

1.	Graduates will be able to understand and apply the concepts of Electronics and Communication Engineering in the field of Microelectronics. Signal processing
	Communication Networking Embedded and VI SI Systems
2.	Graduates will be able to design and utilize advanced Hardware and Software tools
	to analyze and implement subsystems for real time applications.
3.	of Embedded Systems VI SI Systems and Communication Engineering
	PROGRAM EDUCATIONAL OBJECTIVES
1	
1.	Engineering Knowledge: Apply the knowledge of mathematics, science, angingering fundamentals, and an angingering specialization to the solution of
	complex engineering problems
2	Problem analysis: Identify formulate review research literature and analyze
	complex engineering problems reaching substantiated conclusions using first
	principles of mathematics, natural sciences and engineering sciences.
3.	Design/Development of solutions: Design solution for complex engineering
	problems and design system components or processes that meet the specified needs
	with appropriate consideration for the public health and safety, and the culture,
	societal and environmental considerations.
4.	Conduct investigations of complex problems: Use research-based knowledge and
	data and synthesis of the information to provide valid conclusions
5	Modern tool usage: Create Select and apply appropriate techniques resources
	and modern engineering and IT tools including prediction and modeling to complex
	engineering activities with an understanding of the limitations.
6.	The engineer and society: Apply reasoning informed by the contextual knowledge
	to access societal, health, safety, legal and cultural issues and the consequent
	responsibilities relevant to the professional engineering practice.
7.	Environmental and sustainability: Understanding the impact of the professional
	engineering solutions in societal and environmental contexts, and demonstrate the
8.	Ethics: Apply ethical principles and commit to professional ethics and
0.	responsibilities and norms of the engineering practice.
9.	Individual and team work: Function effectively as an individual and as a member
	or leader in diverse teams, and in multidisciplinary settings
10.	Communication: Communicate effectively on complex engineering activities with
	the engineering community and with society at large, such as, being able to
	comprehend and write effective reports and design documentation, make effective
	presentations, and give and receive clear instructions.
11.	Project management and finance: Demonstrate knowledge and understanding of
	the engineering and management and finance principles and apply these to one's
	own work, as a member and leader in a team, to manage projects and
12	Life-long learning: Recognize the need for and have the preparation and ability to
14.	engage in independent and life-long learning in the broadest context of
	technological change.

ELECTRONICS AND COMMUNICATION ENGINEERING (UG) CURRICULUM DESIGN

CREDIT SUMMARY

SL. NO	SUBJECT AREA	CREDITS PER SEMESTER								CREDITS ACTUAL	CREDIT S AICTE	% OF CREDITS	TOTAL NO. OF COURSES
		Ι	II	III	IV	V	VI	VII	VIII				
1.	HSM	3				3		3		9	12	5.61	4
2.	BS	9.5	9.5	4	4					27	25	16.82	8
3.	ES	6	5	8	3					22	24	13.71	9
4.	PC		4	11	15	14	11	7		62	48	38.63	25
5.	РЕ					3	6	3	6	18	18	11.25	6
6.	OE						3	6	3	12	18	7.42	4
7.	ЕСР					1.5		3	6	10.5	15	6.54	3
8.	МС	0	0	0						0			3
9.	TOTAL	18.5	18.5	23	22	21.5	20	22	15	160.5	160	100	62

GOVERNMENT COLLEGE OF ENGINEERING BARGUR

CBCS-2018 REGULATIONS

Curriculum for Full Time – B.E (ECE)

INDUCTION PROGRAM

Induction program (mandatory)	3 Weeks Duration
Should be offered before starting of the first	Physical activity
semester	• Creative arts
	Universal Human Values
	• Literary
	Proficiency Modules
	Lectures by Eminent People
	Visits to Local Areas
	• Familiarization to Dept/Branch &
	Innovations

SEMESTER - I

SL. No.	COURSE CODE	COURSE TITLE	CAT	CONTACT PERIODS	L	Т	Р	С
THE	ORY							
1.	18SLS101	Engineering Chemistry	BSC	4	3	1	0	4
2.	18ZBS102	Engineering Mathematics I	BSC	4	3	1	0	4
3.	18ZHS103	Technical English	HSMC	2	2	0	0	2
4.	18ZES104	Engineering Graphics and Design	ESC	5	1	0	4	3
5.	18ZMC105	Induction Program	MC	-	-	-	-	0
PRA	CTICAL							
6.	18SLS106	Chemistry Laboratory	BSC	3	0	0	3	1.5
7.	18ZHS107	Communication English Laboratory	HSC	2	0	0	2	1
8.	18ZES108	Workshop Practices	ESC	5	1	0	4	3
			TOTAL	25	10	2	13	18.5

SEMESTER - II

SL. No.	COURSE CODE	COURSE TITLE	CAT	CONTACT PERIODS	L	Т	Р	С					
THE	THEORY												
1.	18SLS201	Engineering Physics	BSC	4	3	1	0	4					
2.	18ZBS202	Engineering Mathematics II	BSC	4	3	1	0	4					
3.	18ZES203	Programming in C	ESC	3	3	0	0	3					
4.	18LPC204	Circuit Theory	PCC	4	3	1	0	4					
5.	18ZMC205	Constitution of India	MC	1	1	0	0	0					
PRA	CTICAL												
6.	18SLS206	Physics Laboratory	BSC	3	0	0	3	1.5					
7.	18ZES207	Programming in C Laboratory	ESC	4	0	0	4	2					
	1]	TOTAL	23	13	3	7	18.5					

SEMESTER - III

SL. No.	COURSE CODE	COURSE TITLE	CAT	CONTACT PERIODS	L	Т	Р	С
THE	ORY	•						
1.	18ZBS301	Transforms and Partial Differential Equations	BSC	4	3	1	0	4
2.	18LPC302	Electronic Devices and Circuits	PCC	4	3	1	0	4
3.	18LPC303	Electromagnetic Fields	PCC	3	3	0	0	3
4.	18LPC304	Signals and Systems	PCC	3	3	0	0	3
5.	18ZMC305	Environmental Science and Engineering	MC	1	1	0	0	0
6.	18LES306	Data Structures and Object- Oriented Programming Language	ESC	3	3	0	0	3
7.	18LES307	Basic Electrical and Instrumentation Engineering	ESC	3	3	0	0	3
PRAC	CTICAL							
8.	18LES308	Data Structures and Object Oriented Programming Language Laboratory	ESC	2	0	0	2	1
9.	18LPC309	Circuits and Devices Laboratory	PCC	2	0	0	2	1
10.	18LES310	Electrical Engineering Laboratory	ESC	2	0	0	2	1
		TO	DTAL	27	19	2	6	23

SEMESTER-IV

SL. No.	COURSE CODE	COURSE TITLE	CAT	CONTACT PERIODS	L	Т	Р	С			
THE	THEORY										
1.	18LBS401	Probability and Random Processes	BSC	4	3	1	0	4			
2.	18LPC402	Electronic Circuits	PCC	3	3	0	0	3			
3.	18LES403	Basic Control System Engineering	ESC	3	3	0	0	3			
4.	18LPC404	Transmission Lines and Waveguides	PCC	3	3	0	0	3			
5.	18LPC405	Analog Communication	PCC	3	3	0	0	3			
6.	18 LPC406	Linear and Digital Integrated Circuits	PCC	4	3	1	0	4			
PRA	CTICAL	•									
7.	18LPC407	Electronic Circuits Laboratory	PCC	2	0	0	2	1			
8.	18LPC408	Analog and Digtial Circuits Laboratory	PCC	2	0	0	2	1			
		TC	DTAL	24	18	2	4	22			

SEMESTER-V

SL. No.	COURSE CODE	COURSE TITLE	CAT	CONTAC T PERIODS	L	Т	Р	С
THE	ORY							
1.	18LPC501	Digital Signal Processing	PCC	3	3	0	0	3
2.	18LPC502	Microprocessor and Microcontroller	PCC	3	3	0	0	3
3.	18LPC503	Digital Communication	PCC	3	3	0	0	3
4.	18LPC504	Antenna and Wave Propagation	PCC	3	3	0	0	3
5.	18LHS505	Management Theory and Practice	HSMC	3	3	0	0	3
6.		Professional Elective I	PEC	3	3	0	0	3
PRA	CTICAL		•					
7.	18LPC507	Analog and Digital Communication Laboratory	PCC	2	0	0	2	1
8.	18LPC508	Microprocessor and Microcontroller Laboratory	PCC	2	0	0	2	1
9.	18LEE509	Project work I	ECP	3	0	0	3	1.5
			TOTAL	25	18	0	7	21.5

SEMESTER-VI

SL. No.	COURSE CODE	COURSE TITLE	CAT	CONTACT PERIODS	L	Т	Р	С
THE	ORY							
1.	18LPC601	VLSI Design	PCC	3	3	0	0	3
2.	18LPC602	Microwave and RF system	PCC	3	3	0	0	3
3.	18LPC603	Embedded Systems	PCC	3	3	0	0	3
4.		Open Elective I	OEC	3	3	0	0	3
5.		Professional Elective II	PEC	3	3	0	0	3
6.		Professional Elective III	PEC	3	3	0	0	3
PRA	CTICAL							
7.	18LPC607	VLSI Laboratory	PCC	2	0	0	2	1
8.	18LPC608	Digital Signal Processing Laboratory	PCC	2	0	0	2	1
		TC	DTAL	22	18	0	4	20

SEMESTER-VII

SL. No.	COURSE CODE	COURSE TITLE	CAT	CONTACT PERIODS	L	Т	Р	С
THE	ORY							
1.	18ELH701	Professional Ethics	HSMC	3	3	0	0	3
2.	18LPC702	Fiber Optic Communication	PCC	3	3	0	0	3
3.	18LPC703	Wireless Communication	PCC	3	3	0	0	3
4.		Professional Elective IV	PEC	3	3	0	0	3
5.		Open Elective II	OEC	3	3	0	0	3
6.		Open Elective III	OEC	3	3	0	0	3
PRA	CTICAL							
7.	18LPC707	Microwave and Optical Laboratory	PCC	2	0	0	2	1
8.	18LEE708	Project Work II	ECP	6	0	0	6	3
			TOTAL	26	18	0	8	22

SEMESTER-VIII

SL. No.	COURSE CODE	COURSE TITLE	CAT	CONTACT PERIODS	L	Т	Р	С				
THE	THEORY											
1.		Professional Elective V	PEC	3	3	0	0	3				
2.		Professional Elective VI	PEC	3	3	0	0	3				
3.		Open Elective IV	OEC	3	3	0	0	3				
PRAG	CTICAL											
4.	18LEE804	Project Work III	ECP	12	0	0	12	6				
			TOTAL	21	9	0	12	15				

TOTAL NUMBER OF CREDITS: 158-163

Value Added Courses

The students can undergo **Internship** in Government / Government Recognized industries for the period of 4 to 6 weeks. This will be indicated in the **Grade Sheet** under the head, "Value Added Courses.

SL.No.	COURSE CODE	COURSE TITLE	CATEGORY	L	Т	Р	С
1.	18LPE001	Wireless Networks	PEC	3	0	0	3
2.	18LPE002	AD-HOC Networks	PEC	3	0	0	3
3.	18LPE003	Network Security	PEC	3	0	0	3
4.	18LPE004	Information and Coding Theory	PEC	2	1	0	3
5.	18LPE005	Statistical Theory of Communication	PEC	2	1	0	3
6.	18LPE006	Spread Spectrum Techniques	PEC	3	0	0	3
7.	18LPE007	Communication Electronic Circuits	PEC	3	0	0	3
8.	18LPE008	Telecommunication Switching Networks	PEC	3	0	0	3
9.	18LPE009	Software Defined Radio	PEC	3	0	0	3
10.	18LPE010	Automotive Electronic Systems	PEC	3	0	0	3
11.	18LPE011	Advanced Display Devices	PEC	3	0	0	3
12.	18LPE012	Digital Speech Processing	PEC	2	1	0	3
13.	18LPE013	Advanced Digital Signal Processing	PEC	2	1	0	3
14.	18LPE014	DSP Architectures and Programming	PEC	3	0	0	3
15.	18LPE015	Digital Image Processing	PEC	3	0	0	3
16.	18LPE016	MEMS	PEC	3	0	0	3
17.	18LPE017	Nano Electronics	PEC	3	0	0	3
18.	18LPE018	Optoelectronics	PEC	3	0	0	3
19.	18LPE019	Radar Systems	PEC	3	0	0	3
20.	18LPE020	Smart Antennas	PEC	3	0	0	3
21.	18LPE021	Wavelet Transform and Applications	PEC	3	0	0	3
22.	18LPE022	VLSI Testing	PEC	3	0	0	3
23.	18LPE023	ARM System Design	PEC	3	0	0	3
24.	18LPE024	Analog Integrated Circuits Design	PEC	3	0	0	3
25.	18LPE025	Microwave Integrated Circuits	PEC	3	0	0	3

LIST OF PROFESSIONAL ELECTIVE COURSES

LIST OF MANDATORY COURSES

SL.No.	COURSE CODE	COURSE TITLE
1.	18ZMC105	Induction Program
2.	18ZMC205	Constitution of India
3.	18ZMC305	Environmental Sciences and Engineering

LIST OF OPEN ELECTIVES

(OFFERED TO OTHER DEPARTMENT STUDENTS)

S.NO	COURSE CODE	COURSE TITLE	CAT	L	Τ	Р	C
1.	18LOE001	Real Time Systems	OEC	3	0	0	3
2.	18LOE002	Wireless Sensor Networks	OEC	3	0	0	3
3.	18LOE003	Industrial Automation and Robotics	OEC	3	0	0	3
4.	18LOE004	Principles of VLSI design	OEC	3	0	0	3
5.	18LOE005	Applied Electronics	OEC	3	0	0	3
6.	18LOE006	Wireless Networks	OEC	3	0	0	3
7.	18LOE007	Internet of Things	OEC	3	0	0	3
8.	18LOE008	Soft Computing	OEC	3	0	0	3

S.NO	COURSE CODE	COURSE TITLE	CAT	L	T	Р	C
1.	18SLS101	Engineering Chemistry	BSC	3	1	0	4
2.	18ZBS102	Engineering Mathematics I	BSC	3	1	0	4
3.	18SLS105	Chemistry Laboratory	BSC	0	0	3	1.5
4.	18SLS201	Engineering Physics	BSC	3	1	0	4
5.	18ZBS202	Engineering Mathematics II	BSC	3	1	0	4
6.	18SLS206	Physics Laboratory	BSC	0	0	3	1.5
7.	18ZBS301	Transforms and Partial Differential Equations	BSC	3	1	0	4
8.	18LBS401	Probability and Random Processes	BSC	3	1	0	4

LIST OF BASIC SCIENCE COURSES

LIST OF HUMANITIES AND MANAGEMENT SCIENCE COURSES

S.NO	COURSE CODE	COURSE TITLE	CAT	L	Τ	Р	С
1.	18ZHS103	Technical English	HSMC	2	0	0	2
2.	18ZHS106	Communication English Laboratory	HSMC	0	0	2	1
3.	18LHS505	Management Theory and Practice	HSMC	3	0	0	3
4.	18ELH701	Professional Ethics	HSMC	3	0	0	3

S.NO	COURSE CODE	COURSE TITLE	CAT	L	Τ	Р	С
1.	18ZES104	Engineering Graphics	ESC	1	0	4	3
2.	18ZES107	Workshop Practices	ESC	1	0	4	3
3.	18ZES203	Programming in C	ESC	3	0	0	3
4.	18ZES207	Programming in C Laboratory	ESC	0	0	4	2
5.	18LES306	Data Structures and Object-Oriented Programming Language	ESC	3	0	0	3
6.	18LES307	Basic Electrical and Instrumentation Engineering	ESC	3	0	0	3
7.	18LES308	Data Structures and Object Oriented Programming Language Laboratory	ESC	0	0	2	1
8.	18LES310	Electrical Engineering Laboratory	ESC	0	0	2	1
9.	18LES403	Basic Control System Engineering	ESC	3	0	0	3

LIST OF ENGINEERING SCIENCE COURSES

LIST OF PROFESSIONAL CORE COURSES

S.NO	COURSE CODE	COURSE TITLE	CAT	L	T	Р	С
1.	18LPC204	Circuit Theory	PCC	3	1	0	4
2.	18LPC302	Electronic Devices and Circuits	PCC	3	1	0	4
3.	18LPC303	Electromagnetic Fields	PCC	3	0	0	3
4.	18LPC304	Signals and Systems	PCC	3	0	0	3
5.	18LPC309	Circuits and Devices Laboratory	PCC	0	0	2	1
6.	18LPC402	Electronic Circuits	PCC	3	0	0	3
7.	18LPC404	Transmission Lines and Waveguides	PCC	3	0	0	3
8.	18LPC405	Analog Communication	PCC	3	0	0	3

9.	18 LPC406	Linear and Digital Integrated Circuits	PCC	3	1	0	4
10.	18LPC407	Electronic Circuits Laboratory	PCC	0	0	2	1
11.	18LPC408	Analog and Digtial Circuits Laboratory	PCC	0	0	2	1
12.	18LPC501	Digital Signal Processing	PCC	3	0	0	3
13.	18LPC502	Microprocessor and Microcontroller	PCC	3	0	0	3
14.	18LPC503	Digital Communication	PCC	3	0	0	3
15.	18LPC504	Antenna and Wave Propagation	PCC	3	0	0	3
16.	18LPC507	Analog and Digital Communication Laboratory	PCC	0	0	2	1
17.	18LPC508	Microprocessor and Microcontroller Laboratory	PCC	0	0	2	1
18.	18LPC601	VLSI Design	PCC	3	0	0	3
19.	18LPC602	Microwave and RF system	PCC	3	0	0	3
20.	18LPC603	Embedded Systems	PCC	3	0	0	3
21.	18LPC607	VLSI Laboratory	PCC	0	0	2	1
22.	18LPC608	Digital Signal Processing Laboratory	PCC	0	0	2	1
23.	18LPC702	Fiber Optic Communication	PCC	3	0	0	3
24.	18LPC703	Wireless Communication	PCC	3	0	0	3
25.	18LPC707	Microwave and Optical Laboratory	PCC	0	0	2	1

EVALUATIONS :: 2018 REGULATIONS

Sl. No	Category of course	Continuous Assessment	End-Semester Examinations
1.	Theory Courses	50 Marks	50 Marks
2.	Laboratory Courses	50 Marks	50 Marks
3.	Project Work	50 Marks	50 Marks
4.	All other EEC Courses (non theory)	100 Marks	-

Each course shall be evaluated for a maximum of 100 marks as shown below:

Continuous Assessment Mark the following guidelines are to be followed.

Sl.No.	Category Details	CA Marks	Weightage
1.	Test (3 Nos.) {each test is to be conducted for 50 Marks}	30 Marks	60%
2.	Assignment (3 Nos.)	20 Marks	40%
	TOTAL	50 Marks	100%

Marks for Project Work and the Viva-Voce Examination will be distributed as indicated below.

Contir	nuous As	sessment 50 M	arks	End Semester Examination 50 Marks			
Review (25 Mark	I s)	Review 1 (25 Mark	II s)	Report Evaluation (20 Marks)	Viva-Voce (30 Marks)		
Review Committee (Excluding Guide)	Guide	Review Committee (Excluding Guide)	Guide	External Examiner	External Examiner	Internal Examiner **	
15	10	15	10	20	15	15	

**Guide will be the internal

A student has to **secure minimum of 75% attendance** for appearing end semester examination. If a student secures **65% to 75% attendance** in the Current Semester due to medical reasons (hospitalization / accident / specific illness) or due to participation in the College / University / State / National / International Level Sports events with prior permission from the Head of the Department concerned, the student shall apply for **condonation**. Condonation can be allowed only two semesters (i.e **only two condonations**) during the entire course of study.

Students who secure less than 65% attendance will not be permitted to write the End-Semester Examination.

<u>SPECIAL NOTE</u>: All the students should undergo Internship (4 to 6 weeks duration) as a value added course. This will be indicated in the Grade Sheet under the head, "Value Added Courses.

FIRST SEMESTER

18SLS101ENGINEERING CHEMISTRYLTPC							
		(Common to ECE and CSE)	3	0	0	3	
OBJE	CTIVES:						
•	To make stu	dents conversant with water parameters, boilers, need for	or wa	ter			
	treatment an	d its merits and demerits.					
•	Students oug	ght to be aware of fundamental principles behind different	nt				
	electrochemical reactions, corrosion of materials and methods to prevent corrosion.						
•	To learn the	chemistry behind polymers, synthesis, merits, demerits	and	its			
	applications	in various field.					
•	To acquire b	asic knowledge in renewable, non renewable and alternation	ate e	nerg	,y		
	resources an	d the chemical reactions involved in cell, batteries and it	ts ap	plic	ation	IS.	
•	To learn the	working principle of various spectroscopy and its applic	catio	ns.			
•	To acquire b	asic knowledge in Nano materials, synthesis, properties	and	uses	3.		
UNIT I	WA1	TER TECHNOLOGY				9	
Chararac	teristics – a	lkalinity and its significance – hardness (problems	5) -	typ	es a	ınd	
estimatic	on by EDTA r	nethod – specifications of drinking water (BIS and WI	HO s	tand	ards) –	
potable v	water treatme	nt – boiler feed water - requirements – disadvantages	s of	usir	ig ha	ard	
water ir	n boilers (So	cales & Sludge, Boiler corrosion, Priming & Foa	amin	g,	Caus	stic	
embrittle	ement) – wate	r treatment – Internal treatment – external treatment – z	zeoli	te m	etho	d -	
Deminer	aliztion proce	ss – desalination – reverse osmosis.					
		CTROCHEMISTRY AND CORROSION	11			9	
Electroc	nemistry: E	lectrochemical cells – reversible and irreversible c	ells	- 1	1MF	-	
measure	ment of EMF	- single electrode potential – Nernst equation (Problet	ms)	– re	rerer	ice	
electrode	e - standard I	hydrogen electrode and calomel electrode – ion select	ive	elec	trode	3 -	
glass ele	ctrode and me	asurement of pH – electrochemical series and its application	atior	IS.			
Corrosic	on: Corrosio	n – Pilling Bedworth rule - dry corrosion and its	s mo	echa	nism	1 -	
electroch	iemical corros	sion and its mechanism – types (galvanic, pitting, differ	renti	al ac)n)	
- factors	influencing	corrosion – corrosion control methods – sacrificial a	node	e me	thoc	1 -	
impresse	d current me	thod – corrosion inhibitors – protective coatings – paint	S - 0	cons	titue	nts	
- functio	ons – metallic	coatings – electroplating (Cu) and electro less plating (N	N1).				
		WHEDS AND COMPOSITES				0	
Dolymor	II POL	INERS AND COMPOSITES		daa	roo	9 of	
rolymer	s: Definition	r = classification = functionality = polymerization	ı —	ueg	,iee	01	
	zation – typ	best (addition, condensation, coporymenization) – in	ecna		.1 (11 :	iee	
radical)	– plastics – u	lemonation (DVC) TEELON Nuler (C) Nuler (C) DET	, pro	pert	ies a	lina	
uses of		nymers (PVC, TEFLON, Nylon-0,0, Nylon-0, PEI,	epoz	ky r	esin)) —	
rubber -	vuicanization	or rubber – applications - Advanced polymeric material	s an		ourol daile		
aevices -	- conducting	and semiconducing polymers – inquid crystal propertie	es –	aen	JL111	ers	
and their	annerence fro	om porymers.	1	D. 1			
Compos	Composites: definition - types polymer matrix composites - Fibre Reinforced Polymers -						

applications – advanced composite materials – physical and chemical properties – applications.

UNIT IV	ENERGY SOURCES AND STORAGE DEVICES	9
Nuclear energy	r – fission fusion reactions – light water nuclear reactor for power generation	ı —
breeder reactor	r - solar energy conversion - solar cells - wind energy - batteries: alkali	ne
batteries - lead	-acid, Ni-Cd, and Li-ion batteries - fuel cells - principles and applications	s —
advantages and	disadvantages.	

UNIT V	ANALYTICAL TECHNIQUES AND NANOMATERIALS	9
--------	---	---

Spectroscopy: Electromagnetic spectrum - Fundamentals of spectroscopy – Instrumentation, working principle and applications of UV-Visible spectrophotometer, Atomic Absorbance Spectrophotometer, Flame photometer.

Nanomaterials: Introduction to nanotechnology in electronics - nanomaterials – fullerernes carbon nanotubes – nanowires – Electronics and mechanical properties - synthesis of nanomaterials – topdown and bottomup approach – applications of nanomaterials in electronic devices (Semiconductors, LED & OLED) – electronics and telecommunication – medicines.

TOTAL : 45 PERIODS

COURSE OUTCOMES

On completion of the course the student will be able to,

1.	apply the knowledge of basic science in identifying, to formulate and to solve the
	engineering problems.
2.	analyze water borne problems faced in boilers, need for water treatment and various
	methods and techniques for treating hard water.
3.	understand polymerization reactions and electrochemical reactions and its applications.
4.	acquire Knowledge about energy conversion and chemical reaction taking place in nuclear,
	solar, wind energy, Batteries, fuel cells and its applications
5.	obtain in-depth knowledge on various nanomaterials and its applications in electronic
	devices. Students get basic knowledge on advanced analytical techniques.
6.	apply the knowledge of basic science in identifying, to formulate and to solve the
	engineering problems.
TEX	T BOOKS:
1.	Vairam S, Kalyani P and Suba Ramesh., "Engineering Chemistry"., Wiley India
	PvtLtd.,New Delhi., 2011
2.	Dara S.S, UmareS.S. "Engineering Chemistry", S. Chand & Company Ltd., New Delhi
	, 2010
REF	ERENCES:
1.	Pahari A and Chauhan B., "Engineering Chemistry"., Firewall Media., New Delhi.,
	2010.
2.	Rao, C. N. R.; Govindaraj, A. "Nanotubes and Nanowires" United Kingdom: Royal Society
	of Chemistry, 2005
3.	Advanced Polymeric Materials: From Macro- to Nano-Length Scales edited by Sabu Thomas,
	Nandakumar Kalarikkal, Maciej Jaroszewski, Josmine P. Jose; Apple Academic press,
	Canada, 2016
4.	Jain and jain , 16 th editin, "Engineering Chemistry" Dhanpat Rqai Publishing Co.

ENGINEERING MATHEMATICS-I

L	Т	Р	С
3	1	0	4

OBJECTIVES:

- matrix algebra and techniques and using them in engineering applications
- the concept of infinite series and their convergence so that they will be familiar with limitations of using infinite series approximations for solutions arising in mathematical modelling.
- differential and integral calculus and their applications in various engineering applications

UNIT I

MATRICES

Eigenvalues and Eigenvectors of a real matrix – Characteristic equation – Properties of eigenvalues and eigenvectors – Statement and applications of Cayley-Hamilton Theorem – Diagonalization of matrices – Reduction of a quadratic form to canonical form by orthogonal transformation – Nature of quadratic forms.

UNIT II SEQUENCES AND SERIES

Sequences: Definition and examples – Series: Types and Convergence – Series of positive terms – Tests of convergence: Comparison test, Integral test and D'Alembert's ratio test – Alternating series – Leibnitz's test – Series of positive and negative terms – Absolute and conditional convergence.

UNIT III APPLICATIONS OF DIFFERENTIAL CALCULUS

9+3

9+3

9+3

9+3

9+3

Curvature in Cartesian co-ordinates – Centre and radius of curvature – Circle of curvature – Evolutes – Envelopes - Evolute as envelope of normals.

UNIT IV F

FUNCTIONS OF SEVERAL VARIABLES

Limits and Continuity – Partial derivatives – Total derivative – Differentiation of implicit functions – Jacobian and properties – Taylor's series for functions of two variables – Maxima and minima of functions of two variables – Lagrange's method of undetermined multipliers

UNIT V

MULTIPLE INTEGRALS

Double integrals in cartesian and polar coordinates – Change of order of integration – Area enclosed by plane curves – Change of variables in double integrals – Area of a curved surface - Triple integrals – Volume of Solids.

TOTAL : 60 PERIODS

COURS	E OUTCO	MES				
1.	solve problems on matrices and to apply concepts of matrix theory whenever applicable in the field of engineering					
2.	solve problems using convergence tests on sequences and series and to apply them in engineering field appropriately					
3.	solve problems on differential and integral calculus and will be exposed to their applications in engineering					
TEXT B	XT BOOKS:					
1.	Bali N. P and Manish Goyal, "A Text book of Engineering Mathematics", Eighth Edition, Laxmi Publications Pvt Ltd., 2011.					
2.	Grewal. B.S, "Higher Engineering Mathematics", 41 st Edition, Khanna Publications, Delhi, 2011.					
REFER	ENCES:					
1.	Dass, H.K., Chand Prive	and Er. Rajn ate Ltd., 2011	ish Verma, "Higher Engineering Mathematics", S.			
2.	<i>Glyn James, "Advanced Modern Engineering Mathematics", 3rd Edition, Pearson Education, 2012.</i>					
3.	Peter V. O'Neil, "Advanced Engineering Mathematics", 7th Edition, Cengage learning, 2012.					
4.	Ramana B.V Company, N	', ''Higher En Iew Delhi, 20	ngineering Mathematics", Tata McGraw Hill Publishing 08.			
5.	Sivarama Ki Volume II, S	rishna Das P. Second Edition	. and Rukmangadachari E., "Engineering Mathematics", n, PEARSON Publishing, 2011.			

18ZHS103 TECHNICAL ENGLISH L T P							С	
						•	•	
					2	0	U	2
OBJEC	ΓIVE	CS:						
• To	be ab	le to acquire vocabul	ary by way of rea	ding skills.				
• To	be ab	le to write iterative as	s well as recursive	e programs.				
• To be able to represent data in arrays, strings and structures and manipulate them through a program.								
• To be able to declare pointers of different types and use them in defining self-referential structures.								
• To	• To be able to create, read and write to and from simple text files.							
UNIT I		VOCABULARY	BUILDING					6
1.1 The co English 1. form deriv	1.1 The concept of Word Formation 1.2 Root words from foreign languages and their use in English 1.3 Acquaintance with prefixes and suffixes from foreign languages in English to form derivatives 1.4 Synonyms antonyms and standard abbreviations							
UNIT II		BASIC WRITING SKILLS						6
2.1 Senten	ce Str	uctures 2.2 Use of ph	rases and clauses	in sentences 2.3 Impor	tance	e of	prop	er
2.6 Techni	n 2.4 iques :	Creating coherence 2 for writing precisely	2.5 Organizing pri	nciples of paragraphs in	i doc	ume	ents	
UNIT II	I	IDENTIFYING (COMMON ER	RORS IN WRITIN	١G			6
3.1 Subjec	t-verb	agreement 3.2 Noun	-pronoun agreeme	ent 3.3 Misplaced modi	fiers			
3.4 Article	s 3.5	Prepositions 3.6 Redu	indancies 3.7 Clic	hés				
UNIT IV	7	NATURE AND S	RE AND STYLE OF SENSIBLE WRITING					6
4.1 Descri	bing 4	.2 Defining 4.3 Class	sifying 4.4 Provid	ing examples or eviden	ce		1	
4.5 Writin	g intro	oduction and conclusi	ion					
UNIT V		WRITING PRAC	LICES				(6
5.1 Compr	rehens	ion 5.2 Précis Writing	g 5.3 Essay Writin	ng				
TOTAL : 30 PERIODS								
COURS	E OI	JTCOMES						
1.	Acqu	ire basic proficiency	in English includ	ling reading and listenin	ıg			
2.	Parti	cipate effectively in f	formal and inform	al conversations; introd	luce	then	nselv	'es
	and e	express their opinions	s in English.					
3.	Com	omprehend conversations and deliver short talks in English.						

4.	Write essays	Write essays and descriptions of any kind in English.					
5.	Prepare repo	Prepare reports, graph presentation and Technical writing.					
TEXT B	BOOKS:						
1.	On Writing	Well. William Zinsser. Harper Resource Book. 2001					
2.	Study Writing. Liz Hamp-Lyons and Ben Heasly. Cambridge University Press. 2006.						
3.	Communica 2011.	tion Skills. Sanjay Kumar and PushpLata. Oxford University Press.					
REFER	ENCES:						
1.	Richards, C.	Jack .Interchange Students' Book-2 New Delhi: CUP, 2015.					
2.	Bailey , Stephen. Academic Writing: A Practical guide for students .New York: Rutledge, 2011.						
3.	Seely, John. The Oxford guide to writing & Speaking. New York.1998.						
4.	Bhatia M.P Edition	A Handbook of APPLIED GRAMMAR, M.I Publications, AGRA, Sixth					

18ZES1	18ZES104 ENGINEERING GRAPHICS AND DESIGN L T P				С		
		(Common to MECH, ECE and CSE)	1	0	4	3	
COURS	COURSE OBJECTIVES:						
•	 This course aims to introduce the concept of graphic communication, develop the drawing skills for communicating concepts, ideas and designs of engineering products and to expose them to existing national standards related to technical drawings 						
•	То	draw the projection of simple solids like prisms, pyramids, cylin	der	etc.			
•	To pre	draw the development of surfaces to estimate the sheet metal pare sectional views of solids.	requ	uirer	nent	and to	
•	To dra	develop skills in three-dimensional visualization of engineering w isometric views of simple solids.	; con	npor	nents	and to	
CONCEI	PTS	AND CONVENTIONS (Not for Examination)					
Importance conventio dimensior	ce of ons a ning.	f graphics in engineering applications – use of drafting instru and specifications – size, layout and folding of drawing she	men ets	its – – le	BIS tterin	/ ISO	
UNIT I		PLANE CURVES AND FREE-HAND SKETCHING				6+9	
parabola a curves. Vi three dim- views of c	and isual ension object	hyperbola by eccentricity method – drawing of tangents and r ization concepts and free hand sketching: visualization principle onal objects – layout of views- freehand sketching of multiple ets.	orm s –ro view	al to epre s fro	o the senta om pi	above tion of ictorial	
UNIT II		PROJECTION OF POINTS, LINES AND PLANE SURFA	CES	5		6+9	
Orthograp -Projectio and true in surfaces)	Orthographic projection – Principles-principal planes- First angle projection - Projection of poin -Projection of straight lines inclined to both the principal planes - determination of true length and true inclinations by rotating line method - traces. Projection of planes (polygonal and circul surfaces) inclined to both the principal planes by rotating object method.				points engths ircular		
UNIT III		PROJECTION OF SOLIDS				6+9	
Projection axis is inc	n of cline	simple solids like prisms, pyramids, cylinder, cone and truncated to both the principal planes by rotating object method.	ed s	olid	s, wł	ien the	
UNIT IV		PROJECTION OF SECTIONED SOLIDS AND DEVELO OF SURFACES	PMI	ENT	I	6+9	
Sectioning plane is in shape of pyramids	Sectioning of prisms, pyramids, cylinders and cones in simple vertical position when the curplane is inclined to the one of the principal planes and perpendicular to the other – obtaining shape of section. Development of lateral surfaces of simple and sectioned solids – pripyramids cylinders and cones.			cutting ng true prisms,			
UNIT V	UNIT V ISOMETRIC PROJECTION AND OVERVIEW OF COMPUTER GRAPHICS				6+9		
Principles truncated vertical po	Principles of isometric projection – isometric scale –isometric projections of simple solids and truncated solids - prisms, pyramids, cylinders, cones- combination of two solid objects in simple vertical positions –Introduction to CAD - The Menu System, Toolbars (Standard, Object					ind mple	

Properties, Draw, Modify and Dimension), Drawing Area (Background, Crosshairs, Coordinate System), Dialog boxes and windows, Shortcut menus (Button Bars), TheCommand Line (where applicable), The Status Bar, Different methods of zoom as used inCAD- (CAD – evaluation during CA only)

Lectur	re: 15 Peri	iods	Tutorial: () Periods	Practical: 60 Periods	Total: 75 Periods	
OUTCO	MES:	On	completion o	of this cours	se, students will be able to		
1	Familiari freehand	ze w sketc	ith the fund hing of mult	amentals, iple views	standards of Engineering ofbasic geometrical constr	graphics and Perform uctions.	
2	Draw ort	Draw orthographic projections of points, lines and plane surfaces.					
3	Draw pro	ojecti	ons of solids,	, sectioned	solids and development of	surfaces.	
4	Visualize	e and	draw isomet	ric views o	f simple solids.		
5	Apprecia	te the	e use of comp	puters in dr	awing and modelling of sin	nple objects.	
TEXT B	OOKS:						
1.	Natrajan Chennai,	K. V 2016	., " A text b 5.	ook of En	gineering Graphics", Dh	analakshmi Publishers,	
2.	Venugopal K. and Prabhu Raja V., " Engineering Graphics ", New Age International (P) Limited, 2016.				New Age International		
3.	Shah, M Pearson I	. B. Educa	and Rana B ation, 2010	. C. "Eng	gineering Drawing and (Computer Graphics",	
REFERF	ENCES:						
1.	N S Par Press, Ne	thasa ew Do	rathy and V elhi, 2015.	'ela Mural	i, "Engineering Graphic	s", Oxford University,	
2.	Gopalaki publicati	rishn ons, 1	a K.R., "E Bangalore, 2	E ngineerin 014.	g Drawing" (Vol. I&I	Combined), Subhas	
3.	BasantAg Publishir	garwo 1g Co	al and Agar mpany Lim	wal C.M., ited, New I	" Engineering Drawing Delhi, 2013.	", Tata McGraw Hill	
4.	Luzzader an intro Eastern l	:, Wai ducti Econo	rren J. and D on to Interd omy Edition,	Duff John M active Con Prentice H	<i>I., "Fundamentals of Eng</i> <i>nputer Graphics for Des</i> <i>Iall of India Pvt. Ltd, New</i>	<i>ineering Drawing with</i> <i>ign and Production</i> ", Delhi, 2005	
5.	Bhatt N. 53 rd Edit	D. ar ion, 2	nd Panchal V 2014.	7. M., "Eng	ineering Drawing ", Char	otar Publishing House,	

18SLS1)6	CH	IEMISTRY	Y LABC	ORATO	RY	L	Τ	P	C
	·		(Common	to ECE a	and CSE)	0	0	4	2
OBJEC	FIVES:									•
• To	make stud	ents conv	ersant with h	ands on w	vater para	ameter analysis	•			
• To	make the st	udent to ac	equire practica	al skills in t	the corros	ion in metals.				
• To Os	acquaint th twald visco	ne student ometer.	s with the de	eterminatio	on of mo	lecular weight	of a p	olyn	ner b	у
• To	make the	student ac	quire practic	al skills ir	n analytic	al instruments.				
LIST O	F EXPE	<u>RIMEN'</u>	rs :							
1. De	terminatior	ו of total h	nardness of g	given wate	er sample	e by EDTA met	hod.			
2. De	terminatior	ו of alkalir	nity in given v	water sam	nple.					
3. De	terminatior	ו of molec	cular weight o	of polyviny	/lalcohol	using Ostwald	visco	mete	er.	
4. Co	nductomet	ric titratio	n using mixtu	ure of acid	Is and st	rong base.				
5. De	terminatior	n of streng	gth of in giver	n hydroch	loric acio	l using pH met	ər.			
6. Es	timation of	sodium p	resent in wat	ter using f	lame pho	otometer.				
7. Es	7. Estimation of Zn present in effluent using Atomic Absorption Spectroscopy(AAS)									
8. Co	rrosion exp	periment -	- weight loss	method						
9. Es	timation of	iron conte	ent of the give	en solutio	n using p	ootentiometer r	neter.			
10. Es me	timation of ethod).	iron conte	ent of the give	en sample	e using S	Spectro photom	eter (thiod	cyan	ate
]	Cotal :	60]	Perio	ods
COURS	E OUTC	OMES								
1. The	students w	ill be outf	itted with ha	nds-on kn	owledge	in the qualitati	ve an	d		
quar	ititative che	emical and	alysis of wate	er quality	related p	arameters, corr	osion	stuc	lies,	
DEFED	FNCES.		•							
1 Furni	$\frac{\mathbf{EIVCES}}{\mathrm{ss} \mathrm{RS}}$	nnaford A	I Smith P V	N G and T	Tatchel A	R "Vogel's]	[°] exth	ook (of	
pract	ical organic	chemistr	v". LBS Sing	gapore 19	94.		CALO	JUR	51	
2. Jeffer	y G.H., Ba	issett J., N	Iendham J.ar	nd Denny	vogel's l	R.C, "Text boo	k of q	uant	itativ	ve
analy 1996	sis chemic	al analysis	s", ELBS 5th	Edn. Lon	igman, S	ingapore publis	shers,	Sing	gapo	re,
 Koltł 1980 	off I.M., S	andell E.I	B. et al. "Qua	antitative o	chemical	analysis", Mcr	nillan	, Ma	ıdras	
4. Danie York	el R. Palle 2001	ros, "Exp	erimental org	ganic che	mistry"	John Wiley &	Sons	, Inc	e., N	ew
(Note: A m	inimum of S	IX experin	nents shall be	offered)						
List of equ	pments for	a batch of	30 students							
1. Flame pr	otometer - 5	nos								

- Weighing balance 5 nos
 Conductivity meter ; Potentiometer; pH meter- 9 nos each.
- 4. Ostwald viscometer 30 nos
- 5. Atomic Absorption Spectrophotometer 1 no.

