GOVERNMENT COLLEGE OF ENGINEERING, BARGUR Regulation – 2018 AUTONOMOUS

Curriculum for Full Time – M.E. –Power Electronics and Drives

From the Academic Year 2018-2019 onwards

Programme Outcomes (PO):

PO1 Apply the knowledge of science and mathematics in designing, analyzing and using power converters for various industrial and domestic applications.

PO2 Design the modern electric machines, drives, power converters, and control circuits for specific application.

PO3 Use modern tools, professional software platforms, embedded systems for the Diversified applications.

PO4 Explore ideas for inculcating research skills.

PO5 Solve the problems which need critical and independent thinking to show reflective learning.

PO6 Imagine the larger picture and correlate the domain knowledge with the global industrial problems.

PO7 Acquire sound knowledge in Power Electronics and Drives.

PO8 Analyze Power electronics and drives related Engineering problems and synthesize the information for conducting high level of research.

PO9 Ability to form, understand group dynamics and work inter-disciplinary groups in order to achieve the goal.

PO10 Ability to update knowledge and skills through lifelong learning to keep abreast with the technological developments.

PO11 Understand the leadership principles and subject oneself to introspection and take voluntary remedial measures for effective professional practice in the field of Power Electronics and Electric Drives.

Programme Specific Outcomes (PSO):

PSO1 Specify, design, prototype and test modern power electronic systems using various software tools.

PSO2 Ability to understand the Practical Problems in Electric drives, Power System and Renewable Energy technology.

PSO3 Inculcate the ability to apply power electronic concepts and practices into engineering systems for the betterment of industry as well as society..

ELECTRICAL AND ELECTRONICS ENGINEERING

CURRICULUM DESIGN

CREDIT SUMMARY

Name of the PG Programme: M.E – POWER ELECTRONICS AND DRIVES

Credit Summary

SI. No	Subject Area	Credits per Semester		Credits Total	As per AICTE model curriculum		
S.NO	Semester	Ι	II	III	IV		Credits
1.	РС	16	13			29	22
2.	PE	6	6	3		15	15
3.	OE			3		03	03
4.	PROJ		3	6	12	21	28
	Total	22	22	12	12	68	68

GOVERNMENT COLLEGE OF ENGINEERING, BARGUR (An Autonomous Institution Affiliated to Anna University) M.E. POWER ELECTRONICS AND DRIVES 2018 REGULATIONS

FIRST SEMESTER

SI No	Course Code	Course Name	Course Category	Contact Hours	L	Т	Р	С	
THE	EORY	1	Category Hours Image: Category Hours Image: Category PCC 45 3 0 0 3 PCC 45 3 0 0 3 r PCC 45 3 0 0 3 PEC 45 3 0 0 3 PEC 45 3 0 0 3 PEC 45 3 0 0 3						
1	18PEPC01	Power Semiconductor Devices	PCC	45	3	0	0	3	
2	18PEPC02	Advanced Power Electronic Circuits	PCC	45	3	0	0	3	
3	18PEPC03	Digital Control of Power Electronic System	PCC	45	3	0	0	3	
4	18PEPC04	FACTS and Custom Power Devices	PCC	45	3	0	0	3	
5		Professional Elective I	PEC	45	3	0	0	3	
6		Professional Elective II	PEC	45	3	0	0	3	
7		Audit Course I	MC	30	2	0	0	0	
PRA	CTICALS								
8	18PEPC05	Advanced Power Electronics Laboratory	PCC	60	0	0	4	2	
9	18PEPC06	Digital Control of Power Electronic System Laboratory	PCC	60	0	0	4	2	
				TOTAL	20	0	8	22	

SECOND SEMESTER

SI No	Course Code	Course Name	Course Category	Contact Hours	L	Т	Р	С
	EORY		Cuttgory	nours				
1	18PEPC07	Power Electronic Converters and DC Drives	PCC	45	3	0	0	3
2	18PEPC08	Power Electronic Inverters and AC Drives	PCC	45	3	0	0	3
3	18PEPC09	Modeling and Analysis of Electrical Machines	PCC	45	3	0	0	3
4		Professional Elective III	PEC		3	0	0	3
5		Professional Elective IV	PEC	45	3	0	0	3
PRA	CTICALS							
6	18PEEE10	Mini Project with Seminar	EEC	90	0	0	6	3
7	18PEPC11	Power Electronic Converters and DC Drives Lab	PCC	60	0	0	4	2
8	18PEPC12	Power Electronic Inverters and AC Drives Lab	PCC	60	0	0	4	2
				TOTAL	15	0	14	22

THIRD SEMESTER

SI No	Course Code	Course Name	Course Category	Contact Hours	L	Т	Р	С
THE	EORY							
1		Professional Elective V	PEC	45	3	0	0	3
2		Open Elective Course	OEC	45	3	0	0	3
3		Audit Course II	MC	30	2	0	0	0
PRA	CTICALS							
4	18PEEE13	Project Phase I	EEC	180	0	0	12	6
				TOTAL	8	0	12	12

FOURTH SEMESTER

Sem	Semester IV									
SI No	Course Code	Course Name	Course Category	Contact Hours	L	Т	Р	С		
PRA	CTICALS			•						
1	18PEEE14	Project Phase II	EEC	360	0	0	24	12		
				TOTAL	0	0	24	12		

GRAND TOTAL CREDITS: 68

LIST OF PROFESSIONAL ELECTIVE COURSES

PROF	ESSIONAL 1	ELECTIVES						
SI No	Course Code	Course Name	Course Category	Contact Hours	L	Т	Р	С
1.	18PEPE01	Dynamics of Electrical Machines	PEC	45	3	0	0	3
2.	18PEPE02	Soft Computing Techniques	PEC	45	3	0	0	3
3.	18PEPE03	Electric Vehicles and Power Management	PEC	45	3	0	0	3
4.	18PEPE04	Solar and Energy Storage System	PEC	45	3	0	0	3
5.	18PEPE05	Wind energy Conversion System	PEC	45	3	0	0	3
6.	18PEPE06	PWM converter and Applications	PEC	45	3	0	0	3
7.	18PEPE07	Switched Mode and Resonant Converters	PEC	45	3	0	0	3
8.	18PEPE08	Digital Signal Processing and Applications	PEC	45	2	1	0	3
9.	18PEPE09	Industrial Load Modeling and Control	PEC	45	3	0	0	3
10.	18PEPE10	Microcontroller based Systems	PEC	45	3	0	0	3

11.	18PEPE11	Distributed Power Generation	PEC	45	3	0	0	3
12.	18PEPE12	Smart Grid Technologies	PEC	45	3	0	0	3
13.	18PEPE13	SCADA Systems and Applications	PEC	45	3	0	0	3
14.	18PEPE14	Modern Power System Analysis	PEC	45	2	1	0	3
15.	18PEPE15	HVDC	PEC	45	3	0	0	3
16.	18PEPE16	Power Quality	PEC	45	3	0	0	3
17.	18PEPE17	Analog and Digital Controllers	PEC	45	3	0	0	3
18.	18PEPE18	MEMS Technology	PEC	45	3	0	0	3
19.	18PEPE19	Energy Economics, Management and Auditing	PEC	45	3	0	0	3
20.	18PEPE20	System Theory	PEC	45	3	0	0	3
21.	18PEPE21	Robotics and Control	PEC	45	3	0	0	3

OPEN ELECTIVES (OFFERED TO THE OTHER DEPARTMENTS)

SI No	Course Code	Course Name	Course Category	Contact Hours	L	Т	Р	С
Open	Electives offe	red by Power Electroni	ics and Drives					
1	18PEOE01	Waste to Energy	OEC	45	3	0	0	3
2	18PEOE02	Machine Learning and Automation	OEC	45	3	0	0	3
3	18PEOE03	Software for Circuit Simulation	OEC	45	3	0	0	3
4	18PEOE04	Power Electronics for Solar Photovoltaic systems	OEC	45	3	0	0	3
5	18PEOE05	Electric Vehicle	OEC	45	3	0	0	3

LIST OF AUDIT COURSES

SI No	Course Code	Course Name	Course Category	Contact Hours	L	Т	Р	С
1	18ZAC001	Disaster Management	MC	30	2	0	0	0
2	18ZAC002	English for Research Paper Writing	MC	30	2	0	0	0
3	18ZAC003	Research Methodology and IPR	MC	30	2	0	0	0
4	18ZAC004	Sanskrit for Technical Knowledge	MC	30	2	0	0	0
5	18ZAC005	Value Education	MC	30	2	0	0	0
6	18ZAC006	Pedagogy Studies	MC	30	2	0	0	0
7	18ZAC007	Stress Management by Yoga	MC	30	2	0	0	0
8	18ZAC008	Personality Development through Life Enlightenment Skills	MC	30	2	0	0	0

