of the course, students will be able to.	

2.	Develop Java programs using OOP principles						
3.	Develop Java programs with the concepts inheritance and interfaces						
4.	Build Java applications using exceptions and I/O streams						
5.	Develop Java applications with threads and generics classes						
6.	Develop interactive Java programs using swings						
TEXT B	DOKS:						
1.	Herbert Schildt, "Java The complete reference", 8 Edition, McGraw Hill Educat						
	2011.						
2.	Cay S. Horstmann, Gary cornell, "Core Java Volume –I Fundamentals", 9 Edition,						
	Prentice Hall, 2013.						
REFER	NCES:						
1.	Paul Deitel, Harvey Deitel, "Java SE 8 for programmers", 3						
2.	Steven Holzner, "Java 2 Black book", Dreamtech press, 2011						
З.	Timothy Budd, "Understanding Object-oriented programming with Java", Updated						
	Edition, Pearson Education, 2000.						

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1				2			2		2		3			2	2
CO2		2		2			3				2			3	
CO3	2	2							2						2
CO4	2			2						2		2		2	
CO5		2					2			2					3

18EPC3	03 DC MACHINES AND TRANSFORMERS	L	Т	Р	C
		2	1	0	3
OBJEC	TVES:				
	To introduce the concept of magnetic circuits and electromechanic	al e	nerg	y the	ory.
•	To study the construction, operation and characteristics of Dc Gen- Motors	erat	ors a	nd	
	To study the construction, operation and characteristics of Transfo	rme	rs		
•	To determine the losses and efficiency in dc machines and transfor conducting various tests.	me	s by		
	To test the DC Machines and Transformers				
UNIT I	BASIC CONCEPTS OF ROTATING MACHINES			9	
Magnetic	Circuits - Principles of electromechanical energy conversion – Sin	gle	and	mul	tiple
excited sys	tems – concept of co-energy– Generated voltage – Torque in DC machi	ne.			1
UNIT II	DC GENERATORS				9
Constructio	onal details - emf equation - Methods of excitation - Self and s	epai	ately	ex ex	cited
generators	- Characteristics of series, shunt and compound generators - Arma	ture	read	ction	and
commutati	on – Parallel operation of DC shunt and compound generators.				0
UNIT II	DC MOTORS				9
Principle of	of operation – Back emf and torque equation – Characteristics of	serie	es, s	hunt	and
compound	motors – Starting of DC motors – Types of starters – Speed control	of I	JC s	eries	and
snunt moto					0
UNIT IV	TRANSFORMERS		D '		9
Construction	onal details of core and shell type transformers – Types of winding	gs –	- Pri	ncipl	e of
UV / UV	indings Equivalent circuit Transformer on load Perulation Para	neu alla	$\frac{1}{2}$	rotic	ed to
single nhas	e transformers – Auto transformer – Three phase transformers – Vector	ane	i ope	and	лі 01
	TESTING OF DC MACHINES AND TRANSFORMU		up. C		0
Losses and	efficiency in DC machines and transformers – Condition for maxim	num) eff	icien	су <u>–</u>
Testing of	DC machines – Brake test Swinburne's test Retardation test and H	onk	inson	n's te	est –
Testing of	transformers – Polarity test, load test, open circuit and short circuit	t te	sts –	- All	dav
efficiency.					auj
	ΤΟΤΑ	L:4	15 P	ERI	ODS
OUTCO	MES: After successful completion of the course, the students ab	le to)		
1.	Explain the concept of magnetic circuits and electromechanical energy	the	ory.		
2.	Explain the construction, operation and characteristics of Dc Generator	s an	d M	otors	
3.	Explain the construction, operation and characteristics of Transformers				
4.	Determine the losses and efficiency in dc machines and transformers by	y co	nduc	ting	
~	various tests.				
J.	Test the DC Machines and Transformers				
TEXT B					
1.	Fitzgerald A.E. Kingsly C., Umans S.D., ' <i>Electrical Machinery</i> ' 6 th	edit	10n,	Mc(iraw
2	Hill International Edition, New York, 2002.	Г	1.	ГJ	
۷.	2011	, гс	uith	ΞЦ.,	
	2011.				

3.	P. C. Krause, O. Wasynczuk and S. D. Sudhoff, "Analysis of electric machinery," IEEE								
	Press, 1995.								
REFERE	NCES:								
1.	D.P.Kothari, "Electrical Machines" 3 rd edition, TMH, New Delhi 2004.								
2.	P.C.Sen, "Principles of Electrical Machines and Power Electronics", John-Wiley &								
	P.C.Sen, "Principles of Electrical Machines and Power Electronics", John-Wiley of Sons, Newyork.								
3.	Cotton H, "Advanced Electrical Technology", CBS Publishers and Distributors, 1967.								
4.	P.S.Bimbhra, 'Electrical Machinery',Khanna Publishers,2003.								
5.	Fitzgerald A.E., Kingsly C. and Kusko.A., "Electric Machinery", Tata McGraw Hill,								
	2007.								

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1			2			3			2			2	2		3
CO2	2	2							2				3		
CO3			2			2						3			2
CO4	1								2	2				2	
CO5		2						2				2			2

18EPC	304	ANALOG ELECTRONICS	L	Т	Р	С				
			3	0	0	3				
OBJEC	TIVES:									
	• To i	ntroduce the concept of PN Diode and its applications.								
	• To s	tudy the the characteristics and applications BJTs, and MOSF	ETs.							
	• To s amp	tudy the various biasing methods and circuits for the BJT and lifiers	MO	SFE	Г					
	• To i osci	ntroduce the characteristics and applications of feedback amp llators	lifier	s and	1					
	• To i	ntroduce the characteristics and applications of pulse circuits								
UNIT I	PN	PN DIODE AND ITS APPLICATIONS								
currents - Regulator treatment	- Rectifier rs (series only).	s: HW, FW, Bridge Rectifiers, filters - Zener diode – Charac and shunt) - Introduction to Switched mode power su	cteris	tics (Qua	- LE	D – tive				
UNIT I	I BJ	Γ AND FETS			9					
Bipolar j configura Voltage–	unction tra tions – hy small sign	Insistor – Construction – Input and output characteristics – brid model – Analytical expressions - JFET – VI character al model - MOSFET - Characteristics – enhancement and dep	CE, eristio letio	CB cs, P n mo	and inch ode.	CC off				
UNIT I	II BL	ASING AND AMPLIFIERS			9					
Classifica and trans Amplifier	ation of am former cours-Darling	plifiers -CE CB amplifier - frequency response - Class A, B, ppled power amplifiers - Class B complementary- symmetry on connection.	AB, , pus	C an h-pu	d D - ll po	RC wer				
	\mathbf{V} FE	EDBACK AMPLIFIERS AND OSCILLATORS	<u></u>		<u>9</u>					
Voltage /	current, s	eries / shunt feedback –condition for oscillation - oscillators	– LC	c amj C, RC	c, cry	rs - stal				
UNIT V	7 PU	LSE CIRCUITS			9					
RC wave Multivibr	shaping c ators – Sc	rcuits – Diode clampers and clippers – Monostable, Astable a nmitt triggers – UJT based saw tooth oscillators.	ind B	istat	ole					
		TOTAL : 45 PERIOD	S							
OUTCO	OMES:	After completion of this course, the student will be able to	:							
1.	Explain th	e characteristics and applications of PN Diode and its applicat	ions							
2.	Explain th	e characteristics and applications BJTs, and MOSFETs.								
3.	Compare v	arious biasing methods and circuits for the BJT and MOSFET	Г amj	plifie	ers					
4.	Lexplain the characteristics and applications of feedback amplifiers and oscillators.									
5.	Explain th	e characteristics and applications of pulse circuits								
TEXT I	BOOKS									
1. Pay	nter, "Intro	ductory electronic devices and circuits", PHI, 2006.								
2. Dav	vid Bell, "F	electronic Devices and Circuits", PHI, 2007.								
REFER	NCE:									

1.	Theodre F. Boghert, "Electronic Devices & Circuits" Pearson Education, 6 th Edition, 2003.
2.	Rashid, "Microelectronic circuits", Thomson Publication, 1999.
3.	Singh. B.P and Rekha Singh, "Electronic Devices and Integrated Circuits", Pearson
	Education, 2006.
4.	Salivahanan. S, Suresh Kumar. N and Vallavaraj. A, "Electronic Devices and circuits", Tata
	McGraw Hill, 2003.
5.	RobertL.Boylestad, "ElectronicDevicesandCircuittheory", 2002.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1			2			2		2					2		2
CO2			2			2		2				2	2		2
CO3					2			2		2			2		2
CO4			2			2				2		2	3		2
CO5			2			2				2			1		2

107	MC205	EN	VIRONMENTAL SCIENCE AND	L	Τ	P	C	
1971	VIC305	EN	IGINEEERING					
			(Common to ECE/EEE/CSE/MECH)	1	-	-	0	
OBJ	ECTIV	ES:		<u> </u>	<u> </u>			
•	To findi environr	ng and nental	implementing scientific, technological, economic and p problems.	olitic	cal s	oluti	ons t	0
•	To study	the in	terrelationship between living organism and environmer	nt.				
•	To study waste m	y the in anagen	tegrated themes and biodiversity, natural resources, poll nent.	utio	1 COI	ntrol	and	
TINIT	тт		DONMENT ECOSYSTEMS AND DIODIN		STT	V		7
UNI	11		$\mathbf{ROMMENT}, \mathbf{ECOSTSTEMS} \text{ AND BIODIV}$	CR	511	I		/
conce	ept of an	ecosys	tem - structure and function of an ecosystem - prod	ucer	s, co	onsu	mers	and
decor	nposers-	types	of ecosystem (forest ecosystem, grassland ecosyste	m, c	lesei	rt ec	osys	tem,
aquat	ic ecosyst	ems (p	onds, streams, lakes, rivers, oceans, estuaries) - energy	flow	/ in t	the e	cosy	stem
- eco	logical su	iccessio	on processes -types - Introduction to biodiversity defir	itior	1: ge	netic	e, spe	ecies
and	ecosystem	n diver	rsity – biogeographical classification of India – v	alue	of	bio	diver	sity:
consu	imptive u	se, pro	ductive use, social, ethical, aesthetic and option value	ès –	Indi	a as	a m	iega-
divers	sity natio	n – ho	st-spots of biodiversity - threats to biodiversity: hab	itat 🛛	loss,	poa	chin	g of
wildli	ife, man-	wildlife	e conflicts - endangered and endemic species of Ind	lia -	- co	nser	vatio	n of
biodiv	versity: In	i-situ ai	nd ex-situ conservation of biodiversity. Field study of co	omm	on p	lants	s, ins	ects,
birds.								
Field	study of	simple	ecosystems – pond, river, hill slopes, etc.					
TINI	ти	FNV	IRONMENTAL POLITION (CO-9 &c)					3
UI	1 11							5
Defin	nition – ca	uses, e	ffects and control measures of: (a) Air pollution (b) W	'ater	poll	ution	n (c)	Soil
pollut	tion (d) M	Iarine p	pollution (e) Noise pollution (f) Thermal pollution (g) N	Nucle	ear h	nazar	ds– s	solid
waste	e managen	nent: ca	auses, effects and control measures.					
Field	study of	local p	oolluted site – Urban / Rural / Industrial / Agricultura	al.				
UNI	T III	NAT	URAL RESOURCES (CO-a &d)					5
Fores	t resourc	ces: U	se and over-exploitation, deforestation – Water	resc	ource	es:	Use	and
overu	itilization	of s	urface and ground water– Mineral resources: U	se a	and	exp	loita	tion,
envire	onmental	effects	of extracting and using mineral resources - Food r	esou	rces	: Wo	orld	food
proble	ems, chan	iges ca	used by agriculture and overgrazing, effects of modern	agri	cult	ure, i	fertil	izer-
pestic	cide prob	lems–	Energy resources: renewable and non renewable en	ergy	soi	urces	, us	e of

alternate energy sources.– Land resources- land degradation, man induced landslides, soil erosion and desertification – role of an individual in conservation of natural resources.

Field study of local area to document environmental assets – river / forest / grassland / hill

		TOTAL : 15 PERIODS
COU	JRSE OUTCOMES:	
Envin an im on th	conmental Pollution or problems cannot be solved by r portant aspect which serves the environmental Protec e following after completing the course.	nere laws. Public participation is tion. One will obtain knowledge
1.	Ability to apply the knowledge of environmental science solve the environmental problems.	e in identifying, to formulate and to
2.	Public awareness of environmental function is at infant s	tage.
3.	Ignorance and incomplete knowledge has led to misconc	eptions.
4.	Development and improvement in std. of living has led t	o serious environmental disasters.
TEX	T BOOKS:	
1.	Gilbert M.Masters, 'Introduction to Environmental Engi Pearson Education, 2004.	neering and Science', 2nd edition,
2.	Benny Joseph, 'Environmental Science and Engineering 2006.	', Tata McGraw-Hill, New Delhi,
REF	ERENCES:	
1	Cunningham, W.P. Cooper, T.H. Gorhani, 'Environmen House, Mumbai, 2001.	tal Encyclopedia', Jaico Publ.,
2	Rajagopalan, R, 'Environmental Studies-From Crisis 2005.	to Cure', Oxford University Press

COURSE ARTICULATION MATRIX

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1		2			2							2	2		2
CO2		3			2			2							2
CO3					2					2		2		2	
CO4		2			3			2					2	3	

18EPC306

ELECTROMAGNETIC THEORY

 L
 T
 P
 C

 2
 1
 0
 3

OBJEC	TIVES	:	· · ·	
	• T	o stu	dy the coordinate systems, vector calculus and theorems to ele	ectric and
	m	agnet	tic fields.	
	• T	o con	npare the nature, characteristics, properties and applications of El	ectric and
	M	agne	tic fields with the help of fundamental laws of fields.	
	• T	o inti	roduce voltage, and current using electric fields and Develop t	esistance.
	ca	nacit	ance and inductance of a given electrical component.	,
	• T	o Rel	ate electric and magnetic fields with help of Faraday's Law and N	Maxwell's
	E	juatio	on, and, their applications to electrical machines.	
	• T	o stu	dy Electromagnetic Wave propagation. Poynting Vector and	Poynting
	T	heore	m and Appreciate the significance of electric and magnetic	fields in
	el	ectric	cal engineering	
UNIT I	T	NTR	ODUCTION	9
Sources a	nd effe	nts of	f electromagnetic fields – Vector fields – Different co-ordinate	systems-
vector cal	culus - 0	Gradi	ient Divergence and Curl - Divergence theorem – Stoke's theorem	systems
		LEC		9
Coulomb'	's Law -	- Ele	ctric field intensity – Field due to point and continuous charges	– Gauss's
law and a	pplication	on –	Electric potential – Electric field and equipotential plots – Electric	ic field in
free space	e, condu	ctors	, dielectric - Dielectric polarization – Dielectric strength - Electric	ic field in
multiple of	dielectri	cs –	Boundary conditions, Poisson's and Laplace's equations - Cap	pacitance-
Energy de	ensity.			
UNIT II	I N	IAG	NETOSTATICS	9
Lorentz]	Law of	force	, magnetic field intensity - Biot-Savart Law - Ampere's Law -	Magnetic
field due t	to straig	ht co	nductors, circular loop, infinite sheet of current – Magnetic flux de	ensity (B)
– B in fre	ee space	e, cor	nductor, magnetic materials - Magnetization - Magnetic field ir	n multiple
media –Be	oundary	cond	litions – Scalar and vector potential – Magnetic force – Torque – In	nductance
– Energy	density -	– Ma	gnetic circuits.	
UNIT I	V E	LEC	CTRODYNAMIC FIELDS	9
Faraday's	laws –	indu	ced emf – Transformer and motional EMF – Forces and Energy	y in quasi
stationary	Electro	omag	netic Fields - Maxwell's equations (differential and integral	forms) –
Displacen	nent cur	rent –	- Relation between field theory and circuit theory.	,
UNIT V	E	LEC	CTROMAGNETIC WAVES	9
Electroma	ignetic v	vave	equations – Wave parameters: velocity, intrinsic impedance, pr	opagation
constant_	Waves	in fre	e space lossy and lossless dielectrics conductors – skin denth	Poynting
vector – T	ransmis	sion	lines – Line equations– Input impedances – Standing wave ratio ar	nd power
	1411011110	bioii		
			101AL . 4311	
OUTCON	MES:		After completion of this course, the student will be able to:	
1.	Describ	e the	e coordinate systems, vector calculus and theorems to electric and	magnetic
	fields.			
2.	Compa	re the	e nature, characteristics, properties and applications of Electric and	Magnetic
	fields w	vith th	he help of fundamental laws of fields.	
3.	Explain	volt	age, and current using electric fields and Develop resistance, capacity	itance and
	inducta	nce o	f a given electrical component.	

4.	Relate electric and magnetic fields with help of Faraday's Law and Maxwell's Equation,												
	and, their applications to electrical machines.												
5.	Explain Electromagnetic Wave propagation, Poynting Vector and Poynting Theorem and												
	Appreciate the significance of electric and magnetic fields in electrical engineering												
TEXT BO	DOKS:												
1.	Mathew N. O. Sadiku, "Elements of Electromagnetics", Oxford University press Inc.												
	India Edition, 2014.												
2.	Joseph. A. Edminister, "Theory and Problems of Electromagnetics", 2nd Edition,												
	Schaum Series, Tata McGraw Hill, 1993.												
3.	K.A.Gangadhar,P.M.Ramanthan'ElectromagneticFieldTheory(includingAntennaesand												
	wave propagation)', 16 Edition,KhannaPublications,2008.												
REFERN	ICE:												
1.	Ashutosh Pramanik, "Electromagnetism – Theory and Applications", Prentice-Hall of												
	India Private Limited, New Delhi, 2008.												
2.	William. H. Hayt, "Engineering Electromagnetics", Tata McGraw Hill, 2011												
3.	Kraus and Fleish, "Electromagnetics with Applications", McGraw Hill International												
	Editions, 5 th Edition, 1999.												
4.	Bhag Singh Guruand Hüseyin R. Hiziroglu "Electromagnetic field theory												
	Fundamentals", CambridgeUniversityPress;SecondRevisedEdition,2009.												
5.	S.P.Seth, "Elements of Electromagnetic Fields", Dhanpath Rai & Sons, New Delhi,												
	2001.												

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1		2	2		2			2					2	2	
CO2		2							2	2		2			2
CO3		1			3			2					2		
CO4			2		1							2		2	
CO5		2			2			2						3	

18EPC	C307	ANALOG ELECTRONICS LABORATORY	L	Т	Ρ	С									
			0	0	3	1.5									
OBJE	CTIVES:														
•	To ot	btain accurately the characteristics of electronic devices (I	Diode	es, I	BJT	, and									
	MOSI	FET), oscillators and voltage regulators independently.													
•	To c	onstruct accurately wave shaping circuits for the give	en s	pec	ifica	itions									
		train accurately the frequency response of various amplifie	re u	vith	diff	erent									
•	config	urations based on BIT and FET independently	15 W	1111	um	cicit									
LIST	LIST OF EXPERIMENTS:														
1 Char	octeristics of P	N diode and Zener diode													
2. Diod	e Clippers and	Clampers.													
3. Singl	e phase half w	ave and full wave rectifiers.													
4. Chara	acteristics of V	oltage Regulators.													
5. Chara	acteristics of T	ransistor under CE, CC and CB configurations.													
6. Chara	acteristics of F	ET.													
7. Chara	acteristics of N	IOSFET.													
8. Chara	acteristics of U	IJT.													
9. Frequ	ency response	e of Common Emitter Amplifier.													
10. Free	uency respons	se of Common Collector Amplifier.													
11. Free	luency response	se of Common Source FET Amplifier.													
12.Desi	gn of RC Phas	e Shift and Wien bridge Oscillators.													
		ΤΟΤΑ	L:4	5 PI	ERI	ODS									
OUTC	COMES:	After completion of this course, the student will be able to:													
1.	Obtain accur	ately the characteristics of electronic devices (Diodes, BJT	, and	ł M	OSI	FET),									
	oscillators ar	d voltage regulators independently.													
2.	Construct ac	curately wave shaping circuits for the given specifications inde	epend	lent	ly.										
3.	Obtain accur	ately the frequency response of various amplifiers with different	ent c	onfi	gura	itions									
	based on BJ7	and FET independently.													

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2					2				2			2		2
CO2		2	2												2
CO3	2									2					2

18EPC308	DC	MACHINES AND TRANSFORM	ERS	L	Τ	P	С
		LABORATORY					
				0	0	4	2
OBJECT	VES:						
•	To draw	v the characteristics of DC Generators and	Motors an	nd de	etern	nine	e the
	losses a	nd efficiency.					
•	To draw	v the equivalent circuit and characteristics	of transfo	rme	rs an	d	
	determi	ne the losses and efficiency.					
LISTOFE	XPERIM	IENTS:					
1. Study of	starters: 2-p	point, 3-point and 4-point starters.					
2 Open circ	uit and load	l characteristics of DC shunt generator.					
3.Loadchar	cteristicsof	fDCcompoundgenerator with differential an	d cumulat	ive o	conn	ecti	ons
4. Load Tes	t on DC ser	ries generator.					
5. Load test	on DC shu	int and compound motor.					
6.Load test	on DC serie	es motor.					
7.Swinburn	e'stest and	speed control of DC shunt motor.					
8. Hopkinso	n's test on	DC motor –generator set.					
9.Load test	on single-p	hase transformer and three phase transform	ers.				
10.Open cii	cuit and she	ort circuit test on single phase transformer.					
11.Sumpne	s test on s	ingle phase transformers.					
12. Separat	on of no-lo	ad losses in single phase transformer.					
		ENTS FOR A DATCH OF 20 STU	DENTS				
		LENIS FOR A BAICH OF 30 SIU	DENIS				
1. DC Sh	int Motor v	vith Loading Arrangement–3Nos					
2. DC Sn 2. Single	Int Motor C	Loupled with Infee phase Alternator – 1100.					
J. Single	ies Motor y	with Loading Arrangement 1 No					
5 DC col	pound Mo	otor with Loading Arrangement_1No.					
6 Three l	hase Induc	tion Motor with Loading Arrangement-2Nd	าร				
7 Single	Phase Induc	ction Motor with Loading Arrangement -1N	0				
8. DC Sh	int Motor (Coupled With DC Compound Generator -21	Nos				
9. DC Sh	int Motor C	Coupled With DC Shunt Motor –1No.					
10. Tachon	eter -Digit	al/Analog–8Nos					
11. Single	Phase Auto	Transformer–2Nos					
12. Three l	hase Auto	Transformer–1No.					
13. Single	Phase Resis	stive Loading Bank–2Nos					
14. Three l	hase Resist	tive Loading Bank.–2Nos					
15. SPST s	witch-2No	8					
			TOTAI	: 6	0 PH	CRI	ODS
OUTCOM	IES:	After completion of this course, the stude	nt will be	able	to:		
1.	Able to dra	aw the characteristics of DC Generators an	d Motors	and	dete	rmi	ne
	the losses	and efficiency.					
2.	Able to dra	aw the equivalent circuit and characteristic	s of trans	form	ers	and	
	determine	the losses and efficiency.					

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2				2				2			1		2
CO2	2	2				2						2	2		2

18EES309	OBJ	JE	CT OR	IENTI	ED I	PRC)GR	AM	[M]	NG		L	T	Р	С
				LAB	ORA	AT(ORY	7							
		_										0	0	4	2
OBJECTIV	'ES:														
•	To bu	ouil	d softwar	e develo	opme	ent sk	cills u	ising	java	ı prog	rammi	ng fo	r rea	l-woi	ld
	appli	1cat	tions.	1	- 41		4	- f - 1			1		<u> </u>		
•	10 ul	inae vlie	erstand ar	a apply	/ the o	conc	epts	or cl	lasse	s, pac	kages,	inter	Taces	8,	
	To de	yns leve	elon annli	cations	using	o oer	neric	nrog	ram	ming :	and ev	ent h	andli	nσ	
LISTOFEXP	ERIM	IEN	NTS:	cutions	ubilit	5 501	lerre	<u>pro5</u>	Ium						
		1.			F 1		• • •	11 0		1	• .1	1	C 11	•	
1. Develop a J	ava apj	ppli r ng	cation to	generate		ectric	ity bi	II. Ci	reate	e a cla	ss with	the i	tollo' h raa	wing	
type of FB cor	sumer	r nc	o., consum	ler name	e, pre	eviot	18 IIIC	mui	reau	ing, c	irrent	mont	n rea	ung,	
• First 1	00 uni	its .	-Rs 1 ne	r unit											
• 101-20	00 units	<u>s</u> -	$R_{s} = 2.50$	oer unit											
 201 -50 	00 unit	ts -	Rs. 4 per	unit											
• > 501	units -	- R	s. 6 per u	nit											
If the type of t	he EB	co	nnection	is comn	nercia	al, ca	alcula	ate th	e an	nount	to be p	oaid a	s fol	lows:	
• First 10)0 unit	ts -	Rs. 2 per	unit											
• 101-20	0 units	S -	Rs. 4.50]	per unit											
• 201 -50)0 unit	ts -	Rs. 6 per	unit											
• 501 ur	iits - R	Rs.	7 per unit												
2. Develop a ja	ava app	plic	cation to	impleme		urrer	rcy co		rter	n to l		ىزىر م			
distance conv	versa) (verter ((m	eter to k	M mile	INK, es to	,⊏Ur ∖KM	κοια Λanα	d vice	e ve	en io n ersa)	time	conv	erter	(hou	rs
to minutes, se	conds	an	d vice ve	rsa) usii	ng pa	acka	ges.			100)		00110	ontor	(1100	10
3.Develop a j	ava ar	ıppl	lication v	vith Em	nploy	vee c	lass	with	En	np_na	ne, E	mp_i	d, A	ddres	s,
Mail_id, Mobi	le_no a	as	members	. Inherit	t the c	class	es, P	rogra	mm	er, As	sistant	Prof	esso	r,	
Associate Prof	essor a	and	l Professo	or from o	empl	loyee	clas:	s. Ad	ld B	asic P	ay	DE	0.10	<i>с</i> т	ND.
inherited class	es with	n 9	/% of BF	' as DA,	, 10 %	% Of	BP a	S HR	(A, 1	.2% 0	f BP a	s PF, d not	0.1%	5 Of E	SP
4 Design a Ia	unu. O va inte	orfa	ce for AI	SHPS 10 T Stack	k Im	nler	noyed	ts wi his ii	nterf	ace us	uss an	u net rav F	Salai Provi	y. de	
necessarv exce	eption l	hai	ndling in	both the	e imp	leme	entati	ons.		ace u	ing an	lay. I	1000	ue	
5. Write a prog	gram to	o p	erform st	ring ope	eratio	ons u	sing	Array	yLis	t. Wri	te func	tions	for t	he	
following	-	-					-	-							
a. Append - ad	ld at en	nd													
b. Insert – add	at part	rticu	ular index												
c. Search	a start	ta ••	with aircom	lattan											
6 Write a Jave	g starts	ts W Tan	n to creat	e an aber	tract	class	s nam	ned S	han	e that	contai	ns tw	o int	egere	
and an empty	metho	od	named p	rint Are	ea().	Prov	vide	three	e cla	isses	named	Rec	tang	le.	
Triangle and	Circle	su	ch that e	each on	e of	the	class	ses e	exter	nds th	e clas	s Sh	ape.	Each	l
one of the cl	asses c	con	tains only	y the me	ethod	l prin	t Are	ea () 1	that	prints	the are	ea of	the g	given	
shape.						_									
7. Write a Java	a progr	ram	n to imple	ment us	ser de	efine	d exc	eptio	on ha	andlin	g.				

8. Write a Java program that reads a file name from the user, displays information about whether the file exists, whether the file is readable, or writable, the type of file and the length

of the file in bytes.

9. Write a java program that implements a multi-threaded application that has three threads. First thread generates a random integer every 1 second and if the value is even, second thread computes the square of the number and prints. If the value is odd, the third thread will print the value of cube of the number.

10. Write a java program to find the maximum value from the given type of elements using a generic function.

11. Design a calculator using event-driven programming paradigm of Java with the following options.

a) Decimal manipulations b) Scientific manipulations

12. Develop a mini project for any application using Java concept

			TOTAL : 60 PERIODS
OUTCOM	MES:	Upon completion of the course, the	e students will be able to
1.	Develop a	nd implement Java programs for sin	nple applications that make use of
	classes, pao	ckages and interfaces.	
2.	Develop an	nd implement Java programs with an	raylist, exception handling and
	multithread	ling	
3.	Design app	lications using file processing, gene	eric programming and event
	handling.		