Common apparatus: Pipette, Burette, Burette stand, Standard volumetric flask, funnel, Conical flask, porcelain tiles, dropper, reagent bottles, glass rod, beaker, wash bottle, test tube (30 nos each)

18ZHS	107	COMMUNICATION ENGLISH LAB	L	Т	P	С	
			0	0	2	1	
OBJEC	OBJECTIVES:						
•	To dev	elop their communicative competency in English with spec	ific refe	erence t	o the	eir	
•	To enh	ance their ability to communicate effectively in interviews					
•	To stre	ngthen their prospects of success in competitive examination	ons				
To Strengthen a good command over of the language proficiency.							
•	To con	nprehend a different types of accent and use them in their co	ommun	ication			
UNIT I	F	PRONUNCIATTION PRATICE				6	
Verbal A Various l	bility, Aı ectures	ticulation of sounds- Intonation-Stress and Rhythm-Conver	sation	oractice	-list	ening	
UNIT I	I C	COMMUNICATION AT WORKPLACE				6	
Creative abstracts-	writing.V	Writing job applications - cover letter- resume- e-mails-	memos	- repor	ts.W	riting	
UNIT III ENGLIS EXAMIN		ENGLISH FOR NATIONAL AND INTERNATI EXAMINATIONS AND PLACEMENTS	ONA	L		6	
Internation (TOEFL)	nal Eng - Civil S	lish Language Testing System (IELTS)- Test of English ervice(Language related part) – English for competitive examples and the second	as a F minatio	oreign ns	Lang	guage	
UNIT I	V I	NTERVIEW SKILLS				6	
Different Body lan	types of guages.	Interview format- answering questions- offering information	ation- 1	nock ir	nterv	iews-	
UNIT V	7 S	OFT SKILLS				6	
Motivatio leadershi	on- emot p straits-	ional intelligence-Multiple intelligences- managing chang team work- career planning- creative and critical thinking	ges- tir	ne mar	lagei	nent-	
		TOTAL	30 P	eriods			
COURS	SE OUT	FCOMES:					
1.	Face int	erviews, group discussions and other language parameters i	n the jo	b mark	et		
2.	Write a	ny competitive examinations which cover language part in i	t.				
3.	3. Take part in any English conversations of any kind in English. Flawlessly without fear and shyness.						
4.	Write an mistake	ticles for newspapers and magazines or any write-up in Eng	glish wi	thout g	ramı	nar	
5.	Come o	ut with leadership qualities, team work and career plannin	g and v	vill also	o pos	sess	

	critical and creative thinking.
TEXT	BOOKS:
1.	Communication Skills for Engineers and Scientists, PHI Learning PVT.LTD, Delhi, 2014.
2.	Communication Skills and Soft Skills An Integrated Approach, Dorling Kindersley (INDIA) PVT.LTD, New Delhi, 2012.
3.	Soft Skills, MJP Publishers, Chennai, 2010.
REFEF	RENCES:
1.	Craven, Miles. Listening Extra-A resource book of multi-level skills activities. Cambridge University Press, 2004.
2.	Seely, John. The Oxford guide to writing & Speaking. New Delhi: Oxford University Press, 20
3.	Comfort, Jeremy, et al. Speaking Effectively: Developing speaking skills for Business English. Cambridge University Press, Cambridge: Reprint 2011.
4.	Dutt P. Kiranmai and RajeevanGeetha. Basic Communication Skills, Foundation Books:2013

18ZES1	08		WORKSHOP P	PRACTICE L T P		С			
					1	0	4	3	
COURS	E OI	BJECTIVES:							
•	To joir	make various nt, Dove tail joi	basic prototypes in t nt, Mortise & Tenon	the carpentry trade such as joint and Cross-Lap joint	Lap	joi	nt, La	ap Tee	
•	To and	make various v l Corner joint.	welding joints such as	s Lap joint, Lap Tee joint, E	ldge	join	t, Bu	tt joint	
LIST OF	EX	PERIMENTS	:						
 Safety Half I Weld Prepa Fabria Fabria Electric Plumini CNC Additi 	 Safety aspects in Welding, Carpentry and Foundry Half lap Joint and Dovetail Joint in Carpentry Welding of Lap joint, Butt joint and T-joint Preparation of Sand mold for cube, conical bush, pipes and V pulley Fabrication of parts like tray, frustum of cone and square box in sheet metal Electrical wiring – simple house wiring Plumbing CNC Machines demonstration and lecture on working principle. 								
Lectu	re:	15 Periods	Futorial: 0 Periods	Practical: 60 Periods	Tot	tal: '	75 Pe	eriods	
COURSE	εοι	J TCOMES:	on completion of th	is course, students will be al	ole to)			
1	Use	e tools and equi	pment used in Carpentry, Welding, Foundry and Sheet metal.						
2.	Make half lap joint dovetail joint in carpentry and welded lap joint, butt joint and T- joint								
3	Pre	pare sand moul	ld for cube, conical b	ush, pipes and V pulley.					
4	Fab	pricate parts like	e tray, frustum of con	e and square box in sheet m	etal				
5	Carry out minor works/repair related to electrical wiring and plumbing.								

SECOND SEMESTER

18SLS2	201		ENGINEERING PHYSICS	L	Т	TP							
			(Common to MECH, EEE, ECE & CSE)	3	1	0	4						
OBJEC	CTIV	'ES:		<u> </u>									
•	To d	evelop	knowledge on properties of solids										
•	To u	ndersta	nd the properties of conducting and semiconducting mat	terial	S								
•	To b	ecome	proficient in magnetic and dielectric materials										
•	To a	pply pri	inciples of quantum physics in the engineering field										
•	To k	now ab	out the fundamentals of LASER and fibre optics and its	appl	icati	ons							
					T								
UNIT I	[PRO	PERTIES OF MATTER			9+3	5						
materials – Detern Experime	s - Be ninati ent).	nding m on of Y	noment of a Beam – Depression of cantilever (Theory a Young's modulus – Uniform and non-uniform bendin DUCTING AND SEMICONDUCTING	ind E ng ("	Expe Theo	rime ory a 9+3	nt) ind						
MATERIALSConductors –Ohm's Law – Electrical conductivity – Relation between current density, drift velocity and mobility – Classical free electron theory of metals – Expression for electrical conductivity of a metal –Expression for thermal conductivity of a metal – Wiedemann – Franz law–Fermi distribution function – Effect of temperature on Fermi Function – Density of energy states.Intrinsic semiconductor – Energy band diagram – Direct and indirect semiconductors – Carrier concentration in an intrinsic semiconductor (derivation) – Extrinsic semiconductors – n-type & p-type semiconductors (Qualitative) – Determination of Bandgap of semiconductors (Experiment)													
UNIT I	Π	MAG	GNETIC AND DIELECTRIC MATERIALS			9+3	3						
Magnetist susceptibi Domain th Dielectric relation –	m in n ility – heory mate dielec	naterials types of ferror rials: Petric brea	– magnetic field and induction – magnetization – magnetic of magnetic materials –microscopic classification of mag nagnetism. olarization processes – dielectric loss – internal field – ıkdown – high-k dielectrics.	pern netic Clau	neabi mat sius-	ility a erial Mos	and s – otti						
UNIT I	V	QUA	NTUM PHYSICS			9+3							
Blackboo (derivatio	dy rac on) –	liation Deduc	– Wien's displacement law – Rayleigh-Jean's law - tion of Wien's displacement law and Rayleigh-Jean'	Plan s lav	ck's w –	the Mat	ory tter						

waves – De-Broglie's Hypothesis – Properties of matter waves - Wave-particle duality – Wavefunction and its physical Significance – Schrodinger wave equation – Time-dependent and time-independent – Application of Schrodinger wave equation: Particle in a 1 D box.

UNIT V LASER PHOTONICS AND FIBRE OPTICS

9+3

LASER – Interaction of light radiation with materials –Einstein's A and B coefficient derivation – Concept of LASER – Population inversion – Pumping action – Methods for pumping action – Characteristics of LASER –Principle, construction and working of Nd-YAG – Industrial and medical applications of lasers.

Structure of Optical Fibre – Guiding mechanism – Total internal reflection – Critical Angle – Conditions for total internal reflection – Principle and Propagation of light in Optical Fibres – Numerical aperture and acceptance angle – Types of optical fibres (Material, refractive index and mode) – their characteristics and applications.

TOTAL: 60 PERIODS

OUTCOMES:

•	To learn about three types of elastic moduli and able to calculate them for different materials
•	To learn about conducting and semiconducting materials and able to derive different parameters relevant to them
•	To learn about types of magnetic materials and their types and functional knowledge of dielectric materials
٠	To understandthe quantum nature of materials and apply fundamental principles of quantum physics to the engineering field
•	To understand the working principles of lasers and their types and also to know about fibre optics and mechanism of propagation of light through them.

TEXTBOOKS:

1.	P. Mani, "Engineering physics", Dhanam Publications, 2017.
2.	G. SenthilKumar, "Engineering physics", VRB Publishers
3.	A.Marikani, "Engineering Physics", PHI Learning Pvt., India 2009
4.	Wahen M. A. "Solid state physics: Structure and properties of materials" Narosa publishing house, 2009
REFERE	ENCES:

1.	<i>R. K. Gaur and S.C. Gupta, "Engineering physics", DhanpatRai publications, New Delhi 2003.</i>
2.	M. N. Avadhanulu and P. G. Kshirsagar, "A textbook of engineering physics", S. Chand and Company Ltd, New Delhi, 2005.

3. *K. Rajagopal, "Engineering Physics", PHI, New Delhi, 2011.*

4.	P. K. Palanisamy, "Engineering Physics", SCITECH Publication, 2011
5.	M. Arumugam, "Engineering physics", Anuradha publishers

18ZBS202	ENGINEERING MATHEMATICS- II	L	Т	Р	С
		3	1	0	4

OBJECTIVES:

- vector calculus and their uses in various field theoretic subjects.
- higher order and special type of linear differential equations and methods to find solutions
- Laplace transforms and properties and their applications in engineering
- construction of analytic functions and concepts of concepts of conformal mapping, complex integration and series solutions

UNIT I VECTOR CALCULUS

Gradient, divergence and curl – Directional derivative – Irrotational and solenoidal vector fields – Vector integration – Green's theorem in a plane, Gauss divergence theorem and Stokes' theorem (excluding proofs) – Simple applications involving cubes and rectangular parallelopipeds.

UNIT II ORDINARY DIFFERENTIAL EQUATIONS

9+3

9+3

Higher order linear differential equations with constant coefficients – Method of variation of parameters – Cauchy's and Legendre's linear equations – Simultaneous first order linear equations with constant coefficients.

UNIT III

LAPLACE TRANSFORMS

9+3

9+3

Laplace transform – Sufficient condition for existence – Transform of elementary functions – Basic properties – Transforms of derivatives and integrals of functions - Derivatives and integrals of transforms - Transforms of unit step function and impulse functions – Transform of periodic functions. Inverse Laplace transform -Statement of Convolution theorem – Initial and final value theorems – Solution of linear ODE of second order with constant coefficients using Laplace transformation techniques.

UNIT IV

ANALYTIC FUNCTIONS

Functions of a complex variable – Analytic functions: Necessary conditions – Cauchy-Riemann equations and sufficient conditions (excluding proofs) – Harmonic and orthogonal properties of analytic function – Harmonic conjugate – Construction of analytic functions –

Conformal mapping: $w = z+k$, kz , $1/z$, z^2	e^{z} and bilinear transformation.
---	--------------------------------------

UNIT V

COMPLEX INTEGRATION

9+3

Complex integration – Statement and applications of Cauchy's integral theorem and Cauchy's integral formula – Taylor's and Laurent's series expansions – Singular points – Residues – Cauchy's residue theorem – Evaluation of real definite integrals as contour integrals around unit circle and semi-circle (excluding poles on the real axis).

TOTAL : 60 PERIODS

COURSE OUTCOMES solve problems on vector calculus and to apply them in any other field theory 1. related subjects 2. solve differential equations and will be exposed to their applications in various fields of engineering 3. solve problems on Laplace transforms and will be able to use Laplace transform in finding solutions of differential and integral equations and other engineering applications 4. solve complex integration problems and will be exposed to various applications of analytic functions and conformal mapping in engineering **TEXT BOOKS:** Bali N. P and Manish Goyal, "A Text book of Engineering Mathematics", Eighth 1. Edition, Laxmi Publications Pvt Ltd., 2011. 2. Grewal. B.S, "Higher Engineering Mathematics", 41st Edition, Khanna Publications, Delhi, 2011. **REFERENCES:** Dass, H.K., and Er. Rajnish Verma, "Higher Engineering Mathematics", 1. S. Chand Private Ltd., 2011. Glyn James, "Advanced Modern Engineering Mathematics", 3rd Edition, Pearson 2. Education, 2012. Peter V. O'Neil, "Advanced Engineering Mathematics", 7th Edition, Cengage 3. learning, 2012. Ramana B.V, "Higher Engineering Mathematics", Tata McGraw Hill Publishing 4. Company, New Delhi, 2008. 5. Sivarama Krishna Das P. and Rukmangadachari E., "Engineering Mathematics", Volume II, Second Edition, PEARSON Publishing, 2011.

18ZES20	3 PROGRAMMING IN C	L	Τ	P	С							
		3	0	0	3							
OBJECT	IVES:											
٠	Learn the organization of a digital computer											
٠	Be exposed to the number systems.											
٠	• Learn to think logically and write pseudo code or draw flow charts for problems.											
٠	Be exposed to the syntax of C.											
•	Learn to use arrays, strings, functions, pointers, structures and	l un	ions	in C								
UNIT I	INTRODUCTION				8							
Generation	and Classification of Computers- Basic Organization of a Co	mpu	ter -	-Nui	mber							
System – E	inary – Decimal – Conversion – Problems. Need for logical anal	ysis	and	thin	king							
– Algorithr	n –Pseudo code – Flow Chart.	2			U							
UNIT II	C PROGRAMMING BASICS				10							
Problem fo	rmulation – Problem Solving - Introduction to 'C' programming	—fu	ndar	nent	als –							
structure of	a 'C' program – compilation and linking processes – Constants.	Var	iable	es –	Data							
Types – F	C^{*} completion and C^{*} – Managing Input and Out	mut	one	ratio	ns –							
Decision M	Jaking and Branching - Looping statements - solving simp	pur le c	cien	tific	and							
ototistical n	robloms		CICII	unc	anu							
statistical p	lobieins.											
UNIT III	ARRAYS AND STRINGS				9							
Arrays – Ir	itialization - Declaration - One dimensional and Two dimension	nal a	rray	s. St	ring-							
String oper	ations – String Arrays. Simple programs- sorting- searching – mat	rix	opera	ation	S.							
UNIT IV	FUNCTIONS AND POINTERS				9							
Function -	definition of function – Declaration of function – Pass by	valu	ie –	Pas	s by							
reference -	Recursion – Pointers - Definition – Initialization – Pointers arith	nme	tic –	Poi	nters							
and arrays-	Example Problems.											
UNIT V	STRUCTURES AND UNION				9							
Introductio	\rightarrow - need for structure data type - structure definition - Struct	ure	decl	arati								
Structure u	ithin a structure. Union Programs using structures and Unions	uic St	orag	a cla	6696							
Dro process	or directives	- 30	Jiag		3303,							
Fie process												
0.515 0.00	TOTAL: 45 PEI	RIC	DDS									
OUTCO	MES: On completion of this course, students will be able to)										
$\frac{1}{2}$	now the various number systems and their conversion.											
$\frac{2}{2}$	rite programs based on arrays											
$\frac{3.}{4}$	rite programs using functions and pointers concepts											
<u>-+.</u> 5 V	Vrite programs using Structures and Files											
TEXT R	OOKS:											
	Anita Goel and Ajay Mittal "Computer Fundamentals and P	rogr	amn	ning	in C"							
1.	Dorling Kindersley (India) Pyt Ltd Pearson Education in South	Asi	a 20)11	v ,							

2	Pradip Dey, Manas Ghosh, "Fundamentals of Computing and Programming in C",						
۷.	First Edition, Oxford University Press, 2009.						
3.	Yashavant P. Kanetkar. "Let Us C", BPB Publications, 2011.						
REFERENCES:							
1.	Byron S Gottfried, "Programming with C", Schaum's Outlines, Second Edition, Tata						
	McGraw-Hill, 2006.						
2.	Dromey R.G., "How to Solve it by Computer", Pearson Education, Fourth Reprint,						
	2007.						
3.	Kernighan, B.W and Ritchie, D.M, "The C Programming language", Second Edition,						
	Pearson Education, 2006.						

Cou	Course Articulation Matrix:																
	Program Outcomes											Program Specific Outcomes					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO1 PSO2 PSO			
CO1	3	3	1	1	2						1	1	2	3			
CO2	2	2	1	1	2						1	1	2	3			
CO3	2	2	2	2	1						1	1	2	3			
CO4	2	2	2	2							1	1	2	3			
CO5	2	2	2	2							1	1	2	3			
						(1- L	ow, 2	- Mo	derate	e, 3-Hi	gh)						

18LPC204	CIRCUIT THEORY	L	Т	Р	C			
		3	1	0	4			
OBJECTIV	ES:							
• To intro Theorem	• To introduce the basic concepts of DC/ AC circuits and analyze them using network Theorems & Topology.							
• To stud coupled	y the transient response of the circuits and the concepts of resoncircuits.	nanc	e an	d				
• To learn	about the two port networks and characterize them using para	imet	ers					
UNIT I	BASIC CIRCUITS ANALYSIS AND NETWORK TOPOLOGY							
Ohm's Law – Kirchhoff's laws – Mesh current and node voltage method of analysis for								
	neuros - neuwork terminology - Oraph of a network - metuene	ι all	uie	uuce	u			

incidence matrices- Trees -Cutsets - Fundamental cutsets - Cutset matrix - Tie sets - Link currents and Tie set schedules -Twig voltages and Cutset schedules, Duality and dual networks.

UNIT II

II NETWORK THEOREMS FOR DC AND AC 9+3 CIRCUITS

Network theorems -Superposition theorem, Thevenin's theorem, Norton's theorem, Reciprocity theorem, Millman's theorem, and Maximum power transfer theorem, application of Network theorems- Network reduction: voltage and current division, source transformation – star delta conversion.

UNIT III

RESONANCE AND COUPLED CIRCUITS

Resonance - Series resonance - Parallel resonance - Variation of impedance with frequency -Variation in current through and voltage across L and C with frequency – Bandwidth - Q factor -Selectivity. Self inductance - Mutual inductance - Dot rule - Coefficient of coupling - Analysis of multiwinding coupled circuits - Series, Parallel connection of coupled inductors - Single tuned and double tuned coupled circuits.

UNIT IV

TRANSIENT ANALYSIS

Natural response-Forced response - Transient response of RC, RL and RLC circuits to excitation by Step Signal, Impulse Signal and exponential sources - Complete response of RC, RL and RLC Circuits to sinusoidal excitation.

UNIT V

TWO PORT NETWORKS

Two port networks, Z parameters, Y parameters, Transmission (ABCD) parameters, Hybrid(H) Parameters, Interconnection of two port networks, Symmetrical properties of T and π networks.

		TOTAL : 60 PERIODS							
COURS	E OUTCOMES	Upon the completion of the course students will have the							
1.	ability to analyze the DO	ity to analyze the DC/AC circuits using network topology.							
2.	Ability to analyze the DC/AC circuits using network theorems.								
3.	an understanding of the concepts of resonance and coupled circuits.								
4.	exposure to transient and steady state response of electric circuits.								
5.	knowledge on two port networks and their parameter characterization.								
TEXT B	OOKS:								

9+3

9+3

9+3

1.	William H. Hayt, Jr. Jack E. Kemmerly and Steven M. Durbin, —"Engineering Circuit Analysis", McGraw Hill Science Engineering, Eighth Edition, 11th Reprint 2016.						
2.	Joseph Edminister and Mahmood Nahvi, —"Electric Circuits", Schaum's Outline Series, Tata McGraw Hill Publishing Company, New Delhi, Fifth Edition Reprint 2016.						
3.	Sudhakar A and Shyam Mohan SP, "Circuits and Network Analysis and Synthesis", Tata McGraw Hill, 2007.						
REFER	VCES:						
1.	<i>Charles K. Alexander, Mathew N.O. Sadiku, —Fundamentals of Electric Circuits</i> , <i>Fifth Edition,McGraw Hill, 9th Reprint 2015</i>						
2.	A.Bruce Carlson, —Cicuits: Engineering Concepts and Analysis of Linear Electric Circuits", Cengage Learning, India Edition 2nd Indian Reprint 2009						
3.	Allan H.Robbins, Wilhelm C.Miller, —Circuit Analysis Theory and Practicel, Cengage Learning, Fifth Edition, 1st Indian Reprint 2013.						
4.	Chakrabati A, "Circuits Theory (Analysis and synthesis), Dhanpath Rai & Sons, New Delhi, 1999.						

COURSE ARTICULATION MATRIX:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	3	3	1	-	-	-	-	-	-	-	-	3	2	-
CO2	2	3	3	1	-	-	-	-	-	-	-	-	3	2	-
CO3	2	3	3	1	-	-	-	-	-	-	-	-	3	2	-
CO4	2	3	3	1	-	-	-	-	-	-	-	-	3	2	-
CO5	2	3	3	1	-	-	-	-	-	-	-	-	3	2	-
18LPC204	2	3	3	1	-	-	-	-	-	-	-	-	3	2	-

1-LOW 2- MODERATE (MEDIUM) 3- HIGH
18ZMC205	CONSTITUTION OF INDIA	L	T	Р	С	
Сс	Common to MECH, EEE, ECE and CSE Branches					

Course Objective:

To provide understanding of basic concepts of Indian Constitution and various organs created by the constitution including their functions.

INTRODUCTION

Constitution' Definition and Classification -Constitutional Organs - Indian Constitution:Sources and constitutional history, Salient features of Indian Constitution - Citizenship,Preamble, Fundamental Rights and Duties, DirectivePrinciples of State PolicyRule of Law - Separation of powersConstitution - Doctrine of Basic Structure.

UNION GOVERNMENT & STATE GOVERNMENT AND THEIR ADMINISTRATION

Distribution of Powers between Center and States Structure of the Indian Union: Federalism, Centre- State -relationship, President: Role, power and position, PM andCouncil of ministers, Cabinet and Central Secretariat, LokSabha, RajyaSabha.

Governor: Role and Position, CM and Council of ministers, State Secretariat: Organisation, Structure and Functions

LOCAL ADMINISTRATION

District's Administration head: Role and Importance, Municipalities: Introduction, Mayor and role of ElectedRepresentative, CEO of Municipal Corporation, Pachayatiraj: Introduction, PRI: ZilaPachayat, Elected officials and their roles, CEO ZilaPachayat: Position and role, Blocklevel: Organizational Hierarchy (Different departments), Village level: Role of Elected and Appointed officials, Importance of grass root democracy Emergency Provisions -

ELECTION COMMISSION

Election Commission: Role and Functioning, Chief Election Commissioner and Election Commissioners, State Election Commission: Role and Functioning, Institute and Bodies for the welfare of SC/ST/OBC and women.

Recommended References:

V.N. Shukla, Constitution of India
 M.P. Jain – Indian Constitutional Law.
 H.M.Seervai : Constitution of India
 D.D.Basu: Shorter Constitution of India
 Kagzi : Indian Constitution
 Pylee : The History of Indian Constitution

18SLS2	206	PHYSI	CS LABORATORY	L	Т	Р	С				
		(Common to	ECE & CSE)	0	0	3	1.5				
OBJEC	CTIV	VES									
• To introduce different experiments to test basic understanding of physics concepts applied in optics, thermal physics, properties of matter and liquids											
LIST C EXPER	OF E RIM	XPERIMENTS : 1 ENTS)	PHYSICS LABORATORY (AN	NY S	5						
1.	1. Determination of rigidity modulus : Torsion Pendulum										
2.	2. Determination of Young's modulus by non-uniform bending method										
3.	(a) Determination of wave length and particle size using LASER(b) Determination of acceptance angle in an optical fibre										
4.	De	etermination of thermal	conductivity of a bad conductor – Lee	e's D	isc 1	meth	od				
5.	De int	etermination of velocity referometer	v of sound and compressibility of fluid	– U1	ltras	onic					
6.	De	etermination of waveler	ngth of mercury spectrum – Spectrome	eter g	rati	ng					
7.	De	etermination of band ga	p of a semiconductor								
			TOTAL :	: 45	P	ERI	ODS				
COUR	SE (DUTCOMES									
1.	Af an	fter the course, the stud d thermal properties fo	ent will be able to apply principles of r engineering applications	elast	cicity	y, op	tical				

18ZES207	P	PRO)GR	AMN	MIN	NG]	IN C	L	ABO	DR A	AT	OR	Y	L	Τ	P		С
														0	0	4		2
OBJECTIV	/ES:																	
•	Be fa	amili	ar wi	th the	use	of C	Office s	soft	twar	e.								
•	Be ex	xpos	ed to	prese	ntati	ion a	nd vis	sual	izati	ion t	ool	s.						
•	Be fa	amili	ar wi	th pro	ogran	mmir	ng in C	С.										
٠	Be ex	xpos	ed to	Decis	sion	mak	ing, L	oop	oing	cons	stru	cts.						
•	Learn	n to ı	use A	rrays,	, stri	ings,	functi	ions	5.									
•	Imple	emer	nt the	conce	epts	of st	ructur	re, I	Unic	on an	nd f	ile o	rgani	zatio	1.			
LIST OF E	XPE	RIN	1EN	TS:														
 Present Problem C Program Scientif Simple Solving Program Program Program Program Program 	ation and rammir fic prob progra proble ns with ns with n using m using	Ind V ulation ng us blem ummi ems h use h vse h Poi g Rec g str	⁷ isual on, Pa sing S solvi ing fo using r defi inters cursiv uctur	izatio robler imple ing us or one Strin ned fu re Fun es and	on – g m So e stat sing c dim g fur uncti nction d uni	grapl olvin teme decis nensio nctio ions on. ions.	hs, cha g and ents an sion m onal an ons – Incl	arts Flo nd e naki nd lude	, 2D wch xpre ng a two es Pa	o, 3D harts essio and le dime aram	ns oop ens ete	oing. iona r Pas	l arra	lys. E RIC	DDS			
OUTCOM	FS.	On	l com	nletio	on of	f this	cours	se s	tude	ents	will	be a	ble 1			,		
1. Apply	good 1	prog	ramm	ning d	lesign	n me	ethods	for	: pro	gran	n de	evelo	opme	ent.				
2. Design	$\frac{3}{100}$ n and in	mple	ement	t C pro	ogra	ms f	or sim	ple	app	olicat	tion	IS.	- <u>r</u>					
3. Write	C prog	gram	s, wh	ich in	volv	ve de	cision	ma	akin	g and	d ar	rays	and	string	gs.			
4. Devel	op prog	gram	ıs usir	ng fur	nctio	ons a	nd poi	inte	rs.									
5. Devel	op prog	gram	is usii	ng stri	uctu	res a	ind uni	ion	s.									
REFEREN	CES:	:																
1. Herbe	ert Sch Dany N	hildt, Vew 1	, "C Delhi	' - T 2010	The ()	Com	plete	Re	fere	nce'	, , , ,	<i>Fata</i>	Mc	Graw	Hil	l P	ubi	lishin

Cou	Course Articulation Matrix:														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	1	1	1						1	1	2	3	
CO2	3	2	1	1	1						1	1	2	3	
CO3	2	2	2	2	1						1	1	2	3	
CO4	2	2	2	2	1						1	1	2	3	
CO5	2	2	2	2	1						1	1	2	3	
		•		•		(1- L	ow, 2	- Mo	derate	, 3-Hi	gh)	•			

THIRD SEMESTER

18ZBS301 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS

TONS		
	3	1

OBJECTIVES:

- To introduce Fourier series analysis which is central to many applications in engineering apart from its use in solving boundary value problems.
- To acquaint the student with Fourier transform techniques used in wide variety of situations.
- To introduce the effective mathematical tools for the solutions of partial differential equations that model several physical processes and to develop Z transform techniques for discrete time systems.

UNIT I PARTIAL DIFFERENTIAL EQUATIONS

9+3

Р

0

LT

С

4

Formation of partial differential equations – Singular integrals -- Solutions of standard types of first order partial differential equations - Lagrange's linear equation -- Linear partial differential equations of second and higher order with constant coefficients of both homogeneous and non-homogeneous types.

UNIT II FOURIER SERIES

9+3

Dirichlet's conditions – General Fourier series – Odd and even functions – Half range sine series – Half range cosine series – Complex form of Fourier series – Parseval's identity – Harmonic analysis.

UNIT IIIAPPLICATIONS OF PARTIAL DIFFERENTIAL9+3EQUATIONS

Classification of PDE – Method of separation of variables - Solutions of one dimensional wave equation – One dimensional equation of heat conduction – Steady state solution of two dimensional equation heat conduction (excluding insulated edges).

UNIT IV

FOURIER TRANSFORMS

9+3

Statement of Fourier integral theorem – Fourier transform pair – Fourier sine and cosine transforms – Properties – Transforms of simple functions – Convolution theorem – Parseval's identity.

UNIT V	Z - TRANSFORMS AND DIFFERENCE EQUATIONS	9+3
Z- transforms	- Elementary properties - Inverse Z - transform (using partial fraction	1 and
residues) – C	onvolution theorem - Formation of difference equations - Solution	on of

difference	e equations usin	ng Z - transfo	orm.					
				TOTAL : 60 PERIODS				
COURS	SE OUTCON	MES						
1.	The understa differential e some of the p	nding of th quations wo hysical prob	ne mathematical pould provide then blems of engineeri	principles on transforms and partial n the ability to formulate and solve ng.				
TEXT I	BOOKS:							
1.	Veerarajan T Education Pv	., "Transfori t. Ltd., New	ms and Partial Dif Delhi, 3 rd Edition	ferential Equations", Tata McGraw Hill n, 2016				
2.	Grewal B.S., "Higher Engineering Mathematics", 44 th Edition, Khanna Publishers, Delhi, 2017.							
3.	Narayanan S Mathematics Pvt Ltd., 1995	S., Manicav for Enginee 8.	vachagom Pillay. ering Students" Vo	T.K and Ramanaiah.G "Advanced ol. II & III, S.Viswanathan Publishers				
REFER	RENCES:							
1.	Bali. N.P and Publications	l Manish Go Pvt Ltd, 9 th	yal, "A Textbook of Edition 2016.	of Engineering Mathematics", Laxmi				
2.	Ramana. B.V Company Lin	., "Higher E nited, New L	Ingineering Mathe Delhi, 2018.	matics", Tata McGraw Hill Publishing				
3.	Glyn James, Education, 20	"Advanced N 016.	Modern Engineeri	ng Mathematics", 4 th Edition, Pearson				
4.	Erwin Kreysz 2011.	zig, "Advanc	ed Engineering M	athematics", 10 th Edition, Wiley India,				
5.	Ray Wylie C Tata McGrav	and Barrett v Hill Educa	.L.C, "Advanced ution Pvt Ltd, New	Engineering Mathematics", 6 th Edition, Delhi, 2012.				
6.	Datta K.B., " Learning Ind	Mathematico ia Pvt Ltd, L	al Methods of Scie Delhi, 2013.	ence and Engineering", Cengage				

ELECTRONIC DEVICES AND CIRCUITS

L T P C 3 1 0 4

OBJECTIVES:

18LPC302

	(Qualitative Treatment only)						
UNIT I	BASICS OF SEMICONDUCTOR DEVICES	9+3					
•	To design and analyze transistor amplifiers and to study their frequency response.						
•	To design biasing circuits for BJTs and FETs.						
•	To study theory, construction and operation of basic semiconductor devices.						

PN junction diode- forward and reverse characteristics-Switching characteristics- Bipolar junction transistors- NPN-PNP-input and output characteristics of CE,CB and CC configurations – JFET-MOSFET – drain and transfer characteristics-Zener diode, varactor diode, tunnel diode, photo diode, photo transistor, opto coupler, UJT,SCR. Power supplies: Rectifiers – Half-wave, Full-wave (bridge type rectifiers)- C, LC and CLC filters.

UNIT II

TRANSISTOR BIASING

9+3

BJT- Load line and Quiescent point - Variation of quiescent point -Need for Biasing – Stability factor-Fixed Bias circuit- Different types of biasing circuits – Method of stabilizing the Q point– Advantage of self bias (voltage divider bias) over other types of biasing, bias compensation – Diode – Thermistor and sensistor compensations – Biasing of FET and MOSFET.

UNIT III SMALL SIGNAL AMPLIFIERS

9+3

CE, CB and CC amplifiers – Method of drawing small signal equivalent circuit – Mid band analysis of various types of single stage amplifiers to obtain gain – Input impedance and output impedance – Miller's theorem – Comparison of CB, CE and CC amplifiers and their uses – Methods of increasing input impedance using Darlington connection and bootstrapping – CS, CG and CD (FET) amplifiers – Multistage amplifiers–Emitter coupled differential amplifier circuit –CMRR – Use of constant current circuit to improve CMRR – Derivation of transfer characteristic.

UNIT IV	FREQUENCY	(RESPONS)	E				9+3
General shap	eneral shape of frequency response of amplifiers – Definition of cut-off						
frequencies an	d bandwidth – L	low frequency	analysis	of am	olifiers to o	btain	lower

frequencies and bandwidth – Low frequency analysis of amplifiers to obtain lower cut-off frequency hybrid – π equivalent circuit of BJTs - High frequency analysis of BJT

amplifiers to obtain upper cut-off frequency – Gain bandwidth product - High frequency equivalent circuit of FETs – High frequency analysis of FET amplifiers – Gain – Bandwidth product of FETs– General expression for frequency response of multistage amplifiers – Calculation of overall upper and lower cut-off frequencies of multistage amplifiers – Amplifier rise time and sag, and their relation to cut-off frequencies.

UNIT V

LARGE SIGNAL AMPLIFIERS

9+3

Classification of amplifiers – Class A large signal amplifiers – Second harmonic distortion – Higher order harmonic distortion – Transformer coupled class A audio power amplifier – Efficiency of Class A amplifiers – Class B amplifier – Efficiency – push-pull amplifier – Distortion in amplifiers – Complementary – Symmetry (class B) push-pull amplifier – Class C – Class D amplifier – Class S amplifier – MOSFET power amplifier – Thermal stability and heat sink.

			TOTAL : 60 PERIODS							
COURS	E OUTCOM	1ES	Upon completion the	course, the students will have to						
1.	Understand t	he theo	ory, construction and	operation of basic semiconductor						
	devices.									
2.	Design biasin	Design biasing circuits for BJT and FET amplifiers.								
3.	Analyze BJT	and FET	Γ amplifier circuits at 1	low frequencies.						
4.	Analyze the fr	requency	y response of amplifie	ers circuits.						
5.	Understand th	ne operat	tion of power amplifie	ers.						
TEXT B	OOKS:									
1.	J .Millman, a	nd C.Ha	alkias, "Integrated Elec	ctronics", 4th Edition, TMH, 2007						
2.	Robert L. Bo	oylestad	and Louis Nashelsky	y, "Electronic Devices and Circuit						
	Theory", 9th	Edition,	, Pearson Education, 2	2007.						
REFER	ENCES:									
1.	David A. Bell,	, "Electr	ronic Devices and Cir	cuits", 4th Edition, PHI, 2007.						
2.	Floyd, "Elect	ronic De	evices", 6th Edition, F	Pearson Education, 2002.						
3.	Anwar A. Kh	nan and	Kanchan K. Dey, "	A First Course on Electronics", PHI,						
1	2006. Singh P. D.	and Dal	the Sinch "Floatney	nia Daviana and Internated						
4.	Singn, Б.Р, Circuits", Peo	ana kek arson Ec	ducation, 2006.	nic Devices and integrated						

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	_	_	_	-	-	_	-	-	-	-	3	3	3	1
CO2	3	2	3	2	I	I	-	Ι	I	-	Ι	2	3	3	1
CO3	3	3	2	2	-	-	-	-	-	-	-	2	2	2	2
CO4	3	3	2	2	I	I	-	-	I	-	-	2	3	3	2
CO5	3	-	-	-	-	-	-	-	-	-	-	2	3	3	1
18LPC302	3	3	2	2	-	-	-	-	-	-	-	2	2	3	1

1-LOW 2-MODERATE (MEDIUM) 3-HIGH

18LPC303	ELECTROMAGNETIC FIELDS	L	Т	Р	С				
		3	0	0	3				
OBJECTIVE	S:								
• To gain fields in f	conceptual and basic mathematical understanding of electr ree space.	ic a	nd n	nagn	etic				
• To under and boun	stand the concepts of electric and magnetic fields among di lary conditions.	ffere	ent n	nater	ials				
• To under law, disp	stand the coupling between electric and magnetic fields that acement current and Maxwell's equations	roug	gh F	arada	ay's				
UNIT I S	TATIC ELECTRIC FIELD			9					
Vector Algebra, Curl, Divergence Line, Surface ar applications, Ga Calculation of Electrostatic Ene	Vector Algebra, Coordinate Systems, Vector differential operator, Gradient, Divergence, Curl, Divergence theorem, Stokes theorem, Coulombs law, Electric field intensity, Point, Line, Surface and Volume charge distributions, Electric flux density, Gauss law and its applications, Gauss divergence theorem, Absolute Electric potential, Potential difference, Calculation of potential differences for different configurations. Electric dipole, Electrostatic Energy and Energy density.								
UNIT II (CONDUCTORS AND DIELECTRICS			9					
Conductors and dielectrics in Static Electric Field, Current and current density, Continuity equation, Polarization, Boundary conditions, Method of images, Resistance of a conductor, Capacitance, Parallel plate, Coaxial and Spherical capacitors, Boundary conditions for									

Capacitance, Parallel plate, Coaxial and Spherical capacitors, Boundary conditions for perfect dielectric materials, Poisson's equation, Laplace's equation, Solution of Laplace equation, Application of Poisson's and Laplace's equations.