LIST OF PROGRAM CORE COURSES

SI No	Course Code	Course Name	Course Category	Contact Hours	L	Т	Р	С
1.	18PEPC01	Power Semiconductor Devices	PCC	45	3	0	0	3
2.	18PEPC02	Advanced Power Electronic Circuits	PCC	45	3	0	0	3
3.	18PEPC03	Digital Control of Power Electronic System	PCC	45	3	0	0	3
4.	18PEPC04	FACTS and Custom Power Devices	PCC	45	3	0	0	3
5.	18PEPC05	Advanced Power Electronics Laboratory	PCC	45	0	0	4	2
6.	18PEPC06	Digital Control of Power Electronic System Laboratory	PCC	45	0	0	4	2

7.	18PEPC07	Power Electronic Converters and DC Drives	PCC	45	3	0	0	3
8.	18PEPC08	Power Electronic Inverters and AC Drives	PCC	45	3	0	0	3
9.	18PEPC09	Modeling and Analysis of Electrical Machines	PCC	45	3	0	0	3
10.	18PEPC11	Power Electronic Converters and DC Drives Lab	PCC	45	0	0	4	2
11.	18PEPC12	Power Electronic Inverters and AC Drives Lab	PCC	45	0	0	4	2

LIST OF EMPLOYABILITY ENHANCEMENT COURSES

SI No	Course Code	Course Name	Course Category	Contact Hours	L	Т	Р	С
1	18PEEE10	Mini Project with Seminar	EEC	90	0	0	6	3
2	18PEEE13	Project Phase I	EEC	180	0	0	12	6
3	18PEEE14	Project Phase II	EEC	360	0	0	24	12

Semester-I

18PEPC01		L	Τ	P	C
		3	0	0	3
OBJECTIV					
To impro application	ove power semiconductor device structures for adjustable speed nons.	mot	or co	ontrol	
• semicono	stand the static and dynamic characteristics of current controlled ductor devices	•			
• To under	stand the static and dynamic characteristics of voltage controlled	d po	ower		
• To enable	e the students for the selection of devices for different power ele	ectro	onics		
• To under	stand the control and firing circuit for different devices				
UNIT I	INTRODUCTION				09
	es – EMI due to switching-Power diodes - Types, forwa , switching characteristics – rating. CURRENT CONTROLLED DEVICES				
coefficient and	truction, static characteristics, switching characteristics; Nega second breakdown; Thyristors – Physical and electrical princ	cipl	e un	der ly	ying
coefficient and operating mode characteristics; operation; com	truction, static characteristics, switching characteristics; Nega	ciplo aı ries	e un nd s and	der ly witch l para	ture ying ning allel
coefficient and operating moc characteristics; operation; com Thyristor- Basi	truction, static characteristics, switching characteristics; Nega second breakdown; Thyristors – Physical and electrical princ de, Two transistor analogy – concept of latching; Gate converter grade and inverter grade and other types; se parison of BJT and Thyristor – steady state and dynamic m	ciplo aı ries	e un nd s and	der ly witch l para	ture ying ning allel Γ &
coefficient and operating mode characteristics; operation; com Thyristor- Basi UNIT III Power MOSFF tatic and switco and IGCT. New	truction, static characteristics, switching characteristics; Nega second breakdown; Thyristors – Physical and electrical princ de, Two transistor analogy – concept of latching; Gate converter grade and inverter grade and other types; se parison of BJT and Thyristor – steady state and dynamic m cs of GTO, MCT,FCT,RCT	ciple an ories node nstru FET lule	e un nd s ancels o uctio and s - I	der ly switch l para f BJT n, ty IGB	ture ying allel Γ & 09 pes, Ts -
coefficient and operating moc characteristics; operation; com <u>Chyristor- Basi</u> <u>UNIT III</u> Power MOSFE static and switc and IGCT. New gate commutate	truction, static characteristics, switching characteristics; Nega second breakdown; Thyristors – Physical and electrical princ de, Two transistor analogy – concept of latching; Gate converter grade and inverter grade and other types; se aparison of BJT and Thyristor – steady state and dynamic m cs of GTO, MCT,FCT,RCT VOLTAGE CONTROLLED DEVICES ETs and IGBTs – Principle of voltage controlled devices, cor ching characteristics, steady state and dynamic models of MOSF w semiconductor materials for devices – Intelligent power mod	ciple an ories node nstru FET lule	e un nd s ancels o uctio and s - I	der ly switch l para f BJT n, ty IGB	ture ying allel Γ & 0 9 pes, Ts - ated
coefficient and operating model characteristics; operation; com Thyristor- Basi UNIT III Power MOSFE static and switch and IGCT. New gate commutate UNIT IV Necessity of is GBTs and bas	truction, static characteristics, switching characteristics; Negal second breakdown; Thyristors – Physical and electrical principle, Two transistor analogy – concept of latching; Gate converter grade and inverter grade and other types; semparison of BJT and Thyristor – steady state and dynamic m cs of GTO, MCT,FCT,RCT VOLTAGE CONTROLLED DEVICES ETs and IGBTs – Principle of voltage controlled devices, correcting characteristics, steady state and dynamic models of MOSF w semiconductor materials for devices – Intelligent power model thyristor (IGCT) - GAN, SiC, IEGT- Comparison of all power	ciple an ries node nstri FET lule r de	e un nd s and els o uctio `and s - I evice R, N	der ly switch l para f BJ7 m, ty IGB ntegra s.	ture ture hing hillel Γ & 09 pes, Ts - ated 09 ET,
coefficient and operating mode characteristics; operation; com <u>Thyristor- Basi</u> <u>UNIT III</u> Power MOSFE static and switce and IGCT. New gate commutate UNIT IV Necessity of is IGBTs and bass of snubbers, G	truction, static characteristics, switching characteristics; Negal second breakdown; Thyristors – Physical and electrical principle, Two transistor analogy – concept of latching; Gate converter grade and inverter grade and other types; semparison of BJT and Thyristor – steady state and dynamic models of GTO, MCT,FCT,RCT VOLTAGE CONTROLLED DEVICES ETs and IGBTs – Principle of voltage controlled devices, conching characteristics, steady state and dynamic models of MOSF we semiconductor materials for devices – Intelligent power mode thyristor (IGCT) - GAN, SiC, IEGT- Comparison of all power OTHER GATE CONTROLLED DEVICES olation, pulse transformer, opto coupler – Gate drives circuit: e driving for power BJT- Overvoltage, over current and gate pro-	ciple an ries node nstri FET lule r de	e un nd s and els o uctio `and s - I evice R, N	der ly switch l para f BJ7 m, ty IGB ntegra s.	ture ture hing hillel Γ & 09 pes, Ts - ated 09 ET,
coefficient and operating model characteristics; operation; com Thyristor- Basi UNIT III Power MOSFE static and switch and IGCT. New gate commutate UNIT IV Necessity of is IGBTs and basis of snubbers, G UNIT V Heat transfer – cooling; Guida analogy of the	truction, static characteristics, switching characteristics; Negal second breakdown; Thyristors – Physical and electrical principle, Two transistor analogy – concept of latching; Gate converter grade and inverter grade and other types; semparison of BJT and Thyristor – steady state and dynamic m cs of GTO, MCT,FCT,RCT VOLTAGE CONTROLLED DEVICES ETs and IGBTs – Principle of voltage controlled devices, conching characteristics, steady state and dynamic models of MOSF we semiconductor materials for devices – Intelligent power mode thyristor (IGCT) - GAN, SiC, IEGT- Comparison of all power of thyristor (IGCT) - GAN, SiC, IEGT- Comparison of all power of the devices of the devices. OTHER GATE CONTROLLED DEVICES olation, pulse transformer, opto coupler – Gate drives circuit: e driving for power BJT- Overvoltage, over current and gate proposed of the devices. THERMAL PROTECTION conduction, convection and radiation ; Cooling – liquid cooling ance for hear sink selection–Thermal resistance and impediate in the sink types and design–Mounting types	ciple an rries node nstru FET dule or de SC.	e un nd s ancels o uctice and s - I evice R, Metions vapor ce -	der ly switch l para f BJT n, ty IGB ntegra s. IOSF s; Des ur – I Elec	ture ture ying allel Γ & 09 pes, Ts - ated 09 ET, sign 09 Dhase trica
coefficient and operating model characteristics; operation; com Thyristor- Basi UNIT III Power MOSFE static and switch and IGCT. New gate commutate UNIT IV Necessity of is IGBTs and basis of snubbers, G UNIT V Heat transfer – cooling; Guida analogy of the	truction, static characteristics, switching characteristics; Negal second breakdown; Thyristors – Physical and electrical principle, Two transistor analogy – concept of latching; Gate converter grade and inverter grade and other types; semparison of BJT and Thyristor – steady state and dynamic m cs of GTO, MCT,FCT,RCT VOLTAGE CONTROLLED DEVICES ETs and IGBTs – Principle of voltage controlled devices, conching characteristics, steady state and dynamic models of MOSF we semiconductor materials for devices – Intelligent power mode thyristor (IGCT) - GAN, SiC, IEGT- Comparison of all power of thyristor (IGCT) - GAN, SiC, IEGT- Comparison of all power of the devices of the devices. OTHER GATE CONTROLLED DEVICES olation, pulse transformer, opto coupler – Gate drives circuit: e driving for power BJT- Overvoltage, over current and gate proposed of the devices. THERMAL PROTECTION conduction, convection and radiation ; Cooling – liquid coolinance for hear sink selection–Thermal resistance and impediate in the sink types and design–Mounting types	ciple an aries node nstri FET lule r de SC otec	e un and s ancels o uctic and s - I evice R, N etions vapo ce - swit	der ly switch l para f BJ7 nt gr s, n, ty IGB nt egr s, IOSF s; Des s; Des ur – 1 Elec ching	ture ture ying hing hillel Γ & 09 pes, Ts - ated 09 ET, sign 09 ET, sign 09 bhase tricas
coefficient and operating mod characteristics; operation; com Thyristor- Basi UNIT III Power MOSFE static and switce and IGCT. New gate commutate UNIT IV Necessity of is IGBTs and bas of snubbers, G UNIT V Heat transfer – cooling; Guida analogy of the calculation for	truction, static characteristics, switching characteristics; Negal second breakdown; Thyristors – Physical and electrical prince de, Two transistor analogy – concept of latching; Gate converter grade and inverter grade and other types; se aparison of BJT and Thyristor – steady state and dynamic m cs of GTO, MCT,FCT,RCT VOLTAGE CONTROLLED DEVICES Ts and IGBTs – Principle of voltage controlled devices, con ching characteristics, steady state and dynamic models of MOSF w semiconductor materials for devices – Intelligent power mode ed thyristor (IGCT) - GAN, SiC, IEGT- Comparison of all power OTHER GATE CONTROLLED DEVICES olation, pulse transformer, opto coupler – Gate drives circuit: e driving for power BJT- Overvoltage, over current and gate pro FO, MCT and other thyristors. THERMAL PROTECTION conduction, convection and radiation ; Cooling – liquid coolin ance for hear sink selection–Thermal resistance and imped rmal components ,heat sink types and design–Mounting types power device.	ciple an aries node nstri FET lule r de SC otec	e un and s ancels o uctic and s - I evice R, N etions vapo ce - swit	der ly switch l para f BJ7 nt gr s, n, ty IGB nt egr s, IOSF s; Des s; Des ur – 1 Elec ching	ture ying hing hillel Γ & 09 pes, Ts - ated 09 ET, sign 09 ET, sign 09 bhas