COURSE ARTICULATION MATRIX

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1									2			2		
CO2	2									2			2		
CO3		2	2					2						2	

Semester-IV

18EBS401NUMERICAL METHODSLTP010												
			3	1	0	4						
OBJ	ECTIV	ES:										
•	To intro	luce the basic concepts of solving algebraic and transcendental	equa	ation	s.							
	To introc	luce the numerical techniques of interpolation in various interva	als in	ı rea	l life							
•	situation	8										
•	To acqua	int the student with understanding of numerical techniques of d	liffe	renti	ation a	nd						
	Integratio	on which plays an important role in engineering and technology	dise	21p111	nes.							
•	different	al equations	g on	Jinai	ſy							
	To under	stand the knowledge of various techniques and methods of solv	ing	vario	ous typ	es						
• of partial differential equations.												
UNIT I SOLUTION OF EQUATIONS AND EIGENVALUE PROBLEMS 1												
Solut	ion of al	gebraic and transcendental equations - Fixed point iteration	me	thod	– Ne	wton						
Raph	son metho	od – Solution of linear system of equations – Gauss elimination	n me	thod	l – Pive	oting						
– Ga	uss Jordar	method - Iterative methods of Gauss Jacobi and Gauss Seidel	l – E	Eiger	nvalues	of a						
matri	x by Pow	er method and Jacobi's method for symmetric matrices.										
UNI	TI	INTERPOLATION AND APPROXIMATION				12						
Inter	polation v	vith unequal intervals - Lagrange's interpolation - Newton's	div	vided	l differ	ence						
inter	polation –	Cubic Splines – Difference operators and relations – Interp	pola	tion	with e	equal						
interv	intervals – Newton's forward and backward difference formula.											
UNI	тш	NUMERICAL DIFFERENTIATION AND				12						
011		INTEGRATION										
Appr	oximation	of derivatives using interpolation polynomials – Numerica	ul in	itegr	ation i	ising						
Trape	ezoidal, S	impson's 1/3 rule – Romberg's Method – Two point and th	ree	poir	nt Gau	ssian						
quad	rature form	nulae – Evaluation of double integrals by Trapezoidal and Simp	oson	´s 1/	3 rules	•						
UNI	TIV	INITIAL VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL EQUATIONS	Ĺ			12						
Singl	e step me	thods - Taylor's series method - Euler's method - Modified	d Ei	ler's	s meth	od –						
Four	th order F	Runge – Kutta method for solving first order equations – Mu	ulti	step	metho	ds –						
Miln	e's and Ac	lams – Bash forth predictor corrector methods for solving first of	orde	r equ	lations	•						
TINIT	TV	BOUNDARY VALUE PROBLEMS IN ORDINAL	RY	AN	D	12						
UNI	I V	PARTIAL DIFFERENTIAL EQUATIONS				14						
Finite	e differend	e methods for solving second order two point linear boundary	y va	lue p	oroblen	1s –						
Finite	e differen	ce techniques for the solution of two dimensional Laplac	e's	and	Poiss	on's						
equat	tions on re	ectangular domain – One dimensional heat flow equation by ex-	xpli	cit a	nd imp	licit						
(Crar	ik Nichols	on) methods – One dimensional wave equation by explicit methods	hod.	.(0	DEDI							
	FCONT	IUI	AL	:00	rEKI	002						
UU.	Underste	D : After completion of this course, the student will be able to:										
1	1 Understand the basic concepts and techniques of solving algebraic and transcendental equations											
	nanscen											

2	Appreciate the numerical techniques of interpolation and error approximations in
2	various intervals in real life situations.
3	Apply the numerical techniques of differentiation and integration for engineering problems.
4	Understand the knowledge of various techniques and methods for solving first and second
4	order ordinary differential equations.
5	Solve the partial and ordinary differential equations with initial and boundary conditions
5	by using certain techniques with engineering applications.
TEX	XTBOOKS :
1	Burden, R.L and Faires, J.D, "Numerical Analysis", 9 th Edition, Cengage Learning, 2016.
2	Grewal, B.S., and Grewal, J.S., "Numerical Methods in Engineering and Science", Khanna
	Publishers, 10 th Edition, New Delhi, 2015.
REF	FERENCES :
1.	Burden, R.L and Faires, J.D, "Numerical Analysis", 9 th Edition, Cengage Learning, 2016.
2.	Grewal, B.S., and Grewal, J.S., "Numerical Methods in Engineering and Science", Khanna
	Publishers, 10 th Edition, New Delhi, 2015.
3.	Brian Bradie, "A Friendly Introduction to Numerical Analysis", Pearson Education, Asia, New Delhi, 2007.
4.	Gerald. C. F. and Wheatley. P. O., "Applied Numerical Analysis", Pearson Education, Asia, 6 th Edition, New Delhi, 2006
	Mathews I.H. "Numerical Methods for Mathematics. Science and Engineering" 2 nd Edition
5.	Prentice Hall, 1992.
6	Sankara Rao. K., "Numerical Methods for Scientists and Engineers", Prentice Hall of India Pvt.
0.	Ltd, 3 ^{ra} Edition, New Delhi, 2007.
7.	Sastry, S.S, "Introductory Methods of Numerical Analysis", PHI Learning Pvt. Ltd, 5 th Edition,
<i>,</i> .	2015.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2					2						3	2		
CO2	2				1					3					2
CO3						2							2		
CO4	2							2				2			2
CO5					2					2			2		

BEPC402 DIGITAL LOGIC CIRCUITS L T P 2 1 0													
	3												
OBJECTIVES:													
To study various number systems and simplify the logical expressions using													
Boolean functions													
To study combinational circuits													
To design various synchronous and asynchronous circuits													
To introduce asynchronous sequential circuits and PLDs													
• To introduce digital simulation for development of application oriented logic circuits													
UNIT I NUMBER SYSTEMS AND DIGITAL LOGIC FAMILIES 9	9												
Review of number systems, binary codes, error detection and correction codes (Parity an	nd												
Hamming code) - Digital Logic Families - Comparison of RTL, DTL, TTL, ECL and MO)S												
families – Operation, characteristics of digital logic family.													
UNIT II COMBINATIONAL CIRCUITS 9	9												
Combinational logic - Representation of logic functions - SOP and POS forms - K-ma	ap												
representations - Minimization using K maps - Simplification and implementation of	of												
combinational logic - Multiplexers and de multiplexers - Code converters, adders, subtractors	rs,												
Encoders and Decoders.													
UNIT IIISYNCHRONOUS SEQUENTIAL CIRCUITS9	9												
Sequential logic – SR, JK, D and T flip flops – Level triggering and edge triggering – Counters	; —												
Asynchronous and synchronous type - Modulo counters - Shift registers - Design of	of												
synchronous sequential circuits - Moore and Melay models - Counters - State diagram - Stat	ite												
reduction – State assignment.													
UNIT IVASYNCHRONOUS SEQUENTIAL CIRCUITS AND9	9												
PROGRAMMABILITY LOGIC DEVICES													
Asynchronous sequential logic circuits - Transition stability, flow stability - Race conditions	ıs,												
hazards & errors in digital circuits - Analysis of asynchronous sequential logic circuits	_												
Introduction to Programmability Logic Devices: PROM – PLA – PAL – CPLD – FPGA													
UNIT V VHDL 9	9												
RTL Design – Combinational logic – Sequential circuit – Operators – Introduction to Packages	; —												
Subprograms - Test bench. (Simulation / Tutorial Examples: adders, counters, flip flops	os,												
Multiplexers & De multiplexers).													
TOTAL :45 PERIOD)S												
OUTCOMES: After completion of this course, the student will be able to:													
1 Design combinational and sequential Circuits													
2 Illustrate various number systems and simplify the logical expressions using Boolean functions	1												
3 Design various synchronous and asynchronous circuits.													
4 Design asynchronous sequential circuits and PLDs													
5 Simulate digital simulation for development of application oriented logic circuits.													
TEXTBOOKS :													
1 James W. Bignel, Digital Electronics, Cengage learning, 5 th Edition, 2007.													

r	M. Morris Mano, 'Digital Design with an introduction to the VHDL', Pearson Education,
2	2013.
3	Comer "Digital Logic & State Machine Design, Oxford, 2012.
REF	FERENCES :
1	Mandal, "Digital Electronics Principles & Application, McGraw Hill Edu, 2013.
2	William Keitz, "Digital Electronics-A Practical Approach with VHDL", Pearson, 2013.
3	Thomas L.Floyd, "Digital Fundamentals", 11th edition, Pearson Education, 2015.
1	Charles H.Roth, Jr, Lizy Lizy Kurian John, "Digital System Design using VHDL",
4	Cengage, 2013.
5	D.P.Kothari, J.S.Dhillon, "Digital circuits and Design", Pearson Education, 2016.

CO/P	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
0															
CO1			2					2		2			3		2
CO2						2						2			
CO3								2				2		2	
CO4			2			2				2			2		
CO5			2					2				2		2S	

101		SYNCHRONOUS AND ASYNCHRONOUS	-	Т	D							
186	CPC403	MACHINES	L	T	Р	C						
			2	1	0	3						
OB	JECTIV	ES:										
•	To study	Construction and performance of salient and non – salient type	e syn	chro	onous							
	generator	S.										
•	To understand Principle of operation and performance of synchronous motor.											
•	To study Construction, principle of operation and performance of induction machines.											
•	To understand Starting and speed control of three-phase induction motors.											
•	To understand Construction, principle of operation and performance of single phase											
	induction	motors and special machines.										
U	NIT I	THREE PHASE INDUCTION MOTOR	•		1	.09						
Cons	structional	details – Types of rotors – Principle of operation – Slip –cog	gging orau	g an	d crav	vling-						
effici	iency – Lo	ad test - No load and blocked rotor tests - Circle diagram – Se	enara	e – tion	of los	s and						
Dout	ole cage in	duction motors –Induction generators – Synchronous induction	i mo	tor.	01 10.	1505						
U	NIT II	STARTING AND SPEED CONTROL OF THRE	EP	НА	SE	09						
INDUCTION MOTOR												
Need for starting – Types of starters – DOL, Rotor resistance, Autotransformer and Star-delta												
starte	ers – Spee	d control - Voltage control, Frequency control and pole ch	angi	ng -	- Cas	caded						
conn	ection-V/f	control - Slip power recovery scheme-Braking of three pha	se ir	nduc	tion n	notor:						
Plugging, dynamic braking and regenerative braking.												
		SYNCHRONOUS GENERATOR				09						
Cons	structional	details – Types of rotors –winding factors- emf equation – Syn	1chro	onou	is reac	tance						
- Al	ite bus-S	whether a provide the second s	lerau 'han		f evci	tation						
and	mechanica	l input- Voltage regulation – EMF, MMF, ZPF and A S A me	thod	ge 0. s – 9	steady	v state						
pow	er- angle c	haracteristics– Two reaction theory –slip test -short circuit tra	nsie	nts -	Capa	bility						
Curv	/es.				1	2						
UN	NIT IV	SYNCHRONOUS MOTOR				09						
Princ	ciple of op	eration – Torque equation – Operation on infinite bus bars	- V	and	Inver	ted V						
curve	es – Powe	r input and power developed equations - Starting methods	- (Curre	ent lo	ci for						
const	tant powe	r input, constant excitation and constant power developed	-Hui	nting	g – n	atural						
frequ	ency of os	cillations – damper windings- synchronous condenser.				1						
UI	UNIT V SINGLE PHASE INDUCTION MOTORS AND SPECIAL 09 MACHINES											
Constructional details of single phase induction motor - Double field revolving theory and												
oper	ation – Eq	uivalent circuit – No load and blocked rotor test – Performance	e ana	alysi	s - St	arting						
meth	nods of si	ngle-phase induction motors – Capacitor-start capacitor run	n In	duct	10n n	iotor-						
	ied pole il	auction motors - Linear induction motor - Repulsion motor -	Hys	stere	sis m	otor -						
ACS	501105 111010		T •/	15 E	FDT	יסיי 1910						
		IOIA	L ."	7J [003						

OU'	FCOMES: After completion of this course, the student will be able to:
1	Explain the construction and working principle of Synchronous Generator
2	Explain the construction and working principle of Synchronous motor
3	Explain the construction and working principle of Three phase Induction Motor
4	Determine the performance characteristics of Synchronous Machines
5	Explain the construction and working principle of Special Machines
TEX	XTBOOKS :
1	A.E. Fitzgerald, Charles Kingsley, Stephen. D. Umans, "Electric Machinery", Mc Graw Hill publishing Company Ltd, 2003.
2	Vincent Del Toro, "Basic Electric Machines", Pearson India Education, 2016.
3	Stephen J. Chapman, "Electric Machinery Fundamentals", 4 th edition, McGraw Hill Education Pvt. Ltd, 2010.
REI	FERENCES :
1	D.P. Kothari and I.J. Nagrath, "Electric Machines", McGraw Hill Publishing Company Ltd, 2002.
2	P.S. Bhimbhra, "Electrical Machinery", Khanna Publishers, 2003.
3	M.N. Bandyopadhyay, "Electrical Machines Theory and Practice", PHI Learning PVT LTD., New Delhi, 2009.
4	B.R.Gupta, "Fundamental of Electric Machines" New age International Publishers,3 rd Edition ,Reprint 2015.
5	Murugesh Kumar, "Electric Machines", Vikas Publishing House Pvt. Ltd, 2002.
6	Alexander S. Langsdorf, "Theory of Alternating-Current Machinery", McGraw Hill Publications, 2001.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1		2	2					2		2				3	
CO2	2								2				2		
CO3		2	2					2							2
CO4	2		2							2			2		
CO5		2						2					2		

107		LINEAR INTEGRATED CIRCUITS AND	-	T		2					
18E	2PC404	APPLICATIONS	L	Т	Р	С					
			3	0	0	3					
OB	IECTIV	ES:	1								
•	To acqui	re knowledge in IC fabrication procedure.									
•	To analy	se the characteristics of Op-Amp.									
•	To understand the importance of Signal analysis using Op-amp based circuits.										
	To study about Functional blocks and the applications of special ICs like Timers, PLL										
•	• circuits, regulator Circuits.										
•	To under	stand and acquire knowledge on the Applications of Op-amp									
UN	ΙΤΙ	IC FABRICATION				09					
IC cl	assificatio	n – Fundamental of monolithic IC technology – Epitaxial gro	wth	– M	askin	g and					
etchi	ng – Diffu	sion of impurities – Realisation of monolithic ICs and packag	ing -	- Fał	oricati	on of					
diode	es, capacita	ance, resistance, FETs and PV Cell.				00					
UN		CHARACTERISTICS OF OPAMP			o	<u>09</u>					
	I OP-AMP	characteristics – DC characteristics – AC characteristics – Di	iere	ntial	ampl	Iner					
- Fi	rting Amn	if $r = 1$ if $r = 1$ and $r = 1$ and $r = 1$ if $r = $	Ven.	nny a Snye	illu P rters	1011-					
IIN	T III	APPLICATIONS OF OPAMP	• •		1015.	00					
Instr	umentation	amplifier and its applications for transducer Bridge –	Log	and	l Ant	ilog					
Amp	lifiers – A	nalog multiplier & Divider – First and second order active filt	ers -	- Co	mpara	tors					
– Mi	ıltivibrator	s - waveform generators - Clippers - Clampers - Peak detec	tor -	- S/H	l circu	uit –					
D/A	converter	(R- 2R ladder and weighted resistor types) – A/D converters us	ing	op-a	mps.						
UN	T IV	SPECIAL ICs				09					
Func	tional blo	ck and characteristics of 555 Timer - PWM application	– I	C 5	66 vo	oltage					
contr	olled oscil	lator – IC 565-phase locked loop IC – AD633 Analog multipli	er IC	Cs							
UN	TV	APPLICATION ICs				09					
AD6	23 Instrun	nentation Amplifier and its application as load cell weight	mea	sure	ment	– IC					
voltage regulators – LM78XX, LM79XX Fixed voltage regulators its application as Linear power											
supply – LIVIS17, 725 variability voltage regulators – Switching regulator – SMPS – ICL 8038 function generator IC											
OUTCOMES: After completion of this course, the student will be able to:											
1	1 Explain IC fabrication procedure.										
2	2 Analyse the characteristics of Op-Amp.										
3 Analysis of Signal using Op-amp based circuits.											
4 Design of Functional blocks and the applications of special ICs like Timers, PLL circuits,											
regulator Circuits.											
TEVTROOKS ·											
1 David A Bell "On amp & Linear ICs" Oxford 2012											
1	D Roy Choudhary Sheil B Iani "Linear Integrated Circuits" II edition New Age										
2	2003.	incurrently, onen D. sunn, Enneur integrated encurts, in cultion	,		·5~,						
3	Ramakant A.Gayakward, "Op-amps and Linear Integrated Circuits", IV edition, Pearson										

	Education, 2003 / PHI. 2000.						
REI	REFERENCES :						
1	Fiore, "Opamps & Linear Integrated Circuits Concepts & applications", Cengage, 2010.						
2	Floyd, Buchla, "Fundamentals of Analog Circuits, Pearson, 2013.						
3	Jacob Millman, Christos C.Halkias, "Integrated Electronics - Analog and Digital circuits						
	system", McGraw Hill, 2003.						
4	Robert F.Coughlin, Fredrick F. Driscoll, "Op-amp and Linear ICs", Pearson, 6th						
	edition,2012.						
5	Sergio Franco, "Design with Operational Amplifiers and Analog Integrated Circuits", Mc						
	Graw Hill, 2016.						
6	Muhammad H. Rashid, "Micro electronic Circuits – Analysis and Design" Cengage						
	Learning, 2011.						

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2							2				2		
CO2			2			2				1					2
CO3	2												2		
CO4		2					2		3				3		
CO5			2				2								2

18EPC405		TRANSMISSION AND DISTRIBUTION	L	Т	Р	С				
			2	1	0	3				
OBJECTIVES:										
• To study the structure of electric power system and to develop expressions for the computation of transmission line parameters.										
• To det	• To obtain the equivalent circuits for the transmission lines based on distance and to determine voltage regulation and efficiency.									
• To dis	under tributi	stand the mechanical design of transmission lines and to analyzon in insulator strings to improve the efficiency.	ze th	e vo	ltage					
• To study the types, construction of cables and methods to improve the efficiency.										
• To study about distribution systems, types of substations, methods of grounding, EHVAC, HVDC and FACTS.										
UNIT I	-	TRANSMISSION LINE PARAMETERS				09				
Structure	of Po	wer System – Parameters of single and three phase transmissi	on li	ines	with s	single				
and doub	ole cir	cuits - Resistance, inductance and capacitance of solid, str	ande	ed ar	nd bu	ndled				
conducto	rs - Sy	mmetrical and unsymmetrical spacing and transposition – Ap	plica	tion	of sel	lf and				
mutual C	GMD -	- Skin and proximity effects – Typical configurations – C	ondu	ictor	type	s and				
electrical	paran	NODELLING AND DEDEODMANCE OF				00				
UNITI	1	MODELLING AND PERFORMANCE OF				09				
Denfermere		I KANSMISSION LINES	D	·1						
Performa	ince of	Iransmission lines – Short line, medium line and long line –	Equ	ivale	ent cir	cuits,				
and volt	agrain	, attenuation constant, phase constant, surge impedance – That gulation – Real and reactive power flow in lines – Power	ISIIII Cir	cle (liagra	me _				
Formatio	in of C	orona – Critical Voltages – Effect on Line Performance	CII		iiagia	1115				
UNIT I	TI	MECHANICAL DESIGN OF LINES				09				
Mechanio	cal des	ign of OH lines – Line Supports – Types of towers – Stress an	d Sa	g Ca	lcula	tion –				
Effects o	f Win	d and Ice loading. – Insulators: Types – Voltage distribution	in in	sula	tor str	ring –				
Improver	ment o	f string efficiency – Testing of insulators.				C				
UNIT I	V	UNDER GROUND CABLES				09				
Undergro	ound c	ables - Types of cables - Construction of single core ar	nd 3	cor	e cab	les –				
Insulation	n Resi	stance - Potential Gradient - Capacitance of Single-core a	nd 3	s con	e cab	oles –				
Grading	of cabl	es – Power factor and heating of cables – DC cables.				1				
UNIT V	V	DISTRIBUTION SYSTEMS				09				
Distribution Systems - General Aspects - Kelvin's Law - AC and DC distributions -										
Techniques of Voltage Control and Power factor improvement – Distribution Loss –Types of										
Substations – Methods of Grounding – Trends in Transmission and Distribution: EHVAC, HVDC and EACTS (Qualitative treatment only)										
TOTAL -//5 PERIODS										
OUTCOMES: After completion of this course, the student will be able to:										
1 Ex	plain t	be importance and the functioning of transmission line parame	ters							
$\frac{1}{2}$ De	2 Demonstrate the performance of Transmission lines.									
3 Ex	plain t	he importance of distribution of the electric power in power sy	stem	l.						
4 Ide	entify t	he Underground cables								
5 Fai	miliari	se with the function of different components used in Transmiss	sion	and						
Dis	stribut	on levels of power system and Modelling of these components	5.							
ТЕУ	XTBOOKS :									
-----	---									
1	D.P.Kothari, I.J. Nagarath, "Power System Engineering", Mc Graw-Hill Publishing									
2	C.L.Wadhwa, "Electrical Power Systems". New Academic Science Ltd. 2009.									
3	S.N. Singh, "Electric Power Generation, Transmission and Distribution", Prentice Hall of India Pvt. Ltd, New Delhi, Second Edition, 2011.									
REI	FERENCES :									
1	B.R.Gupta, "Power System Analysis and Design", S. Chand, New Delhi, Fifth Edition, 2008.									
2	Luces M.Fualken berry, Walter Coffer, "Electrical Power Distribution and Transmission", Pearson Education, 2007.									
3	Arun Ingole, "Power Transmission and Distribution" Pearson Education, 2017									
4	J.Brian, Hardy and Colin R.Bayliss, "Transmission and Distribution in Electrical Engineering", Newnes; Fourth Edition, 2012.									
5	G.Ramamurthy, "Handbook of Electrical Power Distribution," Universities Press, 2013.									
6	V.K.Mehta, Rohit Mehta, "Principles of Power System", S. Chand & Company Ltd, New Delhi, 2013									

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1		2	2					2		2				3	
CO2	2								2				2		
CO3		2	2					2							2
CO4	2		2							2			2		
CO5		2						2					2		

18F	PC406 MEASUREMENTS AND INSTRUMENTATION	L	Т	Р	С
101		3	0	0	3
OB.	ECTIVES:		1		<u></u>
•	To introduce the basic functional elements of instrumentation				
•	To understand the fundamentals of electrical and electronic instruments				
•	To compare between various measurement techniques				
•	To understand the operation of various storage and display devices				
•	To understand the operation of various transducers and the data acquisition	n sys	stem	S	
UNI	T I INTRODUCTION				09
Func	tional elements of an instrument – Static and dynamic characterist	tics	– I	Error	s in
meas	urement - Statistical evaluation of measurement data - Standards and calib	oratio	on –	Prin	ciple
and t	ypes of analog and digital voltmeters, ammeters.				
UN	T II ELECTRICAL AND ELECTRONIC INSTRUMEN	NTS	5		09
Princ	iple and types of multi meters - Single and three phase watt meters and	l ene	ergy	met	ers –
Mag	netic measurements - Determination of B-H curve and measurement	s of	iro	n lo	ss –
Instr	iment transformers – Instruments for measurement of frequency and phase	•			
UN	T III COMPARATIVE METHODS OF MEASUREMEN	ITS)		09
D.C	potentiometers - D.C (Wheat stone, Kelvin and Kelvin Double bridge	e) –	A.0	C bri	dges
(Max	well, Anderson and Schering bridges) - Transformer ratio bridges - Self-	bala	ncin	g bri	dges
– Int	erference & screening – Multiple earth and earth loops – Electrostatic and	d ele	ectro	mag	netic
Inter	ference – Grounding techniques.				1
UN	T IV STORAGE AND DISPLAY DEVICES				09
Mag	netic disk and tape – Recorders – Digital plotters and printers – CRT displ	ay –	Dig	ital (CRO
– LE	D, LCD & Dot matrix display – TFT&OLED-Data Loggers.				
UNI	T V TRANSDUCERS AND DATA ACQUISITION SY	ST	EM	[S	09
Class	sification of transducers - Selection of transducers - Resistive, capaci	itive	&	indu	ctive
Tran	sducers – Piezoelectric, Hall effect, optical and digital transducers – I	Elen	nents	s of	data
acqu	sition system – Smart sensors – Thermal Imagers.				
	TOTAL	:45	PE	RI)DS
OU'	COMES: After completion of this course, the student will be able to:				
1.	Explain the basic functional elements of instrumentation				
2.	Explain the concepts of Fundamentals of electrical and electronic instrume	ents			
3.	Compare between various measurement techniques				
4.	Explain the operation of various storage and display devices				
5.	Explain the operation of various transducers and the data acquisition syste	ms			
ТЕУ	TBOOKS :				
1	A.K. Sawhney, "A Course in Electrical & Electronic Measurements & Ins Dhanpat Rai and Co, 2010.	trun	nenta	ation	·" ,
2	J. B. Gupta, "A Course in Electronic and Electrical Measurements", S. K. Delhi, 2013.	Kata	aria	& So	ns,
3	Doebelin E.O. and Manik D.N., "Measurement Systems – Applications an Special Indian Edition, McGraw Hill Education Pvt. Ltd., 2007.	nd D	esigi	n",	
REI	ERENCES :				
1	H.S. Kalsi, "Electronic Instrumentation", McGraw Hill. III Edition 2010				

2	D.V.S. Murthy, "Transducers and Instrumentation", Prentice Hall of India Pvt Ltd, 2015.
3	David Bell, "Electronic Instrumentation & Measurements", Oxford University Press, 2013.
4	Martin Reissland, "Electrical Measurements", New Age International (P) Ltd., Delhi, 2001.
5	Alan. S. Morris, "Principles of Measurements and Instrumentation", 2nd Edition, Prentice Hall of India, 2003.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1		2	2					2		2				3	
CO2	2								2				2		
CO3		2						1							2
CO4	2		3							3					3
CO5		2						2					2		

18EPC407

SYNCHRONOUS AND ASYNCHRONOUS MACHINES LABORATORY

) 0	4	1	2				
OB	BJECTIVES:								
	To expose the students to the operation and characteristics of induction								
•	machines								
	To expose the students to the operation and characteristics of synchronous								
٠	machines								
•	To expose the students to the operation of AC starters								
LIS	ST OF EXPERIMENTS								
1.	Load test on three-phase induction motor.								
2.	No load and blocked rotor tests on three-phase induction motor (Determina	ation	of						
6	equivalent circuit parameters).								
3.	Separation of No-load losses of three-phase induction motor.								
4.	Regulation of three phase alternator by EMF and MMF methods.								
5.	Regulation of three phase alternator by ZPF and ASA methods.								
6.	Regulation of three phase salient pole alternator by slip test.								
7.	Measurements of negative sequence and zero sequence impedance of alternators.								
8.	V and Inverted V curves of Three Phase Synchronous Motor.								
9.	Load test on single-phase induction motor.								
10.	No load and blocked rotor test on single-phase induction motor.								
11.	Study of Induction motor Starters.								
	ТОТА	L :6	<u>0 PI</u>	ERI	ODS				
OU	UTCOMES: After completion of this course, the student will be able to:								
1.	Operate the induction machine for various applications								
2.	Operate the synchronous machine for various applications								
3.	Apply the starters for AC induction machines								
LIS	ST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:								
1.	Synchronous Induction motor 3HP – 1 No.								
2.	DC Shunt Motor Coupled With Three phase Alternator – 4 nos								
3.	DC Shunt Motor Coupled With Three phase Slip ring Induction motor -1 N	No.							
4.	Three Phase Induction Motor with Loading Arrangement – 2 nos								
5.	Single Phase Induction Motor with Loading Arrangement – 2 nos								
6.	Tachometer -Digital/Analog – 8 nos								
7.	Single Phase Auto Transformer – 2 nos								
8.	Three Phase Auto Transformer – 3 nos								
9.	Single Phase Resistive Loading Bank – 2 nos								
10.). Three Phase Resistive Loading Bank – 2 nos								

11. Capacitor Bank – 1 No.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1			2		2						2			2	
CO2			3					2			2			2	
CO3	2							2					2		2

LINEAR AND DIGITAL INTEGRATED CIRCUITS LABORATORY

L	Т	Р	С
0	0	3	1.5

OBJECTIVES:

- To design testing and characterizing of circuit behaviour with analog ICs.
- To design testing and characterizing of circuit behaviour with Digital ICs.
- To know the applications of Operational Amplifier
- To know the applications of Digital ICs

LIST OF EXPERIMENTS

- 1. Implementation of Boolean Functions, Adder and Subtractor circuits.
- 2. Code converters: Excess-3 to BCD and Binary to Gray code converter and vice-versa
- 3. Parity generator and parity checking.
- 4. Encoders and Decoders.
- 5. Counters: Design and implementation of 3-bit modulo counters as synchronous and Asynchronous types using FF IC's and specific counter IC.
- 6. Shift Registers: Design and implementation of 4-bit shift registers in SISO, SIPO, PISO, PIPO modes using suitability IC's.
- 7. Timer IC application: Study of NE/SE 555 timer in Astability, Monostability operation.
- 8. Application of Op-Amp: inverting and non-inverting amplifier, Adder, comparator, Integrator Differentiator and Differential Amplifier.
- 9. Voltage to frequency characteristics of NE/ SE 566 IC
- 10. Variability Voltage Regulator using IC LM317.

TOTAL :45 PERIODS

- **OUTCOMES:** After completion of this course, the student will be able to:
- 1 Understand and implement Boolean Functions.
- 2 Understand the importance of code conversion.
- 3 Design and implement 4-bit shift registers
- 4 Acquire knowledge on Application of Op-Amp

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS: (3 per Batch)

- 1. Dual ,(0-30V) variability Power Supply 10 Nos
- 2. CRO 30MHz 9 Nos
- 3. Digital Multimeter 10 Nos
- 4. Function Generator -1 MHz -8 Nos
- 5. IC Tester (Analog) 2 Nos
- 6. Bread board -10 Nos

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2									2		2			3
CO2	2											2			3
CO3		2	3					2						2	
CO4	2									2		2	2	2	

18HSC409

SOFT SKILLS AND PERSONALITY DEVELOPMENT LABORATORY

L	Т	Р	С
0	0	3	1.5

OBJECTIVES

•	To help the students to improve the listening, speaking, reading and writing skills.
•	To make them prepare for national and international examinations and placements.
•	To help them to face the interviews and to improve soft skills.

UNIT I LISTENING AND SPEAKING SKILLS

9

Conversational skills (formal and informal)-making effective presentations using computers, listening/watching debates, documentaries. Listening to lectures, discussions from TV/ Radio/ Podcast.

UNIT II	READING AND WRITING SKILLS	9

Reading different genres of tests ranging from newspapers to creative writing. Writing different types of Applications and complaints- Writing reviews – film appreciation- thesis writing –posture making-advertisement-magazine preparation.

UNIT III ENGLISH FOR NATIONAL AND INTERNATIONAL EXAMINATIONS AND PLACEMENTS

9

9

International English Language Testing System (IELTS) - Test of English as a Foreign Language (TOEFL) - Civil Service (Language related)- Verbal Ability.

UNIT IV SO

SOFTSKILLS

Motivation- emotional intelligence-Multiple intelligences- - career planning -creative and critical thinking.

UNIT V

EMPLOYABILITY AND CORPORATE SKILLS

9

Interview skills – Types of interview, preparation for interview, mock interview. Group Discussion leadership and co-ordination. Time management and effective planning- Stress management – causes and effect-stress relief techniques

		TOTAL	45 PERIODS			
OU	TCOMES:	On completion of this course, students will	be able to			
1	Make present	ations and participate in group discussions.				
2	Take international examinations such as IELTS and TOEFL.					
3	3 Successfully answer questions in interviews.					
4	4 Create postures, advertisements and magazine making which are the parts of writing skills.					

5	Write film – appreciation, book review and Thesis writing which are the part of analytical thinking and creative writing

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
		-													
CO1		3		2	1		3		1	2	2		1	3	
CO2		3		2	1		3		1	2	2		1	3	
CO3		3		2	1		3		1	2	2		1	3	
CO4		3		2	1		3		1	2	2		1	3	
CO5		3		2	1		3		1	2	2		1	3	

Semester-V

18EP	EPC501POWER SYSTEM ANALYSISLTP						
			2	1	0	3	
OBJECTIVES:							
•	• To model the power system under steady state operating condition.						
•	• To apply numerical methods to solve the power flow problem.						
•	• To model and analyse the system under faulted conditions for balanced faults						
•	• To model and analyse the system under faulted conditions for unbalanced faults						
•	• To model and analyse the transient behaviour of power system when it is subjected to a fault						
UNIT I		INTRODUCTION			9		
Need for	system	planning and operational studies - basic components of a	ром	er s	yster	n	
Introduct	ion to re	structuring - Single line diagram – per phase and per unit anal	ysis	– Ge	enera	tor	
- transfor	rmer – ti	ansmission line and load representation for different power	syste	em s	tudie	es	
Primitive	network	- construction of Y-bus using inspection and singular transfor	rmati	ion n	netho	ods	
– z-bus.							
UNIT I	I	POWER FLOW ANALYSIS			9		
Importanc	e of pow	ver flow analysis in planning and operation of power systems - st.	atem	ent o	f pov	ver	
flow problem - classification of buses - development of power flow model in complex variables form -							
iterative s	olution us	sing Gauss-Seidel method - Q-limit check for voltage controlled bu	ises -	- pov	ver fl	ow	
model in p	model in polar form - iterative solution using Newton-Raphson method .						
UNIT III FAULT ANALYSIS – BALANCED FAULTS 9					9		
Importan	ce of sho	ort circuit analysis - assumptions in fault analysis - analysis u	ising	The	veni	n's	
theorem	- Z-bus	building algorithm - fault analysis using Z-bus - compu	tatio	ns o	f sh	ort	
circuit ca	pacity, p	post fault voltage and currents.					
UNIT I	V	FAULT ANALYSIS – UNBALANCED FAULTS			9		
Introduct	ion to	symmetrical components – sequence impedances – seque	ence	circ	uits	of	
synchron	ous mac	hine, transformer and transmission lines - sequence netwo	orks	anal	ysis	of	
single lin	ne to gro	und, line to line and double line to ground faults using Theven	in's t	heor	em a	nd	
Z-bus ma	ıtrix.						
UNIT V	7	STABILITY ANALYSIS			9		
Importan	ce of sta	ability analysis in power system planning and operation -	class	sifica	tion	of	
power sy	power system stability - angle and voltage stability - Single Machine Infinite Bus						
(SMIB)	system:	Development of swing equation - equal area criterion - of	leter	mina	tion	of	
critical c	learing a	ingle and time – solution of swing equation by modified Eu	ller	meth	od a	nd	
Runge-K	Runge-Kutta fourth order method.						
0	TOTAL : 45 PERIODS						
OUTCO	OMES :	After completion of this course, the student will be able to:					
1.	Explain	the power system operation and control.					
2.	Apply t	he various power flow methods for power system optimization	prot	olem	s.		
3.	Analyz	e the balanced faults for various power systems to design protection	ctive	devi	ces.		
4.	Analyz	e the Unbalanced faults for various power systems.					
5.	Analyz	e the stability of single machine and Multi machine infinite bus	syst	em.			