UNIT III	STATIC MAGNETIC FIELDS	9								
Biot -Savart Law, Magnetic field Intensity, Estimation of Magnetic field Intensity for straight and circular conductors, Ampere's Circuital Law, Point form of Ampere's Circuital Law, Stokes theorem, Magnetic flux and magnetic flux density, The Scalar and Vector Magnetic potentials, Derivation of Steady magnetic field Laws.										
UNIT IV	MAGNETIC FORCES AND MATERIALS	9								
Force on a moving charge, Force on a differential current element, Force between current elements, Force and torque on a closed circuit, The nature of magnetic materials, Magnetization and permeability, Magnetic boundary conditions involving magnetic fields, The magnetic circuit, Potential energy and forces on magnetic materials, Inductance, Basic expressions for self and mutual inductances, Inductance evaluation for solenoid, toroid, coaxial cables and transmission lines, Energy stored in Magnetic fields.										
UNIT V	TIME VARYING FIELDS AND MAXWELL'S EQUATIONS	9								
Fundamenta Electromag of Maxwel Electromag theorem, Ti	Fundamental relations for Electrostatic and Magnetostatic fields, Faraday's law for Electromagnetic induction, Transformers, Motional Electromotive forces, Differential form of Maxwell's equations, Integral form of Maxwell's equations, Potential functions, Electromagnetic boundary conditions, Wave equations and their solutions, Poynting's theorem, Time harmonic fields, Electromagnetic Spectrum.									
	TOTAL : 45 PERIODS									
COURSE	COUTCOMES Upon Completion of the course, the students will hav	e								
1. ′	The Ability to analyze electric fields due to different sources.									
2.	The Ability to explain the properties of different types of materials in el fields.	ectric								
3. '	The Ability to analyze magnetic fields due to different sources.									
4.	The knowledge on the properties of different types of materials in magnetic fields.									
5.	An exposure to the characteristics of electromagnetic fields.									
TEXT BO	DOKS:									
1.	William H.Hayt and John A.Buck., "Engineering Electromagnetics", McGraw-Hill PublishingLtd, 2008	Tata								
2.	Sadiku MH, "Principles of Electromagnetics", Oxford University Press New Delhi, 2009	s Inc,								

REFER	ENCES:
1.	David K Cheng, "Field and Wave Electromagnetics", Pearson Education Inc,
	Delhi, 2004.
2.	G.S.N.Raju, "Electromagnetic Fields", Pearson Education India, 2014
3.	John D Kraus and Daniel A Fleisch, "Electromagnetics with Applications", Mc
	Graw Hill Book Co, 2005.
4.	Karl E Longman and Sava V Savov, "Fundamentals of Electromagnetics",
	Prentice Hall of India, New Delhi, 2006.
5.	Ashutosh Pramanic, "Electromagnetism", Prentice Hall of India, New Delhi,
	2006.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	1	1	-	-	-	-	-	-	-	2	3	-	1
CO2	3	2	1	-	-	-	-	-	-	-	-	2	3	-	1
CO3	3	3	1	1	-	-	-	-	-	-	-	2	3	-	1
CO4	3	2	1	-	-	-	-	-	-	-	-	2	3	-	1
CO5	3	3	1	1	-	-	-	-	-	-	-	2	3	-	1
18LPC303	3	3	1	1	-	-	-	-	-	-	-	2	3	-	1

1-LOW 2-MODERATE (MEDIUM) 3-HIGH

18LPC	C 304	SIGNALS AND SYSTEMS	L T P C									
			3	0	0	3						
OBJE	CTIV	ES:			1	<u> </u>						
•	To lear	about the continuous/Discrete time signals/systems.										
•	Exposu	re to continuous time signals/systems analysis using Fourier/La	plac	e tra	nsfo	rm						
•	Exposu	re to discrete time signals/systems analysis using DTFT/Z trans	forn	n	•							
UNIT	Ι	CLASSIFICATION OF SIGNALS AND SYSTEM	IS			9						
Continuous time signals (CT signals) - Discrete time signals (DT signals) - Step, Ramp, Pulse, Impulse, Sinusoidal, Exponential, Classification of CT and DT signals - Periodic & Aperiodic signals, Deterministic & Random signals, Energy & Power signals - CT systems and DT systems- Classification of systems – Static & Dynamic, Linear & Nonlinear, Time- variant & Time-invariant, Causal & Non causal, Stable & Unstable.												
UNIT II ANALYSIS OF CONTINUOUS TIME SIGNALS												
Fourier series analysis-spectrum of Continuous Time (CT) signals- Fourier and Laplace Transforms in CT Signal Analysis - Properties.												
UNIT	III	LINEAR TIME INVARIANT- CONTINUOUS TI SYSTEMS	M	E	9							
Differer Fourier	ntial Eq and Laj	uation-Block diagram representation-impulse response, convolu blace transforms in Analysis of CT systems.	tion	inte	grals	3-						
UNIT	IV	ANALYSIS OF DISCRETE TIME SIGNALS				9						
Basebar Transfo	nd Sam orm.	pling - DTFT – Properties of DTFT - Z Transform – Pr	oper	ties	of 2	Z						
UNIT	V	LINEAR TIME INVARIANT-DISCRETE TIME SYSTEMS				9						
Differen Discrete	nce Equ e Fourie	ations-Block diagram representation-Impulse response - Con r and Z Transform Analysis of Recursive & Non-Recursive syst	volu tems	tion	sum	l-						
		TOTAL : 45 PER	101	DS								
COUI	RSE O	UTCOMES Upon completion of this course , students will	l hav	e the	e							
1.	1. Exposure to the continuous/discrete time signals/systems and their classification and properties											
2.	Ability	to analyze continuous time signals using Fourier/Laplace tra	nsfc	orms								

3.	Ability to anal	yse continuous time systems using Fourier/Laplace transforms										
4.	Ability to anal	yze discrete time signals using DTFT/Z transforms										
5.	Ability to anal	yze discrete time systems using DTFT/Z transforms										
ТЕХТ	BOOKS:											
1.	Allan V.Oppenheim, S.Wilsky and S.H.Nawab, "Signals and Systems", Pears 2007.											
2.	Simon Haykin, Barry Van Veen., "Signals & Systems". John Wiley & Sons(ASIA) Pvt Ltd, 1999.											
3.	B. P. Lathi, " 2009.	B. P. Lathi, "Principles of Linear Systems and Signals", Second Edition, Oxford, 2009.										
REFE	RENCES:											
1.	R.E.Zeimer, Discrete", Pe	W.H.Tranter and R.D.Fannin, "Signals & Systems - Continuous and parson, 2007.										
2.	John Alan Sti	iller, "An Introduction to Signals and Systems", Thomson, 2007.										
3.	H P HSU, "S	ignals and Systems", 2 nd edition, Mc.Hill.education, 2017										
4.	M.J.Roberts, Tata McGraw	"Signals & Systems Analysis using Transform Methods & MATLAB", Hill, 2007.										

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	1	2		-	-	-	-	-	-	-	3	2	-
CO2	3	2	2	2	2	-	-	-	2	-	-	2	3	1	-
CO3	3	2	2	-	2	-	-	-	2	-	-	2	3	1	-
CO4	3	2	2	-	2	-	-	-	2	-	-	2	3	2	-
CO5	3	3	3	-	2	-	-	-	2	-	-	2	3	2	-
18LPC304	3	2	2	2	2	-	-	-	2	-	-	2	3	2	-

18ZMC305		ENVIRONMENTAL SCIENCE AND ENGG. L T I									
			-	1 0	0	0					
OBJECTIV	/ES:										
To find	ing and i	mplementing scientific, technological, economic and politic	al so	lution	s to						
enviror	imental p	roblems.									
To stuce	ly the int	errelationship between living organism and environment.									
• To stuc	ly the inte	egrated themes and biodiversity, natural resources, pollution	cont	trol an	d						
waste r	nanagem	ent.									
UNIT I	ENVI	RONMENT, ECOSYSTEMS AND BIODIVERS	SIT	Y		7					
aquatic ecosy ecosystem – genetic, speci biodiversity: of as a mega-di poaching of conservation common plan Field study of	rypes of rstems (p ecologica es and e consumpt versity n wildlife, of biodir ts, insecta simple e	oonds, streams, lakes, rivers, oceans, estuaries) - energy al succession processes –types – Introduction to biodiver ecosystem diversity – biogeographical classification of In tive use, productive use, social, ethical, aesthetic and option ation – hot-spots of biodiversity – threats to biodiversity man-wildlife conflicts – endangered and endemic spec versity: In-situ and ex-situ conservation of biodiversity. s, birds.	gy fl sity dia valu y: ha ies o Field	ow in defin – valu ues – abitat of Ind d stuc	1 th ition 1e o Indi loss lia ly o	i, e i: of a 3, - of					
UNIT II	ENV	RONMENTAL POLLUTION				3					
pollution (d) I waste manage	Auses, ef Marine po ment: ca local pol	bllution (e) Noise pollution (f) Thermal pollution (g) Nuclear uses, effects and control measures . luted site – Urban / Rural / Industrial / Agricultural.	r haz	ards—	soli	d					
UNIT III	NAT	URAL RESOURCES				5					
Forest resourd overutilization environmental problems, cha pesticide prob alternate energy and desertificat Field study of	rces: Us n of su l effects nges cau blems– E gy source ation – ro local are	e and over-exploitation, deforestation – Water resour rface and ground water– Mineral resources: Use an of extracting and using mineral resources – Food resource sed by agriculture and overgrazing, effects of modern agricul energy resources: renewable and non renewable energy set es.– Land resources- land degradation, man induced landslic le of an individual in conservation of natural resources. a to document environmental assets – river / forest / grasslar	ces: d ex es: V lture sourc les, s	Use xploita World e, ferti ces, u soil er nill	and ation food lizer se o osion	d ı, d ·- ıf n					
		TOTAL : 15	PE	RIO	DS						
COURSE (OUTCO	OMES									
Environmenta important asp following after	l Pollutio ect which complet	on or problems cannot be solved by mere laws. Public particip serves the environmental Protection. One will obtain knowle ing the course.	ation dge (n is an on the		1.					
1.Abilitysolve t	1. Ability to apply the knowledge of environmental science in identifying, to formulate and to solve the environmental problems.										
2. Public	Public awareness of environmental function is at infant stage.										
3. Ignora	Ignorance and incomplete knowledge has led to misconceptions. Obtaining knowledge										

	about natural r	ecourses and their functions will create awareness in conserving various								
	natural resource	es.								
TEX	T BOOKS:									
1.	Gilbert M.Mast	ers, 'Introduction to Environmental Engineering and Science', 2nd edition,								
	Pearson Educat	tion, 2004.								
2.	Benny Joseph, 'Environmental Science and Engineering', Tata McGraw-Hill, New Delhi,									
	2006.									
REF	ERENCES:									
1.	Cunningham, W	V.P. Cooper, T.H. Gorhani, 'Environmental Encyclopedia', Jaico Publ.,								
	House, Mumbai	<i>i, 2001.</i>								
2.	Rajagopalan, H	R, 'Environmental Studies-From Crisis to Cure', Oxford University Press								
	2005.									

18LES306	DATA STRUCTURES AND OBJECT ORIENTED PROGRAMMING LANGUAGE	L	Τ	Р	C						
		3	0	0	3						
OBJECTIVI	ES:				-						
•	To be familiar with the object oriented programming concepts										
•	To understand the concepts of inheritance, polymorphism and overlo	adin	g								
•	To impart the basic concepts of data structures and algorithms										
•	To be familiar with the non Linear Data Structures concepts										
To understand concepts of searching and sorting techniques											
UNIT I	INIT I BASIC CONCEPTS OF OOPS										
Principles of O Structures – Fur	Principles of Object Oriented Programming - Beginning with C++ - Tokens, Expressions, Control Structures – Functions in C++ - Classes and Objects – Constructors and Destructors										
UNIT II OVERLOADING , INHERITANCE AND POLYMORPHISM											
Operator overlo functions, polyn	bading and function overloading - Inheritance: extending classes - norphism – Manipulating Strings.	Point	ters,	virtu	al						
UNIT III	LINEAR DATA STRUCTURES			9							
Abstract Data T – singly linked I Queue ADT.	ypes (ADTs) – List ADT – array-based implementation – linked list in lists – Stack ADT – Applications: Infix to Postfix, Evaluating arithme	nple tic ez	ment xpres	ation ssions	<u> </u>						
UNIT IV	NON LINEAR DATASTRUCTURES 9										
Trees – Binary ' representations components.	Trees – Binary Trees – Binary tree representation and traversals – Binary Search Tree - Graph and its representations – Graph Traversals – Breadth-first search – Depth-first search - Connected components.										

UNIT V		SORTING AND SEARCHING										
Insertion search – E	Insertion sort – Merge sort – Quick sort – Radix sort – shell sort- Bubble sort – Selection sort –Linear search – Binary Search.											
TOTAL : 45 PERIODS												
OUTCOMES:												
•	Exp	Explain the concepts of Object oriented programming.										
•	Wri	Write simple applications using C++.										
•	Dis	Discuss the different methods of organizing large amount of data.										
TEXT I	BOOH	XS:										
1.	E.Bal	lagurusamy, "Programming in C++", 4th Ed	lition. (Unit I & II)									
2.	M. A	. Weiss, "Datastructures using C++", 3rd Ec	lition, Addition Wesley.(Unit III, IV	/,V)								
REFER	ENC	ES:										
1.	B.Trivedi, "Programming with ANSI C++:A Step-By-Step approach", Oxford University Press, 2010.											
2.	Good 7th E	lrich, Michael. T, R. Tamassia, D. Mount, Edition, Wiley, 2004.	"Data Structures and Algorithms in	ı C++",								

Cou	Course Articulation Matrix:														
	Program Outcomes												Prog	gram Sp Outcom	ecific es
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	3	3	1	1	1	1					1	1	3	2	
CO2	3	3	2	2							1	1	2	3	
CO3	2	2	2	2	2						1	1	2	3	
						(1- L	ow, 2	- Mo	derate	e, 3-Hi	gh)				

18LES307		BASIC ELECTRICAL AND INSTRUMENTATION ENGINEERING	L	T	Р	С	
			3	0	0	3	
OBJECTIV	/ES		1				
To introduce DC Machines							
•		To study the Basics of Transformer					
•		To introduce Induction Machines					
•		To understand the concepts of Alternators and Special m	achii	nes			
•		To introduce different Electrical Measuring Instruments.					
UNIT I	DC					9	

Introduction –DC generators- Constructional Features–Principle of operation- EMF Equation – Types and Characteristics of DC generators –DC motors - Principle of Operation–Types and Characteristics of DC motors –Starting and Speed Control – Losses and Efficiency –Applications.

UNIT II TRANSFORMERS

Introduction - Single phase transformer construction and principle of operation –Types-EMF equation–No load and Load characteristics – Equivalent Circuit –Voltage Regulation –Losses-Efficiency –OC and SC tests –AutoTransformers –Three Phase Transformers – Applications.

UNIT III INDUCTION MACHINES

Principle of operation of three-phase induction motors – Construction – Types – Torque Slip Characteristics – Equivalent circuit– Starting and Speed Control–Single phase Induction motors: Construction– Doublerevolving field theory – Types– Applications.

UNIT IV SYNCHRONOUS AND SPECIAL MACHINES

9

9

9

9

Alternator-Constructional details–working principle–EMF Equation – Voltage regulation by EMF and MMF methods. Synchronous motor: Working principle - Starting methods – Torque equation – Characteristics. Special Machines: Stepper Motor – Brushless DC Motor - Reluctance Motor – Universal Motor.

UNIT V	ELECTRICAL INSTRUMENTS AND
	MEASUREMENTS

Absolute and Secondary instruments-Electrical Principle of operation-Standards and errors-Essentials of indicating instruments- Moving Coil and Moving Iron Ammeters and Voltmeters– Wattmeter and Energy meter–Measurement of R, L and C parameters: Wheatstone, Anderson, Schering and Wien bridges –Transducers – Classification of Transducers: Resistive, Inductive, Capacitive, piezoelectric, photoelectric and Hall effect.

TOTAL : 45 PERIODS

COUR	SE OUTCO	OMES	At the end of the course	,stude	nts able to						
1.	Choose the appropriate DC motor and generator based on their performance characteristics.										
2.	Understand the functions and operations of transformer										
3.	Choose anap	Choose anappropriate induction motor based on their performance characteristics.									
4.	Select appro-	priately a	special machine for an Ir	ndustria	al applications.						
5.	Choose an appropriate measuring instruments for a given application to measure the unknown parameter.										
TEXT	BOOKS:										
1.	D.P. Kothari and I.J.Nagarath, —"Basic Electrical and Electronics Engineering", McGraw HillEducation (India) Private Limited, Third Reprint, 2016.										
2.	B.L.Theraja and A.K.Theraja,"A Text Book of Electrical Technology", Vol-I and II, S. Chand &Co. 2014.										

REFEI	RENCES:	
1.	Toro, "Electr	ical Engineering Fundamental", Pearson Education, New Delhi, 2015.
2.	Rajendra Pr India,2006	asad ,"Fundamentals of Electrical engineering", Prentice Hall of
3.	S.K.Bhattach 2011.	arya —"Basic Electrical and Electronics Engineering", Pearson India,
4.	E. Hughes, '	'Electrical and Electronics Technology'', Pearson, 2010.
5.	A.K. Sawhne Instrumentat	y, "A Course in Electrical & Electronic Measurements & ion", Dhanpat Rai and Co, 2010.

18LES308	DATA STRUCTURES AND OBJECT ORIENTED PROGRAMMING LANGUAGE		Τ	Р	C				
	LABORATORY								
		0	0	2	1				
OBJECTIVE	S:								
٠	Understand the fundamentals of object oriented concepts.								
٠	• Be able to write a C++ program to solve various problems.								
٠	• Be able to choose appropriate data structures to solve the problems.								
•	• To develop skills to design and analyze simple linear and non linear data structures								
•	• To Gain knowledge in practical applications of data structures								

LIST OF EXPERIMENTS

- 1. Programs on C++ basic concepts.
- 2. Program constructors, constructor overloading, destructors
- 3. Programs on Function overloading, Operator overloading.
- 4. Program to implement single, multiple, multilevel, hybrid and hierarchical inheritance.
- 5. Programs on pointers.
- 6. Programs on string manipulation
- 7. Program on singly linked list using array based implementation and list implementation
- 8. Program for Doubly linked list using array based implementation and list implementation
- 9. Program to convert infix to postfix notation
- 10. Program to evaluate arithmetic expression.
- 11. Program for Linear queue using array and list based implementation
- 12. Program to implement binary search tree.
- 13. Program to implement merge sort, quick sort, insertion sort, shell sort, selection sort, radix sort.
- 14. Program to implement linear search and binary search.

		TOTAL : 30 PERIODS						
OUTCO	MES:							
1.	Know the concept of C++ and pointers.							
2.	Implement Arrays, Linked list and sea	Implement Arrays, Linked list and searching algorithm.						
REFERE	ENCES:							
1.	S. Arora, "Practical world of C++", DhanpatRai & CO (Pvt)Ltd.							
2.	Spoken-tutorial.org.							

Cou	Course Articulation Matrix:														
	Program Outcomes												Prog (gram Sp Outcom	ecific es
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	1	1							1	1	2	1	
CO2	3	3	2	2	2	2					1	1	2	3	
	(1- Low, 2- Moderate, 3-High)														

18LPC309	18LPC309 CIRCUITS AND DEVICES LABORATORY										
	0	0	2	1							
OBJECTIV	OBJECTIVES:										
• To anal	• To analyze experimentally the characteristics of diodes, BJT's and FET's.										
To veri	fy practically the response of various special purpose electron	devi	ices.								
• To cons	struct and simulate various electronic circuits using PSPICE/n	nultis	sim.								
LIST OF EX	XPERIMENTS										
1. Character	ristics of PN Junction Diode.										
2. Character	ristics of Zener diode & its application as regulator.										
3. Input-out	put Characteristics of common emitter configuration.										
4. Input-out	put Characteristics of common base configuration.										
5. FET Cha	racteristics.										
6. SCR Cha	racteristics.										
7. Clipper a	nd Clamper & Full Wave Rectifier.										
8. Verificat	on of Thevenin's & Norton's theorem.										
9. Verificati	on of KVL & KCL.										
10. Verificati	on of Super Position Theorem.										
11. Verificat	on of Maximum Power Transfer & Reciprocity theorem.										
12. Determin	12. Determination of Resonance Frequency of Series & Parallel RLC Circuits.										
13. Transient	13. Transient analysis of RL and RC circuits.										

			TOTAL : 30 PERIODS						
COURS	E OUTCOMES	Upon completio the ability to	n of the course, the students will have						
1.	Analyze the characteristic	Analyze the characteristics of various diodes.							
2.	Analyze the characteristic	Analyze the characteristics of BJT and FET transistors.							
3.	Analyze the working and	characteristics of	clipper, clamper and rectifier.						
4.	Verify Thevenin, Nortor	Verify Thevenin, Norton, KVL, KCL, Maximum Power Transfer and Super							
	Position Theorems.								
5.	Determine and verify reso	onant frequency of	f tuning circuits.						

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	-	_	1	3	-	_	-	2	-	-	2	3	2	1
CO2	2	2	2	1	3	-	-	-	2	-	-	2	2	3	2
CO3	2	2	1	1	3	-	-	-	2	-	-	2	3	2	2
CO4	3	2	2	1	3	-	-	-	2	-	-	2	2	3	1
CO5	3	2	2	1	3	-	-	-	2	-	-	2	2	3	1
18LPC309	3	2	2	1	3	-	-	-	2	-	-	2	2	3	1

1-LOW 2-MODERATE(MEDIUM) 3-HIGH

ELECTRICAL ENGINEERING LABORATORY

OBJECTIVES

- To conduct experiment and evaluate the performance of DC machines
- To conduct experiment and evaluate the performance of Transformers
- To conduct experiment and evaluate the performance of Induction motors
- To conduct experiment and measure the values of passive circuit elements

LIST OF EXPERIMENTS

- 1. Characteristics of Separately excited DC generator
- 2. Characteristics of Self excited DC generator (shunt and series)
- 3. Speed control of DC Shunt motors
- 4. Load test on DC motors
- 5. OC and SC test of Single phase Transformers
- 6. Load test on transformer (Single Phase and three phase)
- 7. Load test of Induction motor (single phase and three phase)
- 8. Regulation of three phase alternator (EMF and MMF Methods)
- 9. Measurements of R, L and C using Bridges
- 10. Study of DC and Induction Motor starters.
- 11. Study of Transducers.

			TOTAL : 30PERIODS							
COURS	E OUTCOMES	At the end of the c	At the end of the course ,students able to							
1.	Conduct the experimen characteristics	Conduct the experiments on DC machines to analyse the performance characteristics								
2.	Conduct the experiments Performance characteristi	Conduct the experiments on transformer and get the equivalent circuits and Performance characteristics								
3.	Conduct the experiment characteristics	Conduct the experiments on Induction motor and get its Performance characteristics								
4.	Measure the values given passive component with the use of bridge circuit.									
5.	Identify and characterize the active and passive transducers.									

FOURTH SEMESTER

18LBS40)1	PRO	BABILITY	Y ANI	D RA	AND	OM PROC	CESSES	L	Т	Р	С
									3	1	0	4
OBJECTIVES:												
• To provide necessary basic concepts in probability and random processes for applications such as random signals, linear systems etc in communication engineering.											for ng.	
UNIT I		RANE	DOM VAR	IABL	ES						9-	+3
Discrete an Binomial, I	Discrete and continuous random variables – Moments – Moment generating functions – Binomial, Poisson, Geometric, Uniform, Exponential, Gamma and Normal distributions.										_	
UNIT II		TWO	- DIMENS	SIONA	AL R	RANI	DOM VAR	RIABLES	\$		9-	+3
Joint distri Linear regr	Joint distributions – Marginal and conditional distributions – Covariance – Correlation and Linear regression – Transformation of random variables.											d
UNIT III	I	RANE	DOM PRO	CESS	ES						9-	+3
Classificati process.	ion –	Station	ary process –	Marko	ov pro	ocess -	- Poisson pro	cess – Ran	dom	tele	grap	h
UNIT IV	r	CORF	RELATION	N ANI	D SP	ест	RAL DEN	SITIES			9-	+3
Auto corre density – C	elatio Cross	n funct spectral	ions – Cross l density – Pro	s correl operties	lation s.	func	tions – Prop	perties – P	owe	er sp	ectra	ıl
UNIT V		LINE	AR SYSTE	EMS V	VIT	H RA	ANDOM II	NPUTS			9-	+3
Linear tim inputs – Au	e inv uto c	variant s orrelatio	system – System and Cross of	stem tra correlat	ansfe tion f	r fune unctio	ction – Linea ons of input a	ar systems nd output.	wit	h ra	ndor	n
							TOTAL :	60 PER	ΙΟΙ	DS		
COURSI	E O	UTCO	MES									
1.	1. The students will have an exposure of various distribution functions and help in acquiring skills in handling situations involving more than one variable. Able to analyze the response of random inputs to linear time invariant systems.									n o		
TEXT B	00	KS:										
1.	Ibe.O.C., "Fundamentals of Applied Probability and Random Processes", 2 nd Edition, Academic press (Elsevier), 2014.											

2.	Peebles. P.Z	Peebles. P.Z., "Probability, Random Variables and Random Signal Principles",									
	Tata Mc Gra	`ata Mc Graw Hill, 4th Edition, New Delhi, 2002.									
REFER	ENCES:										
1.	Yates. R.D.	and Goodman. D.J., "Probability and Stochastic Processes", 3 rd									
	Edition, Wil	ey India Pvt. Ltd., Bangalore, 2014.									
2.	Stark. H., ar	nd Woods. J.W., "Probability and Random Processes with Applications									
	to Signal Pr	ocessing", 4th Edition, Pearson Education, Asia, 2014.									
3.	Miller. S.L.	and Childers. D.G., "Probability and Random Processes with									
	Applications	s to Signal Processing and Communications", 2 nd Edition, Academic									
	Press, 2012.										
4.	Hwei Hsu, "	Schaum's Outline of Theory and Problems of Probability, Random									
	Variables ar	nd Random Processes", 3 rd Edition, Tata Mc Graw Hill Edition, New									
	Delhi, 2014.										
5.	Cooper. G.K	R., Mc Gillem. C.D., "Probabilistic Methods of Signal and System									
	Analysis", 3	rd Indian Edition, Oxford University Press, New Delhi, 2012.									

18LPC402	ELECTRONIC CIRCUITS	L	Т	Р	C						
	3 0										
OBJECTIVES:											
• To design the feedback amplifiers and oscillators.											
• To desig	gn wave shaping circuits.										
To desig	gn different multivibrator circuits.										
UNIT I	FEEDBACK AMPLIFIERS			9	9						
General Feedba – Feedback am Feedback – De feedback on am	ack Structure – Properties of negative feedback – Basic Feedba plifiers – Series – Shunt, Series – Series, Shunt – Shunt and S etermining the Loop Gain – Stability Problem – Nyquist Plo plifier poles – Frequency Compensation.	ck T Shun ot –	'opo lt – S Effe	logie Serie ect o	es es of						
UNIT II	OSCILLATORS			9	9						
Classification, Barkhausen Criterion - Mechanism for start of oscillation and stabilizat amplitude, General form of an Oscillator, Analysis of LC oscillators - Hartley, Co Clapp, Franklin, Armstrong, Tuned collector oscillators, RC oscillators - phase si Wienbridge - Twin-T Oscillators, Frequency range of RC and LC Oscillators, C Crystal Construction, Electrical equivalent circuit of Crystal, Miller and Pierce C oscillators, frequency stability of oscillators.											

UNIT III TUNED AMPLIFIERS

Coil losses, unloaded and loaded Q of tank circuits, small signal tuned amplifiers - Analysis of capacitor coupled single tuned amplifier – double tuned amplifier - effect of cascading single tuned and double tuned amplifiers on bandwidth – Stagger tuned amplifiers – large signal tuned amplifiers – Class C tuned amplifier – Efficiency and applications of Class C tuned amplifier - Stability of tuned amplifiers – Neutralization - Hazeltine neutralization method.

UNIT IV	WAVE SHAPING AND MULTIVIBRATOR
	CIRCUITS

9

9

RC & RL Integrator and Differentiator circuits – Storage, Delay and Calculation of Transistor Switching Times – Speed-up Capacitor - Diode clippers, Diode comparator -Clampers. Collector coupled and Emitter coupled Astable multivibrator – Monostable multivibrator - Bistable multivibrator - Triggering methods for bistable multivibrator -Schmitt trigger circuit.

UNIT V BLOCKING OSCILLATORS AND TIMEBASE GENERATORS

9

UJT saw tooth waveform generator, Pulse transformers – equivalent circuit – response applications, Blocking Oscillator – Free running blocking oscillator - Astable Blocking Oscillators with base timing – Push-pull Astable blocking oscillator with emitter timing, Frequency control using core saturation, Triggered blocking oscillator – Monostable blocking oscillator with base timing – Monostable blocking oscillator with emitter timing, Time base circuits - Voltage-Time base circuit, Current-Time base circuit – Linearization through adjustment of driving waveform.

		TOTAL : 45 PERIODS					
COUR	SE OUTCOMES	Upon the course completion, the student will have the ability to					
1.	Describe the concept o amplifier.	Describe the concept of amplification of circuits and analyze negative feedback amplifier.					
2.	Design RC and LC osci	Design RC and LC oscillators					
3.	Design and analyze tune	ed amplifiers					
4.	Design Wave shaping c	ircuits and multivibrators.					
5.	Know the principle and the operations of blocking oscillators and time base generators.						
TEXT	BOOKS:						

1.	Sedra and Smith, "Micro Electronic Circuits"; Sixth Edition, Oxford University Press, 2011.									
2.	Robert L. Boylestad and Louis Nasheresky, "Electronic Devices and Circuit Theory", 10 Edition, Pearson Education / PHI, 2008									
3.	David A. Bell, "Electronic Devices and Circuits", Fifth Edition, Oxford University Press, 2008.									
REFERENCES:										
1.	Millman J. and Taub H., "Pulse Digital and Switching Waveforms", TMH, 2000.									
2.	Millman and Halkias. C., Integrated Electronics, TMH, 2007.									
3.	Allen mottershed., "Electronic devices and circuits"., PHI-1989.									
4.	D.L.Schilling&C.Belove, "Electronic Circuits: Discrete and Integrated", (3/e), McGraw Hill, 1989.									

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	-	1	1	-	1	-	1	2	-	1	1	1	2
CO2	2	2	2	2	1	-	1	-	1	2	-	2	2	1	2
CO3	2	2	2	2	1	-	1	-	1	2	-	2	2	1	2
CO4	2	2	2	2	1	-	1	-	1	2	-	2	2	1	2
CO5	2	2	2	2	1	-	1	-	1	2	-	2	2	1	2
18LPC404	2	2	2	2	1	-	1	-	1	2	-	2	2	1	2

1-LOW 2-MODERATE(MEDIUM) 3-HIGH

18LES403

BASIC CONTROL SYSTEMS ENGINEERING

L T P C 3 0 0 3

9

9

9

9

9

OBJECTIVES:

- To model electrical and non electrical system, and determine transfer function for stability analysis
- To analyze the stability of the system in time domain and design compensators.
- To analyze the stability of the system in frequency domain and design compensators.
- To design a compensator to the system.
- To model a system in a state space and analyze response.

UNIT I INTRODUCTION

Transfer Function of Electrical systems - Mathematical modelling of Non electrical System: mechanical, thermal, and hydraulic systems – Electrical Analogy of mechanical system -Block diagram reduction technique – Signal flow graph analysis

UNIT II

TIME DOMAIN ANALYSIS

Time response of First and second-order systems – Time domain Specifications - Steadystate errors and error constants – PID controllers – Stability analysis in time domain - Routh stability criterion – Root Locus Method.

UNIT III FREQUENCY DOMAIN ANALYSIS

Correlation between time & frequency response – Frequency domain specifications – Bode Plot and Polar plots – M and N Circles –Stability in frequency domain – Nyquist plot – Nyquist stability criterion.

UNIT IV

COMPENSATOR DESIGN

Introduction to compensators– Lead, Lag and Lead–Lag compensators – Design of lead, lag and lead–lag compensators using root locus – Design of lead, lag and lead–lag compensators using bode plot.

UNIT V

STATE SPACE ANALYSIS

Concepts of State space analysis – State models for linear continuous time functions – Diagonalization of transfer function – State equations and solution – controllability &

observability – State space representation for Discrete time systems.

		TOTAL : 45 PERIODS								
COURS	E OUTCOMES	Upon completion the course, the students will have to								
1.	Simplify the large compo Electrical system.	Simplify the large component system into single block for Electrical and non- Electrical system.								
2.	Design the controllers for stability in time domain.	Design the controllers for compensating steady state errors and improve their stability in time domain.								
3.	Design the controllers for	mimproving their stability in frequency domain.								
4.	Design different types of	compensators.								
5.	Design state controller an	d observer in state space model.								
TEXT B	BOOKS:									
1.	J.Nagrath and M.Gopal," Publishers, 5th Edition, 2	Control System Engineering", New Age International 007.								
2.	M.Gopal, "Control Syste Edition, 2002.	em - Principles and Design", Tata McGraw Hill, 2nd								
REFER	ENCES:									
1.	Ogata, K., "Modern Con	trol Engineering", Prentice Hall, second edition, 1991.								
2.	Benjamin.C.Kuo, "Auton Edition,1995.	natic control systems", Prentice Hall of India, 7th								
3.	M.Gopal, Digital Contro	and State Variable Methods, 2nd Edition, TMH, 2007.								
4.	Schaum's Outline Series, 2007.	'Feedback and Control Systems' Tata McGraw-Hill,								
5.	Richard C. Dorf & Rober Wesley, 1999.	rt H. Bishop, "Modern Control Systems", Addidon –								

18LPC404 TRANSMISSION LINES AND WAVE GUIDES

3 0 0 3

Р

Т

L

С

OBJECTIVES:

- Understand the various types of transmission lines and discuss the losses association.
- Realize the impedance transformation, matching of transmission lines and to use the Smith Chart in problem solving.
- Analyze the propagation of electromagnetic waves in waveguides and resonance frequency of Cavity Resonators.

UNIT I TRANSMISSION LINE THEORY

9

General theory of Transmission lines - the transmission line - general solution - The infinite line - Wavelength, velocity of propagation - Waveform distortion - the distortion-less line - Loading and different methods of loading - Line not terminated in ZO - Reflection coefficient - calculation of current, voltage, power delivered and efficiency of transmission - Input and transfer impedance - Open and short circuited lines - reflection factor and reflection loss.

UNIT II HIGH FREQUENCY TRANSMISSION LINES

9

9

Transmission line equations at radio frequencies - Line of Zero dissipation - Voltage and current on the dissipation-less line, Standing Waves, Nodes, Standing Wave Ratio - Input impedance of the dissipation-less line - Open and short circuited lines - Power and impedance measurement on lines - Reflection losses - Measurement of VSWR and wavelength.

UNIT III IMPEDANCE MATCHING IN HIGH FREQUENCY LINES

Impedance matching: Quarter wave transformer - Impedance matching by stubs - Single stub and double stub matching - Smith chart - Solutions of problems using Smith chart - Single

UNIT IV GUIDED WAVES

and double stub matching using Smith chart.

Waves between the parallel planes: Transverse Electromagnetic waves, Transverse Magnetic waves, Transverse Electric waves, Characteristics of TM, TE and TEM waves – Attenuation in parallel plane guides – Wave Impedance.

UNIT V WAVEGUIDES AND CAVITY RESONATORS

9

9

Rectangular waveguide: TM, TE and TEM waves, Dominant mode-cutoff frequency in

waveguides – Impossibility of TEM Waves in waveguide.

Circular waveguide: TM, TE and TEM waves, Dominant mode-cutoff frequency in waveguides – Impossibility of TEM Waves in waveguide.

Resonators: Rectangular and Circular Cavity resonators.