2	Design of semiconductor device and its parameters.
3	Design of protection circuits.
4	Design of firing and control circuit.
5	Determine the reliability of the system.
REI	FERENCES:
1.	B.W.Williams, "Power Electronics Circuit Devices and Applications".
2.	Rashid M.H., "Power Electronics Circuits, Devices and Applications", Prentice Hall India,
Ζ.	Third Edition, New Delhi,2004
3.	MD Singhand K.B Khanchandani, "PowerElectronics", TataMcGrawHill, 2001.
4.	Mohan, Undeland and Robins, "Power Electronics–Concepts, applications and Design
4.	John Wiley and Sons, Singapore, 2000.
5.	Joseph Vithayathil, "Power Electronics: Principles and Applications", Delhi, Tata
5.	McGraw - Hill, 2010.
6.	Donald A.Neamen, "Semiconductor Physics and Devices", Tata McGraw Hill, New Delhi,
0.	Fourth Edition, 2012.
7.	Kassakian, J.G. et. al., "Principles of Power Electronics", Pearson Education India., 2012.

CO/P	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P10	P11	PSO1	PSO2	PSO3
0														
CO1	-	3	-	-	-	-	-	1	-	-	-	-	2	2
CO2	-	3	-	-	-	-	2					-	2	-
CO3	-	3	-	-		-	-	-	-	2	-	-	-	2
CO4	-	3	-	-	-	-	-	-	-	2	-	-	-	2
CO5	-	3	-	-	-	-	-	-	2	-	-	-	2	-

18P	EPC02	ADVANCED POWER ELECTRONIC CIRCUITS	L	T	P	C
OR	JECTIV	78.	3	0	0	3
		stand non isolated converter				
•						
•		stand isolated converter.				
•		stand the operation of advanced power electronic circuit topolo	gies	•		
•		few practical circuits, used in practice.				
	NIT I	NON ISOLATED CONVERTERS				9
	t type API t SMPS To	^E C and control – Three phase utility interphases and control – pologies.	Buc	k, B	oost,	Buck-
Uľ	NIT II	ISOLATED CONVERTERS				9
	-	ation – Push-Pull and Forward Converter Topologies – Volta ridge Converters.	age l	Mod	e Con	trol –
UN	III TII	RESONANT CONVERTERS				9
		Resonant Converters - Load Resonant Converter - Zero V	/olta	ige S	witch	ing –
		ge Topologies.				
	NIT IV	CONTROL FOR SWITCH MODE POWER CIR				9
	nant DC I e Converte	ink Inverters with Zero Voltage Switching – High Frequency	y Lii	nk Ir	ntegra	l Half
	NIT V	MODELING AND DESIGN				9
Mod	eling and d	esign of DC-DC Converters for various renewable energy conv	versi	on –	Few	power
elect	ronic circu	its used in practice for controlling electric drives.				
			ΓAL	:45	PER	IODS
		S: After completion of this course, the student will be able to:				
$\frac{1}{2}$		nd the concept of isolated and non-isolated converter.				
$\frac{2}{2}$		Irrain and design of Deserved sevents as				
	$\Delta couire l$	lysis and design of Resonant converters.	ers	ΔPF	C	
3		nowledge about analysis and design of Switched Mode Rectifi	ers,	APF	C.	
3 4 5	Understa		ers,	APF	C.	
4 5	Understa	nowledge about analysis and design of Switched Mode Rectified the concept of DC-DC Converters e DC-DC Converters.	ers,	APF	C.	
4 5	Understar Model the	nowledge about analysis and design of Switched Mode Rectified the concept of DC-DC Converters e DC-DC Converters.	ers,	APF	С.	
4 5 REI	Understan Model the FERENC Rashid "	nowledge about analysis and design of Switched Mode Rectifi ad the concept of DC-DC Converters e DC-DC Converters. ES:				
4 5 REI 1.	Understan Model the FERENC Rashid " G.K.Dub	nowledge about analysis and design of Switched Mode Rectified the concept of DC-DC Converters e DC-DC Converters. ES: Power Electronics" Prentice Hall India 2007	, 200	05, 0	6	
4 5 REI 1. 2.	Understan Model th FERENC Rashid " G.K.Dub Dewan &	nowledge about analysis and design of Switched Mode Rectifi ad the concept of DC-DC Converters e DC-DC Converters. ES: Power Electronics" Prentice Hall India 2007 ey et.al "Thyristorised Power Controllers" Wiley Eastern Ltd.,	, 200 ns.,)5, 0 1975	6	993
4 5 REI 1. 2. 3. 4. 5.	Understan Model th FERENC Rashid " G.K.Dub Dewan & G.K. Dub Cyril W I	 Inowledge about analysis and design of Switched Mode Rectified the concept of DC-DC Converters DC-DC Converters. ES: Power Electronics" Prentice Hall India 2007 ey et.al "Thyristorised Power Controllers" Wiley Eastern Ltd., Straughen "Power Semiconductor Circuits" John Wiley & Soley & C.R. Kasaravada "Power Electronics & Drives" Tata Mander "Power Electronics" McGraw Hill., 2005. 	, 20(ns., 1cGr	05, 0 1975 aw F	6 Hill., 1	
4 5 REI 1. 2. 3. 4.	Understan Model the FERENC Rashid " G.K.Dub Dewan & G.K. Dub Cyril W I B. K Bose	 Inowledge about analysis and design of Switched Mode Rectified the concept of DC-DC Converters DC-DC Converters. ES: Power Electronics" Prentice Hall India 2007 ey et.al "Thyristorised Power Controllers" Wiley Eastern Ltd., Straughen "Power Semiconductor Circuits" John Wiley & Soley & C.R. Kasaravada "Power Electronics & Drives" Tata Mander "Power Electronics" McGraw Hill., 2005. e "Modern Power Electronics and AC Drives" Pearson Education 	, 20(ns., 1 (cGr)5, 0 1975 aw H (Asi	6 Hill., 1 a)., 2(
4 5 REI 1. 2. 3. 4. 5.	Understan Model the FERENC Rashid " G.K.Dub Dewan & G.K. Dub Cyril W I B. K Bose	 Inowledge about analysis and design of Switched Mode Rectified the concept of DC-DC Converters DC-DC Converters. ES: Power Electronics" Prentice Hall India 2007 ey et.al "Thyristorised Power Controllers" Wiley Eastern Ltd., Straughen "Power Semiconductor Circuits" John Wiley & Soley & C.R. Kasaravada "Power Electronics & Drives" Tata Mander "Power Electronics" McGraw Hill., 2005. e "Modern Power Electronics and AC Drives" Pearson Educa I Pressman "Switching Power Supply Design" McGraw Hill. 	, 20(ns., 1 (cGr)5, 0 1975 aw H (Asi	6 Hill., 1 a)., 2(