TEXT	BOOKS:
1.	Nagrath I.J. and Kothari D.P., 'Modern Power System Analysis', Tata McGraw-Hill,
	Fourth Edition,2011.
2.	John J. Grainger and W.D. Stevenson Jr., 'Power System Analysis', Tata McGraw-Hill,
	Sixth reprint, 2010.
REFE	RENCES:
1.	Hadi Saadat, 'Power System Analysis', Tata McGraw Hill Education Pvt. Ltd., New
	Delhi, 21st reprint, 2010.
2.	Kundur P., 'Power System Stability and Control, Tata McGraw Hill Education Pvt.
	Ltd., New Delhi, 10th reprint, 2010.
3.	Pai M A, 'Computer Techniques in Power System Analysis', Tata Mc Graw-Hill
	Publishing Company Ltd., New Delhi, Second Edition, 2007.
4.	J. Duncan Glover, Mulukutla S. Sarma, Thomas J. Overbye, 'Power System
	Analysis & Design', Cengage Learning, Fifth Edition, 2012.
5.	P. Venkatesh, B.V. Manikandan, S. Charles Raja, A. Srinivasan, ' Electrical Power
	Systems Analysis, Security and Deregulation', PHI Learning Private Limited, New
	Delhi, 2012.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1		3			2	1					2	1	3		1
CO2	2				2			1			2			3	2
CO3					2				2		1	2		3	1
CO4	2										2	1	3	2	
CO5		3			1			2			1	2	2		1

OBJECTIVES: 2 1 0 3 OBJECTIVES: To understand the use of transfer function models for analysis physical systems and introduce the control system components. To provide adequate knowledge in the time response of systems and steady state error analysis. • To accord basic knowledge in obtaining the open loop and closed-loop frequency responses of systems. To introduce stability analysis and design of compensators • To introduce stability analysis and design of physical systems and study the effect of state feedback UNIT I SYSTEMS AND THEIR REPRESENTATION 9 Basic elements in control systems – Open and closed loop systems – Electrical analogy of mechanical and thermal systems – Transfer function – Synchros – AC and DC servomotors – Block diagram reduction techniques – Signal flow graphs. 9 Time response – Time domain specifications – Types of test input – I and II order system response – Error coefficients – Generalized error series – Steady state error – Root locus construction - Effects of P, PI, PID modes of feedback control –Time response analysis 9 Frequency response – Bode plot – Polar plot – Determination of closed loop response from open loop response - Correlation between frequency domain and time domain specifications - Effect of Lag, lead and lag-lead compensation on frequency response - Analysis 9 UNIT IV STABILITY AND COMPENSATOR DESIGN 9 Characteristics equation – Routh Hurwitz criterion – Nyquist stability criterion - Performance critr
OBJECTIVES: To understand the use of transfer function models for analysis physical systems and introduce the control system components. • To provide adequate knowledge in the time response of systems and steady state error analysis. • To accord basic knowledge in obtaining the open loop and closed–loop frequency responses of systems. • To introduce stability analysis and design of compensators • To introduce state variable representation of physical systems and study the effect of state feedback UNIT I SYSTEMS AND THEIR REPRESENTATION 9 Basic elements in control systems – Open and closed loop systems – Electrical analogy of mechanical and thermal systems – Transfer function – Synchros – AC and DC servomotors – Block diagram reduction techniques – Signal flow graphs. 9 Time response – Time domain specifications – Types of test input – I and II order system response – Error coefficients – Generalized error series – Steady state error – Root locus construction. Effects of P. PI, PID modes of feedback control –Time response analysis 9 Frequency response – Bode plot – Polar plot – Determination of closed loop response from open loop response – Gorrelation between frequency domain and time domain specifications. Effect of Lag, lead and lag-lead networks – Lag/Lead compensator design using bode plots 9 Characteristics equation – Routh Hurwitz criterion – Nyquist stability criterion. Performance criteria – Lag, lead and lag-lead networks – Lag/Lead compensator design using bode plots 9 Charac
• To understand the use of transfer function models for analysis physical systems and introduce the control system components. • To provide adequate knowledge in the time response of systems and steady state error analysis. • To accord basic knowledge in obtaining the open loop and closed–loop frequency responses of systems. • To introduce stability analysis and design of compensators • To introduce state variable representation of physical systems and study the effect of state feedback UNIT I SYSTEMS AND THEIR REPRESENTATION 9 Basic elements in control systems – Open and closed loop systems – Electrical analogy of mechanical and thermal systems – Transfer function – Synchros – AC and DC servomotors – Block diagram reduction techniques – Signal flow graphs. 9 UNIT II TIME RESPONSE 9 Time response – Time domain specifications – Types of test input – I and II order system response – Error coefficients – Generalized error series – Steady state error – Root locus construction- Effects of P, PI, PID modes of feedback control –Time response analysis 9 VINIT II FREQUENCY RESPONSE 9 Prequency response – Bode plot – Polar plot – Determination of closed loop response from open loop response – Correlation between frequency domain and time domain specifications- Effect of Lag, lead and lag-lead networks – Lag/Lead compensator design using bode plots 9 Characteristics equation –
and introduce the control system components. • To provide adequate knowledge in the time response of systems and steady state error analysis. • To accord basic knowledge in obtaining the open loop and closed-loop frequency responses of systems. • To introduce stability analysis and design of compensators • To introduce state variable representation of physical systems and study the effect of state feedback UNIT I SYSTEMS AND THEIR REPRESENTATION 9 Basic elements in control systems – Open and closed loop systems – Electrical analogy of mechanical and thermal systems – Transfer function – Synchros – AC and DC servomotors – Block diagram reduction techniques – Signal flow graphs. 9 Time response – Time domain specifications – Types of test input – I and II order system response – Error coefficients – Generalized error series – Steady state error – Root locus construction-Effects of P, PI, PID modes of feedback control –Time response analysis 9 UNIT II FREQUENCY RESPONSE 9 Frequency response – Bode plot – Polar plot – Determination of closed loop response from open loop response – Correlation between frequency domain and time domain specifications- Effect of Lag, lead and lag-lead networks – Lag/Lead compensator design using bode plots UNIT IV STABLITY AND COMPENSATOR DESIGN 9 Concept of state variables – State models for linear and time invariant Systems – Solution of state and output equation in controllable canonical form – Concepts of co
• To provide adequate knowledge in the time response of systems and steady state error analysis. • To accord basic knowledge in obtaining the open loop and closed-loop frequency responses of systems. • To introduce stability analysis and design of compensators • To introduce state variable representation of physical systems and study the effect of state feedback UNIT I SYSTEMS AND THEIR REPRESENTATION 9 Basic elements in control systems – Open and closed loop systems – Electrical analogy of mechanical and thermal systems – Transfer function – Synchros – AC and DC servomotors – Block diagram reduction techniques – Signal flow graphs. 9 Time response – Time domain specifications – Types of test input – I and II order system response – Error coefficients – Generalized error series – Steady state error – Root locus construction-Effects of P, PI, PID modes of feedback control –Time response analysis 9 Frequency response – Bode plot – Polar plot – Determination of closed loop response from open loop response - Correlation between frequency domain and time domain specifications- Effect of Lag, lead and lag-lead compensation on frequency response- Analysis 9 Characteristics equation – Routh Hurwitz criterion – Nyquist stability criterion- Performance criteria – Lag, lead and lag-lead networks – Lag/Lead compensator design using bode plots 9 Concept of state variables – State models for linear and time invariant Systems – Solution of state and output equation in controllable canonical form – Concepts of controllability and observability – Eff
 error analysis. To accord basic knowledge in obtaining the open loop and closed–loop frequency responses of systems. To introduce stability analysis and design of compensators To introduce state variable representation of physical systems and study the effect of state feedback UNIT I SYSTEMS AND THEIR REPRESENTATION 9 Basic elements in control systems – Open and closed loop systems – Electrical analogy of mechanical and thermal systems – Transfer function – Synchros – AC and DC servomotors – Block diagram reduction techniques – Signal flow graphs. UNIT II TIME RESPONSE 9 Time response – Time domain specifications – Types of test input – I and II order system response – Error coefficients – Generalized error series – Steady state error – Root locus construction- Effects of P, PI, PID modes of feedback control –Time response analysis UNIT III FREQUENCY RESPONSE 9 Frequency response – Bode plot – Polar plot – Determination of closed loop response from open loop response - Correlation between frequency domain and time domain specifications- Effect of Lag, lead and lag-lead compensation on frequency response- Analysis UNIT IV STABILITY AND COMPENSATOR DESIGN 9 Characteristics equation – Routh Hurwitz criterion – Nyquist stability criterion- Performance criteria – Lag, lead and lag-lead networks – Lag/Lead compensator design using bode plots UNIT V STATE VARIABLE ANALYSIS 9 Concept of state variables – State models for linear and time invariant Systems – Solution of state and output equation in controllable canonical form – Concepts of controllability and observability – Effect of state feedback
 To accord basic knowledge in obtaining the open hoop and closed-hoop frequency responses of systems. To introduce stability analysis and design of compensators To introduce state variable representation of physical systems and study the effect of state feedback UNIT I SYSTEMS AND THEIR REPRESENTATION Basic elements in control systems – Open and closed loop systems – Electrical analogy of mechanical and thermal systems – Transfer function – Synchros – AC and DC servomotors – Block diagram reduction techniques – Signal flow graphs. UNIT II TIME RESPONSE Imme response – Time domain specifications – Types of test input – I and II order system response – Error coefficients – Generalized error series – Steady state error – Root locus construction- Effects of P, PI, PID modes of feedback control –Time response analysis UNIT III FREQUENCY RESPONSE Frequency response – Bode plot – Polar plot – Determination of closed loop response from open loop response - Correlation between frequency domain and time domain specifications- Effect of Lag, lead and lag-lead compensation on frequency response - Analysis UNIT IV STABILITY AND COMPENSATOR DESIGN Concept of state variable and therwise – State models for linear and time invariant Systems – Solution of state and output equation in controllable canonical form – Concepts of controllability and observability – Effect of state feedback
Integrate of responses or systems. To introduce stability analysis and design of compensators To introduce state variable representation of physical systems and study the effect of state feedback UNIT I SYSTEMS AND THEIR REPRESENTATION 9 Basic elements in control systems – Open and closed loop systems – Electrical analogy of mechanical and thermal systems – Transfer function – Synchros – AC and DC servomotors – Block diagram reduction techniques – Signal flow graphs. 9 UNIT II TIME RESPONSE 9 Time response – Time domain specifications – Types of test input – I and II order system response – Error coefficients – Generalized error series – Steady state error – Root locus construction- Effects of P, PI, PID modes of feedback control –Time response analysis 9 Frequency response – Bode plot – Polar plot – Determination of closed loop response from open loop response - Correlation between frequency domain and time domain specifications- Effect of Lag, lead and lag-lead compensation on frequency response - Analysis 9 UNIT IV STABILITY AND COMPENSATOR DESIGN 9 Characteristics equation – Routh Hurwitz criterion – Nyquist stability criterion- Performance criteria – Lag, lead and lag-lead networks – Lag/Lead compensator design using bode plots 9 UNIT V STATE VARIABLE ANALYSIS 9 Concept of state variables – State models for linear and time invariant Systems – Solution of state and output equation in controllable canonical form – Concepts of controll
To introduce state variable representation of physical systems and study the effect of state feedback UNIT I SYSTEMS AND THEIR REPRESENTATION 9 Basic elements in control systems – Open and closed loop systems – Electrical analogy of mechanical and thermal systems – Transfer function – Synchros – AC and DC servomotors – Block diagram reduction techniques – Signal flow graphs. 9 UNIT II TIME RESPONSE 9 Time response – Time domain specifications – Types of test input – I and II order system response – Error coefficients – Generalized error series – Steady state error – Root locus construction- Effects of P, PI, PID modes of feedback control –Time response analysis 9 Frequency response – Bode plot – Polar plot – Determination of closed loop response from open loop response – Correlation between frequency domain and time domain specifications- Effect of Lag, lead and lag-lead compensation on frequency response- Analysis 9 UNIT IV STABILITY AND COMPENSATOR DESIGN 9 Characteristics equation – Routh Hurwitz criterion – Nyquist stability criterion- Performance criteria – Lag, lead and lag-lead networks – Lag/Lead compensator design using bode plots 9 UNIT V STATE VARIABLE ANALYSIS 9 Concept of state variables – State models for linear and time invariant Systems – Solution of state and output equation in controllable canonical form – Concepts of controllability and observability – Effect of state feedback
International of the production of physical optical optic optical optical optical optical optical optical optic
UNIT ISYSTEMS AND THEIR REPRESENTATION9Basic elements in control systems – Open and closed loop systems – Electrical analogy of mechanical and thermal systems – Transfer function – Synchros – AC and DC servomotors – Block diagram reduction techniques – Signal flow graphs.9UNIT IITIME RESPONSE9Time response – Time domain specifications – Types of test input – I and II order system response – Error coefficients – Generalized error series – Steady state error – Root locus construction- Effects of P, PI, PID modes of feedback control –Time response analysis9UNIT IIIFREQUENCY RESPONSE9Frequency response – Bode plot – Polar plot – Determination of closed loop response from open loop response - Correlation between frequency domain and time domain specifications- Effect of Lag, lead and lag-lead compensation on frequency response- Analysis9UNIT IVSTABILITY AND COMPENSATOR DESIGN9Characteristics equation – Routh Hurwitz criterion – Nyquist stability criterion- Performance criteria – Lag, lead and lag-lead networks – Lag/Lead compensator design using bode plots9UNIT VSTATE VARIABLE ANALYSIS9Concept of state variables – State models for linear and time invariant Systems – Solution of state and output equation in controllable canonical form – Concepts of controllability and observability – Effect of state feedback9
Basic elements in control systems – Open and closed loop systems – Electrical analogy of mechanical and thermal systems – Transfer function – Synchros – AC and DC servomotors – Block diagram reduction techniques – Signal flow graphs. Image: Signal flow graphs. UNIT II TIME RESPONSE 9 Time response – Time domain specifications – Types of test input – I and II order system response – Error coefficients – Generalized error series – Steady state error – Root locus construction- Effects of P, PI, PID modes of feedback control –Time response analysis 9 Frequency response – Bode plot – Polar plot – Determination of closed loop response from open loop response - Correlation between frequency domain and time domain specifications- Effect of Lag, lead and lag-lead compensation on frequency response- Analysis 9 UNIT IV STABILITY AND COMPENSATOR DESIGN 9 Characteristics equation – Routh Hurwitz criterion – Nyquist stability criterion- Performance criteria – Lag, lead and lag-lead networks – Lag/Lead compensator design using bode plots 9 UNIT V STATE VARIABLE ANALYSIS 9 Concept of state variables – State models for linear and time invariant Systems – Solution of state and output equation in controllable canonical form – Concepts of controllability and observability – Effect of state feedback 9
of mechanical and thermal systems – Transfer function – Synchros – AC and DC servomotors – Block diagram reduction techniques – Signal flow graphs. UNIT II TIME RESPONSE 9 Time response – Time domain specifications – Types of test input – I and II order system response – Error coefficients – Generalized error series – Steady state error – Root locus construction-Effects of P, PI, PID modes of feedback control –Time response analysis UNIT III FREQUENCY RESPONSE 9 Frequency response – Bode plot – Polar plot – Determination of closed loop response from open loop response - Correlation between frequency domain and time domain specifications- Effect of Lag, lead and lag-lead compensation on frequency response- Analysis UNIT IV STABILITY AND COMPENSATOR DESIGN 9 Characteristics equation – Routh Hurwitz criterion – Nyquist stability criterion- Performance criteria – Lag, lead and lag-lead networks – Lag/Lead compensator design using bode plots UNIT V STATE VARIABLE ANALYSIS 9 Concept of state variables – State models for linear and time invariant Systems – Solution of state and output equation in controllable canonical form – Concepts of controllability and observability – Effect of state feedback
Block diagram reduction techniques – Signal flow graphs. 9 UNIT II TIME RESPONSE 9 Time response – Time domain specifications – Types of test input – I and II order system response – Error coefficients – Generalized error series – Steady state error – Root locus construction- Effects of P, PI, PID modes of feedback control –Time response analysis 9 UNIT III FREQUENCY RESPONSE 9 Frequency response – Bode plot – Polar plot – Determination of closed loop response from open loop response - Correlation between frequency domain and time domain specifications- Effect of Lag, lead and lag-lead compensation on frequency response- Analysis UNIT IV STABILITY AND COMPENSATOR DESIGN 9 Characteristics equation – Routh Hurwitz criterion – Nyquist stability criterion- Performance criteria – Lag, lead and lag-lead networks – Lag/Lead compensator design using bode plots 9 UNIT V STATE VARIABLE ANALYSIS 9 Concept of state variables – State models for linear and time invariant Systems – Solution of state and output equation in controllable canonical form – Concepts of controllability and observability – Effect of state feedback
UNIT IITIME RESPONSE9Time response - Time domain specifications - Types of test input - I and II order system response - Error coefficients - Generalized error series - Steady state error - Root locus construction- Effects of P, PI, PID modes of feedback control -Time response analysis9UNIT IIIFREQUENCY RESPONSE9Frequency response - Bode plot - Polar plot - Determination of closed loop response from open loop response - Correlation between frequency domain and time domain specifications- Effect of Lag, lead and lag-lead compensation on frequency response- Analysis9UNIT IVSTABILITY AND COMPENSATOR DESIGN9Characteristics equation - Routh Hurwitz criterion - Nyquist stability criterion- Performance criteria - Lag, lead and lag-lead networks - Lag/Lead compensator design using bode plots9UNIT VSTATE VARIABLE ANALYSIS9Concept of state variables - State models for linear and time invariant Systems - Solution of state and output equation in controllable canonical form - Concepts of controllability and observability - Effect of state feedbackTOTEAL + 45 DEDIODE
Time response – Time domain specifications – Types of test input – 1 and II order system response – Error coefficients – Generalized error series – Steady state error – Root locus construction- Effects of P, PI, PID modes of feedback control –Time response analysis UNIT III FREQUENCY RESPONSE 9 Frequency response – Bode plot – Polar plot – Determination of closed loop response from open loop response - Correlation between frequency domain and time domain specifications- Effect of Lag, lead and lag-lead compensation on frequency response- Analysis UNIT IV STABILITY AND COMPENSATOR DESIGN 9 Characteristics equation – Routh Hurwitz criterion – Nyquist stability criterion- Performance criteria – Lag, lead and lag-lead networks – Lag/Lead compensator design using bode plots UNIT V STATE VARIABLE ANALYSIS 9 Concept of state variables – State models for linear and time invariant Systems – Solution of state and output equation in controllable canonical form – Concepts of controllability and observability – Effect of state feedback
response – Error coefficients – Generalized error series – Steady state error – Root locus construction- Effects of P, PI, PID modes of feedback control –Time response analysis 9 VNIT III FREQUENCY RESPONSE 9 Frequency response – Bode plot – Polar plot – Determination of closed loop response from open loop response - Correlation between frequency domain and time domain specifications- Effect of Lag, lead and lag-lead compensation on frequency response- Analysis 9 UNIT IV STABILITY AND COMPENSATOR DESIGN 9 Characteristics equation – Routh Hurwitz criterion – Nyquist stability criterion- Performance criteria – Lag, lead and lag-lead networks – Lag/Lead compensator design using bode plots 9 UNIT V STATE VARIABLE ANALYSIS 9 Concept of state variables – State models for linear and time invariant Systems – Solution of state and output equation in controllable canonical form – Concepts of controllability and observability – Effect of state feedback
UNIT III FREQUENCY RESPONSE 9 Frequency response – Bode plot – Polar plot – Determination of closed loop response from open loop response - Correlation between frequency domain and time domain specifications- Effect of Lag, lead and lag-lead compensation on frequency response- Analysis 9 UNIT IV STABILITY AND COMPENSATOR DESIGN 9 Characteristics equation – Routh Hurwitz criterion – Nyquist stability criterion- Performance criteria – Lag, lead and lag-lead networks – Lag/Lead compensator design using bode plots 9 UNIT V STATE VARIABLE ANALYSIS 9 Concept of state variables – State models for linear and time invariant Systems – Solution of state and output equation in controllable canonical form – Concepts of controllability and observability – Effect of state feedback
Frequency response – Bode plot – Polar plot – Determination of closed loop response from open loop response - Correlation between frequency domain and time domain specifications- Effect of Lag, lead and lag-lead compensation on frequency response- Analysis UNIT IV STABILITY AND COMPENSATOR DESIGN 9 Characteristics equation – Routh Hurwitz criterion – Nyquist stability criterion- Performance criteria – Lag, lead and lag-lead networks – Lag/Lead compensator design using bode plots 9 UNIT V STATE VARIABLE ANALYSIS 9 Concept of state variables – State models for linear and time invariant Systems – Solution of state and output equation in controllable canonical form – Concepts of controllability and observability – Effect of state feedback 5
Intequency response Bode plot Form plot Determination of closed loop response from open loop response Correlation between frequency domain and time domain specifications- Effect of Lag, lead and lag-lead compensation on frequency response- Analysis 9 Characteristics equation – Routh Hurwitz criterion – Nyquist stability criterion- Performance 9 Characteristics equation – Routh Hurwitz criterion – Nyquist stability criterion- Performance 9 UNIT V STATE VARIABLE ANALYSIS 9 Concept of state variables – State models for linear and time invariant Systems – Solution of state and output equation in controllable canonical form – Concepts of controllability and observability – Effect of state feedback TOTAL + 45 DEDLODE
Lag, lead and lag-lead compensation on frequency response- Analysis UNIT IV STABILITY AND COMPENSATOR DESIGN 9 Characteristics equation – Routh Hurwitz criterion – Nyquist stability criterion- Performance criteria – Lag, lead and lag-lead networks – Lag/Lead compensator design using bode plots UNIT V STATE VARIABLE ANALYSIS 9 Concept of state variables – State models for linear and time invariant Systems – Solution of state and output equation in controllable canonical form – Concepts of controllability and observability – Effect of state feedback
UNIT IV STABILITY AND COMPENSATOR DESIGN 9 Characteristics equation – Routh Hurwitz criterion – Nyquist stability criterion- Performance criteria – Lag, lead and lag-lead networks – Lag/Lead compensator design using bode plots 9 UNIT V STATE VARIABLE ANALYSIS 9 Concept of state variables – State models for linear and time invariant Systems – Solution of state and output equation in controllable canonical form – Concepts of controllability and observability – Effect of state feedback 9
Characteristics equation – Routh Hurwitz criterion – Nyquist stability criterion - Performance criteria – Lag, lead and lag-lead networks – Lag/Lead compensator design using bode plots UNIT V STATE VARIABLE ANALYSIS 9 Concept of state variables – State models for linear and time invariant Systems – Solution of state and output equation in controllable canonical form – Concepts of controllability and observability – Effect of state feedback
Criteria – Lag, lead and lag-lead networks – Lag/Lead compensator design using bode plots UNIT V STATE VARIABLE ANALYSIS 9 Concept of state variables – State models for linear and time invariant Systems – Solution of state and output equation in controllable canonical form – Concepts of controllability and observability – Effect of state feedback TOTAL + 45 DEDLODE
UNIT V STATE VARIABLE ANALYSIS 9 Concept of state variables – State models for linear and time invariant Systems – Solution of state and output equation in controllable canonical form – Concepts of controllability and observability – Effect of state feedback 9
Concept of state variables – State models for linear and time invariant Systems – Solution of state and output equation in controllable canonical form – Concepts of controllability and observability – Effect of state feedback
state and output equation in controllable canonical form – Concepts of controllability and observability – Effect of state feedback
observability – Effect of state feedback
IUIAL: 45 PERIODS
OUTCOMES: After completion of this course, the student will be able to:
1 Apply basic science, circuit theory, theory control theory
Apply Signal processing to electrical engineering problems
2. Demonstrate time response and Effects of P, PI, PID controllers.
3. Demonstrate frequency response, stability and compensator design.
4 Analyse the state variable of the linear and time invariant Systems.
5 Analyse the concept of state variables, controllability and observerbility
TEXT BOOKS:
^{1.} I.J.Nagrath and M. Gopal, 'Control Systems Engineering', 6 th Edition, New Age
International Publishers, 2018

REFE	RENCES:
1.	Arthur, G.O.Mutambara, Design and Analysis of Control; Systems, CRC Press, 2009
2.	S.K.Bhattacharya, Control System Engineering, 3 rd Edition, Pearson, 2013.
3.	Benjamin C. Kuo, Automatic Control systems, 7th Edition, PHI, 2010.
4.	Dhanesh. N. Manik, Control System, Cengage Learning, 2012.
5.	K. Ogata, 'Modern Control Engineering', 5th edition, PHI, 2012

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2				2						1	2	3		1
CO2															
CO3			3			2			1		2		2	3	
CO4	2	3			1			3				2	3		1
CO5		3	2					2			1	2	2	1	

18EP	C 503	MICROPROCESSORS, MICROCONTROLLERS AND	L	Т	Р	С			
_		APPLICATIONS				_			
			2	1	0	3			
OBJEC	TIVES	:							
•	To stue	ly the Architecture of uP8085 & uC 8051							
•	• To study the addressing modes & instruction set of 8085 & 8051								
•	To intr	oduce the need & use of Interrupt structure 8085 & 8051.							
• To develop skill in simple applications development with programming 8085 & 805									
•	To intr	oduce commonly used peripheral / interfacing	-						
UNIT I	I	NTRODUCTION TO MICROPROCESSORS			9				
Hardware	e Archited	cture pin outs - Signals – Memory interfacing – I/O ports and o	data	trans	fer				
concepts-	- Timing	Diagram – Interrupt structure. Introduction to 8086 processor	(Arc	hited	ture				
and mode	es of oper	ation only).							
UNIT I	I I	PROGRAMMING OF 8085 PROCESSOR			9				
Instructio	n format	and addressing modes - Assembly language format - Data tra	nsfe	r, da	ta				
manipula	tion& con	ntrol instructions – Programming: Loop structure with countin	ıg &	Inde	xing	-			
Lookup ta	able - Sul	broutine instructions - stack.			0				
UNITI	<u> </u>	3051 MICRO CONTROLLER			9				
Functiona	al block d	liagram - Instruction format and addressing modes – Timing D	Diagra	am I	nterr	ıpt			
structure	– Timer -	-I/O ports – Serial communication.							
UNIT I	V I	PERIPHERAL INTERFACING-8051			9				
Study of .	Architect	ure and programming of ICs: 8255 PPI, 8259 PIC, 8251 USA	RT, 8	3279	Key				
board dis	play cont	roller and 8253 Timer/ Counter-A/D and D/A converter interf	acing	g, int	erfac	ing			
with LCE	D, digital	IOs, keypad and memory.							
UNIT V	/ I	MICRO CONTROLLER PROGRAMMING AND		9					
	A	APPLICATIONS							
Data Trai	nsfer, Ma	nipulation, Control & I/O instructions – Simple programming	exer	cises	key				
board and	l display	interface – Design of PID controller - Closed loop control of s	ervo	mot	or -				
Stepper n	notor con	trol - Washing Machine Control.				DC			
			: 45	PE	KIO	DS			
OUTCO	<u>DMES</u> :	After completion of this course, the student will be able to:							
1.	Explain	the architecture of Microprocessors and its blocks.							
2.	Demons	trate the program for various functions using 8085 processor.	6.0	0 = 1					
3.	Explain	the architecture, Program structure, and peripheral interfacing	of 8	051					
1	A nnly th	antioners.							
4. 5	Apply u	and the micro controller programming and emplications.							
J. TEVT		and the intero controller programming and applications							
	Pomoch (); Gaankar (Miaranraassar Architectura Dragramming and Applicati	on' (יםפ					
1.	Publisher	s 2011.	011 , v	203					

2.	B.Ram, "Fundamentals of Microprocessor and Microcontrollers", Dhanpat Rai
	Publications, 2015
3.	Senthilkumar N. and Saravanan M. "Microprocessor and Microcontrollers", Oxford
	University Press, 2011
REFE	RENCES:
1.	Ankaj Gupta "Microcontroller and Embedded System" S.K.Kataria and Sons
	Publishers 2013
2.	Muhammad Ali Mazidi & Janice GilliMazidi, R.D.Kinely "The 8051 Micro Controller
	and Embedded Systems" (Using Assembly Language and C), PHI Pearson Education,
	2011
3.	The 8088 & 8086 Microprocessors, Walter A Tribal & Avtar Singh, Pearson, 200
4.	Singh B.P., Renu Singh "Advanced Microprocessors and Microcontrollers", New Age
	International Private Limited, 2009.
5.	Krishna Kant "Microprocessor and Microcontrollers" Eastern Company Edition,
	Prentice – Hall of India, New Delhi, 2007

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2							2	1	1			2	1	
CO2						2		3			1		3		1
CO3				3				2			1	2	2	1	
CO4								3			2	1	3	2	
CO5		1						3			2	1		2	1

18EHS	504	PRINCIPLES OF MANAGEMENT	L	Τ	P	C						
			3	0	0	3						
OBJEC	FIVES	:										
•	To en	able the students to study the evolution of Management.										
●	To stu	dy the functions and principles of Planning										
●	To stu	dy the functions and principles of Organising										
●	To stu	dy the functions and principles of Directing										
•	To stu	dy the functions and principles of Controlling										
UNIT I]	INTRODUCTION TO MANAGEMENT AND			9							
	(ORGANIZATIONS										
Definition	of M	anagement – Science or Art – Manager Vs Entrepren	leur	- ty	/pes	of						
managers	- mana	agerial roles and skills - Evolution of Management - S	cient	ific,	hun	nan						
relations,	system	and contingency approaches - Types of Business orga	nizat	ion	- S	ole						
proprietors	ship, p	artnership, company-public and private sector enterprises	- (Orgai	nizat	ion						
culture and Environment – Current trends and issues in Management.												
UNIT II PLANNING 9												
Nature and purpose of planning – planning process – types of planning – objectives –												
setting objectives – policies – Planning premises – Strategic Management – Planning Tools and												
Techniques – Decision making steps and process.												
UNIT II		DRGANISING			9							
Nature and purpose – Formal and informal organization – organization chart – organization												
structure – types – Line and staff authority – departmentalization – delegation of authority –												
Dianning		itment selection Training and Development Derformance			- I	лк +						
Career pla	nning ar	d management		mage	emen	ι,						
					0							
Eoundatio	ns of i	DIRECTING	tion	tho	9 orios							
motivation	ns or r	i_{i} i and i_{i} i and i_{i} i and i_{i} and i_{i} and i_{i} i and i_{i} a	anon s ano	uic 1 the	ories	of						
leadershin	-comn	nques job satisfaction job enferment readership type	s and	n – e	ffect	ive						
communic	ation –	communication and IT.	cutio		11000							
UNIT V		CONTROLLING			9							
System a	nd proc	ess of controlling – budgetary and non-budgetary contr	ol te	echni	ques	_						
use of co	mputers	and IT in Management control - Productivity problems and	d ma	inage	emen	t –						
control and	d perfor	mance – direct and preventive control – reporting.		-								
		TOTAL :	: 45	PEI	RIO	DS						
OUTCO	MES:	After completion of the course, students will be able to:										
1.	Explain	the evolution of Management.										
2.	Explain	the functions and principles of Planning										
3.	Explain	the functions and principles of Organising										
4.	Explain	the functions and principles of Directing										
5.	Explain	the functions and principles of Controlling										
TEXT B	<u>OOK</u>	S:										
1.	Stepher	n P. Robbins & Mary Coulter, "Management", Prentice Hall	(Ind	ia) F	vt.							
	Ltd., 10	J ^m Edition,2009										

2.	JAF Stoner, Freeman R.E and Daniel R Gilbert "Management", Pearson Education,											
	6th Edition, 2004											
REFE	REFERENCES:											
1.	Stephen A. Robbins & David A. Decenzo & Mary Coulter, "Fundamentals of											
	Management" Pearson Education, 7th Edition, 2011.											
2.	Robert Kreitner & Mamata Mohapatra, "Management", Biztantra, 2008.											
3.	Harold Koontz & Heinz Weihrich "Essentials of Management" Tata McGraw											
	<i>Hill,1998.</i>											
4.	Tripathy PC & Reddy PN, "Principles of Management", Tata Mcgraw Hill, 1999.											