			TOTAL : 45 PERIODS					
E OUTCO	MES:	Upon the course con	npletion, the student will have					
To discuss t	he propag	ation of signals throu	gh transmission lines and waveguides.					
Ability to A	analyze sig	gnal propagation at F	adio frequencies.					
The knowle calculations	The knowledge on utilization of smith chart for line parameter and impedance calculations.							
To explain t	To explain the radio propagation in guided systems.							
To evaluate the characteristics of wave guides and cavity resonators.								
OOKS:								
John D Ry 2010.	der, "Netv	works, lines and field	ds", 2nd Edition, Prentice Hall India,					
E.C.Jordan Prentice Ha	and K.G. ll of India	Balmain, "Electroma , 2006.	ignetic Waves and Radiating Systems",					
ENCES:								
Umesh Sinh	a, "Transn	nission Lines And Ne	tworks", Satya Prakashan, 2010.					
G.S.N Raju Education, I	"Electrom First editio	agnetic Field Theory on 2005.	and Transmission Lines" , Pearson					
Gottapu Sas Wiley series	hibhusana	n Rao, "Electromagne	tic field theory and transmission lines",					
F. A. Benson Science.	n & T. M. I	Benson, "Field Wave	s and Transmission Lines", Springer					
Philip C. Ma "Transmissi	agnusson, on Lines a	Gerald C. Alexander nd Wave Propagatio	, Vijai K. Tripathi, Andreas Weisshaar, n", CRC Press.					
	E OUTCO To discuss t Ability to A The knowled calculations To explain t To evaluate OOKS: John D Ry 2010. E.C.Jordan Prentice Ha ENCES: Umesh Sinha G.S.N Raju Education, I Gottapu Sas Wiley series. F. A. Bensor Science. Philip C. Ma	E OUTCOMES: To discuss the propag Ability to Analyze sig The knowledge on uti calculations. To explain the radio p To evaluate the charace OOKS: John D Ryder, "Netr 2010. E.C.Jordan and K.G. Prentice Hall of India ENCES: Umesh Sinha, "Transr G.S.N Raju "Electrom Education, First edition Gottapu Sashibhusana Wiley series. F. A. Benson & T. M. Science. Philip C. Magnusson, "Transmission Lines a	E OUTCOMES: Upon the course conditional sector of signals throut To discuss the propagation of signals throut Ability to Analyze signal propagation at R Ability to Analyze signal propagation at R The knowledge on utilization of smith charcalculations. To explain the radio propagation in guided To evaluate the characteristics of wave gui OOKS:					

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	2	2	2	-	-	-	-	1	3	2	2	2
CO2	3	3	3	3	2	2	-	-	-	-	1	3	2	2	2
CO3	3	3	3	3	3	3	-	-	-	-	2	3	2	2	2
CO4	3	3	3	3	3	3	-	-	-	-	2	3	2	2	2
CO5	3	3	3	2	3	3	-	-	-	-	2	3	2	2	2
18LPC404	3	3	3	3	3	3	-	-	-	-	2	3	2	2	2

1-LOW 2-MODERATE(MEDIUM) 3-HIGH

18LPC405	ANALOG COMMUNICATION	L	Т	Р	C					
		3	0	0	3					
OBJECTIVES:										
• To introduce the concepts of various analog modulations and their spectral characteristics.										
• To und	erstand the properties of random process									
• To kno	w the effect of noise on communication systems									
UNIT I	UNIT I AMPLITUDE MODULATION 9									
Generation and complex envel	d detection of AM wave-spectra-DSBSC, Hilbert Transform, Paper - SSB and VSB –comparison -Super heterodyne Receiver.	re-ei	nvelo	ppe &	k					
UNIT II	ANGLE MODULATION			9	9					
Phase and frequency modulation-Narrow Band and Wide band FM - Spectrum - FM modulation and demodulation – FM Discriminator- PLL as FM Demodulator - Transmission bandwidth.										
UNIT III	RANDOM PROCESS			9						
Random varia Correlation & Process, Trans	Random variables, Central limit Theorem, Random Process, Stationary Processes, Mean, Correlation & Covariance functions, Power Spectral Density, Ergodic Processes, Gaussian Process, Transmission of a Random Process Through a LTL filter									

UNIT IV NOISE CHARACTERIZATION									
Noise s Narrow systems effect, t	Noise sources and types – Noise figure and noise temperature – Noise in cascaded systems. Narrow band noise – PSD of in-phase and quadrature noise –Noise performance in AM systems – Noise performance in FM systems – Pre-emphasis and de-emphasis – Capture effect, threshold effect.								
UNIT	UNIT V INFORMATION THEORY								
Entropy Source	y - Disc coding	crete Me theorem	moryless cl - Huffman &	hannels - Channel & Shannon - Fano c	Capacity -Hartley - Shannon a	law -			
					TOTAL : 45 PERIODS				
COUI	RSE O	UTCO	MES	Upon the course ability to	completion, the student will h	ave the			
1.	Design	n AM cor	nmunication	n systems.					
2.	Design	n Angle n	nodulated co	ommunication syste	ems				
3.	Apply	the conc	epts of Rand	dom Process to the	design of Communication syster	ns			
4.	Analyz	ze the not	ise performa	ance of AM and FM	I systems				
5.	Explai	n differe	nt source co	oding methods					
TEXT	Г BOO	KS:							
1.	S. Hay	kin, "Co	mmunicatio	on Systems", 4 th edit	tion, John Wiley, 2005.				
2.	Kenne 3rd Ed	dy G., B ition rep	ernard Dav rint,2008.	vis "Electronic Com	nmunication Systems", McGraw	' Hill			
3.	B.P.La Edition	uthi, "M n,Oxford	lodern Dig University	gital and Analog Press 2007.	g Communication Systems",	3rd			
REFE	ERENC	CES:							
1.	Taub a Hill, 1	und Schil 994.	ling. ,"Princ	ciples of Communic	ation Systems", 2nd edition Mcg	raw			
2.	J.G.Pr Educat	oakis, M tion 2006	.Salehi, "Fu 6.	undamentals of Con	nmunication Systems", Pearson				
3.	Couch	.L., "Mod	lern Commı	unication Systems",	Pearson, 2001.				
4.	Roddy	and Coo	olen.," Electr	ronic Communication	on ", 4th Edition PHI,2007.				
5.	H P H. 2006.	su, Schai	um Outline S	Series - "Analog an	d Digital Communications" TM	H			

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	3	2	-	-	-	-	-	-	3	3	3	1	3
CO2	1	3	3	2	3	-	-	-	-	3	3	3	3	1	1
CO3	3	1	1	2	3	-	-	-	-	3	3	3	3	3	1
CO4	3	3	3	2	3	-	-	-	-	3	3	3	2	3	3
CO5	2	2	1	3	1	-	-	-	-	1	-	3	3	1	3
18LPC405	3	2	3	2	3	-	-	-	-	3	3	3	3	3	3

1-LOW	2-MODERATE(MEDIUM)	3-HIGH

18LPC406	LINEAR AND DIGITAL INTEGRATED CIRCUITS	L	Τ	Р	С				
		3	1	0	4				
OBJECTIVES:									
• To und	erstand the linear and non-linear applications of operational am	plifie	ers.						
• To lear	• To learn about ofData converter circuits.								
• To understand and implement the working of basic digital circuits.									
UNIT I	OPERATIONAL AMPLIFIER			9-	+3				
Ideal and Practical Op-Amp, Op-Amp Characteristics, DC and AC Characteristics, Features of 741 Op-Amp, Modes of Operation - Inverting, Non-Inverting, Differential, Instrumentation Amplifier, AC Amplifier, Differentiators and Integrators, Comparators, Schmitt Trigger, Introduction to Voltage Regulators, Features of 723 Regulator, Three Terminal Voltage Regulators.									
UNIT IIOP-AMP, IC-555 & IC 565 APPLICATIONS9+3									
Introduction to Active Filters, Characteristics of Band pass, Band reject and All Pass Filters, Analysis of 1st order LPF & HPF Butterworth Filters, waveform Generators -									

Triangular, Sawtooth, Square wave, IC555 Timer - Functional Diagram, Monostable and Astable Operations, Applications, IC565 PLL - Block Schematic, Description of Individual

BIOCKS, Applications. Voltage Controlled Oscillator, PLL and its Applications.										
UNIT	NIT IIIDATA CONVERTERS9+3									
Introdu 2R lade ADC, and AI	Introduction, Basic DAC techniques, Different types of DACs-Weighted resistor DAC, R- 2R ladder DAC, Inverted R-2R DAC, Different Types of ADCs - Parallel Comparator Type ADC, Counter Type ADC, Successive Approxiamtion ADC and Dual Slope ADC, DAC and ADC Specifications.									
UNIT	' IV	BINA	RY SYSTE	MS AND BO	DLEAN ALGEBRA	9+3				
De-Morgan's theorem- Minimization of Boolean function using K-maps &QuineMcCluskeymethod. COMBINATIONAL CIRCUITS : Adder- subtractor- code converters, encoders, decoders, multiplexers and demultiplexers. Implementation of Combinational Logic by using Multiplexers, PLA and PAL.Memories – ROM- Static and Dynamic RAM- Read/Write Memory- EPROM- EEPROM.										
UNIT	' V	SEQU	ENTIAL (CIRCUITS		9+3				
Asynch Counte	Asynchronous and Synchronous Counter sup-Down Counter- Modulo Counter- Ring Counter-Analysis of Asynchronous Counters-sequence detector.									
COU	RSE O	UTCO	MES	Upon the course ability to	completion, the student will h	ave the				
1.	Design	n linear a	nd nonlinear	applications of Ol	P – AMPS					
2.	Design	n applicat	ions using an	alog multiplier ar	id PLL					
3.	Design	n ADC ar	nd DAC using	g OP – AMPS						
4.	Gener	ate wave	Forms using C	OP – AMP Circuit	s					
5.	Design	n sequent	ial and combi	inational circuits.						
TEXT	r BOO	KS:								
1.	1. D.RoyChoudhary, SheilB.Jani, Linear Integrated Circuits, II edition, New Age, 2003.									
2. M. Morris Mano, Digital Logic and Computer Design, Prentice Hall of India, 2002 (Chapter 4, 5, 6, 7, 9).										
REFE	ERENG	CES:								
1.	1. RamakantA.Gayakward, Op-amps and Linear Integrated Circuits, IV edition, Pearson Education, 2003 / PHI.									
2.	2. Robert F.Coughlin, Fredrick F.Driscoll, Op-amp and Linear ICs, Pearson Education, 4th edition, 2002 /PHI									
				69						

3.	David A.Bell, Op-amp & Linear ICs, Prentice Hall of India, 2nd edition, 1997.
4.	Charles H.Roth, Fundamentals Logic Design, Jaico Publishing, IV edition, 2002.
5.	Floyd, Digital Fundamentals, 8th edition, Pearson Education, 2003.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	2	3	-	1	-	1	3	3	3	3	3	3
CO2	3	3	3	2	3	-	1	-	1	3	3	3	3	3	3
CO3	3	3	3	2	3	-	1	-	1	3	3	3	3	3	3
CO4	3	3	3	2	3	-	1	-	1	3	3	3	3	3	3
CO5	2	2	3	3	3	-	1	1	1	3	3	3	3	3	3
18LPC406	3	3	3	2	3	-	1	-	1	3	3	3	3	3	3

1-LOW 2-MODERATE(MEDIUM) 3-HIGH

18LPC407	ELECTRONIC CIRCUITS LABORATORY	L	Т	Р	С				
		0	0	2	1				
OBJECTIVES:									
• To desig	n the feedback amplifiers and oscillators.								
• To desig	• To design waveshaping circuits.								
• To design different multivibrator circuits.									
LIST OF EXPERIMENTS									

Design, Simulation & implementation as follows USING DISCRETE COMPONENTS

- 1. Feedback Amplifiers
- 2. Oscillators
- 3. Class C Single Tuned Amplifier
- 4. Collector Coupled Astable Multivibrator
- 5. Collector Coupled Monostable Multivibrator
- 6. Fixed Bias Bistable Multivibrator
- 7. UJT Relaxation Oscillator
- 8. Clippers and Clampers

			TOTAL:30 PERIC	DDS			
COURS	E OUTCOMES:	Upon the have	course completion, the	students will			
1.	The ability to design feedback amplifiers.						
2.	The ability to analyze oscillators						
3.	The ability to design different Multivibrators.						
4.	The ability to analyze waveshaping circuits.						
5.	The ability to design tuned amplifie	ers.					

COURSE ARTICULATION MATRIX:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	3	2	2	-	-	-	3	2	-	3	3	1	3
CO2	3	2	3	2	2	-	-	-	3	2	-	3	3	1	2
CO3	3	3	3	2	2	-	-	-	3	2	-	3	3	1	2
CO4	3	3	3	2	2	-	-	-	3	2	-	3	3	1	3
CO5	2	2	3	3	2	-	-	-	3	2	-	3	3	1	2
18LPC406	3	2	3	2	2	-	-	-	3	2	-	3	3	1	2

1-LOW 2-MODERATE(MEDIUM)	3-HIGH
--------------------------	--------

ANALOG AND DIGITAL CIRCUITS LABORATORY

OBJECTIVES

To understand the characteristics of the operational amplifier.

To apply operational amplifiers in linear and nonlinear applications.

To familiarize with the design of various combinational and sequential digital circuits.

- 1. Implementation of Boolean Functions, Adder/ Subtractor circuits.
- 2. Code converters: Excess-3 to BCD and Binary to Gray code converter and viceversa
- 3. Parity generator and parity checking
- 4. Encoders and Decoders
- 5. Counters: Design and implementation of 4-bit modulo counters as synchronous and Asynchronous types using FF IC's and specific counter IC.
- 6. Shift Registers: Design and implementation of 4-bit shift registers in SISO, SIPO, PISO, PIPO modes using suitable IC's.
- 7. Study of multiplexer and demultiplexer
- 8. Timer IC application: Study of NE/SE 555 timer in Astable, Monostable operation.
- 9. Application of Op-Amp: inverting and non-inverting amplifier, Adder, comparator, Integrator and Differentiator.
- 10. Study of VCO and PLL ICs:
- 11. Voltage to frequency characteristics of NE v/ SE 566 IC.
- 12. Frequency multiplication using NE/SE 565 PLL IC.

			TOTAL :30 PERIODS												
COURSE	OUTCOMES	Upon the course completion, the student will have the ability to													
1.	Design integrators, differentiator and amplifiers using operational amplifiers														
2.	Design adder ,comparator circuits using operational amplifiers														
3.	Design PLL and VCO														
4.	Design and Testing of Various combinational circuits														
5.	Design and Testing of V	arious sequential ci	ircuits												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
----------	-----	-----	-----	-----	-----	-----	-----	-----	-----	------	------	------	------	------	------
CO1	3	3	3	2	3	-	1	-	1	-	3	3	3	3	3
CO2	3	3	3	2	3	-	1	-	1	-	3	3	3	3	3
CO3	3	3	3	2	3	-	1	-	1	-	3	3	3	3	3
CO4	2	2	2	2	3	-	1	-	1	-	3	3	3	3	3
CO5	2	2	2	2	3	-	1	-	1	-	3	3	3	3	3
18LPC409	3	3	3	2	3	-	1	-	1	-	3	3	3	3	3

FIFTH SEMESTER

18LPC501	DIGITAL SIGNAL PROCESSING	L	Т	Р	C
		3	0	0	3
Objectives			1		1
• To learn discr	rete Fourier transform and its properties				
• To know the impulse response	characteristics of IIR and FIR filters and learn the design of e filters for filtering undesired signals	of infin	ite a	nd fi	nite
• To understa filters	nd Finite word length effects and study the concept of Mu	iltirate a	and	adap	tive
UNIT I	DISCRETE FOURIER TRANSFORM			9	9
Discrete Signal Circular Convol time Algorithms	s and Systems- A Review – Introduction to DFT – Proplution - Filtering methods based on DFT – FFT Algorithms, Decimation in frequency Algorithms	perties s –Dec	of D imat	OFT ion i	n
UNIT II	IIR FILTER DESIGN				9
Structures of IIF design by Impu HPF, BPF, BRF	R – Analog filter design – Discrete time IIR filter from analog lse Invariance, Bilinear transformation, Approximation of de f) filter design using frequency translation.	g filter - erivative	– IIR es –	filte (LPF	er F,
UNIT III	FIR FILTER DESIGN			9	
Structures of FI techniques (Ro Window,Blackn digital Filters: E	R – Linear phase FIR filter – Fourier Series - Filter design ectangular Window, Hamming Window, Hanning W nann Window), Frequency sampling techniques – Finite word rrors, Limit Cycle, Noise Power Spectrum.	using v Vindow d length	vindo , B a effe	owin artle ects i	g tt n
UNIT IV	FINITE WORDLENGTH EFFECTS			9	9
Fixed point and Rounding errors error - Overflow off and overflow	floating point number representations – ADC –Quantization s - Quantization noise – coefficient quantization error – Prover error – Roundoff noise power - limit cycle oscillations due v errors – Principle of scaling	n- Trun oduct qu to proc	catio Iantiz luct	n an zatio roun	d n d
UNIT V	DSP APPLICATIONS				9
		• •		<u> </u>	1

Multirate signal processing: Decimation, Interpolation, Sampling rate conversion by a rational factor – Adaptive Filters: Introduction, Applications of adaptive filtering to equalization.

				TOTAL : 45 PERIODS					
COUI	RSE OUTCOM	IES	Upon the course completion, the student will have the ability to						
1.	Apply DFT for the	he ana	lysis of digital signals &	z systems					
2.	Design IIR and F	FIR fil	ters						
3.	Characterize fini	te Wo	rd length effect on filter	\$					
4.	Design the Multi	Design the Multirate Filter							
5.	Apply Adaptive Filters to equalization								
TEXT	BOOKS:								
1.	John G. Proaki Algorithms & Ap	s&Dir plicat	nitrisG.Manolakis, "Dia ions", Fourth Edition, Pe	gital Signal Processing – Principles, earson Education / Prentice Hall, 2007.					
2.	A.V.Oppenheim, Indian Reprint, P	R.W. earsor	Schafer and J.R. Buck, a, 2004.	"Discrete-Time Signal Processing", 8th					
REFE	CRENCES:								
1.	Sanjit K. Mitra, ' McGraw Hill, 20	"Digite 07.	al Signal Processing – A	Computer Based Approach", Tata					
2.	Andreas Antonio	u, "Di	gital Signal Processing"	, Tata McGraw Hill, 2006.					
3.	Li Tan, Jean Jiar Edition, Academi	ig, "Di ic Pres	igital Signal Processing 1 ss, 2013.	Fundamentals and Applications", 2nd					
4.	Steven W.Smith," Scientists" Demv	Digita Stifvin	ll Signal Processing : A l g Technology Series, Nov	Practical Guide for Engineers and wnes.					
5.	A. Nagoorkani, "	Digtia	l Signal Processing ", Se	cond Edition , Tata Mcgraw Hill					

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
G Q 4	-	-					-					-	-	-	-
COI	2	2	-	1	1	-	2	-	1	-	-	2	2	3	2
CO2	2	2	-	2	1	-	2	-	1	-	-	2	2	2	2
002	~	~		~	-		-		-			-	-	-	-
CO3	2	2	-	2	1	-	1	-	1	-	-	2	2	2	2
CO4	2	2	-	2	2	-	1	-	1	-	-	2	2	2	2
CO5	2	2	-	2	2	-	1	-	1	-	-	2	2	1	2
101 00501	2	2		2	1		1		1			2	2	2	2
18LPC501	2	2	-	2	1	-	1	-	1	-	-	2	2	2	2
1 I OW	1	2 MO			MEDI		2 1	ICU						1	
I-LOW 2-MODERATE (MEDIUM)							3-П	IUUH							

MICROPROCESSORS AND MICROCONTROLLERS

OBJECTIVES:

UNIT I	MICROPROCESSOR- 8086	9
•	To introduce the interfacing of 8051using embedded C	
•	To study the RISC architecture and Interfacing devices	
•	To study the Architecture of µP8086	

Register Organization -Architecture-Signals-Memory Organization-Bus Operation- I/O Addressing-Minimum Mode ,Maximum Mode-Timing Diagram-Interrupts-Service Routines–I/O and Memory Interfacing concepts

UNIT II	RISC ARCHITECTURE AND PROGRAMMING	

12

Addressing Modes-Instruction format-Instruction set-Assembly language programs in 8086. RISC architecture –The ARM Cortex M0 (nuvoTon- Nu-LB-LUC140)architecture - ARM organization and implementation – Introduction to ARM Programming Register –Nested Vector Interrupt Configuration and Instruction Set - The thumb instruction set Basic ARM ALP (32-bit arithmetic operations, sorting technique, sum of series).

UNIT III	INTERFACING DEVICES	
----------	---------------------	--

Programmable Peripheral Interface (8255) - Programmable Interval Timer (8254)-Programmable Interrupt Controller (8259A) - Programmable DMA Controller (8257) -Programmable Communication Interface (8251A) – Programmable Keyboard and Display Controller (8279).

UNIT IV MICROCONTROLLER-8051

7

10

7

Register Set-Architecture of 8051 microcontroller- I/O and memory addressing- Interrupts-Instruction set- Addressing modes.

UNIT V INTERFACING OF 8051 USING EMBEDDED C PROGRAMMING

Timer-Serial Communication-Interrupts Programming-Interfacing to External Memory-Introduction to Embedded C Programming -Basic techniques for reading & writing from I/O port pins. Interfacing 8051 to ADC, LCD, Keyboard and stepper motor using

Embed	ded C.								
				TOTAL : 45 PERIODS					
COUI	RSE OUTCOM	ES	Upon the course completion, the student will have the ability to						
1.	Design and imple	ment pr	ograms on RISC.						
2.	Design Memory I	nterfaci	ng circuits and I/O in	nterfacing.					
3.	Design and imple	ment pr	ograms on 8086 mic	croprocessor.					
4.	Design and imple	ment pr	ograms on 8051 mic	erocontroller.					
5.	Design interfacing	g of 805	1 microcontroller.						
TEXT	BOOKS:								
1.	Muhammad Ali M and Embedded sy	Mazidi a stems",	and Janice Gillispie 7th Edition, Pearso	Mazidi, "The 8051 - Microcontroller n Education, 2004					
2.	Doughlas.V.Hall, Revised 2nd edition	"Micro on, McC	processor and Interf Graw Hill, 1992.	facing : Programming and Hardware",					
3.	Andrew N. Sloss, Developer's Guide	Domin e, Desi	ic Symes, Chris Wri igning and Optimizin	ght and John Rayfield, "ARM System ng System Software", Elsevier, 2004					
REFE	ERENCES:								
1.	David Seal, "ARN	I Archit	tecture Reference Me	anual", Pearson Education, 2007.					
2.	Kenneth.J.Ayala, Applications", 3r	"805 d edition	<i>l Microcontroller</i> n, Thomson, 2007.	Architecture, Programming and					
3.	Michael J. Pont, '	"Embed	ded C", Addison We	esley, 2002.					
4.	Ray.K and Bhun Architectures, Pro	Ray.K and Bhurchandi.K.M, "Advanced Microprocessors and Peripherals – Architectures, Programming and Interfacing", Tata McGraw Hill, 2002 Reprint							
5.	nuvoTon Cortex Manual; www.nuv	M0 (1 voton.co	Nu-LB-NUC100/140 om) Driver and Processor Reference					

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	3	3	3	1	2	2	-	-	3	2	2	2	3	2
CO2	-	3	3	3	1	2	2	-	-	3	2	2	2	3	2
CO3	-	3	3	3	1	2	2	-	-	3	2	2	2	3	2
CO4	-	3	3	3	1	2	2	-	-	3	2	2	2	3	2
CO5	-	3	3	3	1	2	2	-	-	3	2	2	2	3	2
18LPC502	-	3	3	3	1	2	2	-	-	3	2	2	2	3	2

1-LOW 2-MODERATE (MEDIUM)

3-HIGH

18LPC503	DIGITAL COMMUNICATION	L	Т	Р	С					
		3	0	0	3					
OBJECTIVES:										
• To un	• To understand the building blocks of digital communication system.									
• To pre	• To prepare mathematical background for communication signal analysis.									
• To un system	• To understand and analyze the signal flow in a digital communication system.									
• To ar preser	alyze error performance of a digital communicatince of noise and other interferences.	on	sys	tem	in					
• To un system	derstand concept of error control coding in digital control coding in	omr	nun	icati	ion					
UNIT I	SAMPLING & QUANTIZATION	SAMPLING & QUANTIZATION								
Low pass sampling – Aliasing- Signal Reconstruction-Quantization - Uniform & non- quantization - quantization noise - Logarithmic Companding of speech signal- PCM – TDM-Digital Multiplexers.										
UNIT II WAVEFORM CODING										

Prediction filtering and DPCM - Delta Modulation - ADPCM & ADM principles-								
LinearF	Predictiv	ve Coding	g.					
UNIT	III	BASE	BAND T	RANSMISSION	I	9		
Propert	ies of L	ine code	s- Power S	Spectral Density of U	Inipolar / Polar RZ & NRZ –			
BipolarNRZ - Manchester- ISI – Nyquist criterion for distortionless transmission –								
Pulse sl	haping -	-Correlat	ive coding	g – M-ary schemes – I	Eye pattern – Equalization.			
	1 0			•				
UNIT	UNIT IV DIGITAL MODULATION SCHEME							
Geome	tric Rep	presentat	ion of sig	gnals - Generation,	detection, PSD & BER of			
Cohere	nt BPS	K, BFS	K, MSK&	& QPSK - QAM -	- Carrier Synchronization -			
Structur	re of No	on-cohere	ent Receive	ers -Principle of DPS	К.			
UNIT	V	ERRO	R CON	TROL CODING		9		
Channe	el codine	g theorer	n - Linear	· Block codes - Ham	ming codes - Cyclic codes -			
Convol	utional	codes - V	viterbi Dec	coder.				
	anonar				[
					TOTAL : 45 PERIODS			
COUI	COURSE OUTCOMES							
1.	1. Design PCM systems							
2.	Design	n and im	plement ba	ase band transmissio	n schemes			
3.	Design	n and im	plement ba	and pass signaling sc	chemes			
4.	Analyz perform	ze the sp mance	ectral chai	racteristics of band p	ass signaling schemes and their	noise		
5.	Design	n error co	ontrol codi	ing schemes				
TEXT	r BOO	KS:						
1.	S. Hay	kin, "Dig	gital Comr	munications", John W	Viley, 2005			
2.	J.G Pr 2001.	oakis, "I	Digital Co	mmunication", 4th E	dition, Tata Mc Graw Hill Com	pany,		
3.	3. B. Sklar, "Digital Communication Fundamentals and Applications", 2nd Edition Pearson Education, 2009							
REFE	CRENC	CES:						
1.	B.P.La	athi, "Mo	odern Digi	tal and Analog Com	nunication Systems" 3rd			
	Edition	n,Oxford	University	y Press 2007.				
2.	H P H. 2006	su, Schai	um Outline	e Series - "Analog an	nd Digital Communications", Th	ЛН		

3. Robert G. Gallager, "Principles of Digital Communication", Cambridge.

4. Andrew J. Viterbi, Jim K. Omura, "Principles of Digital Communication".

COURSE ARTICULATION MATRIX:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	3	2	-	-	-	-	-	-	3	3	3	1	3
CO2	1	3	3	2	3	-	-	-	-	3	3	3	3	1	1
CO3	3	1	1	2	3	-	-	-	-	3	3	3	3	3	1
CO4	3	3	3	2	3	-	-	-	-	3	3	3	2	3	3
CO5	2	2	1	3	1	-	-	-	-	1	-	3	3	1	3

1-LOW 2-MODERATE(MEDIUM) 3-HIGH

18LPC504	ANTENNA AND WAVE PROPAGATION	L	Т	Р	C			
		3	0	0	3			
COURSE OBJECTIVES:								
Realize	a insight of the radiation phenomena							
• Unders	tand the various types of antennas radiation and its characteristic	2S						
• To learn about the awareness of radio waves propagation at different frequencies								
UNIT I	FUNDAMENTALS OF ANTENNA			9				
Definition of Resistance, Ba mismatch, Ant Folded dipole,	antenna parameters – Gain, Directivity, Effective apertu and width, Beam width, Input Impedance. Matching – Baluns enna noise temperature, Radiation from oscillating dipole, Hal Yagi array.	re, s, Po f wa	Rad olariz ve d	iation zation ipole	n n >.			
UNIT IIAPERTURE AND SLOT ANTENNAS9								
Radiation from rectangular apertures, Uniform and Tapered aperture, Horn antenna, Reflector antenna, Aperture blockage, Feeding structures, Slot antennas, Microstrip								

antennas – Radiation mechanism – Application ,Numerical tool for antenna analysis.

UNIT II	I ANTENNA ARRAYS	9							
N element Phased arr	N element linear array, Pattern multiplication, Broadside and End fire array – Concept of Phased arrays, Adaptive array, Basic principle of antenna Synthesis-Binomial array.								
UNIT IV	V SPECIAL ANTENNAS	SPECIAL ANTENNAS 9							
Principle of frequency independent antennas –Spiral antenna, Helical antenna, Log periodic. Modern antennas- Reconfigurable antenna, Active antenna, Dielectric antennas, Electronic band gap structure and applications, Antenna Measurements-Test Ranges, Measurement of Gain, Radiation pattern, Polarization, VSWR.									
UNIT V	PROPAGATION OF RADIO WAVES	9							
Modes of propagation , Structure of atmosphere , Ground wave propagation , Tropospheric propagation , Duct propagation, Troposcatter propagation , Flat earth and Curved earth concept Sky wave propagation – Virtual height, critical frequency , Maximum usable frequency – Skip distance, Fading , Multi hop propagation.									
TOTAL : 45 PERIODS									
COURS	E OUTCOMES: Upon the course completion, the student will h ability to	nave the							
1.	Explain the fundamentals of antenna and radiation from a current element.								
2.	Analyze the aperture antennas, slot antennas.								
3.	Analyze the antenna arrays.								
4.	Analyze the special antennas such as frequency independent antennas and a measurements.	antenna							
5.	Explain the various types of wave propagation.								
TEXT B	BOOKS:								
1.	John D Kraus," Antennas for all Applications", 3rd Edition, Mc Graw Hill	, 2005.							
2.	Constantine.A.Balanis, "Antenna Theory Analysis and Design", Wiley Edition, 2006.	Student							
3.	R.E.Collin, "Antennas and Radiowave Propagation", Mc Graw Hill 1985.								
REFER	ENCES:								
1.	1. Edward C.Jordan and Keith G.Balmain" Electromagnetic Waves and Radiating Systems" Prentice Hall of India, 2006								

2.	Rajeswari Chatterjee, "Antenna Theory and Practice" Revised Second Edition New Age International Publishers, 2006.
3.	S. Drabowitch, "Modern Antennas" Second Edition, Springer Publications, 2007.
4.	Robert S.Elliott "Antenna Theory and Design" Wiley Student Edition, 2006.
5.	H.Sizun "Radio Wave Propagation for Telecommunication Applications", First Indian Reprint, Springer Publications, 2007.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	1	2	2	-	-	-	-	1	1	3	1	2
CO2	3	3	2	2	1	2	-	-	-	-	1	2	3	2	3
CO3	3	3	2	2	1	2	-	-	-	-	1	2	3	2	3
CO4	3	3	2	2	1	2	-	-	-	-	1	2	3	2	3
CO5	3	3	2	2	1	2	-	-	-	-	2	3	3	3	3
18LPC504	3	3	2	2	1	2	-	-	-	-	1	2	3	2	3

1-LOW 2-MODERATE (MEDIUM) 3-HIGH

18LHS505 MANAGEMENT THEORY AND PRACTICE L

L T P C 3 0 0 3

UNIT I INTRODUCTION TO MANAGEMENT AND ORGANIZATIONS

9

9

Q

9

9

Definition of Management – Science or Art – Manager Vs Entrepreneur - types of managers -managerial roles and skills – Evolution of Management – Scientific, human relations, system and contingency approaches – Types of Business organization - Sole proprietorship, partnership, company-public and private sector enterprises - Organization culture and Environment – Current trends and issues in Management.

UNIT II PLANNING

Nature and purpose of planning – planning process – types of planning – objectives – setting objectives – policies – Planning premises – Strategic Management – Planning Tools and Techniques – Decision making steps and process.

UNIT III ORGANISING

Nature and purpose – Formal and informal organization – organization chart – organization structure – types – Line and staff authority – departmentalization – delegation of authority – centralization and decentralization – Job Design - Human Resource Management – HR Planning, Recruitment, selection, Training and Development, Performance Management , Career planning and management.

UNIT IV DIRECTING

Foundations of individual and group behaviour – motivation – motivation theories – motivational techniques – job satisfaction – job enrichment – leadership – types and theories of leadership –communication – process of communication – barrier in communication – effective communication –communication and IT.

UNIT V CONTROLLING

System and process of controlling – budgetary and non-budgetary control techniques – use of computers and IT in Management control – Productivity problems and management – control and performance – direct and preventive control – reporting.

TOTAL : 45 PERIODS

COURSE OUTCOMES

1. To have clear understanding of managerial skills, roles and have same basic

	knowledge on international aspect of management							
2.	Identify environmental issues as they impact management and develop strategies to adapt to these environments.							
3.	Prepare organization structure and design the job.							
4.	Identify, discuss and/or describe various theories related to the development of leadership skills, motivation techniques, teamwork and effective communication.							
5.	To Work effectively as a team member through group projects, case studies and problem analysis							
ТЕХЛ	BOOKS:							
1.	Stephen P. Robbins & Mary Coulter, "Management", 10th Edition, Prentice Hall (India) Pvt. Ltd., 2009.							
2.	JAF Stoner, Freeman R.E and Daniel R Gilbert "Management", 6th Edition, Pearson Education, 2004.							
REFF	CRENCES:							
1.	Stephen A. Robbins & David A. Decenzo & Mary Coulter, "Fundamentals of Management" 7th Edition, Pearson Education, 2011.							
2.	Robert Kreitner & Mamata Mohapatra, "Management", Biztantra, 2008.							
3.	Harold Koontz & Heinz Weihrich "Essentials of management" Tata Mc Graw Hill, 1998.							
4.	Tripathy PC & Reddy PN, "Principles of Management", Tata McGraw Hill, 1999.							

18LPC507

ANALOG AND DIGITAL COMMUNICATION LABORATORY

L	Т	Р	С
0	0	2	1

OBJECTIVES:

- To visualize the effects of sampling and TDM
- To Implement AM, FM, PCM & DM modulation and demodulation
- To simulate Digital Modulation and Error control coding schemes

LIST OF EXPERIMENTS:

- 1. Signal Sampling and reconstruction
- 2. Time Division Multiplexing
- 3. AM Modulator and Demodulator
- 4. FM Modulator and Demodulator
- 5. PM Modulator and Demodulator
- 6. Pulse Code Modulation and Demodulation
- 7. Delta Modulation and Demodulation
- 8. Line Coding Schemes
- 9. Simulation of ASK, FSK, BPSK generation schemes
- 10. Simulation of DPSK, QPSK and QAM generation schemes
- 11. Simulation of Signal Constellation of BPSK, QPSK and QAM
- 12. Simulation of ASK, FSK and BPSK detection schemes
- 13. Simulation of Linear Block and Cyclic Error Control Coding schemes
- 14. Simulation of Convolution Coding scheme
- 15. Communication Link simulation

			TOTAL : 30 PERIODS			
COURSE OUTCOMES		Upon the course completion, the student will have the ability to				
1.	Simulate end-to-end Communication Link					
2.	Simulate & validate the various functional modules of a communication system					
3.	Generate the analog communication system waveforms using hardware					
4.	Demonstrate their knowledge in base band signalling schemes through implementation of Digital modulation Scheme.					

5. Apply various channel coding schemes & demonstrate their capabilities towards the improvement of the noise performance of communication system.

LAB Requirements for a Batch of 30 students (3 students per experiment):

- i) Kits for Signal Sampling, TDM, AM, FM, PM, PCM, DM and Line Coding Schemes
- ii) CROs/DSOs 15 No's, Function Generators 15 No's
- iii) MATLAB or equivalent software package for simulation experiments
- iv) PCs 15 No's

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	3	2	2	2	2	2	-	-	-	-	2	2	3	3	3
CO2	2	2	2	2	2	2	-	-	-	-	2	2	2	2	2
CO3	2	2	2	2	2	2	-	-	-	-	1	2	2	2	2
CO4	3	2	2	2	2	2	-	-	-	-	2	2	3	3	3
CO5	3	2	2	2	2	2	-	-	-	-	2	3	3	3	3
18LPC507	3	2	2	2	2	2	-	-	-	-	2	2	3	3	3

COURSE ARTICULATION MATRIX:

1-LOW 2-MODERATE (MEDIUM) 3-HIGH

18LPC508

MICROPROCESSORS AND MICROCONTROLLERS LAB

L	Т	Р	С
0	0	2	1

Course objectives:

- To study about the 8086, ARM and 8051 kits
- To study about ASM programming
- To know about the embedded C programming
- To study about peripherals interfacing with 8051,ARM cortex

LIST OF RECOMMENDED EXPERIMENTS

PART-A: GENERAL PURPOSE PROGRAMMING EXERCISES

Minimum six experiments to be conducted.

- 1. Introduction of Microprocessor and Microcontroller Kit.
- 2. Addition, Subtraction, Multiplication and Division.
- 3. Finding the maximum value in an array.
- 4. Sorting of data.
- 5. Finding number of positive / negative elements in a block of data.
- 6. BCD-to-Hex conversion and Hex-to-BCD conversion.
- 7. Binary-to-ASCII and ASCII-to-Binary conversion.
- 8. Square Root of a given data.
- 9. LCM and GCD.

PART-B: INTERFACING I/O PERIPHERALS (with 8086,8051 and ARM Cortex)

Minimum six experiments to be conducted

Experiments with 8051:

- 1. Interfacing of seven segment display.
- 2. LCD interface.
- 3. Stepper motor Speed and direction control.
- 4. DC motor speed control using PWM.

Experiments with ARM cortex

- 5. Interfacing of graphical display
- 6. Implementation Traffic light.
- 7. Interfacing of ADC and DAC.
- 8. RTC interfacing.
- 9. Automatic temp control (temperature sense and control)

Experiments with 8086

10. Interfacing of 8086 with

- I. 8255 PPI
- II. 8253/8251

			TOTAL : 30 PERIODS			
COURSE OUTCOMES:		Upon the course completion, the student will have the ability to				
1.	Write ALP Programs for fixed and Floating Point Arithmetic.					
2.	Interface different I/Os with processor.					
3.	Programming ARM	1 and 8051 with embedded	С.			
4.	Interfacing I/Os with ARM and 8051.					
5.	Building of embedd	led systems				

COURSE ARTICULATION MATRIX:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	-	3	-	-	-	-	-	-	-	2	1	2
CO2	3	2	3	-	3	-	-	-	-	-	-	-	2	2	2
CO3	3	3	3	2	3	-	-	-	-	-	-	-	2	3	3
CO4	3	3	3	3	3	-	-	-	-	-	-	-	2	3	3
CO5	2	3	3	3	3	2	2	2	3	2	2	2	3	3	3
18LPC508	3	3	3	1	3	-	-	-	-	-	-	-	2	2	2
1-LOW	1-LOW 2-MODERATE (MEDIUM) 3-HIGH														

SIXTH SEMESTER

18LPC6	01	VLSI DESIGN	L	T	Р	C				
			3	0	0	3				
OBJECT	ſIV	ES:								
•	Ex tec	plain electrical properties of MOS and analyze the CM chnology.	105							
•	Pro	ovide concept of combinational and sequential circuits								
•	• Understand the basic of VHDL and verilog for different logic circuits									
UNIT I MOS TRANSISTOR PRINCIPLE										
NMOS and PMOS transistors, Process parameters for MOS and CMOS, Electrical properties of CMOS circuits and device modeling, Scaling principles and fundamental limits, CMOS inverter scaling, propagation delays, Stick diagram, Layout diagrams										
UNIT II	UNIT IICOMBINATIONAL LOGIC CIRCUITS9									
Examples Transmissi design prin	of on cipl	Combinational Logic Design, Elmore"s constant, Pass tran gates, static and dynamic CMOS design, Power dissipation es	nsist – Lo	or I ow p	.ogic bowe	;, r				
UNIT II	[SEQUENTIAL LOGIC CIRCUITS				•				
Static and Memory Synchrono	Dy arch us a	mamic Latches and Registers, Timing issues, pipelines, clo itecture and memory control circuits, Low power mem nd Asynchronous design	ock nory	strat cir	egies cuits	;, ;,				
UNIT IV	r	DESIGNING ARITHMETIC BUILDING BLOCH	KS		9	•				
Data path o adders, acc	circu cumu	its, Architectures for ripple carry adders, carry look ahead adde alators, Multipliers, dividers, Barrel shifters, speed and area trade	rs, H eoff.	ligh	spee	d				
UNIT V		SPECIFICATION USING VERILOG HDL			-	•				
Basic co controls,pr levelswitch Test bench priorityenc	Basic concepts- identifiers- gate primitives, gate delays, operators, timing controls,procedural assignments conditional statements, Data flow and RTL, structural gate levelswitch level modeling, Design hierarchies, Behavioral and RTL modeling, Test benches, Structural gate level description of decoder, equality detector, comparator, priorityencoder, half adder, full adder, Ripple carry adder, D latch and D flip flop.									

				TOTAL : 45 PERIODS					
COUR	RSE OUTCO	MES	Upon the course of ability to	Upon the course completion, the student will have the ability to					
1.	Explain the bas	sic CMOS	S circuits and the CMOS process technology.						
2.	Explain the bas	sic of com	binational and seque	ntial circuits					
3.	Discuss the tec	hniques of	f chip design using p	rogrammable devices.					
4.	Describe the di	fferent ari	thmetic building blo	cks					
5.	Model the digi	tal system	using Hardware Des	cription Language.					
TEXT	BOOKS:								
1.	Jan Rabaey Design Pers	y, Anantha spective",	Chandrakasan, B.N Second Edition, Pren	likolic, "Digital Integrated Circuits: A tice Hall of India, 2003.					
2.	J.Bhasker:	Verilog HI	DL primer, BS public	ation,2001					
3.	M.J. Smith,	"Applicat	tion Specific Integrat	ed Circuits", Addisson Wesley, 1997.					
REFE	RENCES:								
1.	R.Jacob Ba Simulation'	ker, Harry '', Prentice	W.LI., David E.Boy Hall of India 2005	ee, "CMOS Circuit Design, Layout and					
2.	N.Weste, K. Addision W	Eshraghia Jeslev 1993	n, "Principles of CM	OS VLSI Design", Second Edition,					
3.	A.Pucknell, Hall of Indi	Kamran E a, 2007.	Eshraghian, "BASIC	VLSI Design", Third Edition, Prentice					
4.	John Willia	ms, John I	Michael, "Digital VLS	I Design with Verilog", Springer.					