CO/P	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P10	P11	PSO1	PSO2	PSO3
0														
CO1	-	3	-	-	-	-	2	-	-	-	-	-	2	2
CO2	-	3	-	-	-	-	-	2	-	-	-	-	2	-
CO3	-	3	-	-	-	-	-	-	-	2	-	-	-	2
CO4	-	3	-	-	-	-	-	-	-	-	2	-	-	2
CO5	-	3	-	-	-	-	-	2	-	-	-	-	2	-

18PEPC03	DIGITAL CONTROL OF POWER ELECTRONIC SYSTEMS	L	T	P	C
		3	0	0	3
OBJECTIV					
	rstand different control strategies				
	rstand state space modeling of different converters				
• To perfo	rm simulation of different power converters				
UNIT I	CONTROL STRATEGIES OF P, PI AND PID				9
	CONTROLLERS				
Review of num	nerical methods – Application of numerical methods to solve tra	nsie	nts i	n D.C	Z. –
	R-L, R-C and R-L-C circuits. Extension to AC circuits – State				
	of linear systems - Introduction to electrical machine modeling				
	us machines – Simulation of basic electric drives, stability aspe				
UNIT II	DRIVER CIRCUITS				9
Modeling of d	iode in simulation – Diode with R, R-L, R-C and R-L-C load	l wi	th A	C su	pply –
Modeling of S	CR, TRIAC, IGBT and Power Transistors in simulation – Appl	icati	on o	f nun	nerical
methods to R	L, C circuits with power electronic switches - Simulation	of	gate	/base	drive
	lation of snubber circuits				
UNIT III	PROTECTION AND ISOLATION				9
Simulation of	single phase and three phase uncontrolled and controlled	(SC	CR)	rectif	iers –
	h self-commutated devices – Simulation of power factor correct				
UNIT IV	DC DRIVES USING PWM GENERATION				9
Simulation of	converter fed DC motor drives – Simulation of thyristor choppe	rs w	ith v	oltag	e.
	oad commutation schemes – Simulation of chopper fed DC mo			0	
UNIT V	AC DRIVES SENSORS AND DATA ACQUISIT		J		9
	SYSTEMS		•		-
Simulation of	single and three phase inverters with thyristors and self con	nmu	tated	l dev	ices –
	epresentation –Pulse-width modulation methods for voltage c				
-	lation of inverter fed induction motor drives.				
		ΓAL	:45	PER	IODS
OUTCOM	S: After completion of this course, the student will be able to:				
1 Acquire	knowledge about the transient of dc switches.				
2 Simulate	power electronic systems and analyse the system response.				
3 Model a	nd simulate power simulation circuits and systems.				
4 Model a	nd simulate various DC drives systems.				
5 Model a	nd simulate various AC drives systems.				
REFEREN	CES:				
1. Simulink	Reference Manual, Math works, USA				
Hadeed	Ahmed Sher"Simulation of power Electronics Circuits using	Sir	nulir	ık"La	mbert
	c Publishing,2013				
Simone	Buso and Paolo Mattavelli" Digital Control in Power Electro	onic	s" N	lorga	in and
1	l Publications, 2006		- 11	84	
Chaypoo	1/				

4. Slobodan N. Vukosavik, "Digital Control of Electrical Drives "Springer Science, 2007

COURSE ARTICULATION MATRIX

CO/P	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P10	P11	PSO1	PSO2	PSO3
0														
CO1	-	3	-	-	-	-	-	2	-	-	-	-	2	2
CO2	-	3	-	-	-	-	2	-	-	-	-	-	2	-
CO3	-	3	-	-	-	-	-	-	-	2	-	-	-	2
CO4	-	3	-	-	-	-	-	-	2	-	-	-	-	2
CO5	-	3	-	-	-	-	-	-	2	-	3	-	2	-