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1				3		2	1			2			1	3	
CO2			3				2		2	1			2	1	
CO3			3			2			1				2		1
CO4				1					2		2		3		1
CO5			3			2					1	2		2	3

18EPC507

CONTROL AND INSTRUMENTATION LABORATORY

L	Т	P	С
0	0	3	1.5

OBJECTIVES:

•	To analysis and design of controllers, stability
•	To design and test the various electrical parameters
•	To design the different types Compensators and Modelling of Systems

LISTOFEXPERIMENTS

CONTROL SYSTEM

- 1. P, PI and PID controllers
- 2. Stability Analysis
- 3. Modelling of Systems Machines, Sensors and Transducers (TF &SS Analysis)
- 4. Design of Lag, Lead and Lag-Lead Compensators
- 5. Position Control Systems
- 6. Synchro-Transmitter- Receiver and Characteristics
- 7. Simulation of Control Systems by Mathematical development tools.
- 8. Process Simulation.

INSTRUMENTATION:

- 9. Bridge Networks –AC and DC Bridges
- 10. Dynamics of Sensors/Transducers
 - a. Temperature
 - b. Pressure
 - c. Displacement
 - d. optical
 - e. Strain
 - f. Flow
- 11. Power and Energy Measurement
- 12. Signal Conditioning
 - a. Instrumentation Amplifier
 - b. Analog Digital and Digital –Analog converters (ADC and DACs)

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

CONTROL SYSTEMS:

1.	PID kit – 1 No. DSO – 1 No.											
	CRO Probe – 2 nos											
2.	Personal computers											
3.	DC motor – 1 No.											
	Generator – 1 No. Rheostats – 2 nos											
	Ammeters Voltmeters											
	Connecting wires (3/20)											
4.	CRO 30MHz - 1 No.											
~	2MHz Function Generator – INo.											
5.	ΔC Synchro, transmitter & receiver $= 1$ No.											
6.	AC Synchro transmitter& receiver – 1No.											
	Digital multi meters											
INS	STRUMENTATION:											
7.	R, L, C Bridge kit (with manual)											
8.	a) Electric heater – 1No.											
	Thermometer – 1No.Thermistor (silicon type) RTD nickel type – 1No.											
	b) 30 psi Pressure chamber (complete set) – 1No. Current generator $(0 - 20mA)$											
	Air foot pump -1 No. (with necessary connecting tubes)											
	c) LVDT20mm core length movable type – 1No. CRO 30MHz – 1No.											
	d) Optical sensor – 1 No. Light source											
	e) Strain Gauge Kit with Handy lever beam – 1No.											
	100gm weights – 10 nos											
	f) Flow measurement Trainer kit – 1 No.											
	(1/2 HP Motor, Water tank, Digital Milliammeter, complete set)											
9.	Single phase Auto transformer – 1No.											
	Watthour meter (energy meter) – 1No. Ammeter											
	Voltmeter Rheostat Stop watch											
	Connecting wires (3/20)											
10.	IC Transistor kit – 1No.											
	TOTAL:45 PERIODS											
OUT	COMES: After successful completion of the course students able to											
1.	Analysis and design of controllers, stability											
2.	Design and test the various electrical parameters											
3.	Design the different types Compensators and Modelling of Systems											

Design and study the various controllers

4.

Simulate and analyse the various graphical methods in time and frequency response

COURSE ARTICULATION MATRIX

5.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
001		2			2						1	2	1		2
COI		3			2						1	2	1		3
CO2					2			2			1	2	2	3	
CO3		3			2						2	1		1	3
CO4		1	3		2							2	3		1
CO5		1	2		2							2	2		1

1-Low, 2-Moderate (Medium), 3-High

92

18EPC508

MICROPROCESSORS, MICROCONTROLLERS AND APPLICATIONS LABORATORY

L T P C

OBJECTIVES:

•	To provide training on programming of microprocessors and microcontrollers and understand the interface requirements.
	To study the analytic strugg and addressing modes of 2025 & 2051

- To study the architecture and addressing modes of 8085 & 8051
 - To study the need and use of Interrupt structure 8085 & 8051.
- To apply the 8085 microprocessor for various applications
- To apply the 8051 microcontroller for various applications

LISTOFEXPERIMENTS

1. Simple arithmetic operations: addition / subtraction / multiplication / division.

- 2. Programming with control instructions:
 - (i) Ascending / Descending order, Maximum / Minimum of numbers
 - (ii) Programs using Rotate instructions
 - (iii) Hex / ASCII / BCD code conversions.
- 3. Interface Experiments: with 8085
 - (i) A/D Interfacing. & D/A Interfacing.
- 4. Traffic light controller.
- 5. I/O Port / Serial communication
- 6. Programming Practices with Simulators/Emulators/open source
- 7. Read a key ,interface display
- 8. Demonstration of basic instructions with 8051 Micro controller execution,

including: (i) Conditional jumps, looping

(ii) Calling subroutines.

- 9..Programming I/O Port 8051
 - (i) study on interface with A/D & D/A
 - (ii) study on interface with DC & AC motor .
- 10. Mini project development with processors.

LISTOFEQUIPMENTFORABATCHOF30STUDENTS:

Sl.No.	Description of Equipment	Quantity required
1.	8085 Microprocessor Trainer with Power Supply	15
2.	8051 Micro Controller Trainer Kit with power supply	15
3.	8255 Interface board	5
4.	8251 Interface board	5
5.	8259 Interface board	5
6.	8279 Keyboard / Display Interface board	5
7.	8254 timer counter	5

8	. AI	DC and DAC card	5									
9	. AC	C & DC motor with Controller	5									
1	0. Tra	affic Light Control System	5									
			TOTAL:45 PERIODS									
OUTC	COMES:	After successful completion of the course	students able to									
1.	Write the program for various functions using 8085 microprocessor.											
2.	Write the pr	rogram for various functions using 8085 m	icroprocessor.									
3.	Use of Interrupt structure 8085 & 8051											
4.	Apply the 8	Apply the 8085 microprocessor for various applications										
5.	Apply the 8	8051 microcontroller for various application	ons									

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1		3			2			2			1	1		2	1
CO2		2	1		2						2	1	3	2	
CO3		3			1			2			2	1		3	1
CO4		2	1		2			1			2	1	3	1	
CO5		2	3								2	1		2	3

18EPF	R509	PROJECT I	L	Т	Р	С							
			0	0	3	1.5							
OBJE	CTIVE	ES											
•	To profess	Fo provide opportunity to explore a problem or issue of particular personal or professional interest.											
•	To add directi	To address the problem or issue through focused study and applied research under the direction of a faculty member.											
•	To sy progra	To synthesize and apply the knowledge and skills acquired in his/her academic program to real-world issues and problems.											
•	• To improve ability to think critically and creatively, to solve practical problems,												
•	• To make reasoned and ethical decisions, and to communicate effectively.												

It is intended to start the project work early in the Fifth semester and carry out both design and fabrication of an Electrical and Electronic device whose working can be demonstrated. It should be independent project.

The students in a group of 3 to 4 works on a topic approved by the head of the department under the guidance of a faculty member and prepare a comprehensive project report after completing the work to the satisfaction of the supervisor. The progress of the project is evaluated based on a minimum of three reviews.

The review committee may be constituted by the Head of the Department. A project report is required at the end of the semester. The project work is evaluated based on oral presentation and the project report jointly by external and internal examiners constituted by the Head of the Department.

						ТОТА	L :	45 PEI	RIOI	DS	
OUT	FCOMES:	On complet	ion	of this course	e, stude	nts will be ab	le to)			
1	Identify the rea	l time Engin	eer	ing problems i	in their	day to day lit	fe.				
2	Apply the knowledge and skills acquired in their courses to a specific problem or issue										
3	Think critically and creatively to address and help solve these professional or social issues and to further development.										
4	Refine researce communication	Refine research skills and demonstrate their proficiency in written and oral communication skills.									
5	Take on the ch and document	allenges of all aspects of	tea de	mwork, prepa sign work.	re a pr	esentation in	a p	rofession	ıl ma	nner,	

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	3	1	1	2	3	3	2	3	2	3	3	2
CO2	3	3	3	3	1	1	2	3	3	2	3	2	3	3	2
CO3	3	3	3	3	2	2	2	3	3	3	3	2	3	3	2
CO4	3	3	3	3	2	2	2	3	3	3	3	2	3	3	2
CO5	2	2	2	1	2	2	3	3	3	2	3	2	3	3	2

Semester-VI

18EPC601POWER ELECTRONICSLTPC											
				3	0	0	3				
OBJE	CTIV	ES:			1 1						
•	Under	stand t	he differences between signal level and power level devi	ces.							
•	Analy	se cont	rolled rectifier circuits.								
•	Analy	se the	operation of DC-DC choppers, AC-AC converters.								
•	Analy	se the	operation of AC voltage controllers and cyclo converters	•							
•	Analy	se the	operation of voltage source inverters.								
UNIT	ו די	POW	ER SWITCHING DEVICES				9				
Diode –	 BJT – 7	Chvriste	or – MOSFET – IGBT – I-V Characteristics – Firing	circu	iit fo	or th	vristor –				
Voltage a	nd curre	ent com	mutation of a thyristor – Gate drive circuits for MOSFE	T an	d IG	BT.	,				
UNIT	II	ГНҮБ	RISTOR RECTIFIERS				9				
Single-ph	ase half	-wave	and full-wave rectifiers - Single-phase full-bridge thy	istor	rect	tifier	with R-				
load and	highly	inducti	ve load – Three-phase full-bridge thyristor rectifier w	ith R	l-loa	d an	d highly				
inductive	load –	Input	current wave shape and power factor - SMPS (Flyba	ck, F	Forw	ard a	ind Half				
Bridge me	ethods).										
UNIT	III I	DC – 1	DC CONVERTERS				9				
DC-DC b	ouck con	nverter	- Elementary chopper with an active switch and diod	e –	Con	cepts	of duty				
ratio and	average	voltag	ge - Power circuit of a buck converter - Analysis and	l wav	/efoi	ms a	it steady				
state – D	uty rati	o cont	rol of output voltage - Power circuit of a boost conv	verte	r — .	Anal	ysis and				
waveform	ns at stea	ady stat	e – Relation between duty ratio and average output volta	age.							
UNIT	IV 4	AC-A	C CONVERTERS				9				
Single ph	ase and	Three]	phase AC voltage controllers - Control strategy - Power	Fact	tor C	Contro	ol –				
Multistag	e seque	nce co	ntrol - Single phase Cyclo converters - Single phas	e Cy	/clo	conv	rerters –				
Introducti	ion to M	latrix c	onverters								
UNIT	V	VOLI	AGE SOURCE INVERTER				9				
Single-ph	ase volt	age so	arce inverter - Switch states and instantaneous output v	oltag	ge –	Squa	ire wave				
operation	of the	inverte	r - Concept of average voltage over a switching cycle	e – E	Bipol	ar si	nusoidal				
modulatio	on and u	inipola	sinusoidal modulation - Modulation index and output	volta	age -	-Thre	e-phase				
voltage s	ource ir	verter	- Switch states - Instantaneous output voltages - Av	erage	e ou	tput	voltages				
over a sub	o-cycle -	- Three	-phase sinusoidal modulation								
			TO	DTA	L:4	5 PE	RIODS				
OUTCO	DMES	A	the end of this course, students will able to								
6.	Utilize	the var	ious power semiconductor devices in various circuits								
7.	Apply t	hyristo	r convertors in power circuits and analyze the performar	ice							
8.	Apply I	DC - D	C convertors in power circuits and analyze the performa	nce							
9.	Apply A	AC - A	C convertors in power circuits and analyze the performa	nce							
10.	Apply v	oltage	source inverters in power circuits and analyze the perfor	man	ce						
TEXT I	BOOK	<u>S:</u>	· · · · ·								
	M. H.	Rashid	"Power electronics: circuits, devices, and applications	s", P	earse	on E	ducation				
1.	India, 2	009.		,							
2	N. Moh	an and	T. M. Undeland, "Power Electronics: Converters, Appli	catio	ns a	nd D	esign",				
۷.	John W	iley &	Sons, 2007.								

REFE	RENCES:
1.	<i>R. W. Erickson and D. Maksimovic, "Fundamentals of Power Electronics", Springer Science & Business Media, 2007</i>
2.	L. Umanand, "Power Electronics: Essentials and Applications", Wiley India, 2009.
3.	P.C.Sen, "Principles of Electrical Machines and Power Electronics", John-Wiley & Sons, New york.
4.	P.S.Bimbra "Power Electronics" Khanna Publishers, third Edition, 2003.
5.	Joseph Vithayathil, ' Power Electronics, Principles and Applications', McGraw Hill Series, 6th Reprint, 2013.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2		1	1				2	1	1	1	2	3	2
CO2	3	3	2	2	3				2	1	2	3	3	3	2
CO3	3	3	2	2	3				2	1	2	3	3	3	2
CO4	3	3	1	2	3				2	1	2	3	3	3	2
CO5	3	3	2	2	3				2	1	2	3	3	3	2

18EP	C602	PROTECTION AND SWITCHGEAR	L	T	Р	С
			3	0	0	3
OBJI	ECTIV	ES:				
•	To Ui	derstand the different components of a protection system.				
•	To Ev	aluate fault current due to different types of fault in a network.				
•	To Ui	derstand the protection schemes for different power system con	mpor	nents	5.	
•	To Ui	derstand the basic principles of digital protection.	1			
•	To Ui	iderstand system protection schemes, and the use of wide-area	meas	uren	nents	•
UNI		INTRODUCTION TO PROTECTION SCHEMES				9
Principle	es of Pov	ver System Protection – Relays – Instrument transformers – Cin	cuit	Brea	akers	- Types
of Circuit	it Breake	rs – Attributes of Protection schemes – Back-up Protection.	• • • • • • •	2100		-) P • 3
UNI	II]	FAULTS AND OVERCURRENT PROTECTION				9
Review	of Fault	Analysis - Sequence Networks - Introduction to Over curre	nt Pi	rotec	tion	– Over
current r	elay co-o	ordination.				
UNIT	III]	EQUIPMENT PROTECTION SCHEMES				9
Direction	nal, Dist	ance, Differential protection – Transformer and Generator p	orote	ctior	1 —	Bus bar
Protectio	on – Bus	Bar arrangement schemes – Effect of Power Swings on Distar	nce R	elay	ring	
UNIT	IV]	DIGITAL PROTECTION				9
Compute	er-aided	protection - Fourier analysis and estimation of Phasors from	om E	DFT	- S	ampling,
aliasing	issues –	Under-frequency, under-voltage and df/dt relays - Out-of-step	prote	ectio	on – S	Synchro-
phasors	– Phasor	Measurement Units and Wide-Area Measurement Systems (V	VAN	1S) -	- Ap	plication
of WAM	IS for im	proving protection systems				0
UNI		MODELLING AND SIMULATION OF PROTEC	FIO	N		9
СТ/РТ М	Modellin	g and standards – Simulation of transients using Power system G is a standard for the standard stan	em s	oftw	ares	– Relay
Testing -	– Hardwa	are and Software Simulation of Air and Vacuum Circuit Breake	ers			
		TOTA	AL :	45	PE	RIODS
OUTC	OMES	At the end of this course, students will able to				
1.	Apply 1	elays and circuit breakers in various networks to ensure the pro-	otecti	on		
2.	Apply	protection techniques to mitigate overcurrents				
3.	Apply	protection techniques to various electrical equipments				
4.	Design	numerical protective relays for protection				
5.	Design	and simulate various protective relays				
TEXT	BOOK	S:				
1	J. L. B	ackburn, "Protective Relaying: Principles and Applications",	Mar	cel	Dekk	er, New
	York, 1	987.				
2.	Y. G.Pa	uthankar and S. R. Bhide, "Fundamentals of power system prot	ect10	n", I	Prent	ice
DEED	Hall, In					
KEFEI		D:	<i>,,</i> , ,	1 1	77:1	0
1.	A. G. P	naake ana J. S. Inorp, Computer Kelaying for Power Systems	, J0	onn I	viley	ά
	A G P	200. hadke and I.S. Thorn: "Synchronized Phasor Measurements a	nd th	oir		
2.	Annlice	tions". Springer. 2008.	iu iii	011		
	D. Rein	nert, "Protective Relaying for Power Generation Systems". Tay	lor a	ind I	Franc	cis.
3.	2006.					,

4.	Sunil S.Rao, 'Switchgear And Protection', Khanna Publishers, New Delhi, 2008.
5.	Ravindra P.Singh, 'Switchgear And Power System Protection', PHI Learning Private Ltd., New Delhi, 2009.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1	2	1	2			2	1	1	1	3	3	3	3
CO2	2	1	2	1	2			2	1	1	1	3	3	3	3
CO3	2	1	2	1	2			2	1	1	1	3	3	3	3
CO4	2	1	2	1	2			2	1	1	1	3	3	3	3
CO5	2	1	2	1	2			2	1	1	1	3	3	3	3

18EPC6)6	POWER ELECTRONICS LABORATORY	L	Τ	P	С						
			0	0	4	2						
OBJECT	TIVES:											
•	To provid devices	le Experiment test bench to learn the characteristics of pov	wer se	emic	ond	ucto						
•	To provid DC conve	he hands on experience with power electronic AC to DC c rter to determine the control characteristics	onver	ter a	nd	de to						
•	To provid testing	le hands on experience with various power electronic in	verter	s de	sign	anc						
•	• To study the characteristics of AC voltage controller and SMPS											
To know the performances of resonant and quasi resonant converter.												
LIST O	F EXPE	RIMENTS										
1. Characte	eristics of S	SCR, TRIAC and DIAC.										
2. Characte	eristics of N	MOSFET and IGBT.										
3. Determi	nation of C	Control Characteristics of AC to DC fully controlled conver-	ter (1-	-phas	se a	nd 3						
phase).												
4. Determi phase).	nation of C	Control Characteristics of AC to DC half controlled convert	ter (1-	phas	se a	nd 3						
5. Determi	nation of C	Control Characteristics of Step down and Step up chopper.										
6. IGBT ba	used PWM	inverter.										
7. Series a	nd Parallel	inverter.										
8. AC Volt	age Contro	oller.										
9. Switche	d Mode Po	wer Supply (Fly back, Forward and half Bridge Methods).										
10. Cycloc	onverters.											
LIST OF	F EQUIP	MENT FOR A BATCH OF 30 STUDENTS:										
1. Device of	characterist	tics(for SCR, MOSFET, TRIAC and IGBT kit with built in /	/ disci	ete p	ow	er						
supply and	meters) - 2	2 each										
2. Single p	hase SCR	based half controlled converter and fully controlled converte	er alo	ng w	ith	built						
in / separat	e / firing c	ircuit / module and meter – 2 each										
3. MOSFE	T based ste	ep up and step down choppers (Built in/ Discrete) – 1 each										
4. IGBT ba	used single	phase PWM inverter module / Discrete Component – 2										
5. IGBT ba	used three p	phase PWM inverter module / Discrete Component – 2										
6. Switche	d mode po	wer converter module/Discrete Component – 2										
7. SCR &1	RIAC bas	ed 1 phase AC controller along with lamp or rheostat load -	2									
		ed i phase me controller along with lamp of meostat load										

9. Dual	regulated Dc 1	power supply with common ground							
10. Cath	ode ray Oscil	oscope -10							
11 Isol	ation Transfor	mer $= 5$							
12 Sino	de phase Auto	transformer_3							
12. Sing	nononto (Indu	(tansformer - 5)							
15. Con	Multimeter – 5								
14. Mul	Multimeter – 5								
15. LCF	R meter – 3								
16. Rhe	ostats of various ranges – 2 sets of 10 value								
17. Wor	k tables – 10								
18. DC	and AC meter	s of required ranges – 20							
19. Con	nponent data s	heets to be provided							
			TOTAL:60 PERIODS						
OUTC	COMES:	After successful completion of the course	e students able to						
1.	Design cond	act experiment on various converter							
2.	Compare the	characteristics of various power semicone	ductor devices.						
3.	Demonstrate the operation of phase controlled rectifiers based DC drives.								
4.	Analyze the basic topologies of DC-DC converters.								
5.	Employ the different modulation techniques of pulse width modulated inverters.								

6. Compute the performance of AC voltage controller.

COURSE ARTICULATION MATRIX

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	3	1	1	3				1	1	3	2	2	3	3
CO2	2	3	1	1	3				1	1	3	2	2	3	3
CO3	2	3	1	1	3				1	1	3	2	2	3	3
CO4	2	3	1	1	3				1	1	3	2	2	3	3
CO5	2	3	1	1	3				1	1	3	2	2	3	3
CO6	2	3	1	1	3				1	1	3	2	2	3	3

18EPC607

OBJECTIVES:

- To measure electrical and mechanical quantities in Three Phase Circuits, transmission lines and underground cables.
- To model and simulate Power system components and renewable energy sources.
- To form network matrices and perform load flow and fault analysis.
- To analyse the stability of single machine infinite bus system

LIST OF EXPERIMENTS

- 1. Simulation of power, power factor and harmonics measurements in three phase circuits
- 2. Measurement of transmission line parameters
- 3. Simulation of Medium transmission Lines for power transfer calculations
- 4. Mechanical design of transmission lines
- 5. Measurement of underground cable parameters.
- 6. Modelling of power system components and simulate single line diagram.
- 7. Formation of network matrices
- 8. Load flow analysis using Gauss Seidal method
- 9. Load flow analysis using Newton Raphson method
- 10. Simulation of various faults in power systems
- 11. Stability analysis in Single machine infinite bus systems.
- 12. Modelling of renewable energy sources

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

- 1. Power system software Package (MATLAB, MiPower etc.,)
- 2. Power system simulation Tool.

OUTCOMES.

After successful completion of the course, students able to

UUIC	UMES:	After successful completion of the course, students able to								
1.	Simulate loa	d flow and fault analysis in real time power networks.								
2.	Design trans	Design transmission lines and underground cables in real time								
3.	Simulate the	power networks integrated with renewable energy systems								

COURSE ARTICULATION MATRIX

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	3	1	1	3				1	1	3	2	2	3	3
CO2	2	3	1	1	3				1	1	3	2	2	3	3
CO3	2	3	1	1	3				1	1	3	2	2	3	3

18EPC	608		MINI PROJECT	L	Т	Р	С					
		0	0	3	1.5							
OBJEC												
•	To provide opportunity to explore a problem or issue of particular personal or professional interest.											
•	To address the problem or issue through focused study and applied research under the direction of a faculty member.											
•	To synthesize and apply the knowledge and skills acquired in his/her academic program to real-world issues and problems.											
•	To improve ability to think critically and creatively, to solve practical problems,											
•	To n	nake re	easoned and ethical decisions, and to communicate effectively	у.								

It is intended to start the Mini-project work from the learning of subjects from semester one to semester five and carry out both design and fabrication of an Electrical and Electronic device whose working can be demonstrated. The design is expected to be completed in the Sixth semester itself. It should not be linked with any other project work.

The students in a group of 3 to 4 works on a topic approved by the head of the department under the guidance of a faculty member and prepare a comprehensive project report after completing the work to the satisfaction of the supervisor. The progress of the project is evaluated based on a minimum of three reviews.

The review committee may be constituted by the Head of the Department. A project report is required at the end of the semester. The project work is evaluated based on oral presentation and the project report jointly by external and internal examiners constituted by the Head of the Department.

		TOTAL PERIODS:45 PERIODS								
OUTCOM	IES:	After successful completion of the course, students able to								
1.	Identif	y the real time Engineering problems in their day to day life.								
2.	Apply issue	the knowledge and skills acquired in their courses to a specific problem or								
3.	Think social i	Think critically and creatively to address and help solve these professional or social issues and to further development.								
4.	Refine oral co	research skills and demonstrate their proficiency in written and ommunication skills.								
5.	Take o manne	on the challenges of teamwork, prepare a presentation in a professional r, and document all aspects of design work.								

Semester-VII

18ELS	5701		PROFESSIONAL ETHICS	L	Τ	P	C				
		I		3	0	0	3				
OBJE	CTIVE	S :		1	1	1					
1.	To enab	le the	students to create an awareness on Engineering Ethics								
2.	To stud	y the e	engineering as social experimentation								
3.	To impa	art kno	owledge on engineer's responsibility for safety								
4.	To impa	art kno	owledge on engineer's responsibility and rights								
5.	To stud	y the g	global issues on business								
UNIT	Ι	EN	GINEERING ETHICS			9)				
Sensesof EngineeringEthics'–Varietyofmoralissues–Typesofinquiry–Moral dilemmas–Moral Autonomy–Kohlberg's theory–Gilligan's theory–Consensus and Controversy–Professions and Professionalism–Professional Ideals and Virtues–Uses of Ethical Theories.											
UNIT II ENGINEERINGASSOCIALEXPERIMENTATION											
Enginee of Ethic	eringasEx es–Indust	perim rial St	nentation–EngineersasresponsibleExperimenters–Research andards- A Balanced Outlook on Law–The Challenger Ca	nEthi ase S	ics – Study	Cod v.	es				
UNIT	III	ENG	GINEER'S RESPONSIBILITY FOR SAFETY			9)				
Safetyar Govern	ndRisk–A ment Reg	Assess gulator	mentofSafetyandRisk–RiskBenefitAnalysis–ReducingRis r's Approach to Risk- Chernobyl Case Studies and Bhopa	k–T I.	he	I					
UNIT	IV	RES	SPONSIBILITIES AND RIGHTS			9)				
Collegia of Inter Rights(alityandL est–Occu IPR) –Di	oyalty patio scrimi	y–RespectforAuthority–CollectiveBargaining–Confidentian and Crime–Professional Rights–Employee Rights– Intellination.	ality lectu	–Co al P	nflic rope	ts rty				
UNIT	V	GL	OBALISSUES			9)				
Multinational Corporations– Business Ethics-Environmental Ethics –Computer Ethics-Role in Technological Development– Weapons Development–Engineers as Managers–Consulting Engineers–Engineers as Expert Witnesses and Advisors–Honesty–Moral Leadership–Sample Code Conduct.											
TOTAL : 45 PERIODS											

OUTCO	MES:	After successful completion of the course students able to									
1.	Apply the	e ethical theories in engineering environment.									
2.	Analyze	the risks and improve their responsibility for safety.									
3.	Utilize th	eir rights and improve responsibilities.									
4.	Utilize th	eir rights and improve rights.									
5.	Propose 1	remedies for global issues.									
TEXT B	OOKS:										
1.	MikeMar 005).	MikeMartinandRolandSchinzinger, "EthicsinEngineering", McGrawHill, NewYork (2005).									
2.	Charles I Concepts	Charles E Harris, Michael S Pritchard and Michael JRabins, "EngineeringEthics- ConceptsandCases", ThompsonLearning, (2000).									
3.	David Er	mann and Michele S Shauf, "Computers, Ethics and Society", Oxford									
	Universit	y Press,(2003)									
REFER	ENCES:										
1.	Charles I	D Fleddermann, "Engineering Ethics", Prentice Hall, NewMexico, 1999.									
2.	John R B	oatright, "Ethicsandthe Conduct of Business", Pearson Education, 2003.									
3.	Edmund and Engi	G Seebauer and Robert L Barry, "Fundamentals of Ethics for Scientists neers", Oxford University Press, 2001.									
4.	Prof. (Co Perspect	ol)P S Bajaj and Dr.Raj Agrawal, ''Business Ethics–An Indian ive'', Biztantra, NewDelhi,2004.									
5.	David Er Ethicsand	mannand Michele S Shauf, "Computers, dSociety",OxfordUniversityPress,2003.									