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	3	3	3	1	2	2	-	-	3	2	2	2	3	2
CO2	-	3	3	3	1	2	2	-	-	3	2	2	2	3	2
CO3	-	3	3	3	1	2	2	-	-	3	2	2	2	3	2
CO4	-	3	3	3	1	2	2	-	-	3	2	2	2	3	2
CO5	-	3	3	3	1	2	2	-	-	3	2	2	2	3	2
18LPC601	-	3	3	3	1	2	2	-	-	3	2	2	2	3	2

1-LOW 2-MODERATE (MEDIUM)

18LPC002		WICKOWAVE AND RF SYSTEMS	L	I	P	C						
			3	0	0	3						
OBJECTIV	ES	:										
•	To RI	o inculcate understanding of the basics required for circuit re F networks.	pres	enta	tion	of						
•	To	To instill knowledge on the properties of various microwave components.										
•	To teo	To deal with the microwave generation and microwave measurement techniques										
UNIT I	TWO PORT NETWORK THEORY9											
parameters, D parameters, F lossless Netwo	ow 9iffe orm ork,	requency parameters: Impedance, Admittance, Hybrid rent types of interconnection of Two port networks, Hig ulation of S parameters, Properties of S parameters, R Transmission matrix	gh H gh F	a A Frequ roca	uenc	y d						
UNIT II	R	F AMPLIFIERS AND MATCHING NETWORE	XS			9						
RF behaviour Amplifier pow Constant VSW using discrete quality factor,	of ver VR, cor T a	Resistors, Capacitors and Inductors. Characteristics or relations, Stability considerations, Stabilization Methods, Broadband, High power and Multistage Amplifiers, Impeda nponents, Two component matching Networks, Frequency nd Pi Matching Networks	f A Nois ance resp	mpl se F mat pons	ifiers igure ching e and	3, 2, g d						
UNIT III	P	ASSIVE AND ACTIVE MICROWAVE DEVICI	ES		9							
Terminations	Att	enuators Phase shifters Directional couplers Hybrid Jun	ctio	ns F	- Dowe	۰r						

Terminations, Attenuators, Phase shifters, Directional couplers, Hybrid Junctions, Power dividers, Circulator, Isolator, Impedance matching devices: Tuning screw, Stub and quarter wave transformers. Crystal and Schottky diode detector and mixers, PIN diode switch, Gunn diode oscillator, IMPATT diode oscillator and amplifier

UNIT IV

101 00/03

MICROWAVE GENERATION

High frequency effects in vacuum Tubes, Theory and application of Two cavity Klystron Amplifier, Reflex Klystron oscillator, Traveling wave tube amplifier, Magnetron oscillator using Cylindrical, Linear, Coaxial Voltage tunable Magnetrons, Backward wave Crossed field amplifier and oscillator.

UNIT V MICROWAVE MEASUREMENTS

Measuring Instruments : Principle of operation and application of VSWR meter, Power meter, Spectrum analyzer, Network analyzer, Measurement of Impedance, Frequency, Power, VSWR, Q-factor, Dielectric constant, Scattering coefficients, Attenuation, S-parameters.

TOTAL : 45 PERIODS

9

9

COUI	RSE OUTCO	MES	Upon the ability to	course	completio	on, the	student	will h	nave	the
1.	Discuss about t	he two po	rt networks	and sca	attering par	rameter	·s.			
2.	Analyze the mu	ulti- port R	RF networks	s and R	F transistor	r ampli	fiers.			
3.	Explain the act communication	Explain the active & passive microwave devices & components used in Microwave communication systems.								
4.	Generate Micro	Generate Microwave signals and design microwave amplifiers.								
5.	Measure and an	nalyze Mic	crowave sig	nal and	parameter	s.				
ТЕХТ	BOOKS:									
1.	Samuel Y L	iao, "Mici	owave Dev	rices &	Circuits",	Prentic	e Hall of	India,	2006	
2.	Reinhold.Lu Inc.,2006	udwig and	Pavel Bre	tshko'	RF Circuit	t Desig	n", Pears	son Ed	lucati	on,
3.	Annapurna Publishing	Das and S Company I	Sisir K Das Ltd, New D	, "Micreelhi, 20	owave Eng 05.	gineerin	g", Tata	Mc G	raw I	Hill
REFE	CRENCES:									
1.	David M. P 2008.	ozar, "Mi	crowave En	igineeri	ng", Wiley	, India	(P) Ltd, 1	New D	elhi,	
2.	Robert E Co Inc, 2005	Robert E Colin, "Foundations for Microwave Engineering", John Wiley & Sons Inc, 2005								
3.	Mathew M	Radmanes	h, "RF and	Micro	wave Elect	ronics'	', Prentic	e Hall:	, 200	0.
4.	Thomas H I Measureme	Lee, "Plan nts and Ci	ar Microwa rcuits", Ca	ive Eng mbridge	ineering: A e Universit	l Practi y Press	cal Guid , 2004.	e to Th	eory,	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	1	-	_	_	_	-	_	_	3	3	3	1
CO2	3	3	2	2	Ι	-	-	-	Ι	-	-	2	2	2	2
CO3	3	2	2	1	Ι	-	-	-	Ι	-	-	3	3	3	1
CO4	3	2	3	2	Ι	-	-	-	Ι	-	-	2	3	3	1
CO5	3	3	2	2	-	_	-	_	-	_	-	2	2	2	2
18LPC602	3	2	2	2	-	-	-	-	-	-	-	2	3	3	1

1-Low 2-Moderate (Medium) 3-High

EMBEDDED SYSTEM

L	Т	Р	C
3	0	0	3

OBJECTIVES:

UNI	ΓΙ	INTRODUCTION TO EMBEDDED PROCESSORS	9						
٠	Studen	t can do the design in real time embedded systems using the concepts of	RTOS						
•	Studen	Students can able to do programming in C, C++.							
•	Studen	ts have knowledge about the basic functions of embedded systems							

Introduction to Embedded Computing, Issues andChallenges in Embedded system Design, Trends: SC, custom designed chips, configurablesigned chips, configurable processors and multi-core processors.Embedded processor architecture: General concepts, instruction sets, Levels inarchitecture, Functional description-hardware/software trade-off Introduction to RISCarchitecture, Pipelining, Instruction issue and execution, Instruction formats, Addressingmodes, Data alignment and byte ordering, Introduction to VLIW and DSP processors.

UNIT II DEVICES AND BUSES FOR DEVICES NETWORK

9

9

I/O Devices:- Types and Examples of I/Odevices, Synchronous, Iso-synchronous and Asynchronous Communications from SerialDevices - Examples of Internal Serial-Communication Devices:- SPI, UART, Parallel PortDevices - Timer and Counting Devices - Serial Communication using: 'I2C', 'USB','CAN'- Advanced I/O Serial high speed buses: ISA, PCI, PCI-X, cPCI and advancedbuses.

UNIT III PROGRAMMING CONCEPTS AND EMBEDDED PROGRAMMING IN C, C++

Programming inassembly language (ALP) vs High Level Language - C Program Elements:-Macros andfunctions, Use of Date Types, Structure, Pointers, Function Calls - Concepts of EmbeddedProgramming in C++:- Objected Oriented Programming, Embedded Programming in C++, 'C' Program compilers – Cross compiler – Optimization of memory needs.

UNIT IV	REAL TIME OPERATING SYSTEMS	9
Definitions of	process, tasks and threads - Inter ProcessCommunication:- Shared	data
problem, Use o	of Semaphore(s), Priority Inversion Problemand Deadlock Situations, Me	ssage
Queues, Mailt	boxes, Pipes, Virtual (Logical) Sockets, Remote Procedure Calls (RP	Cs) -

Operati	ing Sys	stem Ser	vices:- (Goals, Structures, Ko	ernel, Process Management, Me	mory				
Management, Device Management - Real Time OperatingSystem - RTOS Task scheduling models:- Co-operative Round Robin Scheduling, CyclicScheduling with Time Slicing										
models	:- Co-o	perative I	Round Ro	obin Scheduling, Cycli	icScheduling with Time Slicing.					
UNIT	V	SYST	EM DE	SIGN TECHNIQ	UES	9				
Design	Meth	odologie	s, Requ	irement Analysis,	Specification,System Analysis	and				
Archite	Architecture Design. Design Examples:- Telephone PBX- SystemArchitecture, Ink jet									
printer	printer - Hardware Design and Software Design, Personal DigitalAssistants, Set-top Boxes.									
TOTAL: 45 PERIODS										
COUI	RSE C	OUTCO	MES	Upon the course c ability to	completion, the student will ha	ave the				
1.	Expla	in the bas	sic of eml	bedded processors						
2.	Discu	ss the dif	ferent inp	put-output devices and	l advance I/O serial high speed bu	ises.				
3.	3. Explain programming concepts and embedded programming in C and assembly language									
4.	To ex softwa	plain real are devel	time ope	erating systems, inter- ool	task communication and an emb	edded				
5.	Desig	n the soft	ware and	l hardware.						
TEXT	r BOC	OKS:								
1.	Ra TA	ajkamal, ATAMcC	Embedo raw-Hill	ded Systems Arch , First reprint Oct. 200	itecture, Programming and 3	Design,				
2.	W Sy 20	ayne Wo stemDes 01.	olf, Comj ign – Har	puters as Component rcourt India, Morgan H	ts: Principles of Embedded Cor Kaufman Publishers, First Indian	nputing Reprint				
3.	St	eve Heath	ı, Embede	ded Systems Design, S	Second Edition-2003, Newnes,					
REFE	CREN	CES:								
1.	Do In	avid E.Sin dianRepr	non, An E int 2000.	Embedded Software Pr	rimer, Pearson Education Asia, Fi	rst				
2.	2. Frank Vahid and Tony Givargis, Embedded Systems Design – A unified Hardware/Software Introduction, John Wiley 2002									
3.	M	lichael Bo	urr, "Prog	gramming Embedded S	Systems in C and C++", O"Reilly					
4.	Jo	hn Catso	ulis, "Des	signing Embedded Hai	rdware", O"Reilly					

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1	-	-	-	1	-	-	1	1	-	2	3	2	3
CO2	3	2	1	2	2	1	2	-	2	2	1	3	3	3	3
CO3	3	3	3	2	-	-	2	1	3	2	2	3	3	2	3
CO4	3	2	2	3	3	1	-	-	2	3	2	2	3	2	3
CO5	3	3	3	2	3	1	2	-	3	3	2	3	3	3	3

1-LOW 2-MODERATE (MEDIUM) 3-HIGH

18LP	C607	VLSI LABORATORY	L	Т	Р	С
			0	0	2	1
OBJE	CTIVE	S:				
•	To learn	Hardware Descriptive Language(Verilog/VHDL)				
•	To learn	the fundamental principles of VLSI circuit design in digital a	nd a	nalo	g	

• To provide hands on design experience with professional design (EDA) platforms.

LIST OF EXPERIMENTS

domain

FPGA BASED EXPERIMENTS.

1. HDL based design entry and simulation of simple counters, state machines, adders (min 8 bit) and multipliers (4 bit min).

2. Synthesis, P&R and post P&R simulation of the components simulated in (I) above. Critical paths and static timing analysis results to be identified. Identify and verify possible conditions under which the blocks will fail to work correctly.

3. Hardware fusing and testing of each of the blocks simulated in (I). Use of either chipscope feature (Xilinx) or the signal tap feature (Altera) is a must. Invoke the PLL and demonstrate the use of the PLL module for clock generation in FPGAs.

IC DESIGN EXPERIMENTS: (BASED ON CADENCE / MENTOR GRAPHICS / EQUIVALENT)

4. Design and simulation of a simple 5 transistor differential amplifier. Measure gain, ICMR,

and CMRR

5. Layout generation, parasitic extraction and resimulation of the circuit designed in (I)

6. Synthesis and Standard cell based design of an circuits simulated in 1(I) above. Identification of critical paths, power consumption.

7. For expt (c) above, P&R, power and clock routing, and post P&R simulation.

8. Analysis of results of static timing analysis.

		TOTAL: 30 PERIODS
COUI	RSE OUTCOMES	Upon the course completion, the student will have the ability to
1.	Write HDL code for bas	ic as well as advanced digital integrated circuits.
2.	Import the logic module	es into FPGA Boards.
3.	Synthesize Place and Ro	oute the digital IPs.
4.	Fuse the logical module	s on FPGAs
5.	Design, Simulate and Ex	xtract the layouts of Analog IC Blocks using EDA tools.

COURSE ARTICULATION MATRIX:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	1	3	_	_	_	2	_	_	2	3	2	1
CO2	2	2	2	1	3	-	-	-	2	-	-	2	2	3	2
CO3	2	2	1	1	3	_	_	-	2	-	_	2	3	2	2
CO4	3	2	2	1	3	_	_	_	2	_	_	2	2	3	1
CO5	3	2	2	1	3	-	-	-	2	-	-	2	2	3	1
18LPC606	3	2	2	1	3	-	-	-	2	-	-	2	2	3	1

1-Low 2—Moderate (Medium) 3-High

18LPC	C608
-------	------

DIGITAL SIGNAL PROCESSING LABORATORY

OBJECTIVES

- To implement Linear and Circular Convolution
- To implement FIR and IIR filter
- To demonstrate finite word length effects

LIST OF EXPERIMENTS:MATLAB / EQUIVALENT SOFTWARE PACKAGE

- 1.Generation of sequences (functional & random) & correlation
- 2.Linear and Circular Convolutions
- 3.Spectrum Analysis using DFT
- 4.FIR filter design
- 5.IIR filter design
- 6.Multirate Filters
- 7.Equalization

DSP PROCESSOR BASED IMPLEMENTATION

- 8.Study of architecture of Digital Signal Processor
- 9.IIR and FIR Implementation
- 10.Finite Word Length Effect

		TOTAL : 30 PERIODS
COUI	RSE OUTCOMES	Upon the course completion, the student will have the ability to
1.	carry out simulation o	f DSP systems
2.	Analyze Finite word 1	ength effect on DSP systems
3.	Demonstrate the appli	cations of FFT to DSP
4.	Demonstrate their abil of DSP systems	lities towards DSP processor based implementation

5. Implement adaptive filters for various applications of DSP

LAB EQUIPMENTFORA BATCH OF 30 STUDENTS (2 STUDENTS PER SYSTEM)

PCs with Fixed / Floating point DSP Processors (Kit / Add-on Cards) 15 Units

LIST OF SOFTWARE REQUIRED:MATLAB with Simulink and Signal Processing Tool Box or Equivalent Software in desktop systems -15 Nos

Signal Generators (1MHz) –15 Nos

CRO (20MHz) -15 Nos

COURSE ARTICULATION MATRIX

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	-	1	1	-	2	-	1	-	-	2	2	3	2
CO2	2	2	-	2	1	-	2	-	1	-	-	2	2	2	2
CO3	2	2	-	2	1	-	1	-	1	-	-	2	2	2	2
CO4	2	2	-	2	2	-	1	-	1	-	-	2	2	2	2
CO5	2	2	-	2	2	-	1	-	1	-	-	2	2	1	2
18LPC608	2	2	-	2	1	-	1	-	1	-	-	2	2	2	2

1-Low 2-Moderate (Medium) 3-High

SEVENTH SEMESTER

18ELI	H701		PROFESSIONAL ETHICS	L	Т	P	C		
		I		3	0	0	3		
OBJE	CTIVE	S :				L	<u> </u>		
•	To enab	le the	students to create an awareness on Engineering Ethics						
•	To stud	y the e	engineering as social experimentation						
•	To imp	art kno	owledge on engineer's responsibility for safety						
•	To imp	art kno	owledge on engineer's responsibility and rights						
•	To stud	y the g	global issues on business						
UNIT	Ι	EN	GINEERING ETHICS			9)		
Sensesof 'EngineeringEthics'–Varietyof moralissues–Typesof inquiry–Moral dilemmas–M Autonomy–Kohlberg's theory–Gilligan's theory–Consensus and Controversy–Professions Professionalism–Professional Ideals and Virtues–Uses of Ethical Theories.									
UNIT	II	ENG	INEERINGASSOCIALEXPERIMENTATION	N		9)		
Enginee of Ethic	eringasEx es-Indust	xperin rial St	nentation–EngineersasresponsibleExperimenters–Research andards- A Balanced Outlook on Law–The Challenger Ca	nEthi ase S	ics – tudy	Code	es		
UNIT	III	EN	GINEER'S RESPONSIBILITY FOR SAFETY	r		9)		
Safetyar Govern	ndRisk–4 ment Reg	Assess gulato	mentofSafetyandRisk–RiskBenefitAnalysis–ReducingRis r's Approach to Risk- Chernobyl Case Studies and Bhopa	k–T l.	he	1			
UNIT	IV	RES	SPONSIBILITIES AND RIGHTS			9)		
Collegia of Inter Rights(alityandI rest–Occi IPR) –Di	Loyalt Loyalt Loyalto Scrim	y–RespectforAuthority–CollectiveBargaining–Confidentianal Crime–Professional Rights–Employee Rights– Intellination.	ality- lectu	-Cor al P	nflict rope	ts rty		
UNIT	V	GL	OBALISSUES			9)		
Multinational Corporations– Business Ethics-Environmental Ethics –Computer Ethics-Rol Technological Development– Weapons Development–Engineers as Managers–Consul Engineers–Engineers as Expert Witnesses and Advisors–Honesty–Moral Leadership–Sar Code Conduct.									
		I	TOTAL : 45 PER		S				
OUTC	COMES	5:	Upon the course completion, the student will have the abi	lity t	0				
•	Appl	y the	ethical theories in engineering environment.						
•	Analyze the risks and improve their responsibility for safety.								

•	Utilize their rights and improve responsibilities.
•	Utilize their rights and improve rights.
٠	Propose remedies for global issues.
TEXT B	OOKS:
1.	MikeMartinandRolandSchinzinger, "EthicsinEngineering", McGrawHill, NewYork (2005).
2.	Charles E Harris, Michael S Pritchard and Michael JRabins, "EngineeringEthics- ConceptsandCases", ThompsonLearning, (2000).
3.	David Ermann and Michele S Shauf, "Computers, Ethics and Society", Oxford
	University Press,(2003)
REFERI	ENCES:
1.	Charles D Fleddermann, "Engineering Ethics", Prentice Hall, NewMexico, 1999.
2.	John R Boatright, "Ethicsandthe Conduct of Business", Pearson Education, 2003.
3.	Edmund G Seebauer and Robert L Barry, "Fundamentals of Ethics for Scientists and Engineers", Oxford University Press, 2001.
4.	Prof. (Col)P S Bajaj and Dr.Raj Agrawal, "Business Ethics–An Indian Perspective", Biztantra, NewDelhi,2004.
5.	David Ermannand Michele S Shauf, "Computers, EthicsandSociety", OxfordUniversityPress, 2003.

FIBER OPTIC COMMUNICATION

L T P C 3 0 0 3

OBJECTIVES:

- To understand optical fibers and signal transmission properties of optical fibers.
- To familiarize with optical sources and detectors
- To introduce optical networks and networking components.

UNIT I

INTRODUCTION TO OPTICAL FIBERS

9

Evolution of fiber optic system- Element of an Optical Fiber Transmission link-- Total internal reflection-Acceptance angle –Numerical aperture – Skew rays Ray Optics-Optical Fiber Modes and Configurations -Mode theory of Circular Wave guides- Overview of Modes-Key Modal concepts- Linearly Polarized Modes -Single Mode Fibers-Graded Index fiber structure

UNIT II SIGNAL DEGRADATION OPTICAL FIBERS

9

9

Attenuation - Absorption losses, Scattering losses, Bending Losses, Core and Cladding losses, Signal Distortion in Optical Wave guides-Information Capacity determination - Group Delay-Material Dispersion, Wave guide Dispersion, Signal distortion in SM fibers-Polarization Mode dispersion, Intermodal dispersion, Pulse Broadening in GI fibers-Mode Coupling -Design Optimization of SM fibers-RI profile and cut-off wavelength.

UNIT III FIBER OPTIC SOURCES AND COUPLING

Direct and indirect Band gap materials-LED structures -Light source materials -Quantum efficiency and LED power, Modulation of a LED, lasers Diodes-Modes and Threshold condition -Rate equations -External Quantum efficiency -Resonant frequencies -Laser Diodes, Temperature effects, Introduction to Quantum laser, Fiber amplifiers- Power

Launching and coupling, Lencing schemes, Fiber -to- Fiber joints, Fiber splicing-Signal to Noise ratio, Detector response time.

UNIT IV FIBER OPTIC RECEIVER AND MEASUREMENTS

9

Fundamental receiver operation, Pre amplifiers, Error sources – Receiver Configuration– Probability of Error – Quantum limit.Fiber Attenuation measurements- Dispersion measurements – Fiber Refractive index profile measurements – Fiber cut- off Wave length Measurements – Fiber Numerical Aperture Measurements – Fiber diameter measurements.

UNIT	V OI TI	PTICAL NE RANSMISSI	TWORKS AND SYSTEM	9
Basic Ne Routed M time bu Performa Capacity	etworks – Networks - dget- Noi ance of V v Networks	SONET / SDH - Non linear ef: se Effects on VDM + EDFA s.	– Broadcast – and –select WDM Networks –Wavele fects on Network performance – Link Power budget - System Performance-Operational Principles of W A system – Solutions – Optical CDMA – Ultra I	ngth Rise 'DM High
			TOTAL : 45 PERIODS	
COUR	SE OUT	COMES	Upon the course completion, the student will have ability to	we the
1.	Describe	the working o	f transmission through optical fiber.	
2.	Explain	different prope	erties of optical fiber links.	
3.	Explain	the working of	different optical sources and detectors.	
4.	Define th techniqu	ne operation of es.	optical receiver and compare different measurement	t
5.	Discuss	about networki	ing of systems using optical fiber links.	
TEXT	BOOKS	:		
1.	Gerd I Edition	Keiser, "Optica n., 2010.	l Fiber Communication" Mc Graw -Hill Internation	al, 4th
2.	John I Educat	M. Senior , " tion, 2007.	Optical Fiber Communication", Second Edition, F	earson
3.	J.Gow	er, "Optical Co	mmunication System", Prentice Hall of India, 2001.	
REFE	RENCES	5:		
1.	Ramas 2009.	swami, Sivaraje	an and Sasaki "Optical Networks", Morgan Kaufma	nn,
2.	J.Senio India	or, "Optical Co 3rd Edition. 20	ommunication, Principles and Practice", Prentice Ho 208.	ıll of
3.	Govin Sons	d P. Agrawal, 3rd Edition 20	" Fiber-optic communication systems", John Wiley 6002.	¢
4.	Shiva and Ap	Kumar, <u>M. Jan</u> pplications", Jo	n <u>al Deen</u> , " Fiber Optic Communications: Fundamen ohn Wiley & Sons, 2013.	ntals

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	2	1	-	-	-	-	-	-	-	2	2	1	2
CO2	3	1	2	1	-	-	-	-	-	-	-	2	2	1	2
CO3	3	1	2	1	-	-	-	-	-	-	-	2	2	1	2
CO4	3	1	2	1	-	-	-	-	-	-	-	2	2	1	2
CO5	3	1	2	1	-	-	-	-	-	-	-	2	3	1	2
18LPC702	3	1	2	1	-	-	-	-	-	-	-	2	2	1	2

1-Low 2—Moderate (Medium) 3-High

18LI	PC703)	WIRELESS COMMUNICATION	L	Т	Р	C						
				3	0	0	3						
OBJE	CTIV	ES	5:										
•	To expose the students to understand mobile radio communication principles and to study the recent trends adopted in cellular systems and wireless standards.												
٠	To understand the various terminology, principles, devices, schemes, concepts, algorithms and different methodologies used in Wireless Communication Network												
•	To appreciate the contribution of Wireless Communication networks to overall technological growth												
UNIT	Ι	W	/IRELESS CHANNELS			9)						
Large s design parame Multipa Dopple	ge scale path loss – Path loss models: Free Space and Two-Ray models -Link Budg gn – Small scale fading- Parameters of mobile multipath channels – Time dispersion uneters-Coherence bandwidth – Doppler spread & Coherence time, Fading due litipath time delay spread – flat fading – frequency selective fading – Fading due opler spread – fast fading – slow fading.												
UNIT	II	C	ELLULAR ARCHITECTURE			9)						

Multiple Access techniques - FDMA, TDMA, CDMA – Capacity calculations–Cellular concept- Frequency reuse - channel assignment- hand off- interference & system capacity-trunking & grade of service – Coverage and capacity improvement.

UNIT I	II I	I DIGITAL SIGNALING FOR FADING CHANNELS 9											
Structure Minimum channels,	Structure of a wireless communication link, Principles of Offset-QPSK, p/4-DQPSK, Minimum Shift Keying, Gaussian Minimum Shift Keying, Error performance in fading channels, OFDM principle – Cyclic prefix												
UNIT I	V N	MULT	TIPATH	MITIGATION	TECHNIQUES	9							
Equalisation – Adaptive equalization, Linear and Non-Linear equalization, Zero forcing and LMS Algorithms. Diversity – Micro and Macrodiversity, Diversity combining techniques, Error probability in fading channels with diversity reception, Rake receiver													
UNIT V	V	MULT	TIPLE A	NTENNA TEC	HNIQUES	9							
MIMO s transmitt non-fadir	MIMO systems – spatial multiplexing -System model -Pre-coding - Beam forming - transmitter diversity, receiver diversity- Channel state information-capacity in fading and non-fading channels												
					TOTAL : 45 PERIODS								
COURSE OUTCOMES				Upon the course completion, the student will have the ability to									
1.	Charac technic	cterize v cal chall	vireless cł lenges	hannels and discuss	the cellular system design and								
2.	Analys Concep	se Multi pts	user Syste	ems, CDMA, WCD	MA network planning and OFDM	1							
3.	Design	n and in	plement v	various signalling s	chemes for fading channels								
4.	Compa	are mult	tipath miti	igation techniques a	and Analyze their performance								
5.	Design system	n and in Is and A	nplement s Analyze th	systems with transm neir performance	nit/receive diversity and MIMO								
TEXT	BOOK	KS:											
1.	Rapp 2010	paport,7).		eless communication	ns", Second Edition, Pearson Edu	ication,							
2.	Andı	reas.F. 1	Molisch, "	Wireless Communi	cations", John Wiley – India, 200	6.							
3.	Davi Cam	id Tse a bridge	nd Pramo University	od Viswanath, "Func y Press, 2005.	lamentals of Wireless Communic	cation",							
REFER	RENCI	ES:											

1.	Van Nee, R. and Ramji Prasad, "OFDM for wireless multimedia communications", Artech House, 2000.
2.	UpenaDalal, "Wireless Communication", Oxford University Press, 2009.
3.	<i>Vijay Garg, "Wireless Communications and networking", First Edition, Elsevier</i> 2007.
4.	Jochen Schiller, "Mobile Communications", Second Edition, Pearson Education 2012.
5.	udhir Dixit and Ramjee Prasad, "Wireless IP and Building the Mobile Internet", Artech House, 2003.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	-	-	-	-	-	-	-	-	-	2	2	-
CO2	3	2	2	2	-	-	-	-	-	-	-	-	2	2	1
CO3	3	2	2	-	2	-	-	-	-	-	-	-	2	2	2
CO4	3	2	3	-	2	-	-	-	-	-	-	-	2	2	2
CO5	3	2	2	3	3	2	1	2	-	2	2	2	3	3	3

1-LOW 2-MODERATE (MEDIUM) 3-HIGH

18LPO	C707	MICROWAVE AND OPTICAL LABORATORY	L	T	Р	C							
			0	0	2	1							
OBJE	OBJECTIVES:												
•	To lear	n about the working of microwave equipments.											
• '	To fami	iliarize with the working of different types of antennas.											
• '	To unde	erstand the working optical sources and detectors.											
LIST	OF EX	XPERIMENTS											
1.	Charact	teristics of Gunn diode Oscillator.											
2.	Charact	teristics of Reflex Klystron.											
3.	Microw	vave Power Measurement.											

- 4. Characteristics of Directional Coupler and Magic Tee.
- 5. Guide wavelength and frequency measurement.
- 6. VSWR and impedance measurements.
- 7. Dielectric constant measurement.
- 8. Radiation Patten of Horns, Parabolic and Helical antenna.
- 9. Measurement of Numerical aperture of optical fiber.
- 10. Measurement of losses in optical fiber.
- 11. Digital Transmission through fiber optic link.
- 12. Characteristics of LED and LASER Diode.
- 13. Characteristics of Photo Diode
- 14. Study of Satellite Communication System.
- 15. Study of Doppler shift using Doppler radar trainer.

		TOTAL: 30 PERIODS					
COURS	E OUTCOMES:	Upon the course completion, the student will have the ability to					
1.	Analyze the characteri	stics of different microwave equipments.					
2.	Compare different microwave devices and choose the required device.						
3.	Analyze and compare	radiation patterns of different antennas.					
4.	Analyze and explain th	e properties of fiber optical links and devices.					
5.	Explain the working of	f satellite communication systems and Doppler effect.					

	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	2	1	2	1	-	-	3	-	-	2	2	1	2
CO2	3	1	2	1	2	1	-	-	3	-	-	2	2	1	2
CO3	3	1	2	1	2	1	-	-	3	-	-	2	2	1	2
CO4	3	1	2	1	2	1	-	-	3	-	-	2	2	1	2
CO5	3	1	2	1	2	1	-	-	3	-	-	2	3	1	2
18LPC707	3	1	2	1	2	1	-	-	3	-	-	2	2	1	2

1-Low 2—Moderate (Medium) 3-High

PROFESSIONAL ELECTIVES

18LPE0	01	WIRELESS NETWORKS L T									
			3	0	0	3					
			5	U	U	5					
OBJECTIVES:											
• To study about Wireless networks, protocol stack and standards.											
•	• To study about fundamentals of 3G Services, its protocols and applications.										
•	• To study about evolution of 4G Networks, its architecture and applications.										
UNIT I	WI	RELESS LAN				9					
IEEE802.1 802.11b, 8 Radio Lay Physical la	1: Syste 302.11a – ver, Baset ayer, MAC	m architecture, protocol architecture, physical layer, Hiper LAN: WATM, BRAN, HiperLAN2 – Bluetooth: band layer, Link manager Protocol, security - IEEE802 C, Spectrum allocation for WIMAX	MA Arc 2.16-	AC chite WIN	layer cture MAX	- , , :					
UNIT II	MC	BILE NETWORK LAYER				9					
Introduction IPV6-Network: R	on - Mobil vork layer Routing, D	e IP: IP packet delivery, Agent discovery, tunneling and in the internet- Mobile IP session initiation protocol - restination Sequence distance vector, Dynamic source rout	enca mobi ting.	psul ile a	atior d-ho	I, C					
UNIT II	I MC	BILE TRANSPORT LAYER				9					
TCP enha retransmit/ TCP, Snoc oriented T	ncements fast recov pping TCF CP - TCP	for wireless protocols - Traditional TCP: Congestion very, Implications of mobility - Classical TCP improven P, Mobile TCP, Time out freezing, Selective retransmission over 3G wireless networks.	con nents n, Ti	ntrol s: In ransa	, fas direc	rt rt n					
UNIT IV	UNIT IV WIRELESS WIDE AREA NETWORK										
Overview 3G-MSC, speed Dow	of UTMS 3G-SGSN /nlink pac	Terrestrial Radio access network-UMTS Core network J, 3G-GGSN, SMS-GMSC/SMS-IWMSC, Firewall, DNS ket access (HSDPA)- LTE network architecture and proto	Arc S/DF ocol.	chite HCP	cture -Hig	*: h					
UNIT V	4G	NETWORKS				9					
Introduction Technolog	on – 4G ies: Multi	vision – 4G features and challenges - Applications carrier Modulation, Smart antenna techniques, OFDM-M	of 4 IMC	4G) sys	– 40 stems	J 3,					

Adaptiv	ve Modulation and c	oding with time slot scheduler, Cognitive Radio.									
		TOTAL : 45 PERIODS									
OUTO	COMES	Upon the course completion, the student will have the ability to									
1.	Acquires knowledge about various WLAN technologies and WiMAX networks ar its architecture.										
2.	Discuss about various tunneling, encapsulation and routing methods.										
3.	Design and implement wireless network environment for any application using latest wireless protocols and standards.										
4.	Implement different types of applications for smart phones and mobile devices with latest network strategies.										
5.	Acquires knowledg	ge about the latest 4G networks and cognitive radio.									
ТЕХТ	BOOKS:										
1.	Jochen Schiller, ' 2012.	'Mobile Communications'', Second Edition, Pearson Education									
2.	Vijay Garg , "Wi 2007.	reless Communications and networking", First Edition, Elsevier									
REFE	CRENCES:										
1.	Erik Dahlman, Ste and LTE for Mobil	fan Parkvall, Johan Skold and Per Beming, "3G Evolution HSPA e Broadband", Second Edition, Academic Press, 2008.									
2.	Anurag Kumar, 1 Elsevier 2011.	D.Manjunath, Joy kuri, "Wireless Networking", First Edition,									
3.	Simon Haykin Communications",	, Michael Moher, David Koilpillai, "Modern Wireless First Edition, Pearson Education 2013									

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	1	_	_	_	-	-	-	_	3	2	2	1
CO2	2	2	2	1	-	-	-	-	-	_	_	2	2	2	1
CO3	3	2	3	2	_	_	_			-	-	2	3	3	1
CO4	3	2	3	2	_	-	_	Ι	I	_	_	2	3	3	1
CO5	3	2	2	2	_	_	_	_	_	_	_	2	2	2	1
18LOE006	3	2	2	2	-	-	-	-	_	-	-	2	2	2	1

1-Low 2—Moderate (Medium) 3-High
18LPE002	AD-HOC NETWORKS	L	Т	Р	С

3 0 0

3

9

OBJECTIVES

- Understand the design issues in ad -hoc mobile networks.
- Be familiar with different types of ad-hoc routing protocols.
- Be expose to the TCP issues in ad-hoc networks

UNIT I

FUNDAMENTALS

Introduction – Fundamentals of Wireless Communication Technology – The Electromagnetic Spectrum – Radio Propagation Mechanisms – Characteristics of the Wireless Channel – IEEE 802.11a–b Standard – Origin of Ad hoc Packet Radio Networks – Technical Challenges – Architecture of PRNETs – Components of Packet Radios – Ad hoc Wireless Networks – What is an Ad Hoc Network? Heterogeneity in Mobile Devices – Wireless Sensor Networks – Traffic Profiles – Types of Ad hoc Mobile Communications – Types of Mobile Host Movements – Challenges Facing Ad hoc MobileNetworks – Ad hoc wireless Internet.

UNIT II

AD-HOC ROUTING PROTOCOLS

Introduction – Issues in Designing a Routing Protocol for Ad Hoc Wireless Networks – Classificationsof Routing Protocols – Table–Driven Routing Protocols – Destination Sequenced Distance Vector (DSDV) – Wireless Routing Protocol (WRP) – Cluster Switch Gateway Routing (CSGR) – Source–Initiated On–Demand Approaches – Ad hoc On– Demand Distance Vector Routing (AODV) – Dynamic Source Routing (DSR) –Temporally Ordered Routing Algorithm (TORA) – Signal Stability Routing (SSR) –Location–Aided Routing (LAR) – Power–Aware Routing (PAR) – Zone Routing Protocol (ZRP).

UNIT III MULTICAST ROUTING IN AD-HOC NETWORKS

9

9

Introduction – Issues in Designing a Multicast Routing Protocol – Operation of Multicast Routing Protocols – An Architecture Reference Model for Multicast Routing Protocols – Classifications of Multicast Routing Protocols – Tree–Based Multicast Routing Protocols– Mesh–Based Multicast Routing Protocols – Summary of Tree and Mesh based Protocols – Energy–Efficient Multicasting – Multicasting with Quality of Service Guarantees – Application – Dependent Multicast Routing – Comparisons of Multicast Routing Protocols.

UNIT IV

TRANSPORT LAYER SECURITY PROTOCOLS

9

Introduction – Issues in Designing a Transport Layer Protocol for Ad hoc Wireless Networks – Design Goals of a Transport Layer Protocol for Ad hoc Wireless Networks – Classification of Transport Layer Solutions – TCP over Ad hoc Wireless Networks – Other Transport Layer Protocols for Ad hoc Wireless Networks – Security in Ad Hoc Wireless Networks – Network Security Requirements – Issues and Challenges in Security Provisioning – Network Security Attacks – Key Management – Secure Routing in Ad hoc Wireless Networks.

UNIT V

QOS AND ENERGY MANAGEMENT

9

Introduction – Issues and Challenges in Providing QoS in Ad hoc Wireless Networks – Classificationsof QoS Solutions – MAC Layer Solutions – Network Layer Solutions – QoS Frameworks for Ad hoc Wireless Networks Energy Management in Ad hoc Wireless Networks–Introduction – Need for Energy Management in Ad hoc Wireless Networks – Classification of Energy Management Schemes – Battery Management Schemes – Transmission Power Management Schemes – System Power Management Schemes.

		TOTAL : 45 PERIODS						
OUTCOMES		Upon the course completion, the student will have the ability to						
1.	. Explain the concepts, network architectures and applications of ad hoc networks							
2.	Gain knowledge about Ad hoc routing protocols							
3.	Analyze the protocol design issues of ad hoc and networks							
4.	Design routing protocols for ad hoc networks with respect to some protocol design issues							
5.	5. Evaluate the QoS related performance measurements of ad hoc networks							

TEXT BOOKS:

1	C Siva Ram Murthy and B S Manoi "Ad Hoc Wireless Networks Architectures and
1.	C. Siva Rain Marting and D. S. Manoj, The fibe whereas networks refineeedies and
	Protocols" Prentice Hall PTR 2004
2	Subir Kumar Sarkar, T.G. Basavaraju, C. Puttamadappa, "Ad Hoc Mobile Wireless"
∠.	Buon Kunha Barkar, 1.0. Dasavaraja, C. Futunnadappa, The moone wholess
	Networks Principles Protocols and Applications" Second Edition CRC Press
	Including I finciples, I folocols and Applications – Second Edition City I less.

REFERENCES:

1.	C. K. Toh, "Ad Hoc Mobile Wireless Networks Protocols and Systems", Prentice
	Hall,PTR, 2001.
2.	Charles E. Perkins, "Ad Hoc Networking", Addison Wesley, 2000
З.	Mohapatra, Prasant, Krishnamurthy, Srikanth, "Ad Hoc Networks Technologies and
	Protocols" Springer Publications.
4.	NabenduChaki, ShilbhadraDasgupta, Soumitra Banerjee "Mobile Adhoc Network
	and Wireless Communication" Alpha Science International Limited.

5. Carlos De MoraisCordeiro, Dharma PrakashAgrawal "Ad Hoc & Sensor Networks: Theory and Applications", World Scientific Publishing Company, 2006.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	-	-	-	-	-	-	-	-	-	3	1	-	3
CO2	3	3	2	1	-	-	-	-	-	-	-	3	2	-	3
CO3	3	3	2	1	-	-	-	-	-	-	-	3	2	-	3
CO4	3	2	-	-	-	-	-	-	-	-	-	3	1	-	3
CO5	3	3	2	1	1	3	1	-	-	-	-	3	2	2	3
18LPE002	3	3	2	1	1	-	-	-	-	-	-	3	2	2	3

COURSE ARTICULATION MATRIX

18LPE003	X003NETWORK SECURITYLTP										
		3	0	0	3						
OBJECTIVES:											
• be able systems	• be able to explain security principles, and be able to analyze and evaluate software systems for its security properties.										
• be able mechan	• be able to explain how various security mechanisms work, and correlate these security mechanisms with security principles.										
• be able limitation	to compare various security mechanisms, articulate their ons, and able to apply security principles to solve problems.	adv	anta	ges	and						
UNIT I	INTRODUCTION TO NETWORK SECURITY				9						
Security Servic Techniques-Ste	es, Mechanisms and attacks – Network Security Model-Classic eganography – Data Encryption Standard (DES).	cal E	lncry	ptio	n						
UNIT II	ADVANCED BLOCK CIPHERS				9						
Block cipher modes operation-IDEA, BlowFish, RC5, CAST-128-Characteristics of advanced symmetric Block ciphers-Key Distribution.					f						

UNIT II	I PUBI AUTI	PUBLIC KEY CRYPTOSYSTEMS & MESSAGE9AUTHENTICATION9								
Principle- MAC-HA algorithm	RSA algorit SH function	hm-Diffie -Principle	Hellmen Key of MD5, SHA	Exchange-Mess -1 and HMAC a	age Authentication c lgorithms-Digital Sigr	odes- nature				
UNIT I	UNIT IV NETWORK SECURITY									
Kerbros-X	K.509 Public	key certif	icate format-PG	P-IPSec-SSL-SE	ET.					
UNIT V	SYST	'EM SE	CURITY			9				
Intrusion counterme	Detection easures-Firew	software-Viruses	and							
				TOTAL:45P	ERIODS					
OUTCO	OMES		Upon the cour to	rse completion, th	ne student will have the	e ability				
1.	. Analyze the different network services.									
2.	Describe th	e advance	d block cipher me	ethods.						
3.	Describe the public key cryptosystems and message authentication schemes.									
4.	Explain the	different t	ypes of network	security schemes.						
5.	Explain the the security	requirem of web s	ents of real-tim ervices.	e communication	n security and issues re	lated to				
TEXT E	BOOKS:									
1.	William S Education,	L Stallings, New Delhi	"Cryptography , 2003.	and Network Se	ecurity", 3rd Edition,	Pearson				
2.	Behrouz A	. Forouza	n, "Cryptograp	bhy and Network	Security", Tata Mcgra	w Hill.				
REFER	ENCES:									
1.	P. W. Sing needs to kr	er, Allan 10w", Oxf	Friedmanm, "C ord University I	ybersecurity and Press.	Cyberwar what every	one				
2.	OthmarKy	as, "Inter	net Security", I	nternational Tho	mson Publishing Inc.1	997.				
3.	Joseph Miz	ggaKissa,	"Guide to Com	puter Network S	ecurity", Springer seri	es.				
4.	Richard Be Incident ".	Richard Bejtlich, "The Practice of Network Security Monitoring: Understanding ncident ". no starch press.								