	EPC04	FACTS AND CUSTOM POWER DEVICES	L	Τ	P	C
			3	0	0	3
OBJ	JECTIV	ES:				
•	To learn	the active and reactive power flow control in power system				
•	To under	stand the need for static compensators				
•	To develo	op the different control strategies used for compensation				
UNI	ΠΙ	REACTIVE POWER COMPENSATION				9
Syste FAC comp	em – Powe TS Transn pensation	flow control in Power Systems – Control of dynamic power un r flow control – Constraints of maximum transmission line loa nission line compensation – Uncompensated line – Shunt com – Phase angle control – Reactive power compensation –	adin ipen Shi	g – 1 satic int a	Benef on – S and S	its of Series
		rinciples – Reactive compensation at transmission and distribut	tion	leve	l .	0
	IT II	STATIC SHUNT COMPENSATORS	,		1 0	9
		ssive VAR compensator – SVC and STATCOM – Operation a COM – Compensator control – Comparison between SVC and				TSC,
		STATIC SERIES COMPENSATION	51		0111.	9
		Static voltage and phase angle regulators – TCVR and TCPA	ΔR	One	ratio	-
Cont	rol –App	ications – Static series compensation – GCSC,TSSC, Trees compensators and their Control – SSR and its damping.				
TINT		LINIELED DOWED EL OW CONTROL LED				•
UNI	IT IV	UNIFIED POWER FLOW CONTROLLER				9
		ement – Operation and control of UPF – Basic Principle of	f P	and	Q co	-
Circu	uit Arrang				-	ontrol
Circu Inder	uit Arrang	ement - Operation and control of UPF - Basic Principle of			-	ontrol
Circu Indep flow	uit Arrange bendent rea	ement - Operation and control of UPF - Basic Principle of			-	ontrol
Circu Inder flow UNI	uit Arrang pendent rea controller [T V	ement – Operation and control of UPF – Basic Principle of al and reactive power flow control – Applications – Introduction	n to	inte	rline	ontrole powe
Circu Indep flow UNI Mode probl	ait Arrang bendent rea controller (T V eling and a lems in dis	ement – Operation and control of UPF – Basic Principle of al and reactive power flow control – Applications – Introduction FACTS CONTROLLERS nalysis of FACTS Controllers – Simulation of FACTS controller tribution systems, harmonics – Loads that create harmonics, mo	n to ers - odel	inte – Po ing, 1	rline wer q harm	ontrol powe 9 uality
Circu Indep flow UNI Mode probl	uit Arrange controller IT V eling and a lems in dis agation, se	ement – Operation and control of UPF – Basic Principle of al and reactive power flow control – Applications – Introduction FACTS CONTROLLERS nalysis of FACTS Controllers – Simulation of FACTS controller tribution systems, harmonics – Loads that create harmonics, mo-	n to ers - odel	inte – Po ing, i s, act	rline wer q harm	ontrol powe 9 uality onic
Circu Indep flow UNI Mode probl propa filter	uit Arrang controller (T V eling and a lems in dis agation, se ing – shun	ement – Operation and control of UPF – Basic Principle of al and reactive power flow control – Applications – Introduction FACTS CONTROLLERS nalysis of FACTS Controllers – Simulation of FACTS controller tribution systems, harmonics – Loads that create harmonics, more ries and parallel resonances, mitigation of harmonics, passive fi t, series and hybrid and their control –Voltage swells, sags, flic	n to ers - odel ilter; cker,	- Po ing, s, act	rline wer q harm ive alanc	pontrol powe 9 uality onic
Circu Indep flow UNI Mode probl propa filter	uit Arrang controller (T V eling and a lems in dis agation, se ing – shun	ement – Operation and control of UPF – Basic Principle of al and reactive power flow control – Applications – Introduction FACTS CONTROLLERS nalysis of FACTS Controllers – Simulation of FACTS controller tribution systems, harmonics – Loads that create harmonics, more ries and parallel resonances, mitigation of harmonics, passive fi t, series and hybrid and their control –Voltage swells, sags, flic ese problems by power line conditioners – IEEE standards on p	n to ers - odel ilter: cker,	- Po ing, s, act unb er qu	wer q harm ive alanc ality.	pontrol powe 9 uality onic re and
Circu Indep flow UNI Mode probl propa filter mitig	uit Arrang controller (T V eling and a lems in dis agation, se ing – shun gation of th	ement – Operation and control of UPF – Basic Principle of al and reactive power flow control – Applications – Introduction FACTS CONTROLLERS nalysis of FACTS Controllers – Simulation of FACTS controller tribution systems, harmonics – Loads that create harmonics, more ries and parallel resonances, mitigation of harmonics, passive fi t, series and hybrid and their control –Voltage swells, sags, flic ese problems by power line conditioners – IEEE standards on p TOT	n to ers - odel ilter: cker,	- Po ing, s, act unb er qu	wer q harm ive alanc ality.	pontrol power 9 uality onic re and
Circu Indep flow UNI Mode probl propa filter mitig	ait Arrang controller (T V eling and a lems in dis agation, se ing – shun gation of th FCOME	ement – Operation and control of UPF – Basic Principle of al and reactive power flow control – Applications – Introduction FACTS CONTROLLERS nalysis of FACTS Controllers – Simulation of FACTS controller tribution systems, harmonics – Loads that create harmonics, more ries and parallel resonances, mitigation of harmonics, passive find t, series and hybrid and their control –Voltage swells, sags, flic ese problems by power line conditioners – IEEE standards on p TOT S: After completion of this course, the student will be able to:	n to ers - odel ilters cker, oowo	inte – Po ing, 1 s, act s, act act act s, act s, act s, act s, act s, act act act act act act act act act act	rline wer q harm tive alanc ality. PER	pontrol- powe uality onic e and IODS
Circu Indep flow UNI Mode probl propa filter mitig	ait Arrange controller T V eling and a lems in dis agation, se ing – shun gation of the FCOME Acquire 1	ement – Operation and control of UPF – Basic Principle of al and reactive power flow control – Applications – Introduction FACTS CONTROLLERS nalysis of FACTS Controllers – Simulation of FACTS controller tribution systems, harmonics – Loads that create harmonics, mo ries and parallel resonances, mitigation of harmonics, passive fi t, series and hybrid and their control –Voltage swells, sags, flic ese problems by power line conditioners – IEEE standards on p TOT S: After completion of this course, the student will be able to: knowledge about the fundamental principles of Passive and Action	n to ers odel lter ker, oow TAL	inte – Po ing, 1 s, act , unb er qu :45 Reac	wer q harme ive alanc ality. PER	pontrol- powe uality onic e and IODS
Circu Inder flow UNI Mode probl propa filter: mitig OU.	ait Arrang controller T V eling and a lems in dis agation, se ing – shun gation of th FCOME Acquire I Compens	ement – Operation and control of UPF – Basic Principle of al and reactive power flow control – Applications – Introduction FACTS CONTROLLERS nalysis of FACTS Controllers – Simulation of FACTS controller tribution systems, harmonics – Loads that create harmonics, mor- ries and parallel resonances, mitigation of harmonics, passive fi t, series and hybrid and their control –Voltage swells, sags, flic ese problems by power line conditioners – IEEE standards on p TOT S: After completion of this course, the student will be able to: cnowledge about the fundamental principles of Passive and Acti- ation Schemes at Transmission and Distribution level in Power	n to ers odel ilter cker, oowo TAL	- Po ing, 1 s, act unb er qu :45 Reac	rline wer q harm tive alanc ality. PER tive I	ontrol- power yuality onic e and IODS
Circu Indep flow UNI Mode probl propa filter mitig OU 1	ait Arrang controller (T V) eling and a lems in dis agation, se ing – shun gation of th FCOME Acquire I Compens Learn var	ement – Operation and control of UPF – Basic Principle of al and reactive power flow control – Applications – Introduction FACTS CONTROLLERS nalysis of FACTS Controllers – Simulation of FACTS controller tribution systems, harmonics – Loads that create harmonics, mor- ries and parallel resonances, mitigation of harmonics, passive fi t, series and hybrid and their control –Voltage swells, sags, flic ese problems by power line conditioners – IEEE standards on p TOT S: After completion of this course, the student will be able to: cnowledge about the fundamental principles of Passive and Acti- ation Schemes at Transmission and Distribution level in Power ious Static VAR Compensation Schemes like Thyristor/GTO C	n to ers odel llter ker, oww CAL ive	- Por ing, 1 s, act unb er qu :45 Reac stems rolle	wer q harme ive alanc ality. PER tive I s d.	9 uality onic e and IODS
Circu Inder flow UNI Mode probl propa filter mitig OU 1 2 3	ait Arrang controller T V eling and a lems in dis agation, se ing – shun gation of th TCOME Acquire I Compens Learn van Reactive	ement – Operation and control of UPF – Basic Principle of al and reactive power flow control – Applications – Introduction FACTS CONTROLLERS nalysis of FACTS Controllers – Simulation of FACTS controller tribution systems, harmonics – Loads that create harmonics, mor- ries and parallel resonances, mitigation of harmonics, passive fi t, series and hybrid and their control –Voltage swells, sags, flic ese problems by power line conditioners – IEEE standards on p TOT S: After completion of this course, the student will be able to: cnowledge about the fundamental principles of Passive and Acti- ation Schemes at Transmission and Distribution level in Power rious Static VAR Compensation Schemes like Thyristor/GTO C Power Systems, PWM Inverter based Reactive Power Systems	n to ers odel llter ker, oww CAL ive	- Por ing, 1 s, act unb er qu :45 Reac stems rolle	wer q harme ive alanc ality. PER tive I s d.	9 uality onic e and IODS
Circu Indep flow UNI Mode probl propa filter mitig OU 1	ait Arrang pendent rea controller T V eling and a lems in dis agation, se ing – shun tation of th FCOME Acquire I Compens Learn van Reactive Analyze	ement – Operation and control of UPF – Basic Principle of al and reactive power flow control – Applications – Introduction FACTS CONTROLLERS nalysis of FACTS Controllers – Simulation of FACTS controller tribution systems, harmonics – Loads that create harmonics, mor- ries and parallel resonances, mitigation of harmonics, passive fi t, series and hybrid and their control –Voltage swells, sags, flic ese problems by power line conditioners – IEEE standards on p TOT S: After completion of this course, the student will be able to: knowledge about the fundamental principles of Passive and Acti- ation Schemes at Transmission and Distribution level in Power ious Static VAR Compensation Schemes like Thyristor/GTO C Power Systems, PWM Inverter based Reactive Power Systems about Unified Power flow controllers.	n to ers - odel ilter: ker, owwo TAL ive i <u>Sys</u> <u>Cont</u> and	- Po ing, s, act s, act er qu :45 Reac stems rolle thei	rline wer q harm tive alanc ality. PER tive I s d. r con	9 uality onic e and IODS Power
Circu Inder flow UNI Mode probl propa filter mitig OU 1 2 3	ait Arrang pendent rea controller T V eling and a lems in dis agation, se ing – shun tation of th FCOME Acquire I Compens Learn van Reactive Analyze	ement – Operation and control of UPF – Basic Principle of al and reactive power flow control – Applications – Introduction FACTS CONTROLLERS nalysis of FACTS Controllers – Simulation of FACTS controller tribution systems, harmonics – Loads that create harmonics, mor- ries and parallel resonances, mitigation of harmonics, passive fi t, series and hybrid and their control –Voltage swells, sags, flic ese problems by power line conditioners – IEEE standards on p TOT S: After completion of this course, the student will be able to: cnowledge about the fundamental principles of Passive and Acti- ation Schemes at Transmission and Distribution level in Power ious Static VAR Compensation Schemes like Thyristor/GTO C Power Systems, PWM Inverter based Reactive Power Systems about Unified Power flow controllers. p analytical modeling skills needed for modeling and analysis of	n to ers - odel ilter: ker, owwo TAL ive i <u>Sys</u> <u>Cont</u> and	- Po ing, s, act s, act er qu :45 Reac stems rolle thei	rline wer q harm tive alanc ality. PER tive I s d. r con	9 uality onic e and IODS Power
Circu Inder flow UNI Mode probl propa filter mitig OU 1 2 3 4 5	ait Arrang pendent rea controller T V eling and a lems in dis agation, se ing – shun gation of th FCOME Acquire I Compens Learn var Reactive Analyze	ement – Operation and control of UPF – Basic Principle of al and reactive power flow control – Applications – Introduction FACTS CONTROLLERS nalysis of FACTS Controllers – Simulation of FACTS controller tribution systems, harmonics – Loads that create harmonics, mor- ties and parallel resonances, mitigation of harmonics, passive fi t, series and hybrid and their control –Voltage swells, sags, flic ese problems by power line conditioners – IEEE standards on p TOT S: After completion of this course, the student will be able to: knowledge about the fundamental principles of Passive and Acti- ation Schemes at Transmission and Distribution level in Power fious Static VAR Compensation Schemes like Thyristor/GTO C Power Systems, PWM Inverter based Reactive Power Systems about Unified Power flow controllers. p analytical modeling skills needed for modeling and analysis of tems	n to ers - odel ilter: ker, owwo TAL ive i <u>Sys</u> <u>Cont</u> and	- Po ing, s, act s, act er qu :45 Reac stems rolle thei	rline wer q harm tive alanc ality. PER tive I s d. r con	ontrol- power yuality onic re and IODS Power trols
Circu Inder flow UNI Mode probl propa filter mitig OU 1 2 3 4 5	ait Arrang controller T V eling and a lems in dis agation, se ing – shun ation of th TCOME Acquire I Compens Learn var Reactive Analyze To develo VAR Sys ERENC <i>K R Padi</i>	ement – Operation and control of UPF – Basic Principle of al and reactive power flow control – Applications – Introduction FACTS CONTROLLERS nalysis of FACTS Controllers – Simulation of FACTS controller tribution systems, harmonics – Loads that create harmonics, mor- ties and parallel resonances, mitigation of harmonics, passive fi t, series and hybrid and their control –Voltage swells, sags, flic ese problems by power line conditioners – IEEE standards on p TOT S: After completion of this course, the student will be able to: knowledge about the fundamental principles of Passive and Acti- ation Schemes at Transmission and Distribution level in Power fious Static VAR Compensation Schemes like Thyristor/GTO C Power Systems, PWM Inverter based Reactive Power Systems about Unified Power flow controllers. p analytical modeling skills needed for modeling and analysis of tems	n to ers odel ilters cker, oww CAL ive <u>Sys</u> <u>Cont</u> and of s	- Po ing, 1 s, act s, act s, act :45 :45 Reac stems rolle thei uch s	wer q harm tive alanc ality. PER tive I s d. r con	9 uality onic e and IODS Power