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1			3	1		3	1		1				2	2	
CO2			3	1		3	1		1				2	2	
CO3			3	1		3	1		1				2	2	
CO4			3	1		3	1		1				2	2	
CO5			3	1		3	1		1				2	2	

10500			POWER SYSTEM OPERATION AND			_	~					
ISEPC	2702		CONTROL	L	Т	P	C					
				3	0	0	3					
OBJE	CTIV	ES:					<u> </u>					
•	To ha	ave an	overview of power system operation and control.									
•	To st	udy the	economic operation of power system									
•	To m	odel po	wer-frequency dynamics and to design power-frequenc	y con	rolle	er.						
•	To m	odel re	active power-voltage interaction and the control action	s to be	e imj	oleme	ented					
	for maintaining the voltage profile against varying system load.											
•	To teach about SCADA and its application for real time operation and control of power											
systems												
UNIT I CHARACTERISTICS OF LOADS												
Basics of Power system control and operation – Real and Reactive power of Loads - System load												
variation – Load characteristics – Load curves and Load Duration curve – load factor and												
diversity	diversity factor - Reserve requirements: Installed reserves, spinning reserves, cold reserves, hot											
reserves	- O	verviev	of system operation: Load forecasting, technique	ies o	f fo	orecas	sting,					
Importance of load forecasting.												
UNIT II POWER SYSTEM OPERATION												
Statemer	nt of U	nit Co	nmitment problem - Constraints - Solution methods: F	riority	/-list	met	nods,					
forward	dynam	ic prog	ramming approach – Formulation of economic Dispate	h pro	blem	n witł	1 and					
without	osses	- Solut	on by direct method and λ -iteration method Base po	int an	d pai	rticip	ation					
factors -	Hydro	otherm	al scheduling problem - Short term and long term mo	del ar	id al	gorit	hm –					
Dynamic	Prog	rammi	ng solution methods for hydrothermal scheduling (Q	ualita	tive	treat	ment					
only).												
UNIT	III .	ACTI	VE POWER FREQUENCY CONTROL				9					
Basics of	of spe	ed go	verning mechanism and Modelling- speed-load cha	iracter	ristic	s–Pa	rallel					
operation	n of Al	ternato	rs- LFC control of a single-area system-Static and Dyr	amic	char	acter	istics					
– PI con	roller	in LFC	- LFC in Two area system - Static analysis with uncor	trolle	d cas	se- tie	e line					
with free	uency	bias co	ontrol- State model- LFC with Economic dispatch contr	oller.								
UNIT	IV	REA	CTIVE POWER VOLTAGE CONTROL				9					
Generati	on, Ab	sorptio	n and control of reactive power- Modelling of excitat	ion sy	stem	ns – S	Static					
and dyna	mic c	haracte	ristics-Stability compensation - Secondary voltage con	trol –	Тар	char	nging					
transform	ners fo	or volta	ge control - FACTS applications to reactive power c	ontrol	: ST	ATC	OM,					
SVC, TCS and TSC.												
UNIT	UNIT VSMART POWER CONTROL9											
Need for	Need for smart control of power systems -concept of energy control centre- functions-system											
monitori	ng –d	ata aco	uisition and control-system hardware configuration-	SCAI	DA	and	EMS					

functions	s-network topology-state estimation-WLSE-Contingency Analysis-state transition												
diagram	showing various state transitions and control strategies. Recent trends in power system												
control.													
	TOTAL : 45 PERIODS												
OUTC	OMES: After successful completion of the course students able to												
1.	Analyse the loads and apply forecasting methods for power system restructuring.												
2.	Operate the generating units in an efficient way to reduce fuel cost.												
3.	Design load frequency controller to regulate the frequency and speed.												
4.	Design the excitation systems with appropriate voltage controllers to regulate voltage												
	and compensate reactive power.												
5.	Apply smart techniques in power system security.												
TEXT BOOKS:													
1.	Allen. J.Woodand BruceF. Wollenberg, 'PowerGeneration, Operation and Control',												
	John Wiley &Sons,Inc.,2003.												
2.	Abhijit Chakrabarti, Sunita Halder, 'Power System Analysis Operation and Control',												
	PHIlearning Pvt.Ltd., NewDelhi, ThirdEdition,2010.												
REFEI	RENCES:												
1	Badri Ram, D. N. Vishwakarma, 'Power System Protection and Switchgear' Tata												
1.	McGraw-Hill Education, 2001.												
2	Kundur P., 'Power System Stability and Control, Tata McGraw' Hill Education Pvt.												
Ζ.	Ltd., New Delhi ,10threprint, 2010.												
3.	N.V.Ramana, "Power System Operation and Control," Pearson, 2011.												
4.	Sunii S Rao, Switch gear Protection And Power Systems (Theory, Practice &												
	Solvea Problems), Knanna Publishers, 2008												
5.	M. L. Soni, P. V. Gupta, U. S. Bhatnagar, "A Course in Electrical Power" Dhanpat												
5.	Kal, 1987.												

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
CO1	2				2					1			2		1		
CO2		2	3								2	1		2			
CO3		2	3								2	1		1	2		
CO4	2				1					1	2		2				
CO5		2	3							2	1			2	1		
18EPC	706			POV	EPC706POWER SYSTEM LABORATORY IILTPC												
--------------	---	-----------	-------	----------	--------------------------------------	----------	-----------	-----------	-----------	---------------------	---------	-------	--------	-----	--	--	--
											0	0	4	2			
OBJEC	CTIV	ES:												.1			
•	То	model a	l and	d simu	ılate l	DC tra	ansmiss	ion sys	tem, Ci	rcuit breakers and	d FAC	ΓS d	evice	s.			
•	То	solve u	unit	t comn	nitme	ent, eco	onomic	load d	ispatch,	state estimation a	and loa	d for	recast	ing			
	pro	blems.	•														
•	То	design	n Lo	oad Fre	equen	ncy Co	ontrolle	r in sin	gle area	and two area sys	stems						
•	То	model a	l and	d simu	ılate t	the exc	citation	system	ns in syn	nchronous genera	tor.						
•	То	underst	stan	d the	opera	tion of	f nume	rical re	lays and	d microgrid							
LIST ()F E	XPEF	RI	MEN	ITS												
1. Simu	lation	of DC	C tra	ansmi	ssion	n syste	m										
2. Simu	lation	of Cir	ircui	it Brea	akers	(Air a	and Va	cuum).									
3. Solut	tion of	f unit c	com	nmitm	ent p	roblen	n										
4. Solut	tion of	f Econo	nom	ic Loa	ad dis	spatch											
5. Load	frequ	iency C	Con	ntrol o	f sing	gle are	ea syste	m									
6. Load	frequ	iency C	Con	ntrol o	f two	area s	system										
7. Simu	lation	of Exc	xcita	ation S	Syste	ms											
8. Mode	elling	of FAC	CT	'S Dev	vices												
9. Solut	ion of	f State 1	e Est	timati	on Pr	roblem	n										
10. Load	forec	asting	g pro	oblem	S												
11. Study	y of n	umerica	cal 1	relays	(Dif	ferenti	ial, Dis	tance a	and OV	/UV Protection)							
12. Study	y of m	icrogri	rid														
LIST C	FE	QUIP	PM	ENT	FO	RAE	BATC	H OF	' 30 ST	TUDENTS:							
1. Powe	er syst	em sof	oftw	are Pa	ackag	ge (MA	ATLAB	, MiPo	ower etc	c.,)							
2. Air C	Circuit	Break	ker		-												
3. Vacu	um C	ircuit E	Bre	eaker													
4. Perce	entage	biased	ed D	Differe	ntial	relay	testing	bench	(Nume	rical)							
5. Over	/Unde	ervoltag	ige i	relay i	integ	rated v	with tes	st kit (I	Numerio	cal)							
6. Singl	e pha	se Dist	stand	ce pro	tectio	on Rel	lay test	Bench	(Nume	erical)							
7. Powe	er syst	em sim	mul	lation '	Tool.												
8. Smar	t Gric	l Setup	p.														
		_								TOTAL:60 H	PERIC)DS					
OUTC	OME	ES:	A	After su	ucces	sful co	ompleti	on of t	he cours	se students able to	C						
1.	Apply	y circuit	iit b	reaker	s and	l nume	erical re	lays in	real tin	ne projects							
2.	Solve real time power system operation problems																

3.	Design the controller to regulate real and reactive power.
4.	Apply FACTS devices in real time power systems

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1		3									2	1	2	2	2
CO2		3									2	1	2	2	2
CO3		3									2	1	2	2	2
CO4		3									2	1	2	2	2

18EPR707

PROJECT II

 L
 T
 P
 C

 0
 0
 6
 3

•	To provide opportunity to explore a problem or issue of particular personal or professional interest.
•	To address the problem or issue through focused study and applied research under the direction of a faculty member.
•	To synthesize and apply the knowledge and skills acquired in his/her academic program to real-world issues and problems.
•	To improve ability to think critically and creatively, to solve practical problems,
•	To make reasoned and ethical decisions, and to communicate effectively.

It is intended to start the project work early in the seventh semester and carry out both design and fabrication of an Electrical and Electronic device whose working can be demonstrated. The design is expected to be completed in the seventh semester and the fabrication and demonstration will be carried out in the eighth semester.

The students in a group of 3 to 4 works on a topic approved by the head of the department under the guidance of a faculty member and prepare a comprehensive project report after completing the work to the satisfaction of the supervisor. The progress of the project is evaluated based on a minimum of three reviews in that any one review will be conducted with external examiner.

The review committee may be constituted by the Head of the Department. A project report is required at the end of the semester. The project work is evaluated based on oral presentation and the project report jointly by external and internal examiners constituted by the Head of the Department.

					TOTA	L:90 PE	RIODS					
OU	FCOMES:	On completion	n of this course	e, stude	nts will be ab	le to						
1	Identify the rea	l time Engineer	ring problems	in their	day to day lif	e.						
2	Apply the know	vledge and skil	ls acquired in t	heir co	urses to a spe	cific problem	ı or issue					
3	Think critically issues and to fu	Think critically and creatively to address and help solve these professional or social issues and to further development.										
4	Refine researce communication	zh skills and 1 skills.	demonstrate	their	proficiency	in written	and oral					
5	Take on the ch and document	allenges of tea	amwork, prepa esign work.	re a pro	esentation in	a profession	al manner,					

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	3	1	1	2	3	3	2	3	2	3	3	2
CO2	3	3	3	3	1	1	2	3	3	2	3	2	3	3	2
CO3	3	3	3	3	2	2	2	3	3	3	3	2	3	3	2
CO4	3	3	3	3	2	2	2	3	3	3	3	2	3	3	2
CO5	2	2	2	1	2	2	3	3	3	2	3	2	3	3	2

Semester-VIII

18EP	R803			PROJI	ЕСТ	T III	[I	4	Г	Р	(С
													0	(0	12	(6
OBJE	CTIVI	ES																
•	• To pr profes	ovide sional i	oppo inter	ortunity œst.	to e	explo	ore	a pr	oblen	n o	or issue	e of	partio	cula	ar	person	al	or
•	• To add directi	dress th on of a	he pr a facı	roblem o ulty mei	or iss mber.	sue th	hrou	gh fo	cused	d sti	udy and	d app	lied 1	ese	earc	ch unde	er tl	he
•	• To sy progra	nthesiz m to re	ze a eal-w	nd appl vorld iss	ly the sues a	ie kn and p	nowl probl	ledge lems.	and	sk	ills acc	quire	d in	his	/he	er acad	lem	nic
•	• To im	prove a	abilit	ty to thin	nk cri	iticall	lly ar	nd cre	eative	ely,	to solve	e pra	ctical	pro	oble	ems,		
•	To ma	ke reas	sone	d and et	hical	decis	ision	is, and	d to c	om	munica	te eff	ectiv	ely				
design demons fabricat The under t complet based o examine The required the pro Departr	and fab trated. ' ion and e student he guid ting the on a min er. e review d at the e ject reponent.	rication The de demons ts in a g ance of work to imum of commi end of t ort join	on of lesign nstrat grou of a of the of the nittee the s ntly	f an E n is ex tion will p of 3 t faculty e satisfac hree rev e may be semester by exte	lectr pected l be ca to 4 v men ction views e cons r. The ernal	rical ed to carrie works mber of th s in th stitute e proj and	and be dou as on and he su that a ted b oject inte	d El e con ut in t in a to d pre ipervi- any o oy the work ernal	lectro nplete he eig pare isor. To one ro Head c is ev exam	oni ed ghth ppro a c The evie d of valu	c devi in the n semes oved by comprel progre ew will f the De nated ba	ce w seve ster. y the hensi bess of be c epartr ased o stitut	whose enth head we provide the	w ser of roje oroj cte A j al p th	ork ness the ect ect d v	cing ca ater an e depar report is eva with ex ject rep entation Head of	an d t af luat terr port on a of t	be he ent ter ted nal t is und the
											TO	DTA	L:1	80	P	PERIC	D	S
OUT	ГСОМ	ES:	Oı	n compl	letion	n of th	his c	ourse	e, stuc	lent	ts will t	be ab	le to					
1	Identify	y the rea	eal tii	me Engi	ineeri	ing p	orobl	ems i	in the	ir d	ay to da	ay lif	e.					
2	Apply	the know	owled	dge and	skills	s acq	quire	d in t	heir c	cour	rses to a	a spe	cific p	orol	ble	m or is	sue	;
3	Think issues a	criticall and to f	lly aı furth	nd creat er devel	tively lopme	y to a ent.	addr	ress a	nd h	elp	solve	these	prof	ess	ion	al or s	soci	ial
4	Refine commu	resear inication	rch on sk	skills tills.	and	dem	nons	trate	thei	r ŗ	proficie	ency	in v	vri	tter	n and	or	al
5	Take of and doo	n the cl	challe t all a	enges o aspects o	of tear	mwoi sign v	ork, p worł	prepa k.	re a j	pres	sentatio	on in	a pro	fes	sio	nal ma	nne	er,

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	3	1	1	2	3	3	2	3	2	3	3	2
CO2	3	3	3	3	1	1	2	3	3	2	3	2	3	3	2
CO3	3	3	3	3	2	2	2	3	3	3	3	2	3	3	2
CO4	3	3	3	3	2	2	2	3	3	3	3	2	3	3	2
CO5	2	2	2	1	2	2	3	3	3	2	3	2	3	3	2

PROFESSIONAL ELECTIVES

18EPE	PE001 APPLIED SOFT COMPUTING L											
				3	0	0	3					
OBJEC	CTIV	ES:				1	I					
•	To ex	pose	the students to the concepts of feed forward neural netwo	orks.								
•	To pr	ovide	e adequate knowledge about feedback neural networks									
•	To pr	ovide	e adequate knowledge about fuzzy and neuro-fuuzy system	ms								
•	To pr	ovide	comprehensive knowledge of fuzzy logic control to real	time	e sys	tems	5.					
• To provide adequate knowledge of genetic algorithms and its application to economic dispatch and unit commitment problems.												
UNIT I ARCHITECTURES-ANN 9												
Introduct unsuperv Perceptro	tion–B vised le on Net	iolog earnir work-	ical neuron–Artificial neuron–Neuron model –S ng-Single layer–Multi layer feed forward network–Lear Back propagation Network.	uper ning	viseo algo	d a orith	ınd m-					
UNIT I	I	NE	URAL NETWORKS FOR CONTROL			9						
Feedback time sy controlle	k netw vstem–. er for ir	orks- Appli werte	-Discrete time Hopfield networks– Transient response cations of artificial neural network-Process ident d pendulum.	of ifica	cont tion	tinuc –Nei	ous uro					
UNIT I	II	FUZ	ZZY SYSTEMS			9						
Classical sets– Fuzzy sets –Fuzzy relations– Fuzzification – Defuzzification – Fuzzy Membershipfunction–Knowledgebase–Decision-makinglogic–Introductiontoneurofuz system- Adaptive fuzzy system.												
UNIT I	[V	API	PLICATION OF FUZZY LOGIC SYSTEMS			9						
Fuzzy invertedj	log penduli	gic um–fi	control: Homeheatingsystem-liquidlevelcontrol- uzzyPIDcontrol, Fuzzy based motor control.	-airc	raftla	andii	ng-					

UNIT V GENETIC ALGORITHMS

Introduction-Gradient Search–Non-gradient search–Genetic Algorithms :binary and real representation schemes, selection methods, crossover and mutation operators for binary and real coding-constraint handling methods–applications to economic dispatch and unit

9

			TOTAL : 45 PERIODS
OUT	COMES:	After successful completi	on of the course students able to
1.	Design a	n algorithm for Artificial N	eural Network Controller
2.	Design a	Genetic algorithm	
3.	Design a	n algorithm for Fuzzy Logi	c Controller
4.	Apply Fu	zzy Logic Controller for sp	pecific applications
5.	Apply G	enetic algorithm for specific	c applications
ГЕХТ	BOOKS	:	
1.	Laurance PearsonE	Fausett, Englewood clif Education, 1992	fs,N.J., 'Fundamentals of Neural Networks
2.	S.N.Siva Edition, 2	nandam and S.N.Deepa, 2 nd Edition, 2013.	Principles of Soft computing, Wiley Indi
REFE	RENCES	ð:	
1.	Simon He	aykin, 'Neural Networks', H	Pearson Education,2003.
			En in anima Annii atiana' Tata MaCana Ili
2.	<i>Timothy</i> 1997.	J Ross, 'Fuzzy Logic with	Engineering Applications, Tata McGraw Hil
2. 3.	Timothy 1997. M.Gen c Engineer	J Ross, Fuzzy Logic with und R,Cheng, Genetic alg ing Design and Automation	zorithms and Optimization, Wiley Series 1, 2000.
2. 3. 4.	Timothy 1997. M.Gen a Engineer Hagan, I	J Ross, Fuzzy Logic with and R,Cheng, Genetic alg ing Design and Automation Demuth, Beale, "Neural Ne	Engineering Applications, Tata McGraw Hil gorithms and Optimization, Wiley Series a 1, 2000. twork Design", Cengage Learning, 2012.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1			3		2						1		3	1	
CO2			3		2						1		3	1	
CO3			3		2						1		3	1	
CO4				2	1						1		2		
CO5				2	1						1		2		

18E	PE002	WIND AND SOLAR ENERGY SYSTEMS	L	T	Р	С				
			3	0	0	3				
OBJ	ECTIV	ES:								
•	To learn	the design and control principles of Wind turbine.								
•	To under	stand the concepts of fixed speed and variable speed, wind ener	rgy (conv	ersion					
•	To analyz	ze the grid integration issues in wind energy system.	0.							
•	To learn	the design of standalone PV system.								
•	To analyz	ze the grid integration issues in PV system.								
UNI	TI	INTRODUCTION				09				
Wind	l: Compor	nents of WECS - WECS schemes - Power obtained from wind	-Sal	oinin	's the	ory -				
Aero	dynamics	of Wind turbine. HAWT - VAWT - Thrust - Efficiency - Re	otor	sele	ction	- Ťip				
speed	l ratio -Po	wer Regulation.								
Solar interc	:: Charac	cteristics of sunlight-behaviour of solar cells-cell p	rope	rties	–PV	cell				
UNI	TII	FIXED SPEED AND VARIABLE SPEED WIND)			09				
		SYSTEMS								
Gene	rating Sy	stems - Constant speed constant frequency systems - Choice	ce o	f Ge	enerat	ors -				
Decie	ding factor	rs - Synchronous Generator - Squirrel Cage Induction Generator	or - I	Mode	el of V	Wind				
Speed	d - Model	wind turbine rotor - Drive Train model. Need of variable speed	l sys	tems	- Po	wer -				
wind	speed cha	aracteristics - Variable speed constant frequency systems synch	rono	ous g	genera	tor –				
DFIC	G – PMSO	G - Variable speed generators modelling - Variable speed	varia	able	frequ	ency				
scher	nes.									
UNI	TII	GRID CONNECTED WIND SYSTEMS				09				
Wind	l intercon	nection requirements -low-voltage ride through (LVRT) - rar	np r	ate 1	imitat	ions,				
and s	supply of	ancillary services for frequency and voltage control - cur	rrent	pra	ctices	and				
indus	stry trends	wind inter connection impact on steady-state and dynamic	perfe	orma	nce o	f the				
powe	er system 1	ncluding modelling issue.								
UNI	TIV	STANDALONE PV SYSTEM				09				
Sol	ar modu	les-storage systems-power conditioning and regulation	n-MI	PT-	protec	ction-				
Sta	ndalone P	V systems design-sizing								
UNI	ΤV	GRID CONNECTED PV SYSTEMS				09				
PV s	ystems in	buildings-design issues for central power stations-safety-H	Econ	omi	e aspe	ect –				
Effici	ency and	performance- International PV programs – Synchronization iss	ues							
	_ ~ ~	TO	ſAL	:45	PER	IODS				
OU	COME	S: After completion of this course, the student will be able to:								
1	Explain t	he basic concepts of Wind and solar energy conversion system.								
2	Develop	the design of Fixed speed and Variable speed system								
3	Explain a	bout Grid connected Wind system.								
4	Design a	standalone PV system.								
5	5 Explain about Grid integration issues and current practices of PV interconnections.									
TEX	T BOO	KS:								

1.	L.L. Freris "Wind Energy conversion Systems", Prentice Hall, 1990
2.	S.N.Bhadra, D.Kastha, S.Banerjee, "Wind Electrical Sytems", Oxford University Press, 2010.
3.	Solanki C.S., "Solar Photovoltaics: Fundamentals, Technologies And Applications", PHI Learning Pvt. Ltd., 2015.
4.	Stuart R.Wenham, Martin A. Green, Muriel E. Watt and Richard Corkish, "Applied Photovoltaics", 2007, Earthscan, UK.
REI	FERENCES:
1.	Ion Boldea, "Variable speed generators", Taylor & Francis group, 2006
2.	S.Heir "Grid Integration of WECS", Wiley 1998
3.	Eduardo Lorenzo G. Araujo, "Solar electricity engineering of photovoltaic systems", Progensa, 1994.
4.	Frank S. Barnes & Jonah G. Levine, "Large Energy storage Systems Handbook", CRC Press, 2011.
5.	McNeils, Frenkel, Desai, "Solar & Wind Energy Technologies", Wiley Eastern, 1990
6.	S.P.Sukhatme, "Solar Energy", Tata McGraw Hill, 1987
7.	G.D.Rai, "Non-Conventional Energy Sources", Khanna Publishers, 2015
8.	NPTEL videos by IITs

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1			3		2			2			1		3	1	
CO2	2					3			2		1			3	1
CO3		2	3					2			3	1		2	3
CO4	1				2					2	1		3	1	
CO5		3	2									2		3	2

1	8EP	EO	03
T	OLI	LU	UJ.

BIOMEDICAL INSTRUMENTATION

L	Τ	Р	С
3	0	0	3

9

9

9

OBJECTIVES: • To Introduce Fundamentals of Biomedical Engineering • To Introduce various bio potential electrodes used in Biomedical Engineering • To study the heart system and its measurements • To study the measurement of electrical activity in neuromuscular system and brain • To have a basic knowledge in life assisting and therapeutic devices UNIT I FUNDAMENTALS OF BIOMEDICAL ENGINEERING

Brief description of musculoskeletal, endocrine, gastrointestinal, nervous, circulatory and respiratory systems; the nature of bioelectricity, action events of nerve; the origin of bio potentials. Basic components of a biomedical system-Kidney and blood flow - Biomechanics of bone - Biomechanics of soft tissues - Basic mechanics of spinal column and limbs.

UNIT II BIO POTENTIAL ELECTRODES

Signal acquisition; electrodes for biophysical sensing; electrode-electrolyte interface; skin preparation, electrode-skin interface and motion artifact; surface electrodes; microelectrodes; Internal electrodes; electrode arrays; electrodes for electric stimulation of tissues; electrode polarization, electrical interference problems in biopotential measurement; electrical safety.

UNIT III

THE HEART SYSTEM AND ITS MEASUREMENTS

The heart; electro conduction system of the heart; the ECG waveform; the standard lead system; the ECG preamplifier; ECG machines; Cardiac monitors; Transient protection; common-mode and other interference-reduction circuits, Measurement of blood pressure, spirometer – Photo Plethysmography, Body Plethysmography, finger-tip oxymeter, measurement of blood pCO2, pO2

UNIT IV MEASUREMENT OF ELECTRICAL ACTIVITY IN NEUROMUSCULAR SYSTEM AND BRAIN

9

Neuron potential; muscle potential; electromyography (EMG); electroencephalography (EEG); EEG electrodes and the 10-20 system; EEG amplitude and frequency bands; the EEG system – simplified block diagram; preamplifiers and EEG system specifications; EEG diagnostic uses and sleep patterns; visual and auditory evoked potential recordings; EEG system artifacts.

UNIT V IMAGING, LIFE ASSISTING, THERAPEUTIC AND ROBOTIC DEVICES

Computer tomography – MRI – Ultrasonography – Endoscopy ,Pacemakers – Defibrillators – Ventilators – Nerve and muscle stimulators – Diathermy – Heart – Lung machine – Audio meters – Dialysers – Lithotripsy - ICCU patient monitoring system - Nano Robots - Robotic surgery – Advanced 3D surgical techniques- Orthopedic prostheses fixation.

TOTAL : 45 PERIODS

OUTC	OMES:	After successful completion of the course students able to							
•	Explain ab	out electrical signal production and its conduction in human body.							
•	Select prop	per electrode for signal pick up from human body							
•	Trace card	iac waveform and characterise its condition							
•	Trace brain waveform and characterise its condition								
•	Explain about the different life saving, therapeutic and imaging bio medical system its importance to patients								
TEXT	BOOKS:								
1.	Joseph J.carr and John M. Brown, Introduction to Biomedical Equipment Technology, John Wiley and sons, New York, 4th Edition, 2012.								
2.	Khandpur Delhi, 2nd	R.S, Handbook of Biomedical Instrumentation, , Tata McGraw-Hill, New Edition, 2003							
REFE	RENCES:								
1.	John G. W sons, New	Vebster, Medical Instrumentation Application and Design, John Wiley and York, 1998							
2.	Duane Kn	udson, Fundamentals of Biomechanics, Springer, 2nd Edition, 2007.							
3.	Ed. Joseph Boca Rato	h D. Bronzino, The Biomedical Engineering Hand Book, Third Edition, n, CRC Press LLC, 2006.							
4.	M.Arumug	gam, 'Bio-Medical Instrumentation', Anuradha Agencies, 2003.							
5.	Leslie Cro India, New	omwell, Biomedical Instrumentation and Measurement, Prentice hall of v Delhi,2007.							

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3			2				2					3	1	
CO2	3			2				2					3	1	
CO3	3			2				2					3	1	
CO4	3			2				2					3	1	
CO5	3			2				2					3	1	

18EPE	004	FUNDAMENTALS OF NANOSCIENCE	L	Τ	Р	С					
			3	0	0	3					
OBJEC	CTIVES:		1								
•	To learn a	bout basis of nanomaterial science									
•	To learn a	bout nanomaterial preparation methods									
•	To learn a	bout basis of nanomaterial science, preparation method a	and	type	S						
To learn about nanomaterial characterization techniques											
To study various application fields of nano materials											
UNITI INTRODUCTION											
Engineering- Classifications of nano structured materials-nano particles-quantum dots, na wires-ultra-thin films- multi-layered materials. Length Scales involved and effect properties: Mechanical, Electronic, Optical, Magnetic and Thermal proper .Introduction to properties and motivation for study (qualitativeonly).											
UNITI	[GENERAL METHODS OF PREPARATIO	Ν			9					
Bottom Milling, Evapora	-upSynthesi , Colloidal ation, Molec	s-Top-down Approach: Co-Precipitation, Ultrasonic routes, Self-assembly, Vapour phase deposition, M cular Beam Epitaxy, Atomic Layer Epitaxy, MOMBE.	catio OCV	n, ∑ √D,	Mec Spu	hanical ttering,					
UNITI	I	NANOMATERIALS				9					
Nano fo carbon synthesi property nanoalu Quantur	orms of Ca Nano tube is(arc-growt yRelationshi mina, Ca mwires,Qua	rbon-Buckminster fullerene-graphene and carbon nances (SWCNT) and Multi wall carbon nano tubes(MW h, laser ablation,CVDroutes,Plast ipsapplications-Nanometal oxides- ZnO, TiO2,I O,AgTiO2,Ferrites, Nanoclays- functionalizaten ntumdots-preparation,properties and applications.	o tu VCN sma(MgC iona	be ,: T)-r CVE),Zr(undaj	Sing neth),str D2, pplic	le wall ods of ucture- NiO, cations-					
UNITIV CHARACTERIZATION TECHNIQUES											
X-ray diffraction technique, Scanning Electron Microscopy- environmental tech Transmission Electron Microscopy including high-resolution imaging, Surface A techniques-AFM,SPM, STM,SNOM,ESCA,SIMS-Nano indentation.											
UNITV APPLICATIONS											

Nano Info Tech: Information storage- nano computer, molecular switch, super chip, nano crystal, Nano biotechology: nano probesinmedical diagnosticsand biotechnology, Nanomedicines, Targetted drug delivery, Bioimaging - Micro Electro Mechanical Systems(MEMS), Nano Electro Mechanical Systems(NEMS)-Nano sensors, nano crystallinesilver for bacterialinhibition, Nano particles for sunbarrier products- In Photostat, printing, solar cell, battery.

TOTAL:45PERIODS

OUTCOMES: After successful completion of the course students able to

- 1. Familiarize about the science of nanomaterial.
- 2. Demonstrate the preparation of nanomaterial.
- 3. Explain about nanomaterial.
 - 4. Develop knowledge in characteristic nanomaterial.
 - 5. Apply Nano Science into the applications.

TEXTBOOKS:

- 1. A.S.Edelsteinand, R.C.Cammearata,eds., "Nanomaterials: Synthesis, Properties and Applications", Institute of Physics Publishing, Bristol and Philadelphia, 1996
- N John Dinardo, "Nanoscale Charecterisation of surfaces & Interfaces", 2ndedition, Weinheim Cambridge, Wiley-VCH, 2000.

REFERENCES:

- *I. G Timp, "Nanotechnology", AIP press/Springer, 1999*
- 2. Akhlesh Lakhtakia, "The HandBook of Nano Technology, Nanometer Structure, Theory, Modelling and Simulations". Prentice-Hall of India(P) Ltd,NewDelhi,2007.

COURSE ARTICULATION MATRIX

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3		2	2				2					2	2	
CO2	3		2	2				2					2	2	
CO3	3		2	2				2					2	2	
CO4			3	2				2					3	1	
CO5			3	2				2					3	1	

18EPE ()05	HI	GH VOLTAGE ENGINEERING	L	Τ	Р	C						
				3	0	0	3						
OBJEC	TIV	ES:			I								
•	To u metho	nders ods.	tand the various types of over voltages in power syste	em a	nd	prote	ection						
•	Gene	ration	n of over voltages in laboratories.										
•	Meas	urem	ent of over voltages.										
•	Natur	e of l	Breakdown mechanism in solid, liquid and gaseous dielectr	ics.									
•	Testing of power apparatus and insulation coordination.												
UNIT I OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS													
Causes of temporary Protection	f over y over n again	volta volta nst ov	ges and its effects on power system–Lightning, switching s ages, Corona and its effects–Reflection and Refraction of T ver voltages	urge 'rave	s an lling	d g wa	ves-						
UNIT I	I D	IEL	ECTRIC BREAKDOWN			9							
Gaseous I breakdow Quality –	break /n– Co Break	down onduc down	in uniform and non-uniform fields–Corona discharges–Va tion and break down in pure and commercial liquids, Main mechanisms in solid and composite dielectrics.	cuur tenai	n nce (of oil							
UNIT I	II G C	ENI CURI	ERATION OF HIGH VOLTAGES AND HIGH RENTS			9)						
Generation Generation voltages a	on of H on of I and cu	High I High rrents	DC: Voltage doubler, Voltage multiplier circuits and Van of AC: Cascade Transformer and Resonant transformer, Cirs generation- Tripping and control of impulse generator.	le G rcuit	raff s fo	gene r im	rator, pulse						
UNIT I	V N C	IEA CUR	SUREMENT OF HIGH VOLTAGES AND HIC RENTS	θH		9							
HighResi Voltmete Sphere G	stance r, Gen aps- H	withs eratin ligh c	seriesammeter–Dividers,Resistance,CapacitanceandMixedd ng Voltmeters-Capacitance Voltage Transformers, Electro surrent shunts- Digital techniques in high voltage measurem	livid stati ent.	ers- c Vo	oltme	Peak eters–						
UNIT V	/ H C	IIGH 200	H VOLTAGE TESTING & INSULATION RDINATION			9)						
High vol Power fr	tage to	esting	g of electrical power apparatus as per International and mpulse voltage and DC testing of Insulators, circuit b	Indi oreal	an s	tand bus	ards– hing.						
	1	J,	124		,		6,						

isolate	ors and transf	formers- Insulation Coordination.									
			TOTAL : 45 PERIODS								
OUT	COMES:	After successful completion of the co	ourse students able to								
Lxplain the or 2. Fr		nd transients									
2.	Explain the	e electrical breakdown on various med	lium								
3.	• Design the generation circuit of overvoltage, impulse voltage and Current.										
4.	· Measure the overvoltage and current using various components.										
5.	Test the ele	ctrical apparatus against over voltages	and impulse current.								
TEX	XT BOOKS:										
1.	 M.S.Naidu and V.Kamaraju, 'High Voltage Engineering', Tata McGraw Hill, Fifth Edition, 2013. 										
2.	E.Kuffel and Second Edit	d W.S.Zaengl, J.Kuffel, 'High voltage tion Elsevier, NewDelhi,2005.	Engineering fundamentals', Newnes								
REF	ERENCES	S:									
1.	L.L.Alston, 2011.	'High Voltage Technology', Oxford Un	niversity Press, First Indian Edition,								
2.	C.L.Wadhw Publishers,T	ra, 'High voltage Engineering', NewAg ThirdEdition,2010	e International								
3.	Subir Ray, New Delhi,	'An Introduction to High Voltage Engir Second Edition, 2013.	neering' PHI Learning Private Limited,								
4	E.Kuffel,W. Publisher	S.Zaengl,J.Kuffel, 'High Voltage Engir	neering fundamentals 'Newnes								
5	Farouk.A.M	1. Rizk, Giao N. Trinh, 'High Voltage I	Engineering' CRC Press.								