5.	CharlieKaufman, Radio Perlman and Mike Speciner, "Network Security", 2nd	
	Edition, Prentice Hall of India, New Delhi, 2003.	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	3	-	-	1	2	-	-	-	-	1	-	2	-	-
CO2	2	2	2	-	1	2	-	-	2	-	2	-	2	-	-
CO3	3	1	1	-	3	3	-	-	1	-	2	-	2	-	-
CO4	3	2	-	-	2	2	-	-	2	-	3	-	2	-	-
CO5	2	-	2	-	2	3	-	2	2	-	2	-	2	-	-
18LPE003	2	2	2	-	2	2	-	-	2	-	2	-	2	-	-

18LPE004	INFORMATION AND CODING THEORY L T										
	2 1										
COURSE (DBJECTIVES:										
•	Understand error–control coding, encoding and decoding of digital data streams.										
•	• Be familiar with the methods for the generation of these codes and their decoding techniques										
•	Be aware of compression and decompression techniques										
UNIT I	INFORMATION ENTROPY FUNDAMENTALS			6	i+3						
Uncertainty, Information and Entropy – Source coding Theorem – Huffman coding Shannon Fano coding – Discrete Memory less channels – channel capacity – channel codin Theorem – Channel capacity Theorem.					- g						
UNIT II	UNIT II DATA AND VOICE CODING										
Differential Pulse code Modulation – Adaptive Differential Pulse Code Modulation – Adaptive subband coding – Delta Modulation – Adaptive Delta Modulation – Coding of speech signal at low bit rates (Vocoders, LPC).											

UNIT II	ERROR CONTROL CODING6+3							
Linear Blo – Generate of syndror	Linear Block codes – Syndrome Decoding – Minimum distance consideration – cyclic codes – Generator Polynomial – Parity check polynomial – Encoder for cyclic codes – calculation of syndrome – Convolutional codes.							
UNIT IN	IT IV COMPRESSION TECHNIQUES 6							
Principles Arithmetic File Forma	s – Text compression – Static Huffman Coding – Dynamic c coding – Image Compression – Graphics Interchange for nat – Digitized documents – Introduction to JPEG standards.	c Huffman coding – mat – Tagged Image						
UNIT V	AUDIO AND VIDEO CODING	6+3						
Linear Pre Dolby auc Video star	Linear Predictive coding – code excited LPC – Perceptual coding, MPEG audio coders – Dolby audio coders – Video compression – Principles – Introduction to H.261 & MPEG Video standards.							
	TOTAL : 45	PERIODS						
COURS	SE OUTCOMES: Upon the course completion, the ability to	student will have the						
1.	Derive equations for entropy mutual information and channel ca channels	pacity for all types of						
2.	Understands concept of source coding							
3.	Explain various methods of generating and detecting difference correcting codes	ent types of error						
4.	Use compression and decompression techniques.							
5.	Apply the concepts of multimedia communication							
TEXT B	BOOKS:							
1.	Simon Haykin, "Communication Systems", 4th Edition, 2001.	John Wiley and Sons,						
2.	Fred Halsall, "Multimedia Communications, Applications Standards", Pearson Education, Asia 2002; Chapters: 3,4,5	Networks Protocols and						
3.	3. Shu Lin & Daniel J.Costello,"Error control coding Fundamentals and applications," Pearson Education 2nd edition							
REFER	ENCES:							
1.	Mark Nelson, "Data Compression Book", BPB Publication	1992.						
2.	Watkinson J, "Compression in Video and Audio", Focal Pre	atkinson J, "Compression in Video and Audio", Focal Press, London, 1995.						

3.	Hwei P Hsu, "Theory of Analog and Digital Communication, "Pearson/Prentice Hall, New Jersey
4.	S.P.Eugene Xavier, "Statistical Theory of Communication," New Age International, 1997
5.	Andre Neabauer, "Coding Theory: Algorithms, Architectures & Applications", Wiley Publications, 2010

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	2	3	2	3	2	2	2	-	2	2	1	2	3	1	2
CO2	3	2	1	2	1	2	1	-	1	2	1	2	3	2	3
CO3	3	3	2	2	2	2	2	-	2	2	1	2	3	2	3
CO4	3	3	3	2	2	2	3	-	3	3	1	2	3	2	3
CO5	3	3	3	2	3	2	2	-	-	2	2	3	3	3	3
18LPE004	3	3	3	2	2	2	2	-	2	2	1	2	3	2	3

18LPE005	STATISTICAL THEORY OF COMMUNICATION	L	Τ	Р	С
		2	1	0	3
OBJECTI	/ES:				
• The commodul	burse presents a unified approach to the problem of detection, es ationtheory, which are common tools used in many application unication systems, signalprocessing and system theory.	stim s of	atio	n anc	l

- The goal is to develop decision, estimation and modulation theories to demonstrate how they can beused to solve a wealth of practical problems in many diverse physical situations.
- The idea is to develop a qualitative understanding of these three areasby examining problems of interest.

UNIT I	CLASSICAL DETECTION THEORY	ON AND ESTIMATION	6+3								
Introduction – Composite hy approximation	Simple binary hypothesis test pothesis – General Gaussian s.	s – M Hypothesis – Estimation theon n problem – Performance bounds	ory – and								
UNIT II	REPRESENTATIONS O	F RANDOM PROCESSES	6+3								
Deterministic Homogeneous interval: Spect	functions: Orthogonal representa Integral equations and Eigen fu cal decomposition – Vector Rand	tions – Random process characterizat nctions – Periodic processes – Infinite om processes.	ion – time								
UNIT III	UNIT IIIDETECTION OF SIGNALS – ESTIMATION OF6+3SIGNAL PARAMETERS6+3										
Detection and Estimation in White Gaussian and Non-White Gaussian noise – Signals with unwanted parameters: The Composite hypothesis problem – Multiple channels – Multiple parameter estimation.											
UNIT IV	ESTIMATION OF CONT	ΓINUOUS WAVEFORMS	6+3								
Derivation of Multidimensio	Estimator equations – A Lower b nal waveform estimation – Non r	bound on the mean square estimation en andom waveform estimation.	rror —								
UNIT V	LINEAR ESTIMATION		6+3								
Properties of C past: Wiener f Fundamental r	Optimum processors – Realizable lters – Kalman-Bucy filters – Lin ole of the Optimum linear filter.	Linear filters: Stationary processes, In near Modulation: Communications con	finite text –								
		TOTAL : 45 PERIODS									
OUTCOME	Upon the ability to	course completion, the student will h	ave the								
1. De	velop decision and estimation the	ories.									
2. An	Analyze different representations of random processes.										
3. De	Describe the detection and estimation of signals.										
4. An	alyze the estimation of continuou	s waveforms.									
5. De	sign linear estimation methods.										

TEXT B	OOKS:											
1.	P. Eugene Ltd. Publis	Xavier, "Statistical theory of Communication", New Age International hers, New Delhi, 2007										
2.	Yuk-Wing	Yuk-Wing Lee "Statistical theory of communication", Literary Licensing LLC, 2013										
REFERI	ENCES:											
1.	Prof. B.R. Publishers,	<i>Levin, "Statistical communication theory and its applications", MIR</i> <i>Moscow, 1982</i>										
2.	Carl W.He Elsevier.	elstrom, "Statistical theory of signal detection", Second edition,										
3.	Robert M communica	Fano, "Transmission of information a statistical theory of tion", IT , Press.										
4.	Harry L. Vo Edition 2, J	an Trees, "Detection, Estimation and Modulation theory"– Part I/ JohnWiley & Sons, NY, USA, 2013.										
5.	S P Eugene	Xavier, "Statistical theory of Communication" Paperback – 2007.										

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	1	-	-	-	1	-	-	-	2	-	3	2	-
CO2	3	2	-	-	-	-	-	-	-	-	-	-	2	-
CO3	2	1	-	-	2	-	-	-	-	1	1	3	2	-
CO4	2	2	1	-	1	2	1	-	-	-	-	1	2	-
CO5	1	2	2	-	1	1	2	-	-	2	-	2	2	-
18LPE005	3	2	1	-	2	2	1	-	-	-	1	1	1	-

1-LOW 2-MODERATE (MEDIUM) 3-HIGH

18LPE006	SPREAD SPECTRUM TECHNIQUES	L	T
----------	----------------------------	---	---

OBJECTIVES

•	To introduce the spread spectrum and its basic applications in communication.
•	Over the years, the most successful implementation of spread spectrum communication in commercial world lies in CDMA 2000, WCDMA and UMTS,
	WLAN, Ultra Wideband Communications (UWB)

• To expose the students about the fundamental of optical communication

UNIT I 3G OVERVIEW & 2.5G EVOLUTION

9

9

9

Migration path to UMTS, UMTS Basics, Air Interface, 3GPP Network Architecture, TD-CDMA, TD-SCDMA, IS-95, IMT-2000: Third generation Mobile Communication Systems, W-CDMA, CDMA-2000, EDGE.

UNIT II SPREAD SPECTRUM CONCEPTS

Spread Spectrum Modulation- Pseudo- noise sequences –a notion of spread spectrum – Direct sequence spread spectrum with coherent binary phase shift keying – Signal space Dimensionality and processing gain – Probability of error – Frequency –hop spread spectrum –Maximum length and Gold codes.

UNIT III OPTICAL CDMA

Introduction; Optical CDMA codes - Construction of Coherent and Incoherent Codes, Performance Analysis and Comparison of Coherent and Incoherent Codes, Advanced Incoherent Codes, Information Capacity of Fiber-Optical CDMA Systems, Advanced Coding Techniques for Performance Improvement.

UNIT IV COHERENT AND INCOHERENT OPTICAL CDMA SYSTEMS

9

Introduction, Coherent OCDMA Approaches, Subsystem Technologies, Code Selection for SPC-OCDMA, OCDMA Network Architectures for SPC-OCDMA - WHTS System Architecture, Technologies for WHTS OCDMA.

UNIT V OPTICAL CDMA ARCHITECTURES

Hybrid Multiplexing Transmission System, Photonic Gateway: Multiplexing Format Conversion, OCDMA/WDM Virtual Optical Path Cross Connect, Optical CDMA network

archited	ctures and applic	ations-Local Area Networks.									
		TOTAL: 45 PERIODS									
OUTO	COMES	Upon the course completion, the student will have the ability to									
1.	Interpret the Sp	pread Spectrum Concepts									
2.	Describe the 30	G technology									
3.	Acquaint with	the concepts of Optical CDMA and its architecture.									
4.	Describe the ba	Describe the basic concept of wireless communication system.									
5.	OCDMA is a promising technology for next generation ultra high speed, cost effective broadband access network.										
ТЕХТ	BOOKS:										
1.	S. Haykin, "	Digital Communications", John Wiley, 2005									
2.	Clint Smith McGraw H	. P.E., and Daniel Collins, "3G Wireless Networks", 2nd Edition, Tata ill, 2007.									
3.	Paul R. Pru Application	cnal, "Optical Code Division Multiple Access- Fundamentals and as", Taylor & Francis Ltd; Har/Cdr edition, 2005.									
REFE	RENCES:										
1.	Guu-Chang Ontical and	Yang & Wing C. Kwong, "Prime Codes with Applications to CDMA Wireless Networks", Artech House, 2002									
2.	Vijay. K. G Publishers.	arg, "Wireless Communication and Networking", Morgan Kaufmann http://books.elsevier.com/9780123735805:, 2007									
3.	Don Torri Springer 2	ieri, "Principles of Spread-Spectrum Communication Systems", 004									
4.	RajPandya, New Delhi	"Mobile and Personal Communication systems and services", PHI, 2003									
5.	ShlomiArna Uysal"Adva University I	on, John R. Barry, George K. Karagiannidis, Robert Schober, Murat unced Optical Wireless Communication Systems" Cambridge Press 2012									

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	3	-	-	-	-	-	1	2	2	3	-	-	3	-	-
CO2	3	2	2	3	3	-	-	-	-	-	2	2	1	1	
CO3	2		3	3	1	1	-	-	1	2	2	1	2	3	3
CO4	3	3	2	-	-	-	2	2	3	1	1		3	-	-
CO5		2	2	3	1	3	2		3	3	1	1	-	-	3
1-LO	W	2.	-MOD	ERAT	E (MF	EDIUN	<i>I</i>) ′	3-HIG	Н						

1-LOW

2-MODERATE (MEDIUM)

18LPE007	COMMUNICATION ELECTRONIC CIRCUITS	L	T	Р	С
		3	0	0	3

OBJECTIVES:

- To understand the operation of different blocks in communication system
- Familiarize with different oscillators, modulators, filters, amplifiers, synthesizers. •
- To study about link characteristics and microwave components.

UNIT I

OSCILLATORS AND MODULATION SYSTEMS

9

Oscillators: Principle, types-RC, LC, crystal oscillator, frequency stability. Modulation: Analog and digital modulation techniques.

UNIT II **FILTERS AND TUNED AMPLIFIER**

9

9

Passive and active filter, First order and second order low pass and high pass filter, Band pass filter, Switched capacitor filter, Notch filter, Selecting components for filter, Testing filter response. Tuned circuits

UNIT III

POWER AMPLIFIER

Transistor characteristics, small signal voltage amplifier, power amplifier types, power and efficiency calculation, integrated circuit power amplifier, radio frequency power amplifier, measurement.

UNIT IV PHASE LOCKED LOOPS AND SYNTHESIZERS

Phase locked loop elements, compensation, Integrated phase locked loops, PLL design using HCC4046B, frequency synthesis.

UNIT V MICROWAVE DEVICES AND COMPONENTS

9

9

Phase delay, propagation velocity, propagation constant, secondary constant, transmission line distortion, wave reflection, reflection coefficient, SWR, wave guide characteristics, microwave passive components-directional coupler, waveguide junction, cavity resonator, probes, circulators and isolators, microwave active devices- solid state devices, microwave tubes, multicavity magnetrons.

				TOTAL : 45 PERIODS						
OUTO	COMES		Upon the course ability to	completion, the student will have the						
1.	Explain the ope	eration of	different oscillators	and modulation techniques.						
2.	Compare differ	rent filters	and amplifiers.							
3.	Discuss about t	the design	of power amplifiers							
4.	Explain the ope	eration of	phase locked loops a	and frequency synthesizers.						
5.	Describe about	the prope	rties of links and mi	crowave components.						
ТЕХТ	BOOKS:									
1.	Andrew Leven, Heinemann	, "Telecon	imunication Circuits	and Technology", Butterworth						
2.	Donald O. Pete Communication	rson, Kart n Principle	ikeya Mayaram, "Anes, Simulation and De	nalog Integrated Circuits for esign" Second Edition, Springer, 2010.						
REFE	RENCES:									
1.	Cornell Drentte Artech House,2	a, "Moder 2010	n Communications R	Receiver Design and Technology",						
2.	Sedra and Smit 2011.	h, "Micro	Electronic Circuits",	Sixth Edition, Oxford University Press,						
3.	B.S. Sonde, "Sy Pub,2001.	estem Desi	gn using Integrated (Circuits", 2nd Edition, New Age						
4.	Scott R. Bulloci	k, "Transc	ceiver and system design for digital communication" 3rd							

Edition, Scitech Publishing.

	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	1	-	-	-	-	-	-	-	2	2	2	2
CO2	3	2	3	1	-	-	-	-	-	-	-	2	2	2	2
CO3	3	2	3	-	2	-	-	-	-	-	-	2	3	3	2
CO4	3	2	3	1	-	-	-	-	-	-	-	2	2	2	2
CO5	3	2	3	-	2	-	-	-	-	-	-	2	3	3	2
18LPE018	3	2	3	1	1	-	-	-	-	-	-	2	2	2	2

1-Low 2—Moderate (Medium) 3-High

18LPE008	TELECOMMUNICATION SWITCHING NETWORKS	L	T	Р	С							
		3	0	0	3							
OBJECTIV	OBJECTIVES:											
•	• Student can understand the concept of switching, signaling and traffic in the telecommunications networks environment.											
•	• To acknowledge the facilities, multiplexing, and modulation techniques used in long-distance backbone networks,											
•	To understand the ISDN architecture, high data rate digital su	bscri	ber	loops	3							
UNIT I	MULTIPLEXING				9							
Transmission	Systems, FDM Multiplexing and modulation, Time Division	Mu	ltiple	exing	,,							
Digital Transn	nission and Multiplexing: Pulse Transmission, Line Coding, H	Bina	y N	-Zer	O							
Substitution, I	Digital Biphase, Differential Encoding, Time Division Multiple	plex	ing,	Tim	e							
Division Mult	iplex Loops and Rings, SONET/SDH: SONET Multiplexi	ng (Over	view	,							
SONET Frame	e Formats, SONET Operations, Administration and Mainten	ance	, Pa	yloa	t							
Framing and	Frequency Justification, Virtual Tributaries, DS3 Payload	Map	ping	g, E4	4							
Payload Map	ping, SONET Optical Standards, SONET Networks. SO	ONE	ΤF	Rings	:							

UNIT II

DIGITAL SWITCHING

Unidirectional Path-Switched Ring, Bidirectional Line-Switched Ring.

9

Switching Functions, Space Division Switching, Time Division Switching, two dimensional Switching: STS Switching, TST Switching, No.4 ESS Toll Switch, Digital Cross-Connect Systems, Digital Switching in an Analog Environment. Elements of SS7 signaling.

UNIT III NETWORK SYNCHRONIZATION CONTROL AND MANAGEMENT

Timing: Timing Recovery: Phase-Locked Loop, Clock Instability, Jitter Measurements, Systematic Jitter. Timing Inaccuracies: Slips, Asynchronous Multiplexing, Network Synchronization, U.S. Network Synchronization, Network Control, Network Management.

UNIT IV DIGITAL SUBSCRIBER ACCESS

9

9

9

ISDN: ISDN Basic Rate Access Architecture, ISDN U Interface, ISDN D Channel Protocol. High-Data-Rate Digital Subscriber Loops: Asymmetric Digital Subscriber Line, VDSL. Digital Loop Carrier Systems: Universal Digital Loop Carrier Systems, Integrated Digital Loop Carrier Systems, Next-Generation Digital Loop Carrier, Fiber in the Loop, Hybrid Fiber Coax Systems, Voice band Modems: PCM Modems, Local Microwave Distribution Service, Digital Satellite Services.

UNIT V

TRAFFIC ANALYSIS

Traffic Characterization: Arrival Distributions, Holding Time Distributions, Loss Systems, Network Blocking Probabilities: End-to-End Blocking Probabilities, Overflow Traffic, Delay Systems: Exponential service Times, Constant Service Times, Finite Queues.

TOTAL:45PERIODS

OUTCO	OMES	Upon the course completion, the student will have the ability to										
1.	Analyze the different n	nultiplexing methods.										
2.	Summarize the conce	pts associated with telecommunication digital switching										
3.	Describe the network s	synchronization control and management schemes.										
4.	Explain the different types of digital subscriber access.											
5.	Analyze the traffic man	Analyze the traffic management in telecommunication networks										
TEXT I	BOOKS:											
1.	J. Bellamy, "Digital T	elephony", John Wiley, 2003, 3rd Edition.										
2.	Viswanathan. T., "Te Prentice Hall of India	elecommunication Switching System and Networks", a Ltd., 1994.										
3.	J.E Flood, "Telecom	munications Switching, Traffic and Networks", Pearson.										
REFER	ENCES:											

1.	R.A.Thomson, "Telephone switching Systems", Artech House Publishers, 2000
2.	W. Stalling, "Data and Computer Communications", Prentice Hall, 1993.
3.	T.N.Saadawi, M.H.Ammar, A.E.Hakeem, "Fundamentals of Telecommunication Networks", Wiley Interscience, 1994.
4.	<i>W.D. Reeve, "Subscriber Loop Signaling and Transmission Hand book", IEEE Press(Telecomm Handbook Series), 1995.</i>

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	3	3	2	1	2	2	-	3	3	2	2	3	3	3
CO2	2	2	2	2	1	2	1	-	2	3	2	3	3	2	2
CO3	3	3	1	2	3	3	1	-	3	3	2	3	3	2	3
CO4	3	2	2	3	2	2	2	-	2	3	3	3	3	2	2
CO5	2	2	3	2	2	3	1	-	3	3	2	2	3	3	3

1-LOW 2-MODERATE (MEDIUM)

3-HIGH

18LPE009	SOFTWARE DEFINED RADIO L T												
		3	0	0	3								
OBJECTIV	'ES:												
•	Know the basics of the software defined radios.												
•	Learn the design of the wireless networks based on the cognitive radios												
•	Understand the concepts of wireless networks and next generation networks												
UNIT I	INTRODUCTION TO SOFTWARE DEFINED RADIO												
Definitions ar tradeoffs and a	nd potential benefits, software radio architecture evolution rchitecture implications.	n, te	echn	olog	у								

UNIT II	SDR ARCHITECTURE	9									
Essential functions of the software radio, basic SDR, hardware architecture, Computational processing resources, software architecture, top level component interfaces, interface topologies among plug and play modules											
UNIT III	INTRODUCTION TO COGNITIVE RADIOS	9									
Marking radio self-aware, cognitive techniques – position awareness, environment awareness in cognitive radios, optimization of radio resources, Artificial Intelligence Techniques.											
UNIT IV	COGNITIVERADIOARCHITECTURE	9									
Cognitive Radio - functions, components and design rules, Cognition cycle - orient, plan, decide and act phases, Inference Hierarchy, Architecture maps, Building the Cognitive Radio Architecture on Software defined Radio Architechture.											
UNIT V	NEXT GENERATION WIRELESS NETWORK	9									
The XG mobility, sp	Network architecture, spectrum sensing, spectrum management, spec bectrum sharing, upper layer issues, cross – layer design.	trum									
	TOTAL : 45 PERIODS										
OUTCON	MES Upon the course completion, the student will have ability to	ave the									
1.	Describe the basics of the software defined radios.										
2.	Analyze the architecture of SDR										
3.	Design the wireless networks based on the cognitive radios										
4.	Analyze the architecture of Cognitive radio										
5.	Explain the concepts behind the wireless networks and next generation networks										
TEXT BO	DOKS:										
1.	JosephMitolaIII,"Software Radio Architecture: Object-Oriented Approad Wireless System Engineering", John Wiley & Sons Ltd. 2000.	ches to									
2.	ThomasW.Rondeau, Charles W. Bostain, "Artificial Intelligence in W communication", ARTECH HOUSE .2009.	Vireless									
3.	Bruce A. Fette, "Cognitive Radio Technology", Elsevier, 2009.										
4.	Ian F. Akyildiz, Won – Yeol Lee, Mehmet C. Vuran, Shantidev Mohanty generation / dynamic spectrum access / cognitive radio wireless networks: A S	, "Next Survey"									

	Elsevier Com	puter Networks, May 2006.									
REFERI	ENCES:										
1.	SimonHayki	n, "Cognitive Radio: Brain – Empowered Wireless Communications",									
	IEEE Journe	al on selected areas in communications, Feb 2005.									
2.	HasariCeleb	HasariCelebi, Huseyin Arslan, "Enabling Location and Environment Awareness									
	in Cognitive	Radios", Elsevier Computer Communications, Jan 2008.									
3.	Markus Dill	inger, KambizMadani, Nancy Alonistioti, "Software Defined Radio",									
	John Wiley,	2003.									
4.	Huseyin Ars	lan, "Cognitive Radio, SDR and Adaptive System", Springer, 2007.									
5.	Alexander M	I. Wyglinski, Maziarnekovee, Y. Thomas Hu, "Cognitive Radio									
	Communicat	tion and Networks", Elsevier, 2010.									

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	3	1	-	-	-	2	1	-	-	-	-	3	-	-
CO2	1	-	-	3	1	1	2	2	2	-	-	-	3	2	-
CO3	2	-	1	2	1	1	1	-	-	-	-	1	1	-	2
CO4	-	3	2	1	-	3		1	1	1	-	-	1	-	3
CO5	3	3	1	1	3	-	-	-	-	-	2	-	-	-	3
1-L0	W	2	-MOD	ERAT	E (MI	EDIUN	()	3-HIG	Н						

18LPE010	AUTOMOTIVE ELECTRONIC SYSTEMS	L	Т	Р	С
		2	•	•	2

UNIT I FUNDAMENTAL OF AUTOMOTIVE **ELECTRONICS**

9

9

Current trends in modern Automobiles- Open loop and closed loop systems - Components for electronic engine management- Electronic management of chassis system - Vehicle motion control.

UNIT II SENSORS AND ACTUATORS

Introduction, basic sensor arrangement types of sensors such as - oxygen sensors Crank angle position sensors - Fuel metering / vehicle speed sensor and detonation sensor -Altitude sensor, flow sensor Throttle position sensors, solenoids, stepper motors, relays.

UNIT III ELECTRONIC FUEL INJECTION AND IGNITION SYSTEMS

9

Introduction Feedback carburettor systems (FBC) Throttle body injection and multi-port or point fuel injection, Fuel injection systems, injection system controls

UNIT IV **ELECTRONIC IGNITION SYSTEMS**

9

Introduction Advantages of electronic ignition systems. Types of solid state ignition systems and their principle of operation Contactless electronic ignition system, Electronic spark timing control.

UNIT V

DIGITAL ENGINE CONTROL SYSTEM

9

Open loop and closed loop control systems Engine cranking and warm up control Acceleration enrichment - Deceleration leaning and idle speed control Distributor less ignition - Integrated engine control system Exhaust emission control engineering.

			TOTAL: 45 PERIODS
OUTCO	OMES	Upon the course ability to	e completion, the student will have the
1.	Apply the fundamentals of a	automotive electron	iics.
2.	Design sensors and actuato	ors.	

3.	Analyze electronic fuel injection and ignition system.									
4.	Describe electronic ignition system.									
5.	Design and Implement a digital engine control system.									
TEXT B	OOKS:									
1.	William B.Riddens, "Understanding Automotive Electronics ", 5th Edition, Butterworth, Heinemann Woburn, 1998.									
2.	Fom Weather Jr and Cland C.Hunter, " Automotive Computers and Control System ". Prentice Hall Inc., New Jersey.									
3.	T.Mellard, " Automotive Electronics ".									
REFER	ENCES:									
1.	Crouse. W.H., "Automobile Electrical equipment ", McGraw Hill Book Co Inc., New York, 1955.									
2.	Robert N Brady, "Automotive Computers and Digital Instrumentation ". A reston Book. Prentice Hall, Eagle Wood Cliffs, New Jersey, 1988.									
3.	Bechtold., " Understanding Automotive Electronic ", SAE, 1998.									
4.	Young. A.P. and Griffths.L. " Automobile Electrical Equipment ", English Language Book Society and New Press.									

	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	3	-	-	-	-	-	-	-	-	-	-	-	3	-	-
CO2	-	2	3	-	-	-	-	-	-	-	-	-	-	2	-
CO3			2	3	-	-	2	-	-	-	-	-	-	3	
CO4	2	2	2	3	3	2	-	-	-	-	-	-	-	3	3
CO5	1	3	3	2	3	2	2	2	2	2	2	-	-	2	3
1-LOW 2-MODERATE (MEDIUM)						3-HI	GH		•		•	•	•	•	

L	Т	Р	С
3	0	0	3

OBJECTIVES:

•	To expose the students to the basics of the display systems and to illustrat current design practices of the display systems	te the
•	To gain exposure in the basics of the display systems.	
•	To illustrate the current design practices of the display systems.	

UNIT I INTRODUCTION

9

9

9

9

9

Introduction to displays-Requirements of displays-Display technologies, CRT, Flat panel and advanced display technologies-Technical issues indisplays.

UNIT II HEAD MOUNTED DISPLAY

Head mounted displays. Displays less than and greater than 0.5 m diagonal. Low power and light emitting displays.

UNIT III TFT, MIMS, LCD

Operation of TFTs and MIMS. LCDs, Brightness. Types of LCDdisplays.

UNIT IV EMISSIVE DISPLAYS

Emissive displays, ACTFEL, Plasma display and Field emission displays, operating principle and performance.

UNIT V TYPES OF DISPLAYS

Types of Displays: 3D, HDTV, LED, Touchscreen.

TOTAL : 45	PERIODS
-------------------	---------

OUTCOMES		Upon the course completion, the student will have the ability to				
1.	Gains knowledge of technical requirements of different types of display systems.					
2.	Analyze the various low power system.					
3.	Understand the operation	of TFTs and LCD display.				

4.	Analyze the	Analyze the various kinds of emissive displays.										
5.	Describe the types of displays.											
TEXT B	OOKS:											
1.	L.W. Mack Wiley,2003	konald& A.C. Lowe, Display Systems, Design and Applications,										
2.	E.H. Stupp&	E.H. Stupp&M. S. Brennesholtz, Projection Displays, Wiley, 1999.										
3.	Peter A. Keller, Electronic Display Measurement: Concepts, Techniques, and Instrumentation, Wiley-Interscience, 1997.											
REFERI	ENCES:											
1.	YoshimosoA	.Ono, "Electroluminescent Displays" World Scientific Publishers.										
2.	Shoichimats	sumoto, "Electronic display devices "Wiley publications.										
3.	Deng Keyan &Sons ,2000	ng ,ShinTson Wu, "Fundamentals of liquid crystal devices" ,John Wiley 6.										
4.	J. Pankove,	"Display Devices", Springer.										
5.	Janglin Ch Technology	en, Wayne Cranton, Mark Fihn , "Handbook of Visual Display", Springer Publication.										

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	3	1	-	-	-	2	1	-	-	-	-	3	-	-
CO2	1	3	1	1	2	2	2	1	-	-	-	-	3	2	-
CO3	1	1	-	2	2	-		2	2	1	1	1	1	-	2
CO4	3	3	2	1	1	-	1	1	-	-	2	-	1	-	3
CO5	3	2	2	-	-	2	3	3	2	3	1	-	-	-	3
1-L0	1-LOW 2-MODERATE (MEDIUM) 3-HIGH														

18LPE	DIGITAL SPEECH PROCESSING L T										
		2 1									
OBJECTIVES											
• To introduce speech production and related parameters of speech.											
• To show the computation and use of techniques such as short time Fourier transform linear predictive coefficients and other coefficients in the analysis of speech.											
• T	o und	erstand di	fferent types of speech coding and synthesis method	.S							
UNIT I		INTRO	DUCTION			6	<u>5</u> +3				
TheSpeech Chain, Applications of Digital Speech Processing, Phonetic Representation Speech, Models for Speech Production, Hearing and Auditory Perception											
UNIT I	Ι	SPEEC	CH ANALYSIS			6	<u>5</u> +3				
Short-Tir	ne An	alysis of S	Speech, Homomorphic Speech Analysis, Linear Predic	ctive	Ana	lysis	3				
UNIT I	II	DIGIT	AL SPEECH CODING			6	<u>5</u> +3				
Sampling Loop Coo	g and ders, H	Quantizat: Frequency	ion of Speech, Digital Speech Coding, Closed-Loop -Domain Coders, Evaluation of Coders	Code	ers, (Open	1-				
UNIT I	V	TEXT	TO SPEECH SYNTHESIS METHODS			6	<u>5</u> +3				
Text Ana Applicati	alysis. .ons, 7	, Evolutio	on of Speech Synthesis Systems, Unit Selection Needs	Meth	ods,	TT	S				
UNIT V	V	AUTO	MATIC SPEECH RECOGNITION			6	ó+3				
Building Recognit	a Spo ion Pe	eech Reco	ognition System, The Decision Processes in ASR, Te, Challenges in ASR Technology	Repr	esen	tativ	e				
			TOTAL : 45 PER	ΙΟΓ	DS						
OUTCO	OME	2S	Upon the course completion, the student will have the	ie ab	ility	to					
1. 7	Fo une	derstand t	he role of DSP in speech communication								
2.	To understand the methods of representing the speech in digital form										
3. 1	Го und	erstand th	e different types of coding techniques used for digital spe	ech I	oroce	essing	3				

18LPE012

4.	Acquire knowledge about different types of speech synthesis methods									
5.	Acquire knowledge about automatic synthesis and recognition of speech									
ТЕХТ	BOOKS:									
1.	Lawrence Rabiner and Biing-Hwang Juang, "Fundamentals of Speech Recognition", Pearson Education, 2003.									
2.	Thomas F Quatieri, "Discrete-Time Speech Signal Processing – Principles and Practice", Pearson Education, 2004.									
REFE	CRENCES:									
1.	Daniel Jurafsky to Natural Lang Pearson Educati	and James H Martin, "Speech and Language Processing – An Introduction uage Processing, Computational Linguistics, and Speech Recognition", ion, 2002.								
2.	Frederick Jeline	k, "Statistical Methods of Speech Recognition", MIT Press, 1997								
3.	Steven W. Smith, California Techr	""The Scientist and Engineer's Guide to Digital Signal Processing", nical Publishing, 1997.								
4.	Claudio Becchet	ti and LucioPrinaRicotti, "Speech Recognition", John Wiley and Sons, 1999.								
5.	Ben Gold and N Perception of Sp	elson Morgan, "Speech and Audio Signal Processing, Processing and neech and Music", Wiley- India Edition, 2006.								

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	2	2	2	2	1	1	3	1	2	2	1	2	2
CO2	2	2	2	2	2	3	1	1	3	1	2	2	2	2	2
CO3	2	2	2	3	3	3	1	1	3	1	2	3	3	2	2
CO4	2	2	2	3	3	3	1	1	3	1	2	3	3	2	2
CO5	2	2	2	3	3	3	1	1	3	1	2	3	3	2	2
18LPE012	2	2	2	3	3	3	1	1	3	1	2	3	3	2	2

1	8 T	Р	Ē	01	3
-			-	U I	

ADVANCED DIGITAL SIGNAL PROCESSING

0

2 1

OBJECTIVES:

- Exposure to concepts of random processes and spectrum estimation •
- To familiarize the concepts of linear estimation and prediction
- To introduce adaptive filters and wavelet transforms ٠

UNIT I DISCRETE-TIME RANDOM SIGNALS

6+3

Discrete random process - Ensemble averages, Stationary and ergodic processes, Autocorrelation and Autocovariance properties and matrices, White noise, Power Spectral Density, Spectral Factorization, Innovations Representation and Process, Filtering random processes, ARMA, AR and MA processes.

UNIT II

SPECTRUM ESTIMATION

Bias and Consistency, Periodogram, Modified periodogram, Blackman-Tukey method, Welch method, Parametric methods of spectral estimation, Levinson-Durbin recursion.

UNIT III LINEAR ESTIMATION AND PREDICTION

6+3

6+3

6+3

Forward and Backward linear prediction, Filtering - FIR Wiener filter- Filtering and linear prediction, non-causal and causal IIR Wiener filters, Discrete Kalman filter.

UNIT IV ADAPTIVE FILTERS

Principles of adaptive filter – FIR adaptive filter – Newton's Steepest descent algorithm – LMS algorithm - Adaptive noise cancellation, Adaptive equalizer, Adaptive echo cancellers.

UNIT V WAVELET TRANSFORM 6+3

Multiresolution analysis, Continuous and discrete wavelet transform, Short Time Fourier Transform, Application of wavelet transform, Cepstrum and Homomorphic filtering.

			TOTAL	: 45	5 PERI	[OD	S	
OUTCOMES	Upon the co ability to	ourse c	completion,	the	student	will	have	the

1.	Understand the concepts of random processes						
2.	Compare differ	rent methods of spectrum estimation.					
3.	Gain knowled	Gain knowledge on linear estimation and prediction					
4.	Understand different adaptive filtering techniques and the applications of adaptive filtering.						
5.	Learn about w	avelet transform					
TEXT BOOKS:							
1.	1. Monson H, Hayes, "Statistical Digital Signal Processing and Modeling", John Wiley an Sons Inc., New York, Indian Reprint, 2007.						
2.	John G.Pro Fourth 2007	pakis, Dimitris G. Manolakis, "Digital Signal Processing", Pearson,					
REFE	CRENCES:						
1.	Sophocles J Graw Hill,	I. Orfanidis, "Optimum Signal Processing, An Introduction", Mc 1990.					
2.	Oppenheim Processing	, A. V., R. W. Schafer, and J. R. Buck. "Discrete-Time Signal ", 2nd ed. Prentice Hall					
3.	Dwight F. I	Dwight F. Mix, "Random Signal Processing", Prentice Hall, 1995.					
4.	McClellan, J. H., et al. Computer-Based Exercises for Signal Processing Using MATLAB® 5. Prentice Hall, 1998						
5.	Crochiere, Processing.	Ronald E., and Lawrence R. Rabiner. Multirate Digital Signal Prentice Hall, 1983					

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	-	2	1	-	-	-	-	-	-	2	2	-	1
CO2	3	2	1	1	1	-	-	-	-	-	-	2	2	1	2
CO3	2	1	2	1	2	-	-	-	-	-	-	2	2	1	1
CO4	2	2	2	1	2	-	-	-	-	-	-	2	2	2	2
CO5	2	2	1	2	-	-	-	-	-	-	-	2	1	-	2
18LPE013	2	2	1	1	1	-	-	-		-	-	2	-	1	2

1-Low 2—Moderate (Medium) 3-High

18LPE014

DSP ARCHITECTURES AND PROGRAMMING

L	Т	Р	С
3	0	0	3

COURSE OBJECTIVES:

- Understand the basics of Programmable DSP's Architecture, On-chip Peripherals and Instruction set.
- To gain the knowledge of programming for signal processing applications.
- Learn the concepts of adaptive filter.

UNIT I INTRODUCTION TO DSP PROCESSOR

9

9

9

9

9

Introduction to a popular DSP from Texas Instruments TMS320C6XXX– CPU Architecture (VLIW) - CPU Data Paths and Control - Timers - Internal Data/ Program Memory - External Memory Interface ,Difference between fixed and floating point processors.

UNIT II DSP DEVICES

DSP devices beyond the core, TI C6xxx EVM memory configuration, wait state generator, DMA, Hardware interfacing and I/O control, System management and control.

UNIT III PROGRAMMING

Programming - Linear and Circular Addressing Modes, Assembly code format, Types of Instructions, Assembler directives Code Composer Studio - Code Generation Tools (Compiler, Assembler, Linker) - Code Composer Studio Debug Tools – Simulator.