3.	<i>N.G. Hingorani, L. Gyugyi, "Understanding FACTS: Concepts and Technology of Flexible AC Transmission Systems", IEEE Press Book, Standard Publishers and Distributors,</i>
	Delhi, 2001.
1	K.S.Sureshkumar, S.Ashok, "FACTS Controllers & Applications", E-book edition, Nalanda Digital Library, NIT Calicut, 2003.
4.	Nalanda Digital Library, NIT Calicut, 2003.
5.	G. T.Heydt, "Power Quality", McGraw-Hill Professional, 2007.
6	T. J. E. Miller, "Static Reactive Power Compensation", John Wiley and Sons, Newyork,
	1982.

CO/P	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P10	P11	PSO1	PSO2	PSO3
0														
CO1	-	3	-	-	-	-	-	2	-	-	-	-	2	2
CO2	-	3	-	-	-	-	-	2	-	-	-	-	2	-
CO3	-	3	-	-	-	-	-	2	-	2	-	-	-	2
CO4	-	3	-	-	-	-	-	-	-	2	-	-	-	2
CO5	-	3	-	-	-	-	-	-	-	-	3	-	2	-

18PEPC05

ADVANCED POWER ELECTRONICS LABORATORY

L	Т	Р	С
0	0	4	2

OR.	IECTIVES:
	To provide an insight on the switching behavior of power electronic switches
•	To make the students familiar with the digital tools used in generation of gate pulses for the
•	power electronic switches
	To make the students acquire knowledge on mathematical modeling of power electronic
•	circuits and implementing the same using simulation tools
	To facilitate the students to design and fabricate a power converter circuits at appreciable
•	voltage/power levels
•	To develop skills on PCB design and fabrication among the students
LIS	T OF EXPERIMENTS
	udy of switching characteristics of Power electronic switches with and
	out snubber (i) IGBT (ii) MOSFET
	odeling and system simulation of basic electric circuits using MATLAB –
	JLINK / SCILAB
) DC source fed resistive load and Resistive – inductive load
) DC source fed RLC load for different damping conditions
) DC source fed DC motor load
	odeling and System simulation of basic power electronic circuits using
	LAB-SIMULINK / SCILAB
a)	AC Source with Single Diode fed Resistive and Resistive-Inductive Load
	AC source with Single SCR fed Resistive and Resistive-Inductive Load
· · ·	odeling and System Simulation of SCR based full converter with different types of load
	MATLAB-Simulink / SCILAB
Ŭ	Full converter fed resistive load.
b)	Full converter fed Resistive-Back Emf(RE) load at different firing angles.
	Full Converter fed Resistive-Inductive Load at different firing angles.
d)	Full converter fed DC motor load at different firing angles.
	rcuit Simulation of Voltage Source Inverter and study of spectrum analysis with and
with	out filter using MATLAB / SCILAB.
a)	Single phase square wave inverter.
b)	Three phase sine PWM inverter.
c)	Hybrid solar and wind based single phase power generation.
d)	Analysis of grid tied inverter.
6. Pe	rformance characteristics of multilevel inverter.
7. Pe	rformance evaluation of buck converter.
8. Pe	rformance evaluation of boost converter.
9. Pe	rformance evaluation of buck-boost converter.
	TOTAL :60 PERIODS

OU.	TCOMES: After completion of this course, the student will be able to:
1	Design, simulate and analyze various controlled rectifiers.
2	Design, simulate and analyze various DC-DC converters.
3	Design, simulate and analyze the single phase and three phase inverters
4	Design analog circuits for Power electronic control applications.
5	Implement analog circuits for Power electronic control applications.

CO/P	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P10	P11	PSO1	PSO2	PSO3
0														
CO1	3	-	-	-	-	-	2	-	-	-	-	3	-	-
CO2	2	-	-	-	-	-	-	2	-	-	-	2	-	-
CO3	3	-	-	-	-	-	2	-	-	-	-	3	-	-
CO4	2	-	-	-	-	-	-	-	-	-	2	2	-	_
CO5	3	-	-	-	-	-	-	-	-	-	-	3	-	-

DIGITAL CONTROL OF POWER ELECTRONIC SYSTEM LABORATORY

L	Т	Р	С
0	0	4	2

• • • • • • • • • • • • • • • • • • •	CTIVES: To understand PWM generation of AC-DC converter To understand PWM generation of DC-DC converter To understand PWM generation of AC-AC converter To understand PWM generation of DC-AC converter OF EXPERIMENTS WM generation for Chopper Circuit using DSP				
• • • • • • • • • • • • • • • • • • •	To understand PWM generation of DC-DC converter To understand PWM generation of AC-AC converter To understand PWM generation of DC-AC converter OF EXPERIMENTS WM generation for Chopper Circuit using DSP				
• LIST • 1 . PW 2. PW 3. Tri 4. Tri 5. Pu 6. PW	To understand PWM generation of AC-AC converter To understand PWM generation of DC-AC converter OF EXPERIMENTS VM generation for Chopper Circuit using DSP				
• LIST 1. PW 2. PW 3. Tri 4. Tri 5. Pu 6. PW	To understand PWM generation of DC-AC converter OF EXPERIMENTS VM generation for Chopper Circuit using DSP				
LIST (1. PW 2. PW 3. Tri 4. Tri 5. Pu 6. PW	OF EXPERIMENTS VM generation for Chopper Circuit using DSP				
 PW PW PW Tri Tri Fui PW 	VM generation for Chopper Circuit using DSP				
 PW Tri Tri Tri Tri Put PW 	• • • •				
 Tri Tri Tri Pui PW 					
 4. Tri 5. Put 6. PW 	VM generation for Four Quadrant Chopper Circuit using DSP				
5. Pu 6. PW	iggering Circuit design for Half converter using digital controller				
6. PW	iggering Circuit design for Full converter using digital controller				
	lse Generation scheme for cycloconverter using DSP				
7. PW	VM Generation for Single phase inverter using PIC controller				
	VM Generation for Three phase inverter using PIC controller				
8. Sir	ne PWM generation for Three phase Inverter using PIC controller				
9. PW	VM generation using FPGA for Multilevel inverter				
10. PL	C based controller design for DC chopper				
		ſAL	:60	PER	IODS
	COMES: After completion of this course, the student will be able to:				
	enerate PWM for chopper circuits				
	enerate PWM for inverter circuits				
	enerate PWM for Rectifier circuits				
5 G	enerate PWM for Cycloconverter circuits				