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2				2					1			2		1
CO2		2	3								2	1		2	
CO3		2	3								2	1		1	2
CO4	2				1					1	2		2		
CO5		2	3							2	1			2	1

18EPE	006	ADV	ANCED CONTROL SYSTEM	L	Т	Р	C					
		1		2	1	0	3					
OBJE	CTIV	ES:					<u> </u>					
•	То рі	ovide l	knowledge on design in state variable form									
•	To pi	ovide l	knowledge in phase plane analysis									
•	To gi	ve basi	c knowledge in describing function analysis									
•	• To study the design of optimal controller											
•	• To study the design of optimal estimator including Kalman Filter											
UNIT I STATE VARIABLE CONTROLLER DESIGN												
Introduct Arbitrary principle	tion to V Pole	state N -placen design	Model- effect of state Feedback- Necessary and Sufficient nent- pole placement Design- design of state Observent: -State Feedback with integral control.	nt Co vers-	ondi ser	tion parat	for ion					
UNIT II PHASE PLANE ANALYSIS												
Features of linear and non-linear systems - Common physical non-linearities – Methods of linearization Concept of phase portraits – Singular points – Limit cycles – Construction of phase portraits – Phase plane analysis of linear and non-linear systems – Isocline method.												
UNIT	II	DES	CRIBING FUNCTION ANALYSIS			9)					
Basic co function Popov St	ncepts analys tability	, deriva is of no	ation of describing functions for common non-linearition of describing functions for common non-linearities on-linear systems – limit cycles – Stability of oscillation	es – ns-L	Des yapr	scribi nov a	ing Ind					
UNIT I	Ι	OPT	IMAL CONTROL			9)					
Introduct Regulato	tion – or – So	Continulution of	uous Time Linear State Regulator – Discrete Tim of Ricatti'sequation.	e L	inea	r St	ate					
UNIT	V	OPT	IMAL ESTIMATION			9)					
Optimal Kalman	estima Filter.	tion –	Kalman- Bucy Filter-Solution by duality principle-Di	scre	te s	yster	ns-					
	TOTAL : 45 PERIODS											
OUTCOMES: After successful completion of the course students able to												
1.	Desig	gn the c	controller in state variable form.									
2.	Expla	ain the	concepts about the phase plane analysis.									

3.	Explain the concepts about the describing function analysis.
4.	Design of optimal controller.
5.	Design of optimal estimator including Kalman Filter.
TEXT	BOOKS:
1.	M.Gopal, "Digital Control & State Variable Methods", Tata McGraw Hill, 4th EDITION, 2012
2.	I.J. Nagrath and M.Gopal, "Control Systems Engineering", New Age International Publishers, 5 th Edition, 2010.
REFEI	RNCES:
1.	K.Ogatta, "Discrete time control system", PHI, 2010.
2.	B.C.Kuo," Digital Control Systems", SRL Publication, 1997.
3.	M. Gopal, "Control Systems Principles and Design", TATA Mcgraw hill, 3 Edition, 2010
4.	M.Gopal," Modern control system theory", New Age International Publishers, 2002
5.	Richard C. Dorf, "Modern control systems",8th Edition, Addison Wesley, 2012.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1		3	2		1						1		1	2	1
CO2	2	3									2		1	2	1
CO3	2	3									2		1	2	1
CO4	3	2		1						1		1	2	1	3
CO5	3	2		1						1		1	2	1	3

18EPE00	7	POWER QUALITY AND FACTS	L	Т	Р	С								
			3	0	0	3								
OBJECTIV	ES:													
• To i	To introduce the power quality problem													
• To e	educate	on production of voltages sags, over voltages and harmon	nics	and	meth	ods								
of co	ontrol.													
• 10 s	tudy th	he sources and effect of harmonics in power system												
• To ι	inderst	and the need for static compensators												
• To c	To develop the different control strategies used for compensation													
UNITI INTRODUCTION TO POWER QUALITY														
frequency vari Manufacturers UNITII	ations. Assoc VOI OVE	. International standards of power quality. Computer l iations (CBEMA) curve. CTAGESAGS, INTERRUPTIONS AND ERVOLTAGES	Busi	ness	Equ	ipment 9								
starting. Estim Sources of ove swells - surge line arresters -	ation or r volta arreste protec	of the sag severity- mitigation of voltage sags, active sages - Capacitor switching – lightning - ferro resonance. Ners - low pass filters - power conditioners. Lightning protection of transformers and cables.	erie Aitig ectio	s co gation on –	mper n of shie	isators. voltage lding –								
UNITIII	HAF	RMONICS				9								
Harmonic sour response char voltage and c distortion eval	rces fro acterist current uation	om commercial and industrial loads, locating harmonic so tics- Harmonics Vs transients. Effect of harmonics- h distortion - harmonic indices - inter harmonics - re -devices for controlling harmonic distortion - passive and	urce arm sona d act	s. Po onic ance tive f	ower dist . Ha filter	system ortion- rmonic								
UNITIV	REA	CTIVE POWER COMPENSATION				9								
Reactive power flow control in Power Systems – Control of dynamic power unbalances in Power System – Power flow control – Constraints of maximum transmission line loading – Benefits of FACTS Transmission line compensation – Uncompensated line – Shunt compensation – Series compensation – Phase angle control – Reactive power compensation – Shunt and Series compensation principles – Reactive compensation at transmission and distribution level-Power Factor Correction methods .														
UNITV		STATIC SHUNT AND SERIES COMPENSA	[0]	RS		9								
Shunt Compensator: SVC and STATCOM – Operation and control of TSC, TCR and STATCOM – Compensator control – Comparison between SVC and STATCOM. Series Compensator: TSSC, SSSC -Static voltage and phase angle regulators – TCVR and TCPAR														

Operation	n and Control –Applications – Static series compensation – GCSC,TSSC, TCSC and											
Static syr	hchronous series compensators and their Control – SSR and its damping.											
	TOTAL:45PERIODS											
OUTCO	DMES: After successful completion of the course students able to											
1.	Classify the power quality issues.											
2.	Analyze and mitigate the voltage sag, over voltages and interruptions.											
3.	Analyze the harmonic distortion and design the components to reduce harmonics.											
4.	Explain about the fundamental principles of Reactive Power Compensation.											
5.	Demonstrate various Static shunt and series VAR Compensation Schemes.											
TEXTB	OOKS:											
1.	Roger. C. Dugan, Mark. F. McGranagham, Surya Santoso, H.Wayne Beaty, 'Electrical Power											
	Systems Quality' McGrawHill,2003.											
2.	Edward.F.Fucks and M.A.S.Masoum, "Power Quality in Power System and Electrical											
	Machines," Elsevier Academic Press, 2013.											
3.	J.Arrillaga, N.R.Watson, S.Chen, 'Power System Quality Assessment', Wiley, 2011.											
4.	K R Padiyar, "FACTS Controllers in Power Transmission and Distribution", New											
	Age International Publishers, 2007.											
5.	X P Zhang, C Rehtanz, B Pal, 'Flexible AC Transmission Systems- Modelling and											
	Control", Springer Verlag, Berlin, 2006.											
REFER	ENCES:											
1.	G. T.Heydt, "Power Quality", McGraw-Hill Professional, 2007.											
2.	M.H.J Bollen, 'Understanding Power Quality Problems: Voltage Sags and											
	Interruptions', (New York: IEEE Press, 1999)											
З.	G.J.Wakileh, "Power Systems Harmonics–Fundamentals, Analysis and Filter Design,"											
	Springer 2007.											
4.	N.G. Hingorani, L. Gyugyi, "Understanding FACTS: Concepts and Technology of											
	Flexible AC Transmission Systems", IEEE Press Book, Standard Publishers and											
	Distributors, Delhi, 2001.											
5.	K.S.Sureshkumar, S.Ashok, "FACTS Controllers & Applications", E-book edition,											
	Nalanda Digital Library, NIT Calicut, 2003.											
6.	S.Vedam, M.S.Sarma, "Power Quality-VAR Compensation in Power Systems," CRC											
	Press 2013.											

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2				2					1			2		1
CO2		2	3								2	1		2	
CO3		2	3								2	1		1	2
CO4	2				1					1	2		2		
CO5		2	3							2	1			2	1

18EPE	008	Ν	IICROCONTROLLER BASED SYSTEM DESIGN	L	Т	Р	С							
		1		3	0	3								
OBJEC	CTIV	ES:		•										
•	To ii	ntroduce	e the architecture of PIC microcontroller											
•	To e com	ducate municat	on use of interrupts and timers To educate on the periphin ion and transfer	hera	l dev	vices	for data							
To introduce the functional blocks of ARM processor														
•	To educate on the architecture of ARM processors													
•	• To educate on design applications of ARM processors													
UNITI	INTRODUCTION TO PIC MICROCONTROLLER													
Introduc Pipelini Address	ction ng - sing m	to PIC Progra nodes –	Microcontroller – PIC16C6x and PIC16C7x Architec m Memory considerations – Register File Structure Simple Operations.	ture - In	– F struc	PIC16	Set -							
UNITI	UNITII INTERRUPTS AND PERIPHERALS INTERFACING 9													
PIC micr Timers - ' of Const subroutin handling Interfacin	ocontr Timer ant an es – S circu ng.	roller Progran nd Varia Serial E nit – In	Interrupts - External Interrupts - Interrupt Programming – I mming – Front panel I/O - Soft Keys – State machines and I able strings - I ² C Bus for Peripherals Chip Access – EPROM — Analog to Digital Converter – UART - Baud nitialization - LCD and keyboard Interfacing - ADC	Loop Key s Bus I rate C, D	time witc ope sele AC,	e sub: hes - eratio ectio and	routine – - Display n - Bus n – Data Sensor							
UNITI	I	INTRO	DDUCTION TO ARM PROCESSOR				9							
ARM A ARM A Operation	ARM Architecture–ARM programmer's model – ARM Development tools - Memory Hierarchy – ARM Assembly Language Programming – Simple Examples – Architectural Support for Operating systems.													
UNITI	V	ARM	ORGANIZATION				9							
3-Stage Instruct interface	3-Stage Pipeline ARM Organization – 5-Stage Pipeline ARM Organization –ARM Instruction Execution - ARM Implementation – ARM Instruction Set – ARM co processor interface – Architectural support for High Level Languages – Embedded ARM Applications.													
UNITV	·]	DESIC	SN APPLICATIONS				9							

Generation of Gate signals for converters and Inverters – Motor Controls – Controlling of DC/ AC appliances –Temperature Control Applications- Monitoring: Overvoltage, Under voltage and Overcurrent- Measurement of frequency – Stand-alone Data Acquisition System applications.

			TOTAL:45 PERIODS								
OUTO	COMES:	After successful completion of the	e course students able to								
1.	Explain th	e architecture and programming of P	IC microcontrollers.								
2.	Interface various peripherals to PIC microcontrollers.										
3.	Explain architecture, Programming of ARM processor.										
4.	Explain organization of ARM processor.										
5.	Apply AR	M processor to Various applications									
TEXT	BOOKS:										
1.	Peatman,J	B.,"Design with PIC Micro Controll	ers" PearsonEducation,3 rd Edition,2004.								
2.	Furber,S., Publication	"ARM System on Chip Archit	ecture" Addison Wesley trade Computer								
REFE	RENCES:										
1.	Rajkamal, 2 nd edition	"Microcontrollers-Architecture, Pr , Pearson, 2012.	ogramming, Interfacing & System Design",								
2.	Mazidi, M India, 200	I.A., "PIC Microcontroller" Rollin 7.	Mckinlay, Danny causey Printice Hall of								
З.	John Pietm	an Design with microcontrollers McG	raw Hill, 1995								
4.	Microproc	essor and Microcomputer based system	n design by Mohammed Rafiquzzaman.								
5.	Microcontr	oller/ Dsp controller reference manua	1.								

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1			3		2						1		3	1	
CO2			3		2						1		3	1	
CO3			3		2						1		3	1	
CO4				2	1						1		2		
CO5				2	1						1		2		

HIGH VOLTAGE DIRECT CURRENT TRANSMISSION

3 0 0 3 **OBJECTIVES:** • To understand the concept, planning of DC power transmission and comparison with AC Power transmission. • To analyze HVDC converters. • To study about the HVDC system control. • To analyze harmonics and design of filters. • To model and analysis the DC system under study state. UNITI 9 **INTRODUCTION** DC Power transmission technology - Comparison of AC and DC transmission-Application of DC transmission – Description of DC transmission system– Planning for HVDC transmission–Modern trends in HVDC technology- DC breakers - Operating problems - HVDC transmission based on VSC - Types and applications of MTDC systems. UNITII 9 **ANALYSIS OF HVDC CONVERTERS** Line commutated converter - Analysis of Graetz circuit with and without overlap - Pulse number -Choice of converter configuration – Converter bridge characteristics –Analysis of a 12 pulse converters - Analysis of VSC topologies and firing schemes. **CONVERTER AND HVDC SYSTEM CONTROL** 9 UNITIII Principles of DC link control – Converter control characteristics – System control hierarchy – Firing angle control – Current and extinction angle control – Starting and stopping of DC link – Power control - Higher level controllers - Control of VSC based HVDC link. UNITIV **REACTIVE POWER AND HARMONICS CONTROL** 9 Reactive power requirements in steady state - Sources of reactive power - SVC and STATCOM -Generation of harmonics – Design of AC and DC filters – Active filters. POWER FLOWANALYSIS IN AC/DC SYSTEMS 9 UNITV Per unit system for DC quantities – DC system model – Inclusion of constraints – Power flow analysis Case study. **TOTAL:45 PERIODS** After successful completion of the course students able to **OUTCOMES:** 1. Demonstrate the concepts of DC transmission Technology

2. Apply and Analysis of HVDC Converters

3.	Explain about HVDC system control
4.	Explain about Reactive Power control
5.	Explain about Harmonics control
TEXTI	BOOKS:
1.	Padiyar, K.R., "HVDC power transmission system", New Age International (P) Ltd., New Delhi, Second Edition,2010.
2.	Edward Wilson Kimbark, "Direct Current Transmission", Vol.I, Wiley interscience, NewYork, London, Sydney, 1971.
REFE	RENCES:
1.	KundurP., "Power System Stability and Control", McGraw-Hill, 1993.
2.	Colin Adamson and Hingorani NG, "High Voltage Direct Current Power Transmission", Garraway Limited, London, 1960
3.	Rakosh Das Begamudre, "Extra High Voltage AC Transmission Engineering", New Age International (P) Ltd., New Delhi, 1990.
4.	Arrillaga, J., "High Voltage Direct Current Transmission", Peter Pregrinus, London, 1983.
5.	HVDC transmission by Kamakshaih and V.Kamarraju., Tata McGraw-Hill 2017.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2				2					1			2		1
COI	2				2					1			Z		1
CO2		2	3								2	1		2	
CO3		2	3								2	1		1	2
CO4	2				1					1	2		2		
CO5		2	3							2	1			2	1

18EPE010

ELECTRICAL MACHINE DESIGN

L T P C 2 1 0 3

9

9

9

OBJEC	CTIVES	5:									
•	To study mmf calculation and thermal rating of various types of electrical machine										
•	To desig	gn armature and field systems for D.C. machines									
•	To desig	gn core, yoke, windings and cooling systems of transformers.									
•	To desig	gn stator and rotor of induction machines.									
•	To des behavio	To design stator and rotor of synchronous machines and study their thermal behaviour.									
					9)					

UNIT I IN

INTRODUCTION

Major considerations in Electrical Machine Design - Electrical Engineering Materials - Space factor – Choice of Specific Electrical and Magnetic loadings – Thermal consideration - Heat Dissipation - Temperature gradient in cores slots and windings - Rating of machines – Standard specifications. Introduction to Computer aided Design in Electrical Machines (Simple Treatment).

UNIT II DC MACHINES

Output Equations – Main Dimensions - Magnetic circuit calculations - Carter's Coefficient – Net length of Iron –Real & Apparent flux densities – Selection of number of poles – Design of Armature – Design of commutator and brushes – Design of field winding.

UNIT III TRANSFORMERS

Output Equations – Main Dimensions - KVA output for single and three phase transformers – Window space factor – Design of core and windings - Overall dimensions – No load current–

Temperature rise in Transformers – Design of Tank with cooling tubes - Methods of cooling of Transformers.

UNIT IV INDUCTION MOTORS

Output equation of Induction motor – Main dimensions – Length of air gap- Rules for selecting rotor slots of squirrel cage machines – Design of rotor bars & slots – Design of end rings – Design of wound rotor – Magnetic leakage calculations – Leakage reactance of polyphase machines - Magnetizing current - Short circuit current .

UNIT V	SYNCHRONOUS MACHINES	9
--------	----------------------	---

Output equations – choice of loadings – Design of salient pole machines – Short circuit ratio – shape of pole face – Armature design – Armature parameters – Estimation of air gap length – Design of rotor –Design of damper winding – Design of field winding – Design of turbo alternators – Rotor design.

			TOTAL : 45 PERIODS							
OUTC	OMES:	After successful completion of the course students able to								
1.	Formulate AC machi	Specific Electrical and Magnetic and Magnetic	loadings for various electrical DC and							
2.	Devise ma	ain dimensions (D, L) of armature ar	nd field systems for D.C. machines.							
3.	Design ov cooling sy	erall Dimensions of single and three ystems for transformers	e phase transformers core, windings and							
4.	Design ma	ain dimensions of squirrel cage and s	Slip ring induction machines.							
5.	Design ma	ain dimensions of Synchronous mach	hines.							
TEXT	BOOKS:									
1.	Sawhney New Delh	A.K., "A Course in Electrical Ma i, 2006.	chine Design", Dhanpat Rai & Sons,							
2.	Sen S.K., Oxford an	"Principles of Electrical Machine d IBH Publishing Co. Pvt. Ltd., Nev	Designs with Computer Programmes", v Delhi, 2009.							
REFER	RENCES:									
1.	Say.M.G, Isaac Pitm	"The Performance and Design aan & sons Limited, 1995.	of Alternating current Machines",							
2.	Shanmuga Design Da	usundaram A., Gangadharan G. a ata Book", New Age International F	and Palani R., "Electrical Machine Pvt. Ltd., Reprint 2007.							
3.	A.Shanmu Book', Nev	ga Sundaram, G.Gangadharan, R.H v Age International Pvt. Ltd., Reprin	Palani 'Electrical Machine Design Data 1t, 2007							
4.	R.K.Agarwal "Principles of Electrical Machine Design" Esskay Publications, Delhi, 2002.									
5.	"Electrica	l machine design" Balbir singh Brit	e Publications, Pune							

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2		2						1		3	1	
CO2	3	2	2		2						1		3	1	
CO3	3	2	2		2						1		3	1	
CO4	3	2	2		2						1		3	1	
CO5	3	2	2		2						1		3	1	

18EPE	011	POW	TER ELECTRONICS FOR RENEWABLE ENERGY SYSTEMS	L	Т	Р	С			
				3	0	0	3			
OBJEC	TIVE	ES:								
•	To stu	udy im	portance of renewable energy systems in distributed ge	nera	tion					
•	To an and o	nalyse a develop	and comprehend the various operating modes of solar so	ar en	ergy	/ syst	tems			
•	To a gener	nalyse ators a	and comprehend the various operating modes of nd develop maximum power point tracking algorithm	î wi	nd	elect	rical			
•	To in	npart ki	nowledge on fuel cell systems							
•	To Pr	ovide l	knowledge about various hybrid renewable energy systemeters	ems						
UNIT I]	INTR	ODUCTION:				9			
Importane for Distri	ce of re buted g	enewab generati	le energy, renewable energy systems in distributed po- on, current scenario in Distributed Generation, Plannin	wer g of	syste DG	em, N s.	Need			
UNIT I	I I	PHOT INTE	TOVOLTAIC SYSTEMS AND ITS GRID GRATION			9	9			
Basics of Alone P commuta module ir	Photov V syst ted wit ntegrate	voltaic, tems, th high ed inve	Maximum Power Point Tracking (MPPT) techniques Inverters for grid-connected PV system: Line confrequency transformer, central-plant inverter, multiputer.	, Siz omm le st	zing nutat rring	of st ed, inve	and- self- erter,			
UNIT I	II V	WINI	POWER SYSTEMS				9			
Basics of technique wind ener	wind j s Induc rgy syst	power, ction g tems, S	Fixed speed and variable speed wind turbines, storm enerators, synchronous generators, half scale, full sca stand-alone systems, and grid connected wind power sy	strat le ai sten	tegie nd P ns.	es, M MSC	PPT 5 for			
UNIT I	V I	FUEL	CELL SYSTEMS				9			
Introducti cell system	Introduction to fuel cell systems, types of fuel cell systems, Power Electronic Interface of fuel cell systems, Fuel cell/Battery Hybrid systems.									
UNIT V	UNIT V HYBRID RENEWABLE ENERGY SYSTEMS ⁹									
Need for system, m	Need for Hybrid Systems- Range and type of Hybrid systems, wind-diesel system, wind-PV system, micro hydro-PV system, biomass-PV-diesel system, PV-Fuel cell hybrid system.									
			TOTAL : 45 PER	ΙΟΙ	DS					
OUTCO	OMES	S: A	fter successful completion of the course students able to	C						

Т

ſ

•	Apply Distributed generation in existing power systems.
•	Design PV cell integrated solar power system
•	Design controllers for wind power systems.
•	Apply fuel cells in renewable energy integrated power systems.
•	Design the converter system for hybrid renewable energy sources.
TEXT	BOOKS:
1.	Volker Quaschning, James & James, "Understanding Renewable Energy Systems", Earth scan, 2005.
2.	M.GodoySimoes, Felix A. Farret, "Renewable Energy Systems – Design and Analysis with Induction Generators", CRC press, 2nd edition 2007
3.	Siegfried Heir, "Grid Integration of Wind Energy Systems", John Willey & Sons; 2nd Edition, 2006.
REFE	RENCES:
1.	Mohammed H. Rashid, "Power Electronics Handbook", Elsevier, 2011.
2.	Nick Jenkins, Ron Allan, Peter Crossley, David Kirchen and GoranStrbac, "Embedded Generation" IET Power and Energy series, London-2000.
3.	M. P. Kazmierkowski, R. Krishnan, J.D. Irwin, "Control in Power Electronics: Selected Problems", Academic Press; 2002.
4.	James Larminie and Andrew Dicks, "Fuel Cell Systems Explained", John Wiley & Sons; 2nd edition, 2003.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1			3		2			2			1		3	1	
CO2	2					3			2		1			3	1
CO3		2	3					2			3	1		2	3
CO4	1				2					2	1		3	1	
CO5		3	2									2		3	2

18EPE	2012		ADVANCED ELECTRIC DRIVES	L	Т	Р	С			
				3	0	0	3			
OBJE	CTIV	ES:								
•	To	study	the operation of power electronic converters and their con	itrol	strat	egies	5.			
•	To	study	the vector control strategies for ac motor drives			U				
•	To	study	the modelling of induction motor drives							
٠	To	study	the modelling of synchronous motor drives							
•	To	study	the implementation of DSP based motion control							
UNIT	I	PO	WER CONVERTERS FOR AC DRIVES			1	0			
PWM co	ontrol	of inv	erter, selected harmonic elimination, space vector modula	tion,	cur	rent				
control o	of VSI	, three	e level inverter, Different topologies, SVM for 3 level inve	erter,	Dic	ode				
rectifier	with b	oost (chopper, PWM converter as line side rectifier, current fed	inve	rters	with	L			
Self-con	nmutat	ted de	vices. Control of CSI, H bridge as a 4-Q drive.			1	0			
UNIT	II INDUCTION MOTOR DRIVES									
Differen	t trans	forma	tions and reference frame theory, Modelling of induction	mac	hine	s,				
Voltage	fed inv	verter	control-v/f control, vector control, direct torque and flux	cont	rol (DTC).			
UNIT	III	SYI	NCHRONOUS MOTOR DRIVES			6				
Modelli	ng of s	ynchr	onous machines, open loop v/f control, vector control, dir	ect t	orqu	e				
Control	CSI fe	- ed svr	achronous motor drives		1					
						1	0			
UNIT	IV	PE	RMANENT MAGNET AND SWITCHED			I	U			
		RE	LUCTANCE MOTOR DRIVES							
Introduc	tion to	o vario	ous PM motors, BLDC and PMSM drive configuration, co	mpa	risoi	n.				
Block d	iagran	ns, Sj	peed and torque control in BLDC and PMSM. Evolu	ition	of	swite	ched			
reluctan	ce mo	tors,	various topologies for SRM drives, comparison, Closed	l loc	op sj	peed	and			
torque c	ontrol	of SR	M.				0			
UNIT	V	DS	P BASED MOTION CONTROL				Y			
Use of D	SPs in	n moti	on control, various DSPs available, realization of some ba	asic l	bloc	ks in				
DSP for	imple	menta	tion of DSP based motion control							
			TOTAL : 45 PER	ΙΟΙ	DS					
ΟΠΤΟ	OMF	ES:	After successful completion of the course students able t	0						
1.	Desig	-~• m no	ver converters for ac drives							
2.	Desig	on ind	uction motor drives							
3.	Design synchronous motor drives									
	Desig	Jesign synchronous motor drives								

4.	Design permanent magnet and switched reluctance motor drives
5.	Demonstrate DSP based motion control
TEXT	BOOKS:
1	B. K. Bose, "Modern Power Electronics and AC Drives", Pearson Education, Asia, 2003.
2	P. C. Krause, O. Wasynczuk and S. D. Sudhoff, "Analysis of Electric Machinery and Drive Systems", John Wiley & Sons, 2013.
REFE	RENCES:
1.	H. A. Taliyat and S. G. Campbell, "DSP based Electromechanical Motion Control", CRC press, 2003.
2.	R. Krishnan, "Permanent Magnet Synchronous and Brushless DC motor Drives", CRC Press, 2009.
3.	NED Mohan, Advanced Electric Drives analysis control and modelling using MATLAB/Simulink by John Willey and son's 2016
4.	Jacek Kabzinski ,Advanced control of Electrical Drives and power electronic converters springer 2016
5.	De Doncker, Pulle, and Veltman, Advanced Electrical drives Analysis, modelling and control springer 2011

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
														-	
COI			3			1				2	1			2	
CO2			3			1				2	1			2	1
CO3		2	2			1					2	1		2	1
CO4	1		2			1				2			1		2
CO5			2								2		2	1	

18EPE0	013]	POWER SY	STEM DY CONTRO	NAMICS A L	AND	L 2	T 1	P	C 3	
OBJEC	TIV	ES:						I	U	5	
•	Tos	study the	problem of po	wer system st	ability and its	s impact on th	ne sy	sten	۱.		
•	Тоа	analyse l	inear dynamica	l systems and	use of nume	rical integrati	on n	neth	ods.		
• To Model different power system components for the study of stability											
To study the methods to improve stability analysis											
•	To	enhance	the system stab	oility							
UNIT I INTRODUCTION TO POWER SYSTEM OPERATIONS, AN ANALYSIS OF LINEAR DYNAMICAL SYSTEM AND NUMERICAL METHODS										•	
Introduction problems dynamical Stability. I Technique	Introduction to power system stability. Power System Operations and Control. Stability problems in Power System. Impact on Power System Operations and control. Analysis of dynamical System, Concept of Equilibrium, Small and Large Disturbance Stability. Modal Analysis of Linear System. Analysis using Numerical Integration Techniques. Issues in Modelling: Slow and East Transients. Stiff System										
UNIT II		MOD	ELLING OI ASSOCIAT	F SYNCHR ED CONTI	ONOUS M ROLLERS	IACHINE	5		12		
Modelling model. D- Synchroni Synchroni Prime Mo Automatic	g of s Q Tr ous M zatic ver S c Vol	ynchrono ansforma Aachine. on of Syn Systems. tage Reg	ous machine: P ation. Model w Short Circuit T chronous Macl Physical Chara gulator. Prime M	hysical Chara ith Standard I Transient Anal nine to an Infi Interistics and Mover Contro	cteristics. Ro Parameters. S ysis of a Syn nite Bus. Mo Models. Exc Systems. Sp	tor position d teady State A chronous Ma delling of Ex- itation Syster eed Governo	eper naly chin citat n Co rs.	iden sis c e. ion a ontro	t of and il.		
UNIT II	Ι	MOD	ELLING OI	F OTHER I	POWER S	YSTEM			1	0	
Modelling Transmiss Voltage WindEner	Modelling of Transmission Lines and Loads. Transmission Line Physical Characteristics. Transmission Line Modelling. Load Models - induction machine model. Frequency and Voltage Dependence of Loads. Other Subsystems – HVDC and FACTS controllers, WindEnergy Systems								lers,		
UNIT IV	V	STAB	ILITY ANA	LYSIS					1	0	
Angular stability analysis in Single Machine Infinite Bus System. Angular Stability in multi machine systems – Intra-plant, Local and Inter-area modes. Frequency Stability: Centre of Inertia Motion. Load Sharing: Governor droop. Single Machine Load Bus System: Voltage Stability. Introduction to Torsional Oscillations and the SSR phenomenon. Stability Analysis Tools: Transient Stability Programs, Small Signal Analysis Programs.										nulti is	
UNIT V		ENHA	NCING SY	STEM ST A	BILITY				4	4	

Planning	g Measures.	Stabilizing Controllers (Power System Stabilizers). Operational						
Measure	s-Preventiv	e Control. Emergency Control.						
		TOTAL : 45 PERIODS						
OUTC	OMES:	After successful completion of the course students able to						
1.	Explain ab numerical	oout power system operations, an analysis of linear dynamical system and methods.						
2.	Design of	synchronous machines and associated controllers						
3.	Design of	power system controllers						
4.	Illustrate tl	ne stability analysis of power system						
5.	Design a st	tabilizing controllers						
TEXT	BOOKS:							
1	K.R. Padiy 2002.	var, "Power System Dynamics, Stability and Control", B. S. Publications,						
2	P. Kundur	; "Power System Stability and Control", McGraw Hill, 1995						
REFE	RENCES:							
1.	P. Sauer a 1997.	and M. A. Pai, "Power System Dynamics and Stability", Prentice Hall,						
2.	James A.M Stability Edition, 20	Momoh, Mohamed. E. EI-Hawary. " Electric Systems, Dynamics and with Artificial Intelligence applications", Marcel Dekker, USA First 000.						
3.	C.A.Gross,	, "Power System Analysis," Wiley India, 2011.						
4.	B.M.Weedy, B.J.Lory, N.Jenkins, J.B.Ekanayake and G.Strbac," Electric Power Systems", Wiley India, 2013.							
5.	K.Umara Internatio	o, "Computer Techniques and Models in Power System," I.K. onal, 2007.						