UNIT IV A

ADAPTIVE FILTERING

Adaptive filtering Introduction to adaptive filters, adaptive filter structures and algorithms, Properties of adaptive filters, Applications, Adaptive filtering in C using floating-point processors

UNIT V SHARC DIGITAL SIGNAL PROCESSOR

Sharc Digital Signal Processor: A popular DSP from Analog Devices - Sharc/ Tiger Sharc/ Blackfin (one of them) - Architecture - IOP Registers - Peripherals - Synchronous Serial Port - Interrupts - Internal/External/Multiprocessor Memory Space - Multiprocessing - Host Interface - Link Ports.

		TOTAL :45 PERIODS						
COURS	E OUTCOMES:	Upon the course completion, the student will have the ability to						
1.	Describe about DSP Pre-	ocessor.						
2.	. Analyze the different DSP devices.							
3.	Write DSP programs for different applications.							
4.	Explain the adaptive filtering and its applications.							
5.	Utilize Sharc DSP proc	essor.						
TEXT B	OOKS:							
1.	1.Naim Dahnoun, "Digital Signal Processing Implementation" Using the TMS320C6000DSP Platform, 1st Edition, 2000.							
2.	2. Sen M Kuo, Woon- Seng S Gan, "Digital Signal Processors Architectures, Implementations and Applications", Pearson Education.							
3.	David J Defatta J, Processing:A System	Lucas Joseph G & Hodkiss William S, Digital Signa Design Approach, 1st Edition, John Wiley						
REFER	ENCES:							
1.	B.Venkataramani, M. Implementations and	Bhaskar, " Digital Signal Processors Architectures, Applications", 2nd Edition, Tata McGraw-Hill.						
2.	<i>Rulph Chassaing, "DSP Applications using 'C' and the TMS320C6X DSK", 1st Edition, 2002.</i>							
3.	Phil Lapsley, Jeff Bier, Amit Shoham, Edward A.Lee"DSP Processor Fundamentals: Architectures and Features", A Volume in the IEEE Press Series on Signal Processing.							
4.	T.J. Terrel and Lik-Kwan Shark, "Digital Signal Processing" - A Student Guide, 1st Edition; Macmillan Press Ltd.							
5.	Andrew Bateman, Iain Applications and Des	n Paterson-Stephens, "The DSP Handbook – Algorithms, ign Techniques", Pearson Education.						

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	1	2	1	-	-	-	-	1	1	3	2	2
CO2	3	2	2	2	2	1	-	-	-	-	2	2	3	2	3
CO3	3	2	2	3	3	1	-	-	-	-	3	3	3	2	3
CO4	3	2	2	1	1	1	-	-	-	-	2	2	3	2	2
CO5	3	2	2	2	2	1	-	-	-	-	1	1	3	2	2
18LPE014	3	2	2	2	2	1	-	-	-	-	2	2	3	2	2

18LPE015	DIGITAL IMAGE PROCESSING	L	Т	Р	С			
		3	0	0	3			
Objectives:								
• Unders	Understand fundamental of digital image							
• Learn d	Learn different image transforms							
• Study c	concept of segmentation							
UNIT I	DIGITAL IMAGE FUNDAMENTALS				9			
Introduction -	Origin - Steps in Digital Image Processing - Components -	- El	emei	nts o	f			
Visual Percept	ion – Image Sensing and Acquisition – Image Sampling and C	Quan	tizat	tion -	_			
Relationships between pixels - color models.								
UNIT II IMAGE ENHANCEMENT								

Spatial **Domain:** Gray level transformations – Histogram processing – Basics of Spatial Filtering–Smoothing and Sharpening Spatial Filtering – **Frequency Domain:** Introduction to Fourier Transform – Smoothing and Sharpening frequency domain filters – Ideal, Butterworth and Gaussian filters

UNIT III IMAGE RESTORATION AND SEGMENTATION

9

Noise **models** – Mean Filters – Order Statistics – Adaptive filters – Band reject Filters – Band pass Filters – Notch Filters – Optimum Notch Filtering – Inverse Filtering – Wiener filtering **Segmentation:** Detection of Discontinuities–Edge Linking and Boundary detection – Region based segmentation- Morphological processing- erosion and dilation.

UNIT IV WAVELETS AND IMAGE COMPRESSION

9

Wavelets – Subband coding - Multiresolution expansions - **Compression:** Fundamentals – Image Compression models – Error Free Compression – Variable Length Coding – Bit-Plane Coding – Lossless Predictive Coding – Lossy Compression – Lossy Predictive Coding – Compression Standards.

UNIT V IMAGE REPRESENTATION AND RECOGNITION

9

Boundary representation – Chain Code – Polygonal approximation, signature, boundary segments – Boundary description – Shape number – Fourier Descriptor, moments- Regional Descriptors –Topological feature, Texture - Patterns and Pattern classes - Recognition based on matching.

				TOTAL : 45 PERIODS					
OUTCO	OMES		Upon the course ability to	Upon the course completion, the student will have the ability to					
1.	Discuss digi	tal image fund	amentals.						
2.	Apply image enhancement and restoration techniques.								
3.	Use image compression and segmentation Techniques.								
4.	Represent features of images								
5.	Recognize image from featues.								
TEXT B	OOKS:								
1.	Rafael C. (Pearson Edu	Gonzales, Ric cation, 2010.	hard E. Woods, "l	Digital Image Processing", Third Edition,					
2.	2. Anil Jain K. "Fundamentals of Digital Image Processing", PHI Learning Pvt. Ltd 2011.								
3.	Willliam K Pratt, "Digital Image Processing", John Willey, 2002.								
REFER	ENCES:								

1.	Rafael C. Gonzalez, Richard E. Woods, Steven L. Eddins, "Digital Image
	Processing Using MATLAB", Third Edition Tata Mc Graw Hill Pvt. Ltd., 2011.
2.	Malay K. Pakhira, "Digital Image Processing and Pattern Recognition", First
	Edition, PHI Learning Pvt. Ltd., 2011.
3.	http://eeweb.poly.edu/~onur/lectures/lectures.html.
4.	http://www.caen.uiowa.edu/~dip/LECTURE/lecture.html

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	2	2	1	1	-	3	2	-	2	-	2	1	-
CO2	2	2	3	2	2	1	_	2	1	_	1	_	2	2	_
CO3	3	2	3	2	1	1	_	2	1	_	2	_	2	2	1
CO4	3	3	2	2	_	_	_	I	2	_	2		3	2	
CO5	3	2	2	2	2	2	1	3	2	_	2		2	2	2
18LPE015	3	3	2	2	1	2	-	3	2	_	2	_	2	2	2

1-Low 2—Moderate (Medium) 3-High

18LPE016	MEMS L T								
		3	0	0	3				
OBJECTIV	OBJECTIVES:								
• To provide knowledge of semiconductors and solid mechanics to fabricate MEMS devices.									
•	• To educate on the rudiments of Micro fabrication techniques.								
•	To introduce various sensors and actuators.								
UNIT I	INTRODUCTION TO MEMS AND MICROFABRICATION				9				
History of M electronics ir microelectroni fabrication pro	History of MEMS Development, Characteristics of MEMS-Miniaturization - Micro electronics integration - Mass fabrication with precision. Micro fabrication - microelectronics fabrication process- Silicon based MEMS processes- New material and fabrication processing- Points of consideration for processing.								

UNIT II ELECTRICAL AND MECHANICAL PROPERTIES OF MEMS MATERIALS

Conductivity of semiconductors, crystal plane and orientation, stress and strain – definition – Relationship between tensile stress and strain- mechanical properties of Silicon and thin films, Flexural beam bending analysis under single loading condition- Types of beam-deflection of beam-longitudinal strain under pure bending- Spring constant, torsional deflection, intrinsic stress, resonance and quality factor.

9

9

9

9

UNIT III SENSING AND ACTUATION

Electrostatic sensing and actuation-Parallel plate capacitor – Application-Inertial, pressure and tactile sensor parallel plate actuator- comb drive. Thermal sensing and Actuations-Thermal sensors-Actuators- Applications Inertial, flow and infrared sensors. Piezo resistive sensors- piezo resistive sensor material- stress in flexural cantilever and membrane-Application-Inertial, pressure, flow and tactile sensor. Piezoelectric sensing and actuationpiezoelectric material properties-quartz-PZT-PVDF –ZnO- Application-Inertial, Acoustic, tactile, flow-surface elastic waves Magnetic actuation- Micro magnetic actuation principle-Deposition of magnetic materials-Design and fabrication of magnetic coil.

UNIT IV BULK AND SURFACE MICROMACHINING

Anisotropic wet etching, Dry etching of silicon, Deep reactive ion etching (DRIE), Isotropic wet etching, Basic surface micromachining process- structural and sacrificial material, stiction and antistiction methods, Foundry process.

UNIT V POLYMER AND OPTICAL MEMS

Polymers in MEMS- polymide-SU-8 Liquid crystal polymer(LCP)-PDMS-PMMA-Parylene- Flurocorbon, Application-Acceleration, pressure, flow and tactile sensors. Optical MEMS-passive MEMS optical components-lenses-mirrors-Actuation for active optical MEMS.

			TOTAL :	45 PERIC	ODS			
OUTCOMES		Upon the course completion, the student will have the ability to						
1.	Analyze MEMS and mi	Analyze MEMS and microfabrication.						
2.	Describe the different p	Describe the different properties of MEMS materials.						
3.	Describe the concept of sensing and actuation.							
4.	Explain bulk and surfac	Explain bulk and surface machining.						

5.	Utilize polyr	Utilize polymer and optical MEMS.							
TEXT B	OOKS:								
1.	Chang Liu,	"Foundations of MEMS", Pearson International Edition, 2006.							
2.	Stephen D. Senturia, "Microsystem Design", Kluwar Academic Publishers.								
3.	Tai- Ran H. Engineering	Tai- Ran Hsu, "MEMS and Microsystems Design, Manufacture and Nanoscale Engineering", John Wiley and Sons.							
REFER	ENCES:								
1.	Gaberiel M Sons,2003	. Rebiz, "RF MEMS Theory, Design and Technology", John Wiley &							
2.	Charles P. & Sons, 200	<i>Poole, Frank J. Owens, "Introduction to Nanotechnology" John Wiley</i> 03.							
3.	JulianW.Go Devices", J	urdner, Vijay K Varadhan, "Microsensors, MEMS and Smart John Wiley & sons,2001.							
4.	Richard Layton, Thomas McConnell Adams, "Introductory MEMS Fabrication and Applications". Springer series.								
5.	Thomas M. Application	Adams and Richard A.Layton, "Introduction MEMS, Fabrication and ," Springer, 2010.							

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	-	-	-	-	-	1	2	2	3	-	-	3	-	-
CO2	-	2	3	-	1	1	1	2	2	-	-	-	-	2	-
CO3	-	-	2	3	-	-	2	-	3	2	1	2	1	1	3
CO4	2	2	1	1	1	3	-	-	-	-	-	-	-	2	2
CO5	1	3	3	2	-	-	2	2	1	1	3	-	3	3	1
1-LOW 2-MODERATE (MEDIUM) 3-HIGH															

18LPE0	17	NANO ELECTRONICS	L	T	Р	С				
	3 0									
OBJECTIVES:										
• To learn and understand basic concepts of Nano electronics.										
• To know the techniques of fabrication and measurement.										
•	• To gain knowledge about Nanostructure devices and logic devices.									
UNIT I	UNIT I LIMITATIONS OF CMOS									
Fundamentals of MOSFET devices - Scaling of CMOS – Limitations – Alternative concepts in materials – Structures of MOS devices: SOI MOSFET, FINFETS, Dual Gate MOSFET, Ferro electric FETs.										
UNIT II		MICRO AND NANO FABRICATION				9				
Optical Lit epitaxy – I	thog Nanc	raphy – Electron beam Lithography – Atomic Lithography – M o lithography.	olecı	ılar	bean	n				
UNIT II	Ι	CHARACTERIZATION EQUIPMENTS				9				
Principles Electron M	of Iicro	Electron Microscopes – Scanning Electron Microscope – oscope - Atomic Force Microscope – Scanning Tunneling Micros	Trar scope	nsm [*] e.	issio	n				
UNIT IV	7	NANODEVICES – I				9				
Resonant Quantum l	tunn logic	eling diodes – Single electron devices – Josephson junction – – Molecular electronics.	– Sir	ngle	Flu	x				
UNIT V		NANO DEVICES – II				9				
Quantum computing : principles – Qrbits – Carbon nanotubes (CNT) : Characteristics, CNTFET, Application of CNT - Spintronics: Principle, Spin valves, Magnetic Tunnel Junctions, SpinFETs, MRAM.										
		TOTAL : 45 PER	IOD	S						
OUTCO	OUTCOMES Upon the course completion, the student will have ability to									
1.	То	describe the limitations of CMOS								
2.	Тоа	Toanalyse the micro and nano fabrication techniques.								

3.	To work withcharacterisationequipments
4.	To be exposed to nano devices
5.	To be exposed to principles of Quantum computing nano devices

TEXT BOOKS:

1.	Mark Ratner and Daniel Ratner, "Nanotechnology : A Gentle Introduction to the
	Next Big Idea", Pearson education, 2003.
2.	Seng Ghee Tan and Mansoor B. A. Jalil, "Introduction to the Physics of
	Nanoelectronics", Woodhead Publishing.
3.	Vladimir V. Mitin, Viatcheslav A. Kochelap, Michael A. Stroscio,"Introduction to Nanoelectronics Science, Nanotechnology, Engineering and Applicances", Cambridge University press.

REFERENCES:

1.	Marc Baldo, "Introduction to Nanoelectronics".
2.	ThomasHeinzel, "A Microscopic Electronics in Solid State Nanostructure", Wiley- VCH.
3.	RainerWaser (Ed.), "Nano electronics and information technology", Wiley- VCH., Edition II, 2005.
4.	Mick Wilson, KamaliKannangara, Geoff Smith, Michelle Simmons and Burkhard Raguse "Nanotechnology – (Basic Science and Emerging Technologies)", Overseas Press.
5.	Nanoelectronics & Nanosystems: From Transistor to Molecular & Quantum Devices: Karl Goser, JanDienstuhl and others.

COURSE ARTICULATION MATRIX:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	3	1	1	-	-	-	-	-	-	-	-	3	-	-
CO2	1	-	-	3	-	-	-	-	-	-	-	-	-	2	-
CO3	2	-	1	2	2	2	1	1	-	-	-	1	1	3	2
CO4	-	3	2	1	-	3		1	1	1	-	-	1	2	3
CO5	3	3	2	1	3	3	1	1	2	2	2	-	-	2	3

1-LOW 2-MODERATE (MED

				3	0	0	3		
OBJECTIV	'ES:			1		I	1		
• To und	erstand the different p	roperties of light a	and light sources						
• To kno	w the operation of opt	ical sources and d	etectors.						
• To hav	e a knowledge about c	optical modulation	and optoelectronic inte	grate	ed ci	ircuit	s.		
UNIT I	UNIT I ELEMENTS OF LIGHT AND SOLID STATE PHYSICS								
Wave nature Quantum Mec Physics and Se	of light, Polarization hanical concept, Revi emiconductor Junction	n, Interference, D iew of Solid State Device.	Diffraction, Light Sour- e Physics, Review of S	ce, 1 Semi	revie conc	ew o	of or		
UNIT II	DISPLAY DEVI	CES AND LA	SERS				9		
Injection Lum Displays, Num Optical Feedb laser applicatio	inescence, Injection Interic Displays, Laser Interic Conductor Interior Int	Luminescence, L Emission, Absorp tion, Laser Mode	ED, Plasma Display, I tion, Radiation, Populat es, Classes of Lasers,M	Liqui tion lode	ld C Inve Loc	rysta rsion cking	ւl ۱, ϛ,		
UNIT III	OPTICAL DETI	ECTION DEV	ICES				9		
Photo detector Performance.	, Thermal detector, Ph	oto Devices, Phot	to Conductors, Photo di	odes	,De	tecto	or		
UNIT IV	OPTOELECTR	ONIC MODU	LATOR				9		
Introduction, A Devices, Acou	Analog and Digital M stoptic devices, Optica	Modulation, Elect al, Switching and	ro-optic modulators, M Logic Devices.	lagn	eto	Opti	c		
UNIT V	OPTOELECTR	ONIC INTEG	RATED CIRCUITS	5			9		
Introduction, h Circuits, Integ	ybrid and Monolithic rated transmitters and	Integration, App Receivers, Guideo	lication of Opto Electro d wave devices.	onic I	Integ	grate	d		
			TOTAL : 45 PER	IO)S				
OUTCOM	ES	Upon the course ability to	e completion, the stude	nt w	vill ł	nave	the		
		144							

OPTOELECTRONICS

L T P

С

18LPE018
1.	discuss about	discuss about different nature of light							
2.	Explain the op	Explain the operation of optical sources							
3.	Explain the op	peration of optical detectors.							
4.	Compare diffe	erent optical modulations							
5.	Discuss about	optoelectronic integrated circuits.							
TEXT B	OOKS:								
1.	Pallab Bhatt India Pvt., L	Pallab Bhattacharya "Semiconductor Opto Electronic Devices", Prentice Hall of India Pvt., Ltd., New Delhi, 2006.							
2.	Jasprit Singl Graw-Hill Ir	h, "Opto Electronics – As Introduction to Materials and Devices", Mc nternational Edition, 1998							
REFER	ENCES:								
1.	Kasap Safa, Education.	"Optoelectronics and Photonics: Principles and Practices", Pearson							
2.	S C Gupta, O	Opto Electronic Devices and Systems, Prentice Hal of India, 2005.							
3.	J. Wilson and J.Haukes, "Opto Electronics – An Introduction", Prentice Hall, 1995								
4.	Emmanuel R Press.	Rosencher, Borge Vinter, "Optoelectronics", Cambridge University							
5.	Michael A. I	Parker, "Physics of Optoelectronics", CRC Taylor and Francis.							

	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	1	1	-	-	-	-	-	-	-	-	2	2	1	1
CO2	1	-	-	1	-	-	-	-	-	-	-	2	2	2	1
CO3	1	-	-	1	-	-	-	-	-	-	-	2	2	2	1
CO4	2	1	-	1	-	-	-	-	-	-	-	2	2	2	1
CO5	1	-	-	1	-	-	-	-	-	-	-	2	2	2	1
18LPE018	1	-	-	1	-	-	-	-	-	-	-	2	2	2	1

1-Low 2—Moderate (Medium) 3-High

18LPE019		RADAR SYSTEMSLT							
			3	0	0	3			
OBJECTIV	ES:		1						
• To apply Doppler principle to radars and hence detect moving targets, cluster, also to understand tracking radars									
• To refresh principles of antennas and propagation as related to radars, als study of transmitters and receivers.						80			
•	To unde aids as r	erstand principles of navigation, in addition to approach and landing related to navigation							
UNIT I INTRODUCTION TO RADAR EQUATION									

Introduction- Basic Radar – The simple form of the Radar Equation- Radar Block Diagram-Radar Frequencies – Applications of Radar – The Origins of Radar - Detection of Signals in Noise- Receiver Noise and the Signal-to-Noise Ratio-Probability Density Functions-Probabilities of Detection and False Alarm- Integration of Radar Pulses- Radar Cross Section of Targets- Radar cross Section Fluctuations- Transmitter Power-Pulse Repetition Frequency- Antenna Parameters- System losses – Other Radar Equation Considerations

UNIT II MTI AND PULSE DOPPLER RADAR

Introduction to Doppler and MTI Radar- Delay –Line Cancellers- Staggered Pulse Repetition Frequencies –Doppler Filter Banks - Digital MTI Processing - Moving Target Detector - Limitations to MTI Performance - MTI from a Moving Platform (AMIT) – Pulse Doppler Radar – Other Doppler Radar Topics- Tracking with Radar –Monopulse Tracking –Conical Scan and Sequential Lobing - Limitations to Tracking Accuracy - Low-Angle Tracking - Tracking in Range - Other Tracking Radar Topics -Comparison of Trackers -Automatic Tracking with Surveillance Radars (ADT).

UNIT III DETECTION OF SIGNALS IN NOISE

9

9

Matched –Filter Receiver –Detection Criteria – Detectors –-Automatic Detector -Integrators - Constant-False-Alarm Rate Receivers - The Radar operator - Signal Management - Propagation Radar Waves - Atmospheric Refraction -Standard propagation -Nonstandard Propagation - The Radar Antenna - Reflector Antennas - Electronically Steered Phased Array Antennas – Phase Shifters - Frequency-Scan Arrays

Radar Transmitters and Receivers - Introduction –Linear Beam Power Tubes - Solid State RF Power Sources - Magnetron - Crossed Field Amplifiers - Other RF Power Sources – Other aspects of Radar Transmitter.- The Radar Receiver - Receiver noise Figure – Super heterodyne Receiver - Duplexers and Receiver Protectors- Radar Displays.

UNIT IV RADIO DIRECTION AND RANGES

9

Introduction - Four methods of Navigation .- The Loop Antenna - Loop Input Circuits - An Aural Null Direction Finder - The Goniometer - Errors in Direction Finding - Adcock Direction Finders - Direction Finding at Very High Frequencies - Automatic Direction Finders – The Commutated Aerial Direction Finder - Range and Accuracy of Direction Finders - The LF/MF Four course Radio Range - VHF Omni Directional Range(VOR) -VOR Receiving Equipment - Range and Accuracy of VOR – Recent Developments. **Hyperbolic Systems of Navigation (Loran and Decca) -** Loran-A - Loran-A Equipment -Range and precision of Standard Loran - Loran-C - The Decca Navigation System -Decca Receivers - Range and Accuracy of Decca - The Omega System

UNIT V SATELLITE NAVIGATION SYSTEM

9

Distance Measuring Equipment - Operation of DME - TACAN - TACAN Equipment -Instrument Landing System - Ground Controlled Approach System - Microwave Landing System(MLS) The Doppler Effect - Beam Configurations -Doppler Frequency Equations -Track Stabilization - Doppler Spectrum - Components of the Doppler Navigation System -Doppler range Equation - Accuracy of Doppler Navigation Systems. Inertial Navigation -Principles of Operation - Navigation Over the Earth – Components of an Inertial Navigation System - Earth Coordinate Mechanization - Strapped-Down Systems - Accuracy of Inertial Navigation Systems-The Transit System - Navstar Global Positioning System (GPS)

TOTAL : 45 PERIODS

OUTCO	MES		Upon the course completion, the student will have the ability to					
1.	Derive and discuss the Range equation and the nature of detection.							
2.	Discuss about Doppler Radar and various tracking techniques							
3.	Discuss about various Radar antennas, transmitters and receivers.							
4.	Explain principles of navigation, in addition to approach and landing aids as related to navigation							
5.	Describe abo	out the navigation	on systems using th	he satellite.				
TEXT BOOKS:								
1. Merrill I. Skolnik ," Intro 2003.			duction to Radar S	Systems", 3rd Edition Tata Mc Graw-Hill				

2.	N.S.Nagaraja, "I 2000.	N.S.Nagaraja, "Elements of Electronic Navigation Systems", 2nd Edition, TMH, 2000.							
3.	Paul A. Lynn, "F Reinhold.	aul A. Lynn, "Radar Systems", Macmillan New Electronic Series, Van Nostrand Reinhold.							
REFERI	ENCES:								
1.	Peyton Z. Peebles:, "Radar Principles", John Wiley, 2004								
2.	J.C Toomay, "P	J.C Toomay, " Principles of Radar", 2nd Edition –PHI, 2004							
3.	3. Bassern R. Mahafza, "Radar Systems Analysis and Design using MATLAB", Chapman & Hall / CRC Press.								
4.	Shan Quegan, Publishing.	Simon Kingsley, "Understanding Radar Systems", Scitech							

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	1	-	_	-	_	_	_	-	-	2	3	3	1
CO2	3	3	2	-	-	-	-	-	-	-	-	3	3	3	1
CO3	3	2	1	-	-	-	-	-	-	-	-	3	3	3	1
CO4	3	2	2	1	I	-	I	I	I	-	_	3	2	2	1
CO5	2	3	2	-	-	_	-	-	-	_	_	2	2	2	1
18LPE019	3	2	2	_	_	_	_	_	_	-	_	3	3	3	1

1-Low 2—Moderate (Medium) 3-High

18LPE020	SMART ANTENNAS	L	Т	Р	С				
	3 0								
COURSE OBJECTIVES:									
• To study the fundamental of Smart antennas.									
• To und of smar	erstand the Spatial Spectrum of the antenna array and analyze th t antenna using beamforming techniques	ne pe	erfor	mano	ce				
• Gain an understanding and experience with smart antenna environments and implementation.									
UNIT I				9					

Need for Smart Antennas, Smart Antenna Configurations, Switched-Beam Antennas, Adaptive Antenna Approach, Space Division Multiple Access (SDMA), Architecture of a Smart Antenna System, Receiver, Transmitter, Benefits and Drawbacks, Mutual Coupling Effects

UNIT II DOA ESTIMATION FUNDAMENTALS

9

9

9

Introduction The Array Response Vector, Received Signal Model, The Subspace Based Data Model, Signal Auto covariance Matrices ,Conventional DOA Estimation Methods, Conventional Beam forming Method, Capon's Minimum Variance Method, Subspace Approach to DOA Estimation ,The MUSIC Algorithm, The ESPRIT Algorithm, Uniqueness of DOA Estimates.

UNIT III BEAM FORMING FUNDAMENTALS

The Classical Beamformer-Statistically Optimum Beamforming Weight Vectors, The Maximum SNR Beamformer, The Multiple Side lobe Canceller and the Maximum, SINR Beam former- Minimum Mean Square Error (MMSE),Direct Matrix Inversion (DMI), Linearly Constrained Minimum Variance (LCMV), Adaptive Algorithms for Beam forming, The Least Mean-Square (LMS) Algorithm, The Recursive Least Squares (RLS) Algorithm.

UNIT IV

SPACE TIME PROCESSING

Introduction, Discrete Space–Time Channel and Signal Models, Space–Time Beamforming, Intersymbol and Co-Channel Suppression, ISI Suppression, CCI Suppression, Joint ISI and CCI Suppression, Space–Time Processing for DS-CDMA, Capacity and Data Rates in MIMO Systems, Single-User Data Rate Limits, Multiple Users Data Rate Limits, Data Rate Limits Within a Cellular System, MIMO in Wireless Local Area Networks.

UNIT V MOBILE STATIONS SMART ANTENNAS

9

Introduction -Multiple-Antenna MS Design, Combining Techniques, Selection (Switched) Diversity, Maximal Ratio Combining, Adaptive Beam forming or Optimum Combining, RAKE Receiver Size, Mutual Coupling Effects, Dual-Antenna Performance Improvements, Downlink Capacity Gains

			TOTAL :45 PERIODS
COURSE	E OUTCOMES:	Upon the course com to	pletion, the student will have the ability
1.	Explain the concept	of fundamental Smart	Antenna System.
2.	Analyse and calcula	te the direction relativ	e to the array where the sound source is

	located, with help of MUSIC and ESPRIT Algorithm.							
3.	Explain the beamforming techniques is used for detect and estimate the signal of interest at the output of a sensor array by means of optimal spatial filtering and interference rejection.							
4.	Analyse the concepts of space time processing							
5.	Evaluate the requirements for the design and implementation of smart antenna systems.							
TEXT B	DOKS:							
1.	Constantine A. Balanis & Panayiotis I. Ioannides, "Introduction to Smart Antennas", Morgan & Claypool Publishers series-2007							
2.	Joseph C. Liberti Jr., Theodore S Rappaport, "Smart Antennas for Wireless CommunicationsIS-95 and Third Generation CDMA Applications", PTR – PH publishers, 1st Edition, 1989.							
3.	Smart Antennas, By Lal Chand Godara, CRC Press							
REFERI	NCES:							
1.	M.J. Bronzel, Smart Antennas, John Wiley, 2004							
2.	R.Janaswamy, Radio Wave Propagation and Smart Antennas for Wireless Communication, Kluwer, 2001							
3.	Tapan K. Sarkar, Michael C. Wicks, Magdalena Salazar-Palma, Robert J. Bonneau, "Smart Antennas" Wiley series.							
4.	Ahmed El Zooghby, "Smart Antenna Engineering", Artech House Publisher							
5.	Chen sun, Jun Cheng, Takashi Ohira, "Handbook on Advancements in Smart Antenna Technologies for Wireless Networks", Information Science Reference							

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	1	2	1	1	-	-	-	-	1	2	3	1	2
CO2	3	3	3	3	2	1	-	-	-	-	2	2	3	3	3
CO3	3	3	3	3	2	1	-	-	-	-	2	2	3	3	3
CO4	3	3	3	3	1	1	-	-	-	-	2	3	3	3	3
CO5	3	2	2	2	1	1	-	-	-	-	3	3	3	2	3
18LPE020	3	3	3	3	1	2	-	-	-	-	2	2	3	3	3

18LPE021

WAVELET TRANSFORMS AND APPLICATIONS

L	Т	Р	С
3	0	0	3

OBJECTIVES:

•	To study the basics of signal representation and Fourier theory
•	To understand Multi Resolution Analysis and Wavelet concepts
•	To understand the design of wavelets using Lifting scheme and the applications of Wavelet transform

UNIT I

Vector Spaces – Properties– Dot Product – Basis – Dimension, Orthogonality and Orthonormality – Relationship Between Vectors and Signals – Signal Spaces – Concept of Convergence – Hilbert Spaces for Energy Signals- Fourier Theory: Fourier series expansion, Fourier transform, Short time Fourier transform, Time-frequency analysis.

UNIT II MULTI RESOLUTION ANALYSIS

FUNDAMENTALS

Definition of Multi Resolution Analysis (MRA) – Haar Basis – Construction of General Orthonormal MRA – Wavelet Basis for MRA – Continuous Time MRA Interpretation for the DTWT – Discrete Time MRA – Basis Functions for the DTWT – PRQMF Filter Banks.

UNIT III CONTINUOUS WAVELET TRANSFORMS

9

9

9

Wavelet Transform – Definition and Properties – Concept of Scale and its Relation with Frequency – Continuous Wavelet Transform (CWT) – Scaling Function and Wavelet Functions (Daubechies Coiflet, Mexican Hat, Sinc, Gaussian, Bi Orthogonal)– Tiling of Time – Scale Plane for CWT.

UNIT IV DISCRETE WAVELET TRANSFORM

9

Filter Bank and Sub Band Coding Principles – Wavelet Filters – Inverse DWT Computation by Filter Banks – Basic Properties of Filter Coefficients – Choice of Wavelet Function Coefficients – Derivations of Daubechies Wavelets – Mallat's Algorithm for DWT – MultiBand Wavelet Transforms Lifting Scheme- Wavelet Transform Using Polyphase Matrix Factorization – Geometrical Foundations of Lifting Scheme – Lifting Scheme in Z – Domain.

UNIT	V	APPLI	CATIO	NS	9			
Wavele Coding Functio	et metho g – Imag ons –Edg	ods for si ge Denois ge Detecti	ignal pro ing Tech on and O	cessing- Image Compression Techniques: EZW– niques: Noise Estimation – Shrinkage Rules – Shr bject Isolation, Image Fusion, and Object Detection	SPHIT inkage			
				TOTAL : 45 PERIODS				
OUT	COME	S		Upon the course completion, the student will ability to	have the			
6.	Use Fo	ourier tool	s to analy	yse signals				
7.	Gain k	nowledge	e about M	RA and representation using wavelet bases				
8.	Acqui	e knowle	dge abou	t various wavelet transforms and design wavelet transforms	nsform			
9.	Apply wavelet transform for various signal & image processing applications							
10.	To ana Techni	llyze Wav ques	elet meth	ods for signal processing and Image Compression				
TEXT	r BOO	KS:						
1.	Rao R Applic	M and A S ations, Pe	S Bopardik earson Ed	ar, —Wavelet Transforms Introduction to theory and ucation, Asia, 2000.				
2.	L.Pras CRC H	ad&S.S.Iy Press, 199	yengar, V 7.	Vavelet Analysis with Applications to Image Pr	ocessing,			
REFE	CRENC	CES:						
1.	J. C. Goswami and A. K. Chan, "Fundamentals of wavelets: Theory, Algorithms and Applications" Wiley Interscience Publication John Wiley & Sons Inc. 1999							
2.	M. Vet	terli, J. K	ovacevic,	"Wavelets and subband coding" Prentice Hall Inc,	1995.			
3.	Stephe Press,	n G. Mall 2000.	at, "A wo	avelet tour of signal processing" 2 nd Edition Acade	mic			
4.	Soman Prenti	K P and ce Hall. 2	Ramacha 004.	undran K I, Insight into Wavelets From Theory to pr	actice,			
5.	L.Prasad & S.S.Iyengar, "Wavelet Analysis with Applications to Image Processing", CRC Press, 1997.							

	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	3	2	-	-	1	-	-	-	2	3	1	-	2	-	-
CO2	2	1	-	1	3	-	1	-	-	-	-	-	-	2	2
CO3	1	1	-	2	2	3	1	1	1		-	-	-	3	2
CO4	-	-	2	3	3	1	2	-	-	-	-	-	2	-	1
CO5	3	2	3	3	1	1	2	2	3	3	-	-	-	-	-
1-L0	W	2-MODERATE (MEDIUM) 3-HIGH													

С

3

9

9

9

9

COURSE ARTICULATION MATRIX:

18LPE022 **VLSI TESTING** Т Р L 3 0 0 **OBJECTIVES:** To introduce the mathematical principles for systematic test and validation. • To introduce the scientific principles for systematic test and validation. • To instill knowledge on various testing algorithms • UNIT I **TESTING AND FAULT MODELLING** Introduction to testing - Faults in Digital Circuits - Modelling of faults - Logical Fault Models - Fault detection - Fault Location - Fault dominance - Logic simulation - Types of simulation – Delay models – Gate Level Event – driven simulation. **UNIT II TEST GENERATION** Test generation for combinational logic circuits - Testable combinational logic circuit design – Test generation for sequential circuits – design of testable sequential circuits. **UNIT III DESIGN FOR TESTABILITY** Design for Testability - Ad-hoc design - generic scan based design - classical scan based design-system level DFT approaches. **UNIT IV SELF – TEST AND TEST ALGORITHMS**

Built-I	Built-In self-Test – test pattern generation for BIST – Circular BIST – BIST Architectures –								
Testabl	e Memory Des	sign – Test A	Algorithms – Test generation for Embedded RAMs.						
UNIT	'V FAU	LT DIAG	NOSIS	9					
Logical	l Level Diag	gnosis – D	iagnosis by UUT reduction – Fault Diagnosis	for					
Combin	Combinational Circuits– Self-checking design – System Level Diagnosis.								
	TOTAL : 45 PERIODS								
OUT	DUTCOMES Upon the course completion, the student will have the ability to								
1.	Discuss about the various faults in VLSI circuits.								
2.	Analyze test generation of combinational and sequential circuits.								
3.	Understand the	he principles	s used in the construction VLSI Design For Test (DFT) tools.					
4.	Discuss abou	it test pattern	n generation and BIST architectures.						
5.	Diagnose the	various fau	lts in combinational circuits.						
TEXT	BOOKS:								
1.	M.Abramovi Design", Jaio	ci, M.A.Bre co Publishing	euer and A.D. Friedman, "Digital systems and T g House, 2002	estable					
2.	P.K. Lala, "I	Digital Circu	it Testing and Testability", Academic Press, 2002.						
REFE	RENCES:								
1.	M.L.Bushnell and V.D.Agrawal, "Essentials of Electronic Testing for Digital, Memory and Mixed-Signal VLSI Circuits", Kluwer Academic Publishers, 2002.								
2.	A.L.Crouch, "Design Test for Digital IC's and Embedded Core Systems", Prentice Hall International, 2002.								
3.	T. W. Williams, "VLSI Testing", North- Holland.								
4.	Laung-Teng Wang, Chang-Wen Wu Xiaoqing Wen, "VLSI Test Principles and Architectures: Design for Testablity", Morgan Kaufmann series.								

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	1	1	-	-	-	-	_	-	-	2	2	2	1
CO2	3	3	2	2	-	-	-	-	Ι	-	-	2	2	2	2
CO3	3	2	2	2	I	-	-	I	Ι	_	-	3	2	2	1
CO4	3	2	1	1	I	-	-	I	Ι	_	-	2	2	2	1
CO5	3	3	2	2	-	-	-	-	-	_	-	2	2	2	2
18LPE022	3	2	2	2	I	-	-	I	I	-	-	2	2	2	1

1-Low 2—Moderate (Medium) 3-High

18LPE023	ARM SYSTEM DESIGN	L	Т	Р	C		
		3	0	0	3		
UNIT I	ARM MICROCONTROLLER ARCHITECTURI	£			9		
Architecture – Ports – SRAM ADC/DAC Inte	memory organization – addressing modes – I/O Memory – EE I –Timer –UART – Interrupt Structure- Serial Communicatio erfacing.	PRC n wi	OM – ith F	- I/O PC –			
UNIT II	IT II ARM ARCHITECTURE AND PROGRAMMING 9						
Arcon RISC M Programmer's processor fami timings	 Machine – Architectural Inheritance – Core & Architectures model -Registers – Pipeline - Interrupts – ARM organiza ly – Coprocessors. Instruction set – Thumb instruction set – Inst 	Tl tion ructi	ne A - A ion c	RM RM ycle			
UNIT III	ARM APPLICATION DEVELOPMENT				9		
Introduction to handling schen Systems – Fun	Atroduction to DSP on ARM – Filter –Exception Handling – Interrupts – Interrupt andling schemes Firmware and bootloader – Example: Standalone - Embedded Operating ystems – Fundamental Components – Example- ARM Cortex M0 NUVOTON Processor.						
UNIT IV	MEMORY PROTECTION AND MANAGEMEN	Т			9		
Protected Reg Memory-Page Extension.	Protected Regions-Initializing MPU, Cache and Write Buffer-MPU to MMU-Virtual Memory-Page Tables-TLB-Domain and Memory Access Permission-Fast Context Switch Extension.						

UNIT V 9 **DESIGN WITH ARM MICROCONTROLLER** Assembler Rules and Directives- Simple ASM/C programs- Hamming Code- Division-Negation Simple Loops -Look up table- Block copy- subroutines. **TOTAL : 45 PERIODS** Upon the course completion, the student will have the **OUTCOMES** ability to To learn the IO peripherals, communication and interfacing techniques of ARM 1. 2. To understand the ARM architecture its instruction set 3. To develop application using ARM cortex 4. To implement memory management technique. 5. To design systems and programming using ASM and C programs **TEXT BOOKS:** Andrew N.Sloss, Dominic Symes and Chris Wright "ARM System Developer's 1. Guide : Designing and Optimizing System Software", First edition, Morgan Kaufmann Publishers, 2004. Steve Furber, 'ARM system on chip architecture', Addision Wesley, 2010. 2. David Seal, "ARM Architecture Reference Manual" Second Edition, Addison-3. Wesley Professional, 2001. **REFERENCES:** Trevor Martin, 'The Insider's Guide To The Philips ARM7-Based Microcontrollers, 1. An Engineer's Introduction To The LPC2100 Series' Hitex (UK) Ltd., Dananjay V. Gadre 'Programming and Customizing the AVR microcontroller', 2. McGraw Hill 2001 William Hohl, 'ARM Assembly Language' Fundamentals and Techniques, 2009. 3.