COURSE ARTICULATION MATRIX:

CO/P	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P10	P11	PSO1	PSO2	PSO3
0														
CO1	-	2	-	-	-	-	2	-	-	-	-	-	-	-
CO2	-	2	-	-	-	-	-	-	-	2	-	-	-	-
CO3	-	2	-	-	-	-	-	-	-	2	-	-	-	-
CO4	-	2	-	-	-	-	-	-	-	2	-	-	-	-
CO5	-	2	-	-	-	-	-	-	-	-	-	-	-	_

SEMESTER II

18P	EPC07	POWER ELECTRONIC CONVERTERS AND DC DRIVES	L	Т	Р	С						
			3	0	0	3						
OBJ	IECTIV	ES:										
•	To deterr	nine the operation and characteristics of controlled rectifiers.										
•	To apply	switching techniques and basic topologies of DC-DC switchin	g reg	gulat	ors.							
•	quantitati				-							
•	• Study and analyze the operation of the chopper fed DC drives, both qualitatively and quantitatively.											
Study and analyze the operation of closed loop control.												
UNIT I SINGLE PHASE & THREE PHASE CONVERTERS												
Principle of phase controlled converter operation – single-phase full converter and semi- converter (RL, RLE load) – single phase and three phase dual converter – Three phase operation full converter and semi-converter (R, RL, RLE load) – reactive power – power factor improvement techniques – PWM rectifiers.9UNIT IIDC-DC CONVERTERS9												
UNIT II DC-DC CONVERTERS												
Limitations of linear power supplies, switched mode power conversion, Non-isolated DC- DC converters: operation and analysis of Buck, Boost, Buck – Boost, Cuk & SEPIC – under continuous and discontinuous operation – Isolated converters: basic operation of Flyback, Forward and Push-pull topologies, Half and Full Bridge Converters.												
-	-	CONVERTER CONTROL OF DC DRIVES				9						
opera contr phase chara	ation; Driv ol – Funda e and th	Requirements of drives characteristics - stability of drives e elements, types of motor duty and selection of motor rating mental relations; Analysis of series and separately excited DC ree-phase converters – waveforms, performance parame Continuous and discontinuous armature current operations; Cu mance	Prin more eters	ncipl tor w , pe	le of p vith si erform	phase ngle- nance						
		CHOPPER CONTROL OF DC DRIVES				9						
contr	olled DC	time ratio control and frequency modulation; Class A, B, C motor – performance analysis, multi-quadrant control of braking schemes; Multi-phase chopper; Related problems.										
UN	NIT V	CLOSED LOOP AND DIGITAL CONTROL OF DRIVES	DC			9						
DC r	notors; Cl	rive elements – Equivalent circuit, transfer function of self, osed loop speed control – current and speed loops, P, PI and loop and micro-computer control of DC drives	d PI	D co	ontrol	lers:						
			ſAL	:45	PER	IODS						
OU '	Demonst	S: After completion of this course, the student will be able to: rate the basic concept of steady state operation of single and	three	e pha	ase A	C-DC						
-	converter	8.										

-	
2	Analyze the operation of various DC-DC converters.
3	Design and analyze the operation of the various controlled rectifier fed DC drives.
4	Design and analyze the operation of the various chopper fed DC drives
5	Explain the concept of closed loop control
REI	FERENCES:
7	Ned Mohan, T. M Undelandand W.P Robbin, "Power Electronics: converters,
1.	Application and design" John Wiley and sons. Wiley India edition, 2006.
2	Rashid M.H., "Power Electronics Circuits, Devices and Applications", Prentice Hall India,
2.	Third Edition, New Delhi,2004.
2	P.C.Sen, "Modern Power Electronics", Wheeler Publishing Co, First Edition, NewDelhi,
3.	1998.
4.	P.S.Bimbra, "Power Electronics", Khanna Publishers, Eleventh Edition,2003
5	Simon Ang, Alejandro Oliva, "Power-Switching Converters, Second Edition, CRC
5.	Press, Taylor& Francis Group, 2010.
6.	Gopal K Dubey, "Power Semiconductor controlled Drives", Prentice Hall Inc., New Yersy,
0.	1989.
7.	VedamSubramanyam, "Electric Drives – Concepts and Applications", Tata McGraw-
/.	Hill publishing company Ltd., New Delhi, 2002.
8.	Gopal K.Dubey, "Fundamentals of Electrical Drives", Narosal Publishing House, New
ð.	Delhi, Second Edition ,2009
	· · · · · · · · · · · · · · · · · · ·

CO/P	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P10	P11	PSO1	PSO2	PSO3
0														
CO1	-	2	-	-	-	-	2	-	-	-	-	-	2	-
CO2	2	3	-	-	-	-	2	-	-	-	-	-	-	-
CO3	-	3	-	-	-	-	2	-	-	-	-	-	3	-
CO4	-	-	2	-	-	-	-	-	-	2	-	-	-	-
CO5	-	3	-	-	-	-	-	-	_	-	2	-	3	-

18PEF	PC08	POWER ELECTRONIC INVERTERS AND AC DRIVES	L	T	P	C					
ODIE			3	0	0	3					
OBJE											
•	To des	ign different single phase and three phase inverters.									
•	To des	ign and analyze current source inverters.									
•	To im	part knowledge on multilevel inverters and modulation technic	ques								
•	To far	niliarize the students on the operation of VSI and CSI fed indu	ctior	n mo	tor dr	ives.					
•	To im	part knowledge on the control of synchronous motor drives									
	hase an	SINGLE AND THREE PHASE VOLTAGE SOU INVERTERS In three phase voltage source inverters (both120° mode and18) rolPWM techniques: Sinusoidal PWM, modified sinusoid	0° m	ode)							
		ction to space vector modulation				r					
UNIT		CURRENT SOURCE INVERTERS				09					
current inverte UNIT Multile	t source ers, Grie III evel co	to sequential current source inverter (ASCI) – current pulsation e inverter and voltage source inverters – PWM techniques d-tied Inverters MULTILEVEL INVERTERS ncept – diode clamped – flying capacitor – cascade type m	for	curr evel	inver	ource 09 ters -					
		of multilevel inverters - application of multilevel inverters – P phase & Three phase Impedance source inverters.	VV IVI	teci	inique	es for					
UNIT	-	ROTOR CONTROLLED AND FIELD ORIENT	ED			09					
	_ '	CONTROL OF INDUCTION MOTOR DRIVE									
power machir - Direc DTC c	factor nes – Th et torque ontrol s	sistance control - injection of voltage in the rotor circuit – stat considerations – modified Kramer drives-Field oriented c neory – DC drive analogy – Direct and Indirect methods – Flu e control of Induction Machines – Torque expression with stat trategy	ic scl ontro 1x ve	ol of ector	indu estim	ction ation					
UNIT		SYNCHRONOUS MOTOR DRIVES				09					
operati	ion fror	cylindrical rotor motor – Equivalent circuits – performa n a voltage source – Power factor control and V curves – sta Load commutated Synchronous motor drives - Brush and Brus TO	arting shles	g and s exe	d brak citatic	cing,					
OUTC	OME	S: After completion of this course, the student will be able to:									
1	Sugge	st and Demonstrate the application of single and three phase ir		ers							
2	Analyz	ze the operation of CSI inverter									
3		the the performance of multilevel inverter.									
4		stand the control of induction motor drives.									
5	Design	and Analyze the operation of synchronous motor drives									

REFERENCES:	
1. Rashid M.H., "Power Electronics Circuits, Devices and Applications", Prentice	Hall
¹ . India, Third Edition, New Delhi, 2004.	
2. P.C. Sen, "Modern Power Electronics", Wheeler Publishing Co, First Edition,	New
^{2.} Delhi, 1998	
<i>3. P.S.Bimbra, "Power Electronics", Khanna Publishers, Eleventh Edition, 2003</i>	
4. Gopal K Dubey, "Power Semiconductor controlled Drives", Prentice Hall	Inc.,
^{4.} NewYersy, 1989.	
5. Bimal K.Bose "Modern Power Electronics and AC Drives", Pearson Educa	tion,
S. Second Edition, 2003.	
6. Ned Mohan, T.M Undeland and W.P Robbin, "Power Electronics:	
7. R.Krishnan, "Electric Motor Drives – Modelling, Analysis and Control", Prentice-	Hall
7. of India Pvt. Ltd., New Delhi, 2003.	