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2				2					1			2		1
CO2		2	3								2	1		2	
CO3		2	3								2	1		1	2
CO4	2				1					1	2		2		
CO5		2	3							2	1			2	1

18EPE0	l4 EL	ELECTRICAL AND HYBRID VEHICLES							
		3	0	0	3				
OBJECT	TVES:								
•	To Study the Electric vehicles and their performance								
•	To study about Electric Trains								
•	To study the different possible ways of energy storage.								
•	• To study the different strategies related to energy storage systems								
•	To Study the hybrid vehicles and their performance								
UNIT I	INTR	ODUCTION		9	9				
Convention Characteriz performance	nal Vehicles ation, tran	Basics of vehicle performance, vehicle power source smission characteristics, mathematical models to de	scribe	e vel	nicle				
UNIT II	ELEC	CTRIC TRAINS		9	9				
vehicles, C Induction N Configurat	onfiguration Aotor drives ion and cont	and control of DC Motor drives, Configuration and control configuration and control of Permanent Magnet Motor d rol of Switch Reluctance Motor drives, drive system effic	ol of rives, iency		9				
Energy Storage: Introduction to Energy Storage Requirements in Hybrid and Electric Vehicles, Battery based energy storage and its analysis, Fuel Cell based energy storage and its analysis, Super Capacitor based energy storage and its analysis, Flywheel based energy storage and its analysis, Hybridization of different energy storage devices. Sizing the drive system: Matching the electric machine and the internal combustion engine (ICE), Sizing the propulsion motor, sizing the power electronics, selecting the energy storage technology, Communications, supporting subsystems.									
UNIT IV	ENEF	RGY MANAGEMENT STRATEGIES			9				
Energy Management Strategies: Introduction to energy management strategies used in hybrid and electric vehicles, classification of different energy management strategies, comparison of different energy management strategies, implementation issues of energy management strategies.									
UNIT V	HYBI	RID ELECTRIC VEHICLES			9				
Introduction to Hybrid Electric Vehicles: History of hybrid and electric vehicles, social and environmental importance of hybrid and electric vehicles, impact of modern drive-trains or energy supplies. Hybrid Electric Drive-trains: Basic concept of hybrid traction, introduction to various hybrid drive-train topologies, power flow control in hybrid drive-train topologies, fue									
efficienc	ey analysis								
-----------	--------------------------	--							
		TOTAL : 45 PERIODS							
OUTC	OMES:	After successful completion of the course students able to							
1.	Explain the	e basic concepts of electric vehicles							
2.	Explain the	e concept of electric traction existing power systems drives							
3.	Explain ab	out Energy Storage Requirements in Hybrid and Electric							
	Vehicles								
4.	Explain ab	out Energy Management strategies							
5.	Explain ab	oout hybrid and electric vehicles							
TEXT	BOOKS:								
1	C. Mi, M. Applicatio	A. Masrur and D. W. Gao, "Hybrid Electric Vehicles: Principles and ns with Practical Perspectives", John Wiley & Sons, 2011							
2	S. Onori, Strategies'	L. Serrao and G. Rizzoni, "Hybrid Electric Vehicles: Energy Management", Springer, 2015.							
REFE	RENCES :	:							
1.	M. Ehsant Fuel Cell	i, Y. Gao, S. E. Gay and A. Emadi, "Modern Electric, Hybrid Electric, and Vehicles: Fundamentals, Theory, and Design", CRC Press, 2004.							
2.	T. Denton,	"Electric and Hybrid Vehicles", Routledge, 2016							
З.	Iqbal Huse	ain, "Electric and Hybrid Vehicles" ", CRC Press, 2004							
4.	Chris Mi a 2011	und M.Abdul Masrur, "Electric and Hybrid Vehicles" by Willey & Sons							
5.	Amir Khaj	epour, , "Electric and Hybrid Vehicles" John Wiley & Sons, 2011							

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3		2		1						2		2		2
CO2		2			2						2	1		2	3
CO3								2				1	2		1
CO4						2	1			3			3	1	
CO5			2						2			1			2

18EPE015	

COMPUTER AIDED DESIGN OF ELECTRICAL APPARATUS

L	Т	Ρ	0
3	0	0	3

OBJEC	TIV	ES:		
•	To in	troduce	e the importance of computer aided design method.	
•	To p appli	rovide l cations	basic electromagnetic field equations and the problem formulation.	on for CAD
•	To g Engi	get far neering	miliarized with Finite Element Method as applicable for	Electrical
•	To in	troduce	e the organization of a typical CAD package.	
•	To in	troduce	e Finite Element Method for the design of different Electrical ap	paratus.
UNIT I		INT	RODUCTION	9
Convent Basic pr	tional incipl	design es of en	procedures–Limitations–Need for field analysis based design- nergy conversion– Development of Torque/Force.	Review of
UNIT 1	I	MAT PRO	THEMATICAL FORMULATION OF FIELD BLEMS	9
Electrom potential- Poisson's	agneti -Store 5 Equa	c Field d energ tions–E	Equations – Magnetic Vector/Scalar potential – Electrical ver gy in Electric and Magnetic fields–Capacitance-Inductance-L Energy functional.	ctor /Scalar aplace and
UNIT I	III	PHII	LOSOPHY OF FEM	9
Mathem method- function	atical -Energ s–Stif	models gy min fness m	s–Differential/Integral equations–Finite Difference method–Finition imization –Variational method-2D field problems–Discretisationatrix–Solution techniques.	te element tion–Shape
UNIT I	[V	CAD	PACKAGES	9
Element Conditio	s of a ons–Se	CAD S etting u	System–Pre-processing–Modelling–Meshing–Material properties p solution–Post processing.	-Boundary
UNIT Y	V	DES	IGN APPLICATIONS	9
Voltage and forc	Stress e calc	s in Inst ulation-	ulators–Capacitance calculation- Design of Solenoid Actuator – –Torque calculation in Switched Reluctance Motor.	Inductance
			TOTAL :45 PERIODS	
OUTCO	OME	S: A	fter successful completion of the course students able to	
1.		Explai	in the CAD Software	
2.		Formu	late mathematical problem.	
3.		Analy	se using finite element method.	

4.	Use of the CAD packages.
5.	Design Electrical machine design using CAD packages.
TEXT BOO	KS:
1.	S.JSalon, 'Finite Element Analysis of Electrical Machines', Springer, Yes DEE publishers, Indian reprint, 2007
2.	Nicola Bianchi, 'Electrical Machine Analysis using Finite Elements', CRC Taylor & Francis, 2005.
REFERENC	CES:
1.	Joao Pedro, A.Bastos and Nelson Sadowski, 'Electromagnetic Modelling by Finite Element Methods', Marcell Dekker Inc., 2003.
2.	M Ramamoorthy, "Computer Aided, Analysis and Design of Electrical equipment"
3.	P.P.Silvester and Ferrari, 'Finite Elements for Electrical Engineers', Cambridge University Press, 1983.
4.	D.A.Lowther and P.PSilvester, 'Computer Aided Design in Magnetics', Springer Verlag, NewYork, 1986.
5.	S.R.H.Hoole, 'Computer Aided Analysis and Design of Electromagnetic Devices', Elsevier, NewYork, 1989.
6.	George, Omura, "Mastering AutoCAD", BPB Publications, New Delhi, 1988.
7.	User Manuals of MAGNET, MAXWELL & ANSYS Softwares.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1						2						2		3	
CO2	3				2						1		2		2
CO3					2					1		1		2	
CO4					2						3	1		1	2
CO5			3		2						1	2			2

18EPF	016	POWER SYSTEM TRANSIENTS	L	Т	Р	С
			2	1	0	3
OBJECTI	VES:					
•	To study	the importance, causes and effects of transients				
•	To study theoretic	the generation of switching transients and their coal concept.	ntro	us	ing (circuit –
•	To study	the mechanism of lighting strokes and the production of	light	ing	surge	es.
•	To study	the propagation, reflection and refraction of travelling w	aves			
•	To study rejection	the impact of voltage transients caused by faults, circus on integrated power system.	it bre	eake	r acti	ion, load
UNIT I	INTRO	DUCTION				9
Review ar sine wave Different study of tr	nd importa excitation types of p ansients in	nce of the study of transients-causes for transients. RL of -double frequency transients-basic transforms of the RI ower system transients- effect of transients on power system planning.	circu C ci syste	it tra rcui ems-	nnsie t trar -role	nt with sients. of the
UNIT II	SWITC	CHING TRANSIENTS				9
Over volta interrupting voltage ac suppression source reg multiple re	ges due tr g the resis ross the l n - curren ulation - c striking tra	b switching transients - resistance switching and the tor current - load switching and equivalent circuit - wa oad and the switch - normal and abnormal switchin t chopping - effective equivalent circuit. Capacitance apacitance switching with a restrike, with multiple rest insients - ferro resonance.	equi vefo g tra swito rikes	valer rms ansie ching s. Ill	nt ci for t ents. g - e ustra	rcuit for ransient Current effect of tion for
UNIT III	LIGHI	NING TRANSIENTS				9
Review of	the theorie	s in the formation of clouds and charge formation-rate of	f cha	rgin	g of	thunder

Review of the theories in the formation of clouds and charge formation-rate of charging of thunder clouds-mechanism of lightning discharges and characteristics of lightning strokes-model for lightning stroke- factors contributing to good line design- protection using ground wires-tower footing resistance- Interaction between lightning and power system.

UNIT IV TRAVELING WAVES ON TRANSMISSION LINES

Computation of transients-transient response of systems with series and shunt lumped parameters and distributed lines. Traveling wave concept- step response- Bewely's lattice diagram-standing waves and natural frequencies- reflection and refraction of travelling waves.

UNIT V TRANSIENTS IN INTEGRATED POWER SYSTEM

9

9

The short line and kilometric fault- distribution of voltages in a power system-Line dropping and load rejection- voltage transients on closing and reclosing lines- over voltage induced by faults-switching surges on integrated system Qualitative application of EMTP for transient computation.

TOTAL:45PERIODS

1.Explain the importance of transients2.Explain the causes and analyse the switching transients3.Explain the lightning transients and protection methods.4.Explain the effect of travelling waves on transmission lines.	OUTCO	MES:	After successful completion of the course students able to
2. Explain the causes and analyse the switching transients 3. Explain the lightning transients and protection methods. 4. Explain the effect of travelling waves on transmission lines.	1.	Explain	the importance of transients
3. Explain the lightning transients and protection methods. 4. Explain the effect of travelling waves on transmission lines.	2.	Explain	the causes and analyse the switching transients
4. Explain the effect of travelling waves on transmission lines.	3.	Explain	the lightning transients and protection methods.
5	4.	Explain	the effect of travelling waves on transmission lines.
5. Explain the effect of transient in integrated power system.	5.	Explain	the effect of transient in integrated power system.

TEXTBOOKS:

1.	Allan Greenwood, 'Electrical Transients in Power Systems', WileyInter
	Science, New York, 2 Edition, 1991.
2.	PritindraChowdhari, "ElectromagnetictransientsinPowerSystem", JohnWileyandSonsInc., SecondEdition, 2009
3.	C.S.Indulkar, D.P.Kothari, K.Ramalingam, 'Power System Transients Astatistical approach', PHI Learning Private Limited, Second Edition, 2010
4.	R.D. Begamudre, "Extra High Voltage AC Transmission Engineering", NewAge International.
REFERE	ENCES:
1.	M.S.Naidu and V.Kamaraju, 'High Voltage Engineering', Tata McGraw Hill, Fifth Edition, 2013.
2.	R.D.Begamudre, 'Extra High Voltage AC Transmission Engineering', WileyEastern Limited, 1986.
З.	Y.Hase, Handbook of Power System Engineering, "Wiley India, 2012.
4.	J.L.Kirtley, "Electric Power Principles, Sources, Conversion, Distribution and use," Wiley, 2012.
5.	Allan Greenwood, Electricel transients in power systems, Wiley India, 2012

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2				2			1			2				3
CO2				2							2	1	1		
CO3	1	2			1				2		1		1		2
CO4		2					2	1							3
CO5	2				1			2			1			2	

1QEDEA17

•

OBJECTIVES:

SPECIAL ELECTRICAL MACHINES

17	SPECIAL ELECTR	ICAL MACHINES	L	Т	Р	С
			3	0	0	3
ГIV	/ES:					
To i syne	impart knowledge on Construction chronous reluctance motors	on, principle of operation and p	erfo	rmai	nce o	f
To step	study the Construction, principle pping motors	of operation, control and perfo	rma	nce	of	
To swit	study the Construction, principle itched reluctance motors	e of operation, control and perfo	orma	ince	of	

	syne	chronous reluctance motors	
•	Tos	study the Construction, principle of operation, control and performance	of
	step	ping motors	
•	To swit	study the Construction, principle of operation, control and performance tched reluctance motors	of
•	To i	mpart knowledge on the Construction, principle of operation, control ar	nd
	perf	Formance of permanent magnet brushless D.C. motors	
•	To i of P	impart knowledge on the Construction, principle of operation and perfor ermanent magnet synchronous motors.	mance
UNIT I		SYNCHRONOUS RELUCTANCE MOTORS	9
Constructi Variable F characteris	ional Reluc stics	features – Types – Axial and Radial flux motors – Operating principles stance Motors – Voltage and Torque Equations - Phasor diagram - perfor – Applications	rmance
UNIT II		STEPPER MOTORS	9
Constructi Single and Characteri control-Co	ional 1 mul istics	features – Principle of operation – Variable reluctance motor – Hybrid is the stack configurations – Torque equations – Modes of excitation – – Drive circuits – Microprocessor control of stepper motors – Closed lo pt of lead angle– Applications	motor – Dop
UNIT II	I	SWITCHED RELUCTANCE MOTORS (SRM)	9
UNIT II Constructi – Steady s controllers Closed loo	I ional state j s – M op co	SWITCHED RELUCTANCE MOTORS (SRM) features – Rotary and Linear SRM - Principle of operation – Torque pro performance prediction- Analytical method -Power Converters and their lethods of Rotor position sensing – Sensor less operation – Characteristi ontrol – Applications	9 oduction cics and
UNIT II Constructi – Steady s Closed loc UNIT IN	\mathbf{I} ional state j s - M op co	SWITCHED RELUCTANCE MOTORS (SRM) features – Rotary and Linear SRM - Principle of operation – Torque properformance prediction- Analytical method -Power Converters and their lethods of Rotor position sensing – Sensor less operation – Characteristic ontrol – Applications PERMANENT MAGNET BRUSHLESS D.C. MOTORS	9 oduction ics and 9
UNIT II Constructi – Steady s controllers Closed loo UNIT IV Permanen Permeance torque equ characteris	I ional itate j s – N op co V t Ma e coe iation stics	SWITCHED RELUCTANCE MOTORS (SRM) features – Rotary and Linear SRM - Principle of operation – Torque properformance prediction- Analytical method -Power Converters and their lethods of Rotor position sensing – Sensor less operation – Characteristic entrol – Applications PERMANENT MAGNET BRUSHLESS D.C. MOTORS gnet materials – Minor hysteresis loop and recoil line-Magnetic Character fficient -Principle of operation – Types – Magnetic circuit analysis – Entropy – Commutation - Power Converter Circuits and their controllers – Moand control– Applications	9 oduction ics and 9 eristics – MF and tor
UNIT II Constructi – Steady s controllers Closed loo UNIT IV Permanen Permeance torque equ characteris UNIT V	I ional state j s $- M$ op co V t Ma e coe nation stics	SWITCHED RELUCTANCE MOTORS (SRM) features – Rotary and Linear SRM - Principle of operation – Torque properformance prediction- Analytical method -Power Converters and their lethods of Rotor position sensing – Sensor less operation – Characteristic ntrol – Applications PERMANENT MAGNET BRUSHLESS D.C. MOTORS gnet materials – Minor hysteresis loop and recoil line-Magnetic Character efficient -Principle of operation – Types – Magnetic circuit analysis – En ns –Commutation - Power Converter Circuits and their controllers – Mo and control– Applications PERMANENT MAGNET SYNCHRONOUS MOTORS (PMSM)	9 oduction ics and 9 eristics – MF and tor 9

Applications.

		TOTAL : 45 PERIODS
OUTC	OMES:	After successful completion of the course students able to
1.	Explain ab	out the Constructional features of synchronous Reluctance Motors
2.	Explain ab	out the Constructional features of stepper motor
3.	Explain ab	out the Constructional features of switched Reluctance Motors
4.	Explain ab Motors	out the Constructional features of permanent magnet brushless D.C.
5.	Explain ab	out the Constructional features of permanent magnet Synchronous Motors
TEXT	BOOKS:	
1	K.Venkatar 2008	atnam, 'Special Electrical Machines', Universities Press (India) Private Limited,
2	T.J.E. Mill Press,Oxfor	er, 'Brushless Permanent Magnet and Reluctance Motor Drives', Clarendon rd, 1989
REFE	RENCES	
1.	R.Krishna Design and	n, 'Switched Reluctance Motor Drives – Modelling, Simulation, Analysis, d Application', CRC Press, New York, 2001
2.	. P.P. Aear Perengrini	rnley, 'Stepping Motors – A Guide to Motor Theory and Practice', Peter us London, 1982
3.	T. Kenjo a Clarendon	nd S. Nagamori, 'Permanent Magnet and Brushless DC Motors', Press, London, 1988.
4.	E.G. Janar 2014.	rdanan, 'Special electrical machines', PHI learning Private Limited, Delhi,
5.	T. Kenjo, London, 19	Stepping Motors and Their Microprocessor Controls', Clarendon Press 984.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1		3			2						2		2		
CO2		3			2						2	1		2	
CO3	2	1									1			2	1
CO4		3						2					1		2
CO5		2						1				2		2	

18EPE01	18	INDUSTRIAL ELECTRICAL SYSTEMS	L	Т	Р	C
			3	0	0	3
OBJECT	[VI]	ES:				
•	To s	tudy importance of electrical system components				
• "	To a	nalyse and comprehend the various residential and commercia	l ele	ctric	al sy	stem
• ′	To a	nalyse various illumination systems				
• "	To i	mpart knowledge on industrial electrical systems				
• ,	To i	mpart knowledge on Automation for industrial electrical syster	ns			
UNIT I		ELECTRICAL SYSTEM COMPONENTS				9
LT system system, Tar characterist Relays, MP	wiri riff s tics, PCB,	ng components, selection of cables, wires, switches, distribution tructure, protection components- Fuse, MCB, MCCB, ELCB, symbols, single line diagram (SLD) of a wiring system, Contac Electric shock and Electrical safety practices	on bo inve ctor,	ox, m rse c Isol	ator,	ng nt
UNIT II		RESIDENTIAL AND COMMERCIAL ELECTR SYSTEMS	ICA	L	-	9
deciding lig and sizing o	of co	tes, earthing system calculations, requirements of commercial ag scheme and number of lamps, earthing of commercial install opponents.	atio	n, se	on, lectio	on 9
Understand	ling	various terms regarding light lumon intensity andle power l	omn	offi	aion	
specific cor various illu their operat residential	nsun min tion, and	aption, glare, space to height ratio, waste light factor, depreciat ation schemes, Incandescent lamps and modern luminaries like energy saving in illumination systems, design of a lighting sch commercial premises, flood lighting.	ion f cCFI ieme	Eacto L, L for	erenk er, ED a a	nd
UNIT IV		INDUSTRIAL ELECTRICAL SYSTEMS				9
HT connect of motors, S Power facto	tion, SLD or co	industrial substation, Transformer selection, Industrial loads, f , Cable and Switchgear selection, Lightning Protection, Earthin prection – kVAR calculations, type of compensation, Introduct	moto ng de tion	ors, s esign to P	tartii 1, CC,	ng
MCC panel	ls. S	pecifications of LT Breakers, MCB and other LT panel compo-	nent	S		
UNIT V		INDUSTRIAL ELECTRICAL SYSTEM AND AUTOMATION				9
DG System DG, UPS a Study of ba control syst	ns, U nd E sic I tem	PS System, Electrical Systems for the elevators, Battery banks Battery Banks, Selection of UPS and Battery Banks. PLC, Role of in automation, advantages of process automation, design, Panel Metering and Introduction to SCADA system for 153	, Siz , PL0 : dist	ing C ba ribu	the sed tion	

automat	ion		
			TOTAL : 45 PERIODS
OUTC	OMES:	After successful completion of the	e course students able to
1.	Identify va	arious components of industrial electronic	ctrical systems
2.	Illustrate tl	he electrical wiring systems for res	idential, commercial and industrial
	Consumers	S	
3.	Design Of	Illumination Systems	
4.	Construct	the industrial electrical systems	
5.	Construct	the Automation for industrial electr	rical systems
TEXT	BOOKS:		
1	S. L. Uppa publishers,	al and G. C. Garg, "Electrical Wirir, 2008.	ng, Estimating & Costing", Khanna
2	K. B. Ra 2007.	aina, "Electrical Design, Estimation	ng & Costing", New age International,
REFE	RENCES :	:	
1.	H. Joshi, Education,	"Residential Commercial and Indu ,2008.	strial Systems", McGraw Hill
2.	Web site f	for IS Standards.	
3.	S. Singh ar	nd R. D. Singh, "Electrical estimat	ing and costing", Dhanpat Rai and Co.,
	1997		
4.	Hemant Jo	oshi Residential And Commercial E	lectrical Systems, McGraw Hill
	Education,	,2008.	
5.	J.B.Gupta,	, Electrical installation estimating a	and costing, Kataria,S.K.,& Sons

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1				1					2					2	
001				1					2		2	1		2	1
CO2											2	1		2	1
CO3				1						1			2		
CO4	2				1							1		1	
CO5			2					1							2

18EPE019

ENERGY UTILIZATION CONSERVATION **AND AUDITING**

	-	-	
3	0	0	3

OBJECTIVES:

UNIT I	ENE	RGY SCENARIO AND BASICS OF ENERGY	10
•	To Provid systems	e knowledge about various energy efficient technologies in	electrical
•	To impart	knowledge on energy efficiency in industrial systems	
•	To analyse	energy efficiency in electrical systems	
•	To analyse	energy management & audit	
•	To study in	nportance of energy and its various forms	

AND ITS VARIOUS FORMS

Commercial and Non-commercial energy, primary energy resources, commercial energy production, final energy consumption, energy needs of growing economy, long term energy scenario, energy pricing, energy sector reforms, energy and environment, energy security, energy conservation and its importance, restructuring of the energy supply sector, energy Strategy for the future, air pollution, climate change. Energy Conservation Act-2001 and its Features.

Electricity tariff, load management and maximum demand control, power factor improvement, selection & location of capacitors, Thermal Basics-fuels, thermal energy contents of fuel, temperature & pressure, heat capacity, sensible and latent heat, evaporation, condensation, steam, moist air and humidity & heat transfer, units and conversion 9

UNIT II **ENERGY MANAGEMENT & AUDIT**

Definition, energy audit, need, types of energy audit. Energy management (audit) approach understanding energy costs, bench marking, energy performance, matching energy use to requirement, maximizing system efficiencies, optimizing the input energy requirements, fuel & energy substitution, energy audit instruments. Material and Energy balance: Facility as an energy system, methods for preparing process flow, material and energy balance diagrams.

UNIT III ENERGY EFFICIENCY IN ELECTRICAL SYSTEMS

Electrical system: Electricity billing, electrical load management and maximum demand control, power factor improvement and its benefit, selection and location of capacitors, performance assessment of PF capacitors, distribution and transformer losses. Electric motors: Types, losses in induction motors, motor efficiency, factors affecting motor performance, rewinding and motor replacement issues, energy saving opportunities with

energy efficient motors

ENERGY EFFICIENCY IN INDUSTRIAL SYSTEMS UNIT IV

9

9

Compressed Air System: Types of air compressors, compressor efficiency, efficient compressor operation, Compressed air system components, capacity assessment, leakage test, factors affecting the performance and savings opportunities in HVAC, Fans and blowers: Types, performance evaluation, efficient system operation, flow control strategies and energy conservation opportunities. Pumps and Pumping System: Types, performance evaluation, efficient system operation, flow control strategies and energy conservation opportunities Cooling Tower: Types and performance evaluation, efficient system operation, flow control strategies and energy saving opportunities, assessment of cooling towers.

UNIT V ENERGY EFFICIENT TECHNOLOGIES IN ELECTRICAL SYSTEMS

8

Maximum demand controllers, automatic power factor controllers, energy efficient motors, soft starters with energy saver, variable speed drives, energy efficient transformers, electronic ballast, occupancy sensors, energy efficient lighting controls, energy saving potential of each technology.

		TOTAL : 45 PERIC	DS
OUTC	OMES:	After successful completion of the course students able to	
1.	Explain the	he current energy scenario and importance of energy conserva	tion
2.	Explain the	he concepts of energy management.	
3.	Explain the	he methods of improving energy efficiency in different electri	cal systems
4.	Explain the	he concepts of different energy efficient devices	
5.	Explain the	he concepts of different energy efficient technologies	
TEXT	BOOKS:	:	
1	S. C. Trip 1991.	pathy, "Utilization of Electrical Energy and Conservation",	McGraw Hill,
2	Guide boo Auditors B	ooks for National Certification Examination for Energy Manag Book-1, General Aspects (available online)	ger / Energy
3	Guide boo Auditors B	oks for National Certification Examination for Energy Manag Book-3, Electrical Utilities (available online).	er / Energy
REFE	RENCES:	5:	
1.	Success sto	tories of Energy Conservation by BEE, New Delhi (www.bee-	india.org)
2.	Guide boo Auditors B	oks for National Certification Examination for Energy Manag Book-3, Electrical Utilities (available online).	ger / Energy
3.	Sivaganar Delhi	araju.S "Utilization of Electrical Energy and Conservation"Pe	arson ,New
4.	Paul O Ca	Callaghan, energy management, McGraw Hill, New Delhi.	
5.	V.K.Mehta	ta, Electrical power by Khanna Publishes New Delhi.	
	1		

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1		2							2				2		
CO2			3						2				2		
CO3	2							3							1
CO4	1										2		1		
CO5	2					2					2				2

18EPE	2020		SOLID STATE DRIVES	L 3	T 0	P 0	C 3			
OBJE	CTIV	ES:			U	U	0			
•	То	understa	nd steady state operation and transient dynamics of a m	otor	load	l syst	tem			
•	To s qua	study an litativel	d analyze the operation of the converter/chopper fed dc y and quantitatively.	driv	ve, b	oth				
•	To	study an	d understand the operation and performance of Induction	on m	otor	otor drives				
•	To s driv	study an ves	d understand the operation and performance of Synchro	nou	s mo	otor				
•	To a DC	analyze motor c	and design the current and speed controllers for a closed lrive.	d loc	op sc	olid st	tate			
UNIT	[DRIV	VE CHARACTERISTICS			9	9			
Electric quadrant characte	drive - Dyna: ristics	- Equati mics: ac – Select	ons governing motor load dynamics – steady state stabi ecceleration, deceleration, starting & stopping – typical lo tion of motor	lity - cad t	– mu torqu	ılti ıe				
UNIT	II	CON	VERTER / CHOPPER FED DC MOTOR D	RIV	E		9			
Steady s Drive – quadrant	tate an contin	alysis o uous and tion of d	f the single and three phase converter fed separately exc d discontinuous conduction– Time ratio and current lim converter / chopper fed drive.	vited it co	DC ntro	moto l – 4	or			
UNIT	III	INDU	JCTION MOTOR DRIVES				9			
Stator vo mode– v	oltage oltage	control- / currer	-energy efficient drive–v/f control–constant airgap flux- nt fed inverter – closed loop control	-field	d we	aken	ing			
UNIT	IV	SYN	CHRONOUS MOTOR DRIVES				9			
V/f cont control -	rol and - perm	l self co anent m	ntrol of synchronous motor: Margin angle control and p agnet synchronous motor.	owe	er fac	tor				
UNIT	V	DESI	GN OF CONTROLLERS FOR DRIVES				9			
Transfer speed fe current c	functi edback control	on for I c–armat ler and	DC motor / load and converter – closed loop control with ure voltage control and field weakening mode – Design speed controller- converter selection and characteristics	n Cu of c	ontr	t and	3;			
			TOTAL : 45 PER	ΙΟΙ	DS					
OUTCO	OMES	: A	After successful completion of the course students able to	0						
1.	Expla	ain the c	concepts of Electric drive and its Dynamics							
2.	Expla	ain the c	concepts of converter / chopper fed drive.							
3.	Expla	ain the c	concepts of Induction motor drives							

4.	Explain the concepts of synchronous motor drives
5.	Design of controllers for Drives
TEXT I	BOOKS:
1	Gopal K.Dubey, Fundamentals of Electrical Drives, Narosa Publishing House, 1992.
2	Bimal K.Bose. Modern Power Electronics and AC Drives, Pearson Education, 2002
3	R.Krishnan, Electric Motor & Drives: Modelling, Analysis and Control, Prentice hall of India, 2001.
REFER	ENCES:
1.	John Hindmarsh and Alasdain Renfrew, "Electrical Machines and Drives System," Elsevier 2012.
2.	Shaahin Felizadeh, "Electric Machines and Drives", CRC Press(Taylor and Francis Group),2013.
3.	S.K.Pillai, A First course on Electrical Drives, Wiley Eastern Limited, 1993
4.	S. Sivanagaraju, M. Balasubba Reddy, A. Mallikarjuna Prasad "Power semiconductor drives" PHI, 5th printing, 2013
5	Vedam Subramanyam, "Thyristor Control of Electric Drives", Tata McGraw Hill, 2007

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2				3						1		3		
CO2											2			2	
CO3	1	2									1				2
CO4		2								2			1		
CO5					1						2			2	