4. Jason D. Bakos, "Embedded Systems ARM programming and optimization", Morgan Kaufmann Publishers.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	-	-	-	-	-	-	-	-	-	-	2	2	2
CO2	3	2	1	-	-	-	-	-	-	-	-	-	2	3	3
CO3		2	3	3	2	2	2	2	2	2	2	-	2	3	
CO4	1	2	3	1	2	2	1	-	-	2	-	-	2	2	2
CO5		2	3	3	3	2	2	2	2	2	3	2	3	3	3
1-L0	W	2.	-MOD	ERAT	E (ME	EDIUN	(1)	3-HIG	Н	•	•	•	•		

18LPE0	24	ANALOG INTEGRATED CIRCUIT DESIGN	L	Т	Р	C					
		3 0 0 3									
OBJEC	TIV	TIVES:									
•	To and	To understand the MOSFET theory, its second order effects, digital and analog metrics of MOS device.									
•	То	Analyze frequency response of single and two stage	amp	olifi	ers						
•	To : circ	study the operation of current mirrors and operational cuits	amj	olifi	ers						
UNIT I	MOSFET METRICS 9										
Simple lo	ng channel MOSFET theory - SPICE Models - Technology trend, Need for										
Analog de	design - Sub-micron transistor theory, Short channel effects, Narrow width effect,										
Drain ind	Drain induced barrier lowering, Sub-threshold conduction, Reliability, Digital metrics,										
Analog m	Analog metrics, Small signal parameters, Unity Gain Frequency, Miller"s approximation										

UNIT II 9 SINGLE STAGE AND TWO STAGE AMPLIFIERS Single Stage Amplifiers - Common source amplifier with resistive load, diode load, constant current load, Source degeneration Source follower, Input and output impedance, Common gate amplifier - Differential Amplifiers - differential and common mode response, Input swing, gain, diode load and constant current load - Basic Two Stage Amplifier, Cut-off frequency, poles and zeros **UNIT III** FREQUENCY RESPONSE OF SINGLE STAGE AND 9 **TWO STAGE AMPLIFIERS** Frequency Response of Single Stage Amplifiers - Noise in Single stage Amplifiers -Stability and Frequency Compensation in Single stage Amplifiers, Frequency Response of Two Stage Amplifiers, - Noise in two stage Amplifiers - Stability, gain and phase margins, Frequency Compensation in two stage Amplifiers, Effect of loading in feedback networks 9 **UNIT IV CURRENT MIRRORS AND REFERENCE CIRCUITS** Cascode, Negative feedback, Wilson, Regulated cascode, Bandgap voltage reference, Constant Gm biasing, supply and temperature independent reference, curvature compensation, trimming, Effect of transistor mismatch in analog design UNIT V **OP AMPS** 9 Gilbert cell and applications, Basic two stage OPAMP, two-pole system response, common mode and differential gain, Frequency response of OPAMP, CMFB circuits, slew rate, power supply rejection ratio, random offset, systematic offset, Noise, Output stage, OTA and OPAMP circuits - Low voltage OPAMP TOTAL: 45 PERIODS Upon the course completion, the student will have the **OUTCOMES** ability to 1. Ability to explain the operation of MOSFET and its metrics 2. Ability to analyze the single and two stage amplifiers 3. Ability to analyze the frequency response of single and two stage amplifiers 4. Ability to understand the operation of current mirror and reference circuits Ability to understand the operation of operational amplifiers 5. **TEXT BOOKS:**

1.	Behzad Razavi	, "Design of Analog CMOS Integrated Circuits", McGraw Hill, 2000							
2									
2.	Paul R.Gray, R	obert G. Meyer, "Analysis and Design of Analog Integrated Circuits",							
	Wiley Student	edition 5th edition 2009							
	whey Student earlier, sur earlier, 2007.								
3.	J. Michael Jaco	b, "Applications and Design with Analog Integrated circuits", Second							
	Dolor DUI 10	Delsen DIU 1000							
	Dakel, FHI, 19	790.							
REFF	CRENCES:								
1									
1.	Philip E.Allen,	"CMOS Analog Circuit Design", Oxford University Press, 2013							
2	$D \cdot I I \cdot T$								
Ζ.	Davia Harris, I	vell weste, CMOS VLSI design : A Circuits and Design							
	Perspective" H	Pearson							
3.	R.Jacob Baker,	R.Jacob Baker, "CMOS: Circuit Design, Layout, and Simulation", Wiley Student							
	Edition 2000								
	<i>Lamon</i> , 2009								
4.	David A. Jones	, Kenneth W Martin Tony Chan Carusone, "Analog Integrated Circuit							
	Degion" Wilm	2012							
	Design Wiley,	2015							

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	3	3	3	1	2	2	-	-	3	2	2	2	3	2
CO2	-	3	3	3	1	2	2	-	-	3	2	2	2	3	2
CO3	-	3	3	3	1	2	2	-	-	3	2	2	2	3	2
CO4	-	3	3	3	1	2	2	-	-	3	2	2	2	3	2
CO5	-	3	3	3	1	2	2	-	-	3	2	2	2	3	2

1-LOW 2-MODERATE (MEDIUM)

3-HIGH

18LPE025	MICROWAVE INTEGRATED CIRCUITS	
----------	-------------------------------	--

L	Т	Р	С
3	0	0	3

OBJECTIVES:

- To introduce microwave circuits
- To understand the design of matching networks, filters, amplifiers, oscillators and mixer circuits.
- To study about microwave integrated circuits.

UNIT I INTRODUCTION TO MICROWAVE CIRCUITS

9

Definitions – Frequency Bands – Lumped versus Distributed Circuits - Behavior of finite length transmission lines – General Characteristics of PC Boards – Transmission Lines on PC Boards – Passives made from Transmission Lines – Resonators - Combiners, Splitters and Couplers

UNIT II MATCHING NETWORKS AND FILTER DESIGN

9

9

Circuit Representation of two port RF/Microwave Networks: Low Frequency Parameters, High Frequency Parameters, Transmission Matrix, ZY Smith Chart, Design of Matching Circuits using Lumped Elements, Matching Network Design using Distributed Elements, Filter design.

UNIT III AMPLIFIERS AND OSCILLATORS

Amplifiers: Stability considerations in active networks – Gain Consideration in Amplifiers – Noise Consideration in active networks – Broadband Amplifier design – Low Noise Amplifier Design, Oscillators: Oscillator versus Amplifier Design – Oscillation conditions – Design and stability considerations of Microwave Transistor Oscillators.

UNIT IV MIXERS AND CONTROL CIRCUITS

9

Mixer Types – Conversion Loss – SSB and DSB Mixers – Design of Mixers: Single Ended Mixers – Single Balanced Mixers - Sub Harmonic Diode Mixers ,Microwave Diodes , Phase Shifters – PIN Diode Attenuators

UNIT V MICROWAVE IC DESIGN AND MEASUREMENT TECHNIQUES

9

Microwave Integrated Circuits – MIC Materials- Hybrid versus Monolithic MICs – Multichip Module Technology - Fabrication Techniques, Miniaturization techniques,

Introdu	ction to SOC, SOP, Tes	t fixture measurements, probe station measurements, thermal						
and cry	vogenic measurements, e	xperimental field probing techniques.						
		TOTAL : 45 PERIODS						
OUT	COMES	Upon the course completion, the student will have the ability to						
1.	Describe microwave c	ircuits and printed circuit boards.						
2.	Design matching netw	orks and filters.						
3.	Analyze microwave an	nplifiers and oscillators						
4.	Compare different mix	er circuits.						
5.	Discuss about microwave integrated circuits design and measurement techniques.							
TEXT	F BOOKS:							
1.	Thomas H.Lee, "Plana	r Microwave Engineering", Cambridge University Press, 2004						
2.	Matthew M. Radmanes Education, II Edition 2	sh, "Radio Frequency and Microwave Electronics", Pearson 002						
REFE	ERENCES:							
1.	"Microwave Transisto New Jersy	r Amplifiers – Analysis and Design", II Edition, Prentice Hall,						
2.	Ravender Goyal, "Mor	nolithic MIC; Technology & Design", Artech House, 1989.						
3.	Gupta K.C. and Amarj York, 1975.	it Singh, "Microwave Integrated Circuits", John Wiley, New						
4.	Hoffman R.K. "Handbook of Microwave Integrated Circuits", Artech House, Boston, 1987.							
5.	Ulrich L. Rohde and David P.N., "RF / Microwave Circuit Design for Wireless Applications", John Wiley, 2000.							
6.	C. Gentili, "Microwave Amplifiers and Oscillators", North Oxford Academic, 1986.							
7.	Samuel. Y. Liao, "Mict Inc., 1987.	rowave Circuit Analysis and Amplifier Design", Prentice Hall.						

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	1	-	-	-	-	-	-	-	2	2	2	2
CO2	3	2	3	1	-	-	-	-	-	-	-	2	2	2	2
CO3	3	2	3	-	2	-	-	-	-	-	-	2	3	3	2
CO4	3	2	3	1	-	-	-	-	-	-	-	2	2	2	2
CO5	3	2	3	-	2	-	-	-	-	-	-	2	3	3	2
18LPE018	3	2	3	1	1	-	-	-	-	-	-	2	2	2	2

1-Low 2-Moderate (Medium) 3-High

OPEN ELECTIVES

18LOE001	REAL TIME SYSTEMS	L	Т	Р	C			
		3	0	0	3			
OBJECTIV	ES							
•	To understand Concept of Real time system							
•	• Understand the Design and application programs on real time systems							
•	Understand the hardware and software architectures of real tin	ne S	yste	ms.				
UNIT I	INTRODUCTION				9			
Introduction – Taskclasses – Times –Task A Uniprocessor TolerantSched	Introduction – Issues in Real Time Computing – Structure of a Real Time System – Taskclasses – Performance Measures for Real Time Systems – Estimating Program Run Times –Task Assignment and Scheduling – Classical uniprocessor scheduling algorithms – Uniprocessor scheduling of IRIS tasks – Task assignment – Mode changes and Fault TolerantScheduling.							
UNIT II	PROGRAMMING LANGUAGES AND TOOLS				9			
Programming Controlstructur (Exception) E programming Run – time sup	Languages and Tools – Desired language characteristics – I res – Facilitating Hierarchical Decomposition, Packages rrorhandling – Overloading and Generics – Multitasking – TaskScheduling – Timing Specifications – Programming En oport.	Data , F – L avirc	typ Run Low	ing - tim leve ents -	- e xl -			
UNIT III	REAL TIME DATABASES				9			
Real time Da MainMemory issues,Disk Sc MaintainingSe	Real time Databases – Basic Definition, Real time Vs General Purpose Databases, MainMemory Databases, Transaction priorities, Transaction Aborts, Concurrency control issues,Disk Scheduling Algorithms, Two – phase Approach to improve Predictability – MaintainingSerialization Consistency – Databases for Hard Real Time Systems.							
UNIT IV	V COMMUNICATION 9							
Real _ Time	Communication - Communications madia Natwork Topolog	ing	Drot		,			

Real – Time Communication – Communications media, Network Topologies Protocols, FaultTolerant Routing. Fault Tolerance Techniques – Fault Types – Fault Detection. Fault Errorcontainment Redundancy – Data Diversity – Reversal Checks – Integrated Failure

handlin	ıg.								
UNIT	V EVAL	UATIO	N TECHNIQUES	9					
Reliability Evaluation Techniques – Obtaining parameter values, Reliability models for HardwareRedundancy – Software error models. Clock Synchronization – Clock, A Nonfault – TolerantSynchronization Algorithm – Impact of faults – Fault Tolerant Synchronization in Hardware – Fault Tolerant Synchronization in software.									
			TOTAL : 45 PERIODS						
OUT	COMES		Upon the course completion, the student will have ability to	ave the					
1.	Understand the	scheduling	g problems and can apply them in real time system.						
2.	2. Describe the foundation for programming languages developed for real time programming.								
3.	Be exposed to real time database.								
4.	Establish real t	ime comm	unication between devices						
5.	Analyse the sit accordingly.	uation of fa	ault occurrence and will be able to apply solutions						
TEXT	BOOKS:								
1.	C.M. Krishna, Editions, 1997.	Kang G. Sl	hin, "Real – Time Systems", McGraw – Hill Internati	ional					
2.	Rajib Mall, "R	eal-time sy	stems: theory and practice", Pearson Education, 2007	7					
3.	Peter D.Lawren McGraw Hill,	nce, "Real 1988.	Time Micro Computer System Design – An Introduc	tion",					
REFE	ERENCES:								
1.	Stuart Bennett, ofIndia, 1998.	"Real Tim	ne Computer Control – An Introduction", Prentice Ho	all					
2.	S.T. Allworth a	nd R.N.Zol	bel, "Introduction to real time software design", 987						
3.	R.J.A Buhur, D	D.L. Bailey,	"An Introduction to Real – Time Systems", Prentice -	_					
4.	Philip.A.Lapla 3rdEdition, Ap	nte, "Real ril <u>20</u> 04	HallInternational, 1999. Philip.A.Laplante, "Real Time System Design and Analysis", Prentice Hall of India, 3rdEdition, April 2004						

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	2	3	2	1	-	3	2	3	3	3	3	3
CO2	3	3	3	2	3	-	-	-	3	3	2	3	3	3	3
CO3	2	1	1	-	-	2	1	-	-	2	2	2	3	2	3
CO4	2	1	1	-	3	2	1	-	2	2	1	3	3	2	2
CO5	3	3	3	3	3	1	2	-	3	3	1	3	3	3	3

1-LOW 2-MODERATE (MEDIUM) 3-HIGH

18LOE002	WIRELESS SENSOR NETWORKS	L	Т	Р	С				
		3	0	0	3				
OBJECTIV	ES:								
•	• To Understand the basic WSN technology and supporting protocols, with emphasis placed on standardization basic sensor systems and provide a survey of sensor technology.								
•	Understand the medium access control protocols and address physical layer issues								
•	Knowledge of infrastructure establishment and sensor network provided	k pla	tfor	m is					
UNIT I	OVERVIEW OF WIRELESS SENSOR NETWO	RK!	5		9				
Challenges for Networks.	Challenges for Wireless Sensor Networks, Enabling Technologies For Wireless Sensor Networks.								
UNIT II ARCHITECTURES									
Single-Node A Operating Syst	Single-Node Architecture - Hardware Components, Energy Consumption of Sensor Nodes, Operating Systems and Execution Environments, Network Architecture - Sensor Network								

Scenarios, Optimization Goals and Figures of Merit, Gateway Concepts.

UNIT II	I NETV	ETWORKING SENSORS 9							
Physical L Networks, Device Pro MAC Add	Physical Layer and Transceiver Design Considerations, MAC Protocols for Wireless Sensor Networks, Low Duty Cycle Protocols And Wakeup Concepts - S-MAC, The Mediation Device Protocol, Wakeup Radio Concepts, Address and Name Management, Assignment of MAC Addresses, Routing Protocols- Energy-Efficient Routing, Geographic Routing.								
UNIT IV	/ INFR	ASTRUCT	UREESTABLISHMENT	9					
Topology Tasking ar	TopologyControl, Clustering, Time Synchronization, Localization and Positioning, Sensor Tasking and Control.								
UNIT V SENSOR		OR NETW	ORK PLATFORMS AND TOOLS	9					
Sensor No platforms,	Sensor Node Hardware – Berkeley Motes, Programming Challenges, Node-level software platforms, Node-level Simulators, State-centric programming.								
TOTAL:45PERIODS									
OUTCO	OMES		Upon the course completion, the student will have the ability to						
1.	Describe en	abling Techn	ologies For Wireless Sensor Networks,						
2.	Analyze the Service inte	e architecture rfaces of WS	of sensor networks and design principles for WSN Ns, Gateway concepts	s,					
3.	Design prot design issue	ocols for wire	eless sensor networks with respect to some protoco	1					
4.	Describe th	e infrastructu	re establishment in Sensor networks.						
5.	Anayze the	sensor netwo	rk platforms and tools.						
TEXT B	OOKS:								
1.	Holger Kar Networks"	l & Andreas , John Wiley,	Willig, "Protocols And Architectures for Wireless, 2005.	Sensor					
2.	Feng Zhao Processing	& Leonidas Approach", E	J. Guibas, "Wireless Sensor Networks- An Info Elsevier, 2007.	rmation					
REFER	ENCES:								
1.	KazemSohr Technology	raby, Daniel I v, Protocols, A	Minoli, &TaiebZnati, "Wireless Sensor Networks- And Applications", John Wiley, 2007.						
2.	AnnaHac,	"Wireless Sen	nsor Network Designs", John Wiley, 2003						

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	-	1	-	-	2	-	-	1	2	1	3	3	2	3
CO2	3	3	3	2	1	2	2	1	3	2	2	3	3	3	2
CO3	3	3	3	2	2	2	-	-	3	2	2	3	3	2	3
CO4	2	1	2	-	2	2	2	1	2	2	3	2	3	3	2
CO5	3	2	3	2	3	2	1	-	3	3	2	3	3	3	3

1-LOW 2-MODERATE (MEDIUM) 3-HIGH

18LOE003	INDUSTRIAL AUTOMATION AND ROBOTICS	L	T	Р	С			
		3	0	0	3			
UNIT I INTRODUCTION TO ROBOTICS AND AUTOMATION								
Robotics: Hist	ory of Robotics, Applications of Robotics, General Structure	re o	f Ro	boti	c c			
Mechanical Systems, Classification of Robots based on coordinate system, Classification of Robotics Overview of robot subsystems. Components of Robot system Manipulator								
Controller, Power conversion unit etc, Specifications of robot. Commercially available								
Software Pack	Software Packages for Robot Simulation							

UNIT II	KINEMATICS AND DYNAMICS	12
Kinematics: H	Iomogeneous co-ordinate vector operations, matrix operations, co-ord	linate
reference fram	es, Homogeneous transformation and manipulator orientation relative p	oints
reference fram	es, Workspace, Forward Kinematics - forward solutions- Link coord	linate

frames, D-H matrix, Inverse Kinematics - Existence and Uniqueness of Solutions, **Dynamics**: Kane's Method in Robotics - Two DOF Planar Robot with Two Revolute Joints, Generalized Coordinates and Speeds, Velocities, Partial Velocities, Accelerations, Generalized Inertia Forces, Generalized Active Forces

UNIT III MECHANISMS ACTUATORS AND SENSORS

9

Some Popular **Mechanisms** - Four-bar Mechanism, Slider-crank Mechanism, Rack and Pinion, Cams and Cranks, Gear and Gear Trains, Kinematics and Kinetics, Serial Robots, Parallel Robots, Mechanical Structure, Joint Mechanisms.

Actuators: Electromagnetic Actuators, Fluid Power Actuators. Different types of grippers -Compressed Air, Vacuum, Hydraulic Fluid Power, Electrical Power & other methods of gripping. DC Motors, Stepper Motors, Servo Motor, Controlling of these motors.

UNIT IV

SENSORS

Sensors: Encoders - Rotary and Linear Incremental Encoders, Tachometer, Quadrature Encoders, Absolute Encoders. Analog Displacement Sensors, Force and Tactile Sensors, Ultrasonic Transponder, Accelerometers, Gyroscopes, proximity sensors, Infrared Sensors, touch slip sensor, laser range finder, Vision-based Sensors, Color-tracking Sensors, Sensor Mounting Arrangement.

UNIT V AUTOMATION

8

7

Structure of Automatic Industrial Systems, Relationship between the Robot Intelligence and the Product, Productivity of a Manufacturing Process, Kinematics and Control of Automatic Machines, Feedback Sensors, Transporting Devices, Feeding and Orientation Devices, Automatic Assembling, Inspection Systems, Welding _ Automation.

OUTCOMES		Jpon the course completion, the student will have the ability to						
1.	To learn th	To learn the basic concepts of working of robot and its fields						
2.	To know a	To know about the dynamics and kinematics of robot						
3.	To unders	To understand the functions and mechanisms of actuators in the robot						
4.	To study a	about the working of sensors and its applications						
5.	To know a	To know about the use of Robots in industrial applications						
TEXT BOOKS:								

1.	Bruno Siciliano, Oussama Khatib (Eds.), _Springer Handbook of Robotics_, 2008,.							
2.	Jorge Angeles, _Fundamentals of Robotic Mechanical Systems Theory, Methods, and Algorithms_ Second Edition, 2003, Springer-Verlag New York, Inc.,							
3.	dwin Wise, _Robotics Demystified_, 2005, The McGraw-Hill Companies,							
REFERI	ENCES:							
1.	Thomas R. Kurfess, _Robotics And Automation Handbook_, CRC Press, 2004,							
2.	_Robotics: Appin Knowledge Solutions (Firm)_, Infinity Science Press, 2007,							
3.	J. Norberto Pires, Altino Loureiro and Gunnar Bölmsjo, _Welding Robots - Technology, System Issues and Applications_, Springer-Verlag 2006,							
4.	I.G Proakis, "Digital Communication", 4th Edition, Tata Mc Graw Hill Company, 2001.							

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	-	-	-	-	-	-	-	-	-	-	-	2	-	-
CO2	3	2	2	2	-	-	-	-	-	-	-	-	2	-	-s
CO3	3	2	1	-	2	-	-	-	-	-	-	-	2	2	2
CO4	3	2	1	-	2	-	-	-	-	-	-		2	2	2
CO5	3	2	2	3	3	2	1	2	-	2	2	2	3	3	3
1-LOW 2-MODERATE (MEDIUM)								3-HI	GH	•					

- 3-HIGH

18LO	E004	PRINCIPLES OF VLSI DESIGN	L	Т	Р	C		
			3	0	0	3		
OBJE	CTIV	ES:	4					
•	Expl	ain electrical properties of MOS and analyze the CMC)S te	echr	olog	gy.		
٠	Provide concept of combinational and sequential circuits							
٠	Unde	erstand the basic of VHDL and verilog for different lo	ogic	circ	uits			
UNIT ICMOS TECHNOLOGY9								
A brief effects, process	History DC tra enhanc	y-MOS transistor, Ideal I-V characteristics, C-V characteristics ansfer characteristics - CMOS technologies, Layout design cements, Technology related CAD issues, Manufacturing issues	, No Rule	n ide es, C	eal IV CMOS	V S		
UNIT IICIRCUIT CHARACTERIZATION AND SIMULATION9								
Delay e Design characte	Delay estimation, Logical effort and Transistor sizing, Power dissipation, Interconnect, Design margin, Reliability, Scaling- SPICE tutorial, Device models, Device characterization, Circuit characterization, Interconnect simulation							
UNIT	III	COMBINATIONAL AND SEQUENTIAL CIRCU DESIGN	JIT			9		

Circuit families –Low power logic design – comparison of circuit families – Sequencing static circuits, circuit design of latches and flip flops, Static sequencing element methodology- sequencing dynamic circuits – synchronizers

UNIT IV CMOS TESTING

Need for testing- Testers, Text fixtures and test programs- Logic verification- Silicon debug principles- Manufacturing test – Design for testability – Boundary scan

9

9

UNIT V SPECIFICATION USING VERILOG HDL

Basic concepts- identifiers- gate primitives, gate delays, operators, timing controls, procedural assignments conditional statements, Data flow and RTL, structural gate level switch level modeling, Design hierarchies, Behavioral and RTL modeling, Test benches, Structural gate level description of decoder, equality detector, comparator, priority encoder, half adder, full adder, Ripple carry adder, D latch and D flip flop.

		TOTAL : 45 PERIODS						
OUTO	COMES	Upon the course completion, the student will have the ability to						
1.	Explain the basi	cs of CMOS circuits.						
2.	To understand the CMOS process technology.							
3.	To understand th	ne concepts of designing VLSI subsystems.						
4.	Be exposed to te	echniques of chip design using programmable devices.						
5.	Modelling of digital system using hardware description language.							
ТЕХТ	BOOKS:							
1.	Weste and Harris	s: CMOS VLSI DESIGN (Third edition) Pearson Education, 2005						
2.	J.Bhasker: Verile	og HDL primer, BS publication,2001						
REFE	CRENCES:							
1.	Uyemura J.P: In	troduction to VLSI circuits and systems, Wiley 2002.						
2.	D.A Pucknell &	K.Eshraghian Basic VLSI Design, Third edition, PHI, 2003						
3.	M.J.S.Smith: App	plication specific integrated circuits, Pearson Education, 1997						
4.	Ciletti Advanced	Digital Design with the Verilog HDL, Prentice Hall of India, 2003						

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	3	3	3	1	2	2	-	-	3	2	2	2	3	2
CO2	-	3	3	3	1	2	2	-	-	3	2	2	2	3	2
CO3	-	3	3	3	1	2	2	-	-	3	2	2	2	3	2
CO4	-	3	3	3	1	2	2	-	-	3	2	2	2	3	2
CO5	-	3	3	3	1	2	2	-	-	3	2	2	2	3	2

1-LOW 2-MODERATE (MEDIUM)

3-HIGH

18LO	E005		APPLIED ELECTRONICS		L	Т	Р	С		
					3	0	0	3		
OBJE	CTIV	ES:								
•	To lear	n and unders	and basic concepts of Applied electronics.							
•	To lear	n the design,	construction, and debugging of analog electr	onic c	ircu	its.				
•	To dev	elop skill in	imple applications development with program	mming	g 80	85 8	x 805	1		
UNIT	Ι	ANALO	CIRCUITS					9		
Overvie BJT am	ew on s plifiers	emiconducto , JFET ampl	rs, diodes, transistor switches, capacitors, fie fiers, MOSFET amplifiers.	elds an	nd ir	nduc	tors -	_		
UNIT	II	APPLIC	TION OF ANALOG CIRCUITS					9		
Operati power a	onal ar amplifie	nplifiers, ap ers – power s	lication of op-amps, active filters, 555 tim	er and	los	cilla	tors -	_		
UNIT	UNIT III DIGITAL CIRCUITS							9		
Overvie display	ew on devices	logical circu s – converter	ts, logical operations, combinational and s circuits.	equent	tial	circ	uits ·	_		
UNIT	IV	ELECTR	ONIC COMMUNICATION SYSTE	EMS				9		
Audio transmi	and vie ssion –	deo systems electronic co	 noise – telecommunications – cable tr ntrol systems – process control systems. 	ansmi	ssio	n, o	ptica	.1		
UNIT	V	MICRO	ROCESSORS AND MICROCONT	ROL	LE	R		9		
Input an microco	nd outp ontrolle	ut - micropi r - circuit sir	ocessors and programming - sensors and in ulation – circuit construction.	terfaci	ng -	- Th	e PIO	7		
			TOTAL : 45	PERI	IOI	DS				
OUTO	COME	ĊS	Upon the course completion, the student will have the ability to							
1.	Acqui circuit	res knowled s.	e for building, testing and modifying simple	e circu	its 1	to co	ompl	ex		
2.	Abilit	y to understa	nd and analyse, linear and digital electronic	circuit	ts.					
3.	Acqui	cquires the basic knowledge of electronics.								

4.	Gains knowled	ge about the microprocessor and microcontroller.						
TEXT	BOOKS:							
1.	Owen Bishop, '	'Electronics – Circuits and Systems'', 3 rd Edition, Newnes, 2010.						
2.	Michael Tooley B A, "Electronic Circuits: Fundamentals and Applications", 3 rd Edition, Newnes, 2006.							
3.	Donald .A. Neamen, Electronic Circuit Analysis and Design –2nd Edition, Tata Mc Graw Hill, 2009.							
REFE	RENCES:							
1.	John B.Peatma	n," Design with PIC Microcontrollers", Prentice Hall, 1998.						
2.	Jacob Millman, circuits system	Christos C.Halkias, 'Integrated Electronics – Analog and Digital', Tata McGraw Hill, 2003.						
3.	Fiore, "Opamps Applications", (s & Linear Integrated Circuits Concepts & Cengage,2010.						
4.	<i>R. Gayakwad</i> , <i>Textbook of Operational Amplifiers and Linear Integrated Circuits</i> , <i>PHI Publication</i> .							
5.	R. Coughlin an Publications.	d Driscoll, Textbook of OpAmp & Linear Integrated Circuits, PHI						

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	1	-	-	-	-	-	1	2	2	-	-	1	-	-
CO2	3	3	2	-	-	-	1	1	2	2	3	-	-	2	-
CO3	1	2	3	3	3	1	1	-	-	2	2	-	1	1	-
CO4	3	2	3	1	3		-	-	-	2	3	2	2	3	3
CO5	3	-	2	1	3	3	2	-	-	3	2	3	3	1	3
1-LO	1-LOW 2-MODERATE (MEDIUM) 3-HIGH														

173

17LOE006	WIRELESS NETWORKS	L	Т	Р	C			
		3	0	0	3			
OBJECTIV	ES:							
• To stuc	ly about Wireless networks, protocol stack and standards.							
• To stud	ly about fundamentals of 3G Services, its protocols and application	atior	ns.					
• To stuc	ly about evolution of 4G Networks, its architecture and applica	ation	IS.					
UNIT I	WIRELESS LAN				9			
IEEE802.11: 802.11b, 802.1 Radio Layer, Physical layer,	IEEE802.11: System architecture, protocol architecture, physical layer, MAC layer, 802.11b, 802.11a – Hiper LAN: WATM, BRAN, HiperLAN2 – Bluetooth: Architecture, Radio Layer, Baseband layer, Link manager Protocol, security - IEEE802.16-WIMAX: Physical layer, MAC, Spectrum allocation for WIMAX							
UNIT II	MOBILE NETWORK LAYER				9			
Introduction - IPV6-Network network: Routi	Mobile IP: IP packet delivery, Agent discovery, tunneling and a layer in the internet- Mobile IP session initiation protocol - 1 ang, Destination Sequence distance vector, Dynamic source rout	enca mob ting.	psul ile a	ation d-ho	., С			
UNIT III	MOBILE TRANSPORT LAYER				9			
TCP enhancer retransmit/fast TCP, Snooping oriented TCP -	nents for wireless protocols - Traditional TCP: Congestion recovery, Implications of mobility - Classical TCP improven g TCP, Mobile TCP, Time out freezing, Selective retransmission TCP over 3G wireless networks.	nents n, Ti	ntrol s: In rans:	, fas direc action	t :t n			
UNIT IV	WIRELESS WIDE AREA NETWORK				9			
Overview of U 3G-MSC, 3G- speed Downlin	Overview of UTMS Terrestrial Radio access network-UMTS Core network Architecture: 3G-MSC, 3G-SGSN, 3G-GGSN, SMS-GMSC/SMS-IWMSC, Firewall, DNS/DHCP-High speed Downlink packet access (HSDPA)- LTE network architecture and protocol.							
UNIT V	4G NETWORKS				9			
Introduction – Technologies: Adaptive Mod	Introduction – 4G vision – 4G features and challenges - Applications of 4G – 4G Technologies: Multicarrier Modulation, Smart antenna techniques, OFDM-MIMO systems, Adaptive Modulation and coding with time slot scheduler, Cognitive Radio.							

		TOTAL : 45 PERIODS								
OUT	COMES	Upon the course completion, the student will have the ability to								
1.	Acquires know architecture.	eledge about the latest 3G/4G and WiMAX networks and its								
2.	Design and im latest wireless	plement wireless network environment for any application using protocols and standards.								
3.	Implement diff latest network	ferent types of applications for smart phones and mobile devices with strategies.								
4.	An Overview of UTMS and it's core network Architecture									
5.	To describe the 4G features and challenges and its Applications of 4G									
TEXT	BOOKS:									
1.	Jochen Schiller, "Mobile Communications", Second Edition, Pearson Education 2012.(Unit I,II,III)									
2.	Vijay Garg , "Wireless Communications and networking", First Edition, Elsevier 2007.(Unit IV,V)									
3.	William Stallin 2002.	ngs, "Wireless Communications and Networks", Pearson Education,								
REFE	CRENCES:									
1.	Erik Dahlman, and LTE for M	Stefan Parkvall, Johan Skold and Per Beming, "3G Evolution HSPA Jobile Broadband", Second Edition, Academic Press, 2008.								
2.	Anurag Kuman Elsevier 2011.	r, D.Manjunath, Joy kuri, "Wireless Networking", First Edition,								
3.	Simon Haykin , Michael Moher, David Koilpillai, "Modern Wireless Communications", First Edition, Pearson Education 2013									
4.	Kaveh Pahlavan, Prasanth Krishnamoorthy, "Principles of Wireless Networks",First Edition, Pearson Education, 2003.									
5.	Uwe Hansman of Mobile Compu	Uwe Hansmann, Lothar Merk, Martin S. Nicklons and Thomas Stober, "Principles of Mobile Computing", Springer, 2003.								

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	3	2	-	-	1	-	-	-	2	3	1	-	2	-	-
CO2	2	1	-	1	3	-	1	-	-	-	-	-	-	2	2
CO3	1	-	-	1	1	-	1	3	2	1	-	-	1	2	2
CO4	-	1	2	2	-	1	-	2	1	2	2	1	-	1	1
CO5	3	2	1	-	-	3	3	-	1	1	-	1	-	2	-
1-LOW 2-MODERATE (MEDIUM) 3-HIGH															

18LOE007	INTERNET OF THINGS	L	Т	Р	С			
		3	0	0	3			
UNIT I	FUNDAMENTALS OF IOT				9			
Introduction-C technologies –	haracteristics-Physical design - Protocols – Logical design IoT Levels – Domain Specific IoTs – IoT vs M2M.	1 –	Ena	abling	đ			
UNIT II	IOT DESIGN METHODOLOGY				9			
IoT systems management – IoT Design Methodology – Specifications Integration and Application Development.								
UNIT III	BUILDING IOT WITH RASPBERRY PI				9			
Physical device	e – Raspberry Pi Interfaces – Programming – APIs / Packages –	Web) ser	vices	1			
UNIT IV	BUILDING IOT WITH GALILEO/ARDUINO				9			
Intel Galileo Gen2 with Arduino- Interfaces - Arduino IDE - Programming - APIs and								
Hacks								
UNIT V CASE STUDIES and ADVANCED TOPICS								
Various Real t Data Analytics	Various Real time applications of IoT- Connecting IoT to cloud – Cloud Storage for Iot – Data Analytics for IoT – Software & Management Tools for IoT							

		TOTAL : 45 PERIODS							
OUTO	COMES	Upon the course completion, the student will have the ability to							
1.	Design a por	table IoT using Arduino/ equivalent boards and relevant protocols.							
2.	Develop we	o services to access/control IoT devices.							
3.	Deploy an IoT application and connect to the cloud.								
4.	Analyze applications of IoT in real time scenario								
TEXT	BOOKS:								
1.	Arshdeep Bahga, Vijay Madisetti, "Internet of Things – A hands-on approach", Universities Press, 2015.								
2.	Hakima Cha 2017.	ouchi, "The Internet of Things Connecting objects to the web", Wiley,							
3.	Raj Kamal, ⁶ Hill, 2017.	'Internet of Things Architecture and Design Principles'', Tata Mcgraw							
REFE	RENCES:								
1.	Manoel Car Arduino Pro	os Ramon, "Intel® Galileo and Intel® Galileo Gen 2: API Features and jects for Linux Programmers", Apress, 2014.							
2.	Marco Schwartz, "Internet of Things with the Arduino Yun", Packt Publishing, 2014.								
3.	Adrian McEwen, Hakim Cassimally, "Designing the Internet of Things", Wiley Publications, 2013.								
4.	Samuel Gree	Samuel Greengard, "The Internet of Things", MIT press, 2015.							

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	-	-	-	-	-	-	-	-	-	-	2	2	2
CO2	3	2	1	-	-	-	-	-	-	-	-	-	2	3	3
CO3		2	3	3	2	2	2	2	2	2	2	-	2	3	-
CO4	1	2	3	1	2	2	1	-	-	2	-	-	2	2	2
CO5		2	3	3	3	2	2	2	2	2	3	2	3	3	3
1-L0	LOW 2-MODERATE (MEDIUM)								3-HI	GH				•	

18LOE00	S SOFT COMPUTING	L	Т	Р	C								
	3 0 0												
OBJECT	VES:												
• L	arn the various soft computing frame works												
• U	derstand the design of various neural networksand fuzzy logics												
• G	Gain the knowledge of advanced fuzzy logic techniques and its application.												
UNIT IINTRODUCTION9													
logic: Introc product of r non-iterative traditional o	Evolution of neural networks- basic models - important technologies - applications. Fuzzy logic: Introduction - crisp sets- fuzzy sets - crisp relations and fuzzy relations: cartesian product of relation - classical relation, fuzzy relations, tolerance and equivalence relations, non-iterative fuzzy sets. Genetic algorithm- Introduction - biological background - traditional optimization and search techniques - Genetic basic concepts.												
UNIT II	UNIT IINEURAL NETWORKS9												
McCulloch-Pitts neuron - linear separability - hebb network - supervised learning network: perceptron networks - adaptive linear neuron, multiple adaptive linear neuron, BPN, RBF, TDNN- associative memory network: auto-associative memory network, hetero-associative memory network, BAM, hopfield networks, iterative autoassociative memory network & iterative associative memory network –unsupervised learning networks: Kohonenself organizing feature maps, LVQ – CP networks, ART network.													
UNIT III	FUZZY LOGIC			9	9								
Membership functions: features, fuzzification, methods of membership value assignments- Defuzzification: lambda cuts - methods - fuzzy arithmetic and fuzzy measures: fuzzy arithmetic - extension principle - fuzzy measures - measures of fuzziness -fuzzy integrals - fuzzy rule base and approximate reasoning : truth values and tables, fuzzy propositions, formation of rules-decomposition of rules, aggregation of fuzzy rules, fuzzy reasoning- fuzzy inference systems-overview of fuzzy expert system-fuzzy decision making.													
UNIT IV	GENETIC ALGORITHM			9	9								
Genetic algorithm and search space - general genetic algorithm – operators - Generational cycle - stopping condition – constraints - classification - genetic programming – multilevel optimization – real life problem- advances in GA													

UNIT	'V H A	HYBRID SOFT COMPUTING TECHNIQUES & APPLICATIONS										
Neuro- fuzzy approad using g	fuzzy hybr genetic hy ch of mult genetic algo	rid systems - ge ybrid systems - tispectral images prithm approach,	enetic neuro hybrid systems - genetic fuzzy hybrid simplified fuzzy ARTMAP - Applications: A fu with SAR, optimization of traveling salesman pro- soft computing based hybrid fuzzy controllers	and usion blem								
			TOTAL : 45 PERIODS									
COUI	RSE OU	TCOMES	Upon the course completion, the student will have the ability to									
1.	Apply va	rious soft compu	iting frame works.									
2.	Design of various neural networks.											
3.	Use fuzzy logic.											
4.	Apply ge	Apply genetic programming.										
5.	Discuss h	nybrid soft comp	uting.									
ТЕХЛ	F BOOK	S:										
1.	J.S.R.Jan Pearson I	ng, C.T. Sun and Education 2004	E.Mizutani, "Neuro-Fuzzy and Soft Computing", PH	Ι/								
2.	S.N.Sivar Ltd. 2011	nandam and S.N 1	Deepa, "Principles of Soft Computing", Wiley India	Pvt								
3.	Neuro-Fu	uzzy Systems, Cl	hin Teng Lin, C. S. George Lee, PHI									
REFE	ERENCE	ZS:										
1.	S.Rajasel Genetic A	karan and G.A.V Algorithm: Synth	ijayalakshmi Pai, "Neural Networks, Fuzzy Logic and esis & Applications", Prentice-Hall of India Pvt. Ltd.	d , 2006.								
2.	George J Applicati	I. Klir, Ute St. Cl ions" Prentice H	air, Bo Yuan, "Fuzzy Set Theory: Foundations and Jall, 1997.									
3.	James A. and Prog	Freeman, David gramming Techni	d M. Skapura, "Neural Networks Algorithms, Applica jaues, Pearson Education India, 1991	tions,								
4.	Simon Ha	aykin, "Neural N Education 2005	Vetworks Comprehensive Foundation" Second Edition	1,								
5.	David E. Goldberg, "Genetic Algorithm in Search Optimization and Machine Learning" Pearson Education India, 2013.											

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	1	-	-	-	-	-	1	2	2	-	-	1	-	-
CO2	3	1	-	-	-	-	2	-	-	2	2	1	-	2	-
CO3	1	-	2	3	-	-	-	2	2	1	-	2	-	3	
CO4	-	-	2	3	3	2	-	3	1	1	2	-	-	3	3
CO5	-	3	2	2	3	2	-	3	1	1	1	-	-	2	3

1-LOW 2-MODERATE (MEDIUM)

3-HIGH