CO/P	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P10	P11	PSO1	PSO2	PSO3
0														
CO1	-	-	-	-	-	-	2	-	-	-	-	-	-	-
CO2	-	2	-	-	-	-	2	-	-	-	-	-	-	-
CO3	-	-	-	-	-	-	-	-	-	2	-	-	-	-
CO4	-	3	-	-	-	-	-	-	-	2	-	-	2	-
CO5	-	2	-	-	-	-	-	-	-	-	3	-	-	-

18PEPC09	MODELING AND ANALYSIS OF ELECTRICAL MACHINES	L	T	P	C
OBJECTIV	78.	3	0	0	3
	de knowledge about the fundamentals of magnetic circuits,	en	arav	forc	e and
• torque.	de knowledge about the fundamentals of magnetic circuits,	en	ergy,	, 1010	e anu
	ze the steady state and dynamic state operation of DC	C m	achi	ne th	rough
	tical modeling and simulation in digital computer.				U
· ·	le the knowledge of theory of transformation of three phase va	riab	les to	o two	phase
variables.					
	the steady state and dynamic state operation of three-phase				
	sformation theory based mathematical modeling and digital co	-			
	ze the steady state and dynamic state operation of three-				
• machines simulatio	using transformation theory based mathematical modeling a	na c	iigita	a con	iputer
UNIT I	PRINCIPLES OF ELECTROMAGNETIC ENER		7		09
	CONVERSION	(G)	L		09
Magnatia sinou		f		1 40.00	
	its, permanent magnet, stored magnetic energy, co-energy -1 by excited systems $-$ machine windings and air gap mmf $-$ w				
and voltage equ		mai	ing ii	naucta	ances
UNIT II	DC MACHINES				09
		ton		anoti	
	machine and analysis of steady state operation - Voltage and				
	cteristics of permanent magnet and shunt d.c. motors – T ution of dynamic characteristic by Laplace transformation				
	ermanent magnet and shunt D.C. machines.	– ui	gitai	com	puter
UNIT III	REFERENCE FRAME THEORY				09
			4	. C	
	ground – phase transformation and commutator transformation				
frames of refere	om stationary to arbitrary reference frame – variables obse		1 110	JIII Se	veral
UNIT IV	INDUCTION MACHINES				09
				<i>.</i> .	
-	duction machine, equivalent circuit and analysis of steady sta		-		
	aracteristics – voltage and torque equations in machine variation variables – analysis of dynamic parformance for load torque y				lirary
	variables – analysis of dynamic performance for load torque v	ana	tions	.	00
UNIT V	SYNCHRONOUS MACHINES	14		1	09
	nchronous machine and analysis of steady state operation –		-		-
	chine variables and rotor reference frame variables (Park's ec formance for load torque variations– Generalized theory of				
	ons primitive machine.	101	aung	5 CIEC	uncai
machine and Ki		ГАТ	:45	PER	IODS
OUTCOME	S: After completion of this course, the student will be able to:			I 1211.	
	ad the various electrical parameters in mathematical form.				
	ad the different types of reference frame theories and transform	natio	n rol	ation	shine
	electrical machine equivalent circuit parameters.	atio		anon	mps.
	noundar machine equivalent encun parameters.				

4	Model of Induction machines.
5	Model of Synchronous Machines
REI	FERENCES:
1	Paul C.Krause, Oleg Wasyzczuk, ScottS, Sudhoff, "Analysis of Electric Machinery and Drive Systems", John Wiley, Second Edition, 2010.
2	P S Bimbhra, "Generalized Theory of Electrical Machines", Khanna Publishers, 2008.
3	A.E,Fitzgerald, Charles Kingsley, Jr, and Stephan D,Umanx, "ElectricMachinery", Tata Mc Graw Hill, 5 th Edition, 1992
4	<i>R. Krishnan, Electric Motor &Drives: Modeling, Analysis and Control, New Delhi,</i> <i>Prentice Hall of India,2001</i>
5	Richard T.Smith, "Analysis of of Electric Machines", Pergoman press.

CO/P	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P10	P11	PSO1	PSO2	PSO3
0														
CO1	-	3	-	-	-	-	-	2	-	-	-	-	-	-
CO2	3		-	-	-	-	-	2	-	-	-	-	-	-
CO3	-		-	-	-	-	-	2	-	-	-	-	-	-
CO4	-	2	-	-	-	-	-	2	-	-	-	-	-	-
CO5	3	-	-	-	-	-	-	2	-	-	-	3	-	-

18PEEE10

MINI PROJECT WITH SEMINAR

L	Т	Р	С
0	0	6	3

			-		_
COURSE OBJECTIVES:	Upon completion of this course, the students will be familia	ar wi	th:		
•	Usage of mathematical, computational and natural sciences ga experience	ined	by st	udy,	
•	Practice with judgment to develop effective use of matter information to the benefit of mankind.	, ene	rgy a	and	
•	Plan, execute, manage and document a project.				

It is intended to start the Mini-project work from the learning of subjects from semester one and carry out both design and fabrication of a Power Electronics and Drives whose working can be demonstrated. This project should be independent project and not linked with any other project.

The students in individual takes works on a topic approved by the head of the department under the guidance of a faculty member and prepare a comprehensive project report after completing the work to the satisfaction of the supervisor. The progress of the project is evaluated based on a minimum of three reviews.

The review committee may be constituted by the Head of the Department. A project report is required at the end of the semester. The project work is evaluated based on oral presentation and the project report jointly by external and internal examiners constituted by the Head of the Department.

		TOTAL PERIODS:90								
OUTCOM	MES:	Upon completion of this course, the students will be able to:								
1.	Identify research intensive feasible problems by considering societal/industrial Demands.									
2.	Perform exhaustive literature survey on identified problem.									
3.	Use design/si problem from	mulation tools to implement critical methods/algorithms of the identified the literature.								
4.	Perform preliminary implementation to achieve encouraging results.									
5.	Develop and c	leliver a good quality formal presentation.								

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P10	P11	PSO1	PSO2	PSO3
CO1	3	2	1	3	1	3	2	3	3	2	3	3	3	1
CO2	3	2	1	3	1	3	2	1	3	1	3	3	2	1
CO3	3	3	1	3	1	3	3	2	3	1	3	3	2	1
CO4	3	3	2	2	2	1	3	1	2	1	2	3	2	3
CO5	3	3	2	2	2	1	3	3	2	1	2	2	2	2

18PEPC11	POWER ELECTRONIC CONVERTERS AND DC DRIVES LABORATORY	L	Т	Р	С
		0	0	4	2

OBJE	ECTIVES:
•	To design and analyse the various DC drives.
•	To generate the firing pulses for converters using digital processors
•	To Design controllers for linear and nonlinear systems
•	To Implement closed loop system using hardware simulation.
LIST	OF EXPERIMENTS
	1.Speed control of converter fed DC motor
	2. Speed control of chopper fed DC motor
	3. Regenerative/ Dynamic braking operation of DC motor
	4. Closed loop speed control of DC motor using Step/Ramp/Parabolic input and PID
control	ler
	5. PC/PLC based DC motor control operation
	6. Four quadrant operation of dual converter based DC drive
	7. Speed control of single phase induction motor using TRIAC
	8. Micro controller based speed control of stepper motor
	9. DSP based speed control of SRM Motor
1	0. Determination of output voltage and characteristics of 1-phase dual converter with RL
load	
	TOTAL :60 PERIODS
OUT	COMES: After completion of this course, the student will be able to:
1.	Perform various measurements of input/output on power electronics converters and
	analyze the issues of results
2.	Build and test various power electronic converters, for drives applications by using different types of motor controllers
3.	Design and implement analog circuits for Power Electronic control applications.
4.	Design a power converter circuit at a reasonable power level.
1.	Design a power converter encart at a reasonable power reven

5 Implement a power converter circuit at a reasonable power level. COURSE ARTICULATION MATRIX:

CO/P	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P10	P11	PSO1	PSO2	PSO3