18EPE	021		SMAI	L	Τ	P	С		
						3	0	0	3
OBJEC	CTIV	ES:							
•	To in	ntroduce	ne architecture of sn	nart grid					
•	To st	tudy the	nart grid communic	cations and	l its measurement techn	ique	S		
•	To e	ducate t	students on load flo	ow analysi	s in smart grid				
•	To in	npart kı	wledge on voltage s	stability in	smart grid				
•	To in	ntroduce	rid integration for re	enewable	energy sources				
UNIT	' I	SMA	T GRID ARCH	ITECTU	J RE			(9
Introduct communi Roles an Compone	Introduction – Comparison of Power grid with Smart grid – power system enhancement – communication and standards - General View of the Smart Grid Market Drivers - Stakeholder Roles and Function - Measures - Representative Architecture - Functions of Smart Grid Components-Wholesale energy market in smart grid-smart vehicles in smart grid.								
UNIT	II	SMA	T GRID COMM	AUNICA	TIONS AND ITS				9
		MEA	UREMENT TE	CHNIQ	UES				
Commun	icatio	n and	easurement - Mon	nitoring, F	hasor Measurement U	Jnit	(PN	1U),	Smart
Meters, V	Wide	area mo	toring systems (W	YAMS)- A	dvanced metering infra	astru	ctur	e- Gl	iS and
Google N	/lappir	ng Tools							0
UNII Introduct	ion to	LOA	FLOW ANALY	<u>ISIS IN</u>	SMAKI GRID	and	Wa	alma	9
the Prese	nt Log	Load Flow	w Studies - Challer lethods - Load Flox	nges to Lo	the Art: Classical Exte	anu ande	d Fo	armul	ations
and Algo	rithms	s –Load	ow for smart grid de	esign-Con	tingencies studies for sr	nart	grid		ations,
UNIT	IV	SMA	T GRID STABI		6				9
Voltage	Stabil	itv Ana	sis Tools-Voltage	Stability	Assessment Technique	es-V	oltag	ge St	ability
Indexing	-Appli	cation a	l Implementation P	lan of Vo	ltage Stability in smart	grid	-An	gle st	ability
assessme	nt in	smart g	d-Approach of sma	art grid to	State Estimation-Energy	rgy	man	agem	ent in
smart gri	d.								
UNIT	V	GRII	INTEGRATION	N WITH	RENEWABLE			(9
		ENE	GY						
Renewab	le En	ergy Re	urces-Sustainable I	Energy O	ptions for the Smart C	irid-	Pene	etratic	on and
Variabili	ty Issi	ues Ass	iated with Sustaina	able Ener	gy Technology-Deman	d R	espo	onse l	ssues-
Electric	Vehicl	les and	lug-in Hybrids-PHE	EV Techn	ology-Environmental I	mpl	Icatio	ons-S	torage
Technolo	gies-C	JIIG IIIG	auon issues of tene	wable elle	igy sources.				
					TOTAL :45 PERI	OD	S		
OUTCO	OME	S: A	r successful comple	etion of the	e course students able to)			
1.		Explai	he concepts and des	sign of Sm	art grid				
2.		Explai	he various commun	nication an	d measurement technolo	ogies	s in s	smart	grid
3.		Perfor	load flow in smart g	grid.					
4.		Analyz	the stability of smar	rt grid.					
5.		Integra	the renewable energy	gy resourc	es and storages with sm	art g	grid		

TEXT BOO	KS:
1.	Stuart Borlase "Smart Grid: Infrastructure, Technology and Solutions", CRC Press 2012.
2.	Janaka E kanayake, Nick Jenkins, Kithsiri Liyanage, Jianzhong Wu, Akihiko Yokoyama, "Smart Grid: Technology and Applications", Wiley2012.
REFERENC	CES:
1.	Vehbi C.Güngör, Dilan Sahin, Taskin Kocak, SalihErgüt, Concettina Buccella, CarloCecati, and Gerhard P. Hancke, "Smart Grid Technologies: Communication Technologies and Standards" IEEE Transactions On Industrial Informatics, Vol.7,No.4, November2011.
2.	Xi Fang, Satyajayant Misra, Guoliang Xue, and Dejun Yang "Smart Grid – The New and Improved PowerGrid: ASurvey", IEEE Transaction on Smart Grids, vol. 14, 2012.
3.	James Momoh, Smart Grid fundamentals of design and analysis by Wiley2012
4.	Stuart Borlasa Smart grid "Infrastructure, Technology and solutions", CRC Press 2012.
5.	Lars .T.Berger Smart grid Applications, Communications and security by Willey 2012

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2					2									2
CO2							3							2	
CO3											1		1		
CO4		1			2								2		
CO5	3							1							2

		FUNDAMENTALS OF DIGITAL SIGNAL	_			
18E	CPE022	PROCESSING	L	Т	Р	С
			2	1	0	3
OB	IECTIV	ES:				
	To Repre	sent signals mathematically in continuous and discrete-time, an	d in	the f	requ	ency
•	domain.					
•	To Analy	se discrete-time systems using z-transform.				
٠	To Under	rstand the Discrete-Fourier Transform (DFT) and the FFT algor	ithm	s.		
•	To Desig	n digital filters for various applications.				
٠	To Apply	v digital signal processing for the analysis of real-life signals.				
UN	ΤΙ	DISCRETE TIME SIGNALS AND SYSTEMS				09
Sequ	ences; rep	resentation of signals on orthogonal basis; Representation of	disc	crete	syst	ems
using	g differenc	e equations, Sampling and reconstruction of signals - aliasing; S	Samp	oling	theo	rem
and I	Nyquist rat	e				
UNI	IT II	Z TRANSFORM				09
z-Tra	unsform, F	Region of Convergence, Analysis of Linear Shift Invariant	syste	ems	using	g Z-
trans	form, Prop	perties of z-transform for causal signals, Interpretation of stab	ility	in z	-dom	iain,
Inver	rse z transf	orms.				
UN	IT III	DISCRETE FOURIER TRANSFORM				09
Freq	uency Do	main Analysis, Discrete Fourier Transform (DFT), Pro-	perti	es o	of D)FT,
Conv	volution of	signals, Fast Fourier Transform Algorithm, Parseval's Identity	/, Im	plen	nenta	tion
of Di	screte Tim	e Systems.				
UNI	TIV	DESIGN OF DIGITAL FILTERS				09
Wind	low meth	od, Park-McClellan's method. Design of IIR Digital Filt	ers:	But	terwo	orth,
Cheb	yshev and	Elliptic Approximations; Low-pass, Band-pass, Band-stop and	Hig	h pa	ss fil	ters.
Effec	t of finite	e register length in FIR filter design. Parametric and non-pa	aram	etric	spee	ctral
estim	hation. Intr	oduction to multi-rate signal processing.				00
UN		APPLICATIONS OF DIGITAL SIGNAL PROCE		ING	ŕ	09
Corre	el Linear	nctions and Power Spectra, Stationary Processes, Optimal filte Mean Square Estimation, Wiener Filter	ring	usin	ig Al	RMA
Widd	ci, Emetar i	TO	AL	:45]	PER	IODS
OU	Г СОМІ	CS: After completion of this course, the student will be able to:				
1.	Apply di	screte signals and systems to Electrical systems				
2.	Apply Z	-Transform in signal processing				
3.	Apply di	screte fourier transform for processing discrete signals				
4.	Design th	e digital FIR and IIR filters using various methods				
5.	Apply di	gital signal processing technique in real time applications				
TEX	KT BOO	KS:				
1.	J. G. Pro Applicati	akis and D.G. Manolakis, "Digital Signal Processing: Principl ons" Prentice Hall 1997	es, A	lgor	ithm.	s And
	A.V. Opp	enheim and R. W. Schafer. "Discrete Time Signal Processing"	Pre	ntice	e Hal	7.
2.	<i>1989.</i>					,

REI	FERENCES:
1	L. R. Rabiner and B. Gold, "Theory and Application of Digital Signal Processing",
1.	Prentice Hall, 1992.
2.	J. R. Johnson, "Introduction to Digital Signal Processing", Prentice Hall, 1992.
3	D. J. DeFatta, J. G. Lucas and W. S. Hodgkiss, "Digital Signal Processing", John Wiley &
5.	Sons, 1988.
1	S. K. Mitra, "Digital Signal Processing: A computer based approach", McGraw Hill,
4.	2011.
	Robert Schilling & Sandra L.Harris, Introduction to Digital Signal Processing using
5.	Matlab", Cengage Learning,2014.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	1		2						1		2	2	
CO2	3	3	1		2						1		2	2	
CO3	3	3	1		2						1		2	2	
CO4		3	3		2						2		2	2	
CO5		3	3		2						2		2	2	

LIST OF OPEN ELECTIVES OFFERED BY EEE DEPARTMENT

18EOE0	01	MATLAB PROGRAMMING	L	Τ	Р	С			
			2	0	1	3			
OBJECT	TIVES:								
•	To study	basics of MATLAB programming							
•	To introd	uce MATLAB Functions and File processing							
•	To impar	t knowledge on MATLAB programming techniques							
•	To enable	e the students to plot the functions using MATLAB							
•	To develo	op skill in simple engineering applications development v	vith	MA	TLA	В			
UNIT I		INTRODUCTION				9			
Basics of MATLAB programming–Variables and Arrays – initializing variables in MA Multidimensional Arrays – Sub arrays – Special Values–Displaying Output Data – Da Scalar and Array Operations – Hierarchy of Operations									
UNIT II		FUNCTIONS & FILES				9			
Built-in M Binary I/C Processing	ATLAB F Function – File Ope	unctions – Elementary Mathematical Functions – User I as – Advanced Function Programming – Introduction ening and Closing, Working with Data Files.	Defin to	ned] MA	Func TLA	tions – B File			
UNIT II	[PROGRAMMING TECHNIQUES				9			
Program Operators LAB Progr	Design an and Functi ram.	nd Development–Relational Operators and Logical ons–Conditional Statements–Loops–The Switch Structur	Va re–D	riab ebug	les–I gging	ogical g MAT			
UNIT IV	Τ	PLOTTING OF FUNCTIONS				9			
XY plottin Polar Plot- Regression Problems-	ng function - Interactiv - 3-D pl GUI.	us– Subplots and Overlay plots–Plots With Error Bars– ve plotting– Putting Multiple Plots on the Same Page– F ots–Mesh and Surface Plots – Examples of MATI	Spe Junct LAB	cial tion Ap	Plot Disc oplica	types– overy– ations–			
UNIT V		ENGINEERING APPLICATIONS				9			
Numerical Cotes inte Gauss Elin Special Ma	Jumerical Differentiation in single variable,: Higher derivatives, multiple variables, Newton- Cotes integration formulae, MATLAB functions for integration, Linear algebra in MATLAB, Bauss Elimination, LU decomposition and partial pivoting, Iterative methods: Gauss Siedel, Special Matrices: Tri- diagonal matrix algorithm- Engineering Applications-Optimization.								
		TOTAL :45 PERI	OD	S					

OUTC	OMES:	After successful completion of the course students able to
1.	Articulat	e importance of MATLAB software's in research by simulation work
2.	Demonst essential	rate the Basics of MATLAB programming tools, functions and files that are in solving engineering problems
3.	Explain a	bout programming techniques and plotting of functions.
4.	Illustrate	the loops and Debugging of MAT LAB Programs
5.	Develop	the writing of programs & simulation in MATLAB for engineering problems.
TEXT	BOOKS	
1.	Amos Gi edition, 2	lat, MATLAB An Introduction With Applications By, Wiley Publication. 6 th 2016
2.	Rudra Pr	ratap, "MATLAB 7", Oxford University Press,2006
3	R.K. Bar kindeslay	nsal, A.K. Goel, "MATLAB and Its Applications In Engineering" Dorling v pvt. Lt, india, 2009.
REFE	RENCES	:
1.	Stephen j States of 1	. Chapman., "MATLAB programming for engineers ", Fifth Education, United America, 2015.
2.	Otto S.R, in MATL	Denier J.P., "An introduction to programming and numerical methods AB", Springer –verlag London limited.2005.
3.	William J 2010 by I	I. Palm III "Introduction to MATLAB for Engineers", Published February 1st McGraw-Hill Education.
4.	Brian R. Beginner Universit	Hunt (Editor), Ronald L. Lipsman, J. Rosenberg "A Guide to MATLAB: For rs and Experienced Users" Published August 6th 2001 by Cambridge ty Press.
5.	Edward I August 20	B. Magrab "An Engineers Guide to MATLAB ",Pearson; 1 edition (11 000)

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1					3		1				3	2	2		
CO2	2		3								2			3	
CO3	2		3			1							2		
CO4		2		3		1							2		
CO5			2		2						2				3

18EOE002		RENEWABLE ENERGY SOURCES	L	T	Р	C						
			3	0	0	3						
OBJECTIV	ES:											
•	To in	troduce Different types of Renewable Energy Sources										
•	To e	ducate the students on principle of solar energy										
•	To e	To educate the students on wind energy conversion systems										
•	To ea	ducate the students on biomass energy and cogeneration	syste	ems								
٠	To in	npart knowledge on tidal energy and geothermal energy										
UNIT I	INT	RODUCTION				9						
Energy Conse Renewable En energy utilizat scenario in Ind	ervation ergy S ion – ia - Ap	n and Energy Efficiency – Needs and Advantages, ources - Energy Resources Availability in World – Envi Energy Conservation Act 2003 - Statistical Report o oplications.	, Di ironr n Re	ffere nent enew	ent t al as able	ypes o pects o energ						
UNIT II	SOI	LAR ENERGY				9						
Solar Flat pla desalination – plant – Solar p	te and Solar l hoto ve	concentrating collectors – Solar heating and cooling Pond – Solar cooker – Solar Drying – Solar pumping – oltaic conversion – Solar cells – PV applications.	g tec Sola	chnic r the	ques erma	–Solar power						
UNIT III	WI	ND ENERGY				9						
Wind energy e Wind energy S	stimat ystem	ion in World and in India – Types of wind energy syste – Details of wind turbine generator – Safety and Environ	ms – men	-Peri tal A	form	ance of ets.						
UNIT IV	BIO	MASS ENERGY				9						
Biomass direct	t comb	ustion – Biomass gasifier – Biomass: Types – Advanta	ages	& I	Draw	backs -						

Biomass direct combustion – Biomass gasifier – Biomass: Types – Advantages & Drawbacks -Biogas plant – Ethanol production – Bio diesel – Cogeneration: steam turbine cogeneration systems, gas turbine cogeneration systems, reciprocating IC engine cogeneration systems, combined cycle cogeneration systems – Applications of Cogeneration in utility sector – Biomass applications.

UNIT V 0

OTHER RENEWABLE ENERGY SOURCES

9

Tidal energy – Wave energy – Open and closed OTEC Cycles – Small hydro –Geothermal energy – Fuel cell systems - Stirling Engines.

TOTAL :45 PERIODS

OUTCOME	CS:	After successful completion of the course students able to							
1.	Exp	plain the importance of renewable energy source							
2.	Exp	plain and illustrate the Solar Energy.							
3.	Exp	Explain and illustrate the Wind Energy							
4.	Exp	plain and illustrate the Biomass Energy							
5.	Exp	plain and illustrate about all renewable Energy Sources.							
REFERENC	CES	:							
1.	G.I 199	D. Rai, Non-Conventional Energy Sources, Khanna Publishers, New Delhi, 99.							
2.	S.P Del	2. Sukhatme, Solar Energy, Tata McGraw Hill Publishing Company Ltd., New Ihi, 1997.							
3.	G.N Nat	N. Tiwari, Solar Energy – Fundamentals Design, Modelling and applications, rosa Publishing House, New Delhi, 2002.							
4.	Sol Edi	ar Energy: Principles of Thermal Collection and Storage, McGraw-Hill ucation (India) (13 January 2009)							
5.	Joi 200	hn Twidell, Renewable Energy Resources, Routledge; 2 edition (24 November 95)							

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2					2		2				1			2
CO2				1					2					2	
CO3				1					2					2	
CO4				1					2					2	
CO5			2					2				2		2	

18EOE	003 I	ENE	CRGY MANAGEMENT AND AUDITING	L	Т	Р	С		
	·			3	0	0	3		
OBJEC	TIVES	5:							
•	• To introduce the forms of energy, energy auditing types and roles of energy manag								
•	To impa	art kr	nowledge on energy costing and importance of power fa	actor	in e	nerg	y cost		
•	to study	v met	ering for energy management & power quality analyses	5					
•	To educate the students on different lighting systems								
•	To study energy economics techniques								
LINIT I	IN				9				

Types & Forms of Energy - Primary / Secondary Energy Sources –EC Act 2003 – Energy Auditing: Types, Classifications, Deliverables, Barriers – Benchmarking - Roles & Responsibility of Energy Managers.

UNIT II ENERGY COSTING, MONITORING &TARGETING

9

Data & Information Analysis – Cost / Energy Share Diagram – Data Graphing – Electricity Billing : Components & Costs – KVA – Need & Control – Determination of KVA demand & Consumption –Time of Day Tariff – Power Factor Basics – Penalty Concept for PF – PF Correction – Wheeling and Banking - Demand Side Management – comparison on unit cost of power cost from various sources – steam cost from different sources.

UNIT III METERING FOR ENERGY MANAGEMENT & POWER QUALITY ANALYSES

9

Instruments Used in Energy systems: Load and power factor measuring equipment, Wattmeter, Flue gas analysis, Temperature and thermal loss measurements, Air quality analysis-Relationships between parameters-Units of measure-Typical cost factors- Utility meters – Timing of meter disc for kilowatt measurement - Demand meters - Paralleling of current transformers -Instrument transformer burdens-Multitasking solid-state meters - Metering location vs. requirements – Net metering - Metering techniques and practical examples.

UNIT IV LIGHTING SYSTEMS & COGENERATION

9

Concept	f lighting systems - The task and the working space - Light sources - Ba	ıllasts -								
Luminaries - Lighting controls - Optimizing lighting energy - Power factor and effect of harmonics on power quality - Cost analysis techniques - Lighting and energy standards										
harmonic	on power quality - Cost analysis techniques - Lighting and energy sta	andards								
Cogenera	on: Forms of cogeneration - feasibility of cogeneration- Electrical interconnection	on.								
UNIT V	ECONOMICS	9								
Energy E	onomics - Depreciation - Financial Analysis Techniques - Discount Rate, P	a yback								
Period, I	ernal Rate of Return, Net Present Value, Life Cycle Costing - ESCO cor	ncept –								
CUSUM	echnique – ESCO Concept – ESCO Contracts.									
	TOTAL : 45 PEI	RIODS								
OUTCO	MES: After successful completion of the course students able to									
1.	Analyse the energy data of industries.									
2.	Carry out energy accounting and balancing.									
3.	Suggest methodologies for energy saving.									
4.	Design Lighting systems									
5.	5. Explain the concepts of Energy Economics									
TEXT I	OOKS:									
1.	Energy Manager Training Manual (4Volumes) available at www.Energym raining.com, a website administered by Bureau of Energy Efficiency (B statutory body under Ministry of Power, Government of India. 2004.	nanager EE), a								
2.	Amit K. Tyagi, Handbook on Energy Audits and Management, TERI, 2003.									
3.	Barney L. Capehart, Wayne C. Turner, and William J. Kennedy, Guide to Management, Fifth Edition, The Fairmont Press, Inc., 2006.	Energy								
REFER	ENCES:									
1.	L.C. Witte, P.S. Schmidt, D.R. Brown, "Industrial Energy Managemen Utilisation" Hemisphere Publ, Washington, 1988.	nt and								
2.	Callaghn, P.W. "Design and Management for Energy Conservation", Per Press, Oxford,1981	rgamon								
3.	Eastop T.D & Croft D.R, Energy Efficiency for Engineers and Technologists, L Scientific & Technical, ISBN-0-582-03184, 1990.	Logman								
4.	WC Turner: Energy Management Handbook, Seventh Edition, (Fairmont Pre. 2007)	ss Inc.,								
5.	Barun Kumar De, Energy Management, Audit and Conservation, Vrinda Public	cations								

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2		1						2				2		2
CO3			2		1						2				2
CO4		3	2								3				2
CO5			2		1						2				2

18EOE	004	Ι	L T	P	С						
				2	1	0	3				
OBJE	CTIVES:										
•	Understan	he concepts of Reliability, failur	res and Unreliabil	ity							
•	Understan	various Design techniques for re	liability								
•	To know y	ious models and m order system	is for analysing re	liability							
•	To unders	d the economic issues and mana	agement technique	es							
UNIT	I CO	CEPTS OF RELIABILIT	Y				9				
Reliabilit	y and Qua	v – Failures and Failure modes	s – Causes of Fa	ilures ar	d U	nreliał	oility –				
Maintaina	ability Fun	on – Availability Function – F	Frequency of Fail	ures – T	wo	Unit I	Parallel				
system w	ith Repair -	reventive Maintenance									
UNIT	II DES	GN FOR RELIABILITY					9				
Designing	g for Highe	eliability – Redundancy techniq	ues – Component	versus I	Jnit 1	edund	lancy –				
Weakest	Link Tech	ques – Mixed and standby R	edundancy – Re	dundanc	op op	otimiza	ution –				
Double F	ailures – Ec	pment Hierarchy – Logic diagra	m and Conditiona	al Probab	ility	Appro	oach.				
UNIT	III RE	ABILITY MODELS					9				
Compone	nt Reliabil	- Meant Time to Failure - Time	ne dependent and	l Stress of	leper	ndent	Hazard				
Models -	- Systems v	h Components in series and Pa	arallel – k out of	f m syste	ms -	- Non	series-				
Parallel S	Parallel Systems System with Mixed mode failures										
UNIT IV MORDER SYSTEMS											
Non-main	ntained sys	ms – Maintained systems –	Trichotomous s	ystems	– Pa	aramet	ers of				
Depender	ncy – Analy	s of Non-maintained Systems w	ith dependant unit	ts – Syste	ems v	with R	epair –				
Optimal N	Maintenanc	Policy.	-	-			-				
UNIT	V EC	NOMICS AND MANAGE	CMENT				9				
Economi	cs Issues -	Manufacturer's Cost and Cust	omers Cost – C	ost Mod	lels	– Rel	iability				
Programm	ne – Mana	ment Policies and Decisions -	- Management by	y Object	ves	– Rel	iability				
group – R	eliability D	a – Managing People for reliabi	lity.								
				TOTA	L:4	5 PEF	RIODS				
OUTCO	DMES:	After successful completion of t	he course student	s able to							
1.	Analyse w	n reliability and quality with fail	ures								
2.	Apply var	is redundancy techniques for re	liability								
2	Analyse th	Component reliability and mean	n time to failure for	or variou	s reli	ability	1				
3.	model and	n order systems with non-identic	cal and dependant	units							
4.	Optimize	e concepts of reliability with fail	lures and manage	the team	for	reliabi	lity				
5.	Analze the	ost effectiveness of products									
TEXT I	BOOKS:										
4	E.Balagur	wamy, "Reliability Engineering	g", Tata McGrav	v Hill, S	ixtee	enth R	eprint,				
1.	2016.			-			- /				
2.	L.S.Srinat	"Reliability Engineering", Affil	iated East-West I	Press, 3 rd	Edit	ion, 19	991.				
REFER	ENCES:	-									
1.	Elasayed	Elsayed, "Wiley Press, Second I	Edition, 2012								

2.	K.K.Aggarwal, "Reliability Engineering", Kluwer Academic Publishers, 1993
3.	A.K. Govil, Reliability Engineering, McGraw-Hill Inc., US (1 September 1983)
4.	E Balagurusamy, Reliability Engineering, McGraw Hill Education (1 July 2017)
5.	Massimo Lazzaroni, Reliability Engineering: Basic Concepts and Applications, Softcover reprint of the original 1st ed. 2011 edition (23 August 2016)

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2				2	1				1	2		2		2
CO2	2				2						2			2	
CO3	2				1						2			2	
CO4	2														2
CO5	2				2						2			2	2

18EOE (BEOE005DISASTER MANAGEMENT AND MITIGATIONLTPC										
			3	0	0	3					
OBJEC	TIVES:				<u> </u>						
•	To Understa	nd basic concepts in Disaster Management									
•	To Understa	nd Definitions and Terminologies used in Disaster Ma	nager	nent							
•	To Understa	nd Types and Categories of Disasters	0								
•	To Understa	nd the Challenges posed by Disasters									
•	To understa	nd Impacts of Disasters Key Skills									
UNIT I	INTE	ODUCTION				9					
Concepts a	and definitio	ns: disaster, hazard, vulnerability, risks – Severity – Fr	equei	ncy a	nd d	etails –					
Capacity -	- Impact – Pi	evention – Mitigation).									
UNIT II	DISA	STERS				9					
pollution, accidents, areas, ecol	andslides, co artificial fle terrorist stri logical fragil	astal erosion, soil erosion, forest fires etc.) – Manmad boding in urban areas, nuclear radiation, chemical kes, etc.) – Hazard and vulnerability profile of India, ity.	spills spills mour	aster 5, tra ntain	s (ind anspo and	ortation coastal					
		STER IMPACTS				9					
Disaster in psycho – Global and	npacts (envi Social issues d national dis	ronmental, physical, social, ecological, economic, po – Demographic aspects (gender, age, special needs) saster trends – Climate change and urban disasters.	litical – Ha	, etc zard	.) –] loca	Health, tions –					
UNIT IV	DISA	STER RISK REDUCTION				9					
Disaster r recovery - assessmen food safe responsibi Policies ar National I	nanagement – Structural t – Early ty, waste f lities of gov nd legislation Disaster Man	cycle – its phases – Prevention, mitigation, prep and non-structural measures – Risk analysis, vulne warning systems, Post-disaster environmental respon nanagement, disease control, security, communica vernment, community, local institutions, NGOs and a for disaster risk reduction, DRR programmes in Indi agement Authority.	pared rabili se (w tions other a and	ness, ty a vater) – sta the	, reli nd ca , san Role kehol activ	ef and apacity itation, es and lders – ities of					
UNIT V	DISA DEV	STERS, ENVIRONMENT AND ELOPMENT				9					
Factors at modificati environme	ffecting vul ons (includ ental friendly	nerability such as impact of developmental project ing of dams, land-use changes, urbanization et recovery; reconstruction and development methods.	s and c.), s	l en susta	viron inabl	mental le and					
	-	ТО	TAL	: 45	PEF	RIODS					
OUTCO	MES:	After successful completion of the course, The studen	t will	be a	ble to	0					
		173									

1.	Develop the application of Disaster Concepts to Management
2.	Develop the Relationship between Development and Disasters
3.	Develop the Disaster impacts
4.	Develop the Disasters Risk Reduction
5.	Realize of the responsibilities to society
TEXT	BOOKS:
1.	Pradeep Sahni, 2004, Disaster Risk Reduction in South Asia, Prentice Hall.
2.	Singh B.K., 2008, Handbook of Disaster Management: Techniques & Guidelines, Rajat Publication.
3.	Ghosh G.K., 2006, Disaster Management, APH Publishing Corporation
REFER	RENCES:
1.	Disaster Medical Systems Guidelines. Emergency Medical Services Authority, State of California, EMSA no.214, June 2003
2.	Inter Agency Standing Committee (IASC) (Feb. 2007). IASC Guidelines on Mental Health and Psychosocial Support in Emergency Settings. Geneva: IASC
3.	http://ndma.gov.in/ (Home page of National Disaster Management Authority)
4.	http://www.ndmindia.nic.in/ (National Disaster management in India, Ministry of Home Affairs).
5.	<i>R. B. Singh, Natural Hazards and Disaster Management: Vulnerability and Mitigation Rawat; Reprint edition (1 December 2006)</i>

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3		2					1				2	2		3
CO2									1		1	2	1		2
CO3			2					2				1		2	
CO4			1					1				1		2	
CO5			2			2						2	1		3

18EOE	006	POWER ELECTRONICS AND DRIVES	L	Т	Р	С				
			3	0	0	3				
OBJE	CTIVES:									
•	Understar	the operation of power electronic converters and their c	ontr	ol sti	ategi	les.				
•	Understa	d the vector control strategies for ac motor drives								
•	Understa	d the implementation of the control strategies using digi	al si	gnal	proc	essors				
•	To unders	and steady state operation and transient dynamics of a m	otor	load	syste	em				
	To study	nd analyze the operation of the converter/chopper fed dc	driv	e, bo	oth					
•	qualitativ	ly and quantitatively.								
UNIT I	PO	VER SEMICONDUCTOR DEVICES				9				
Diode – BJT – Thyristor – GTO, MCT,FCT,RCT – MOSFET – IGBT – I-V Characteristics –										
Firing cir	cuit for the	ristor – Voltage and current commutation of a thyristor	– Ga	te di	rive c	rcuits				
for MOSFET and IGBT										
UNIT I	I PO	VER ELECTRONIC CIRCUITS				9				
Fundame	ntal of Co	nverters - Single phase and three phase Converters	; –	Con	trolle	d and				
uncontrol	led rectifie	rs - Principle of Inverters - Single phase and three phase	inve	erter	s - V	SI and				
CSI – Voltage controllers – DC-DC Converters – Cyclo converters										
UNIT IIIDC AND AC DRIVES9										
Steady state analysis of Three phase converter fed separately excited DC motor Drive - Time										
ratio and	current lir	it control - 4 quadrant operation of converter / chopped	er fee	d dri	ve –	Stator				
voltage c	ontrol – E	ergy efficient drive - V/f control - Voltage / current fe	ed in	verte	er – (Closed				
loop cont	rol – V/f co	ntrol and self control of synchronous motor								
UNIT I	V SPI	CIAL ELECTRIC DRIVES				9				
Solar and	battery po	vered Drives - Traction Drives Servo motor drive required	nent	- cc	ntrol	and				
implemen	ntation – St	pper Motor Drive - Control and Applications - Permane	nt ma	agne	t					
synchron	ous motor									
UNIT V	7 DR	VE CHARACTERISTICS				9				
Electric	drive – Ec	uations governing motor load dynamics - Steady sta	te st	abili	ity –	Multi				
quadrant	Dynamics	Acceleration, Deceleration, Starting & Stopping - '	Гурі	cal l	oad	torque				
character	istics – Sel	ction of motor								
TOTAL : 45 PERIODS										
OUTCO	OMES:	After successful completion of the course, The student competencies in	will	deve	elop					
1.	Apply por	ver semiconductor devices for various applications								
2.	Design an	d analyze power electronic circuits								
3.	Design an	d apply power electronic circuits for various DC and AC	elect	ric c	lrives	5				
4.	4. Design and apply power electronic circuits for special electric drives such as stepper motor and synchros etc,									

5.	Select the type of machine or drive for particular application to match the								
	characteristics of loads								
TEXT I	BOOKS:								
1.	M. H. Rashid, "Power electronics: circuits, devices, and applications", Pearson								
	Education India, 2009.								
2.	Gopal K.Dubey, Fundamentals of Electrical Drives, Narosa Publishing House, 1992								
REFERENCES:									
1.	Bimal K.Bose. Modern Power Electronics and AC Drives, Pearson Education, 2002								
2.	R.Krishnan, Electric Motor & Drives: Modelling, Analysis and Control, Prentice hall								
	of India, 2001.								
3.	Bimal K. Bose , Modern Power Electronics and AC Drives , Prentice Hall (12 October								
	2001)								
4.	Singh, Advance Semiconductor Devices, Vei (2012)								
5.	Tomasi, Advanced Electronic Communications Systems, Prentice Hall India Learning								
	Private Limited; 6 edition (2004)								

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1		3									2	3	2		2
CO2	2		2								2		2		2
CO3		2	3						2		2		2		1
CO4		2	3						2		2		3		1
CO5	2				3						2	1		3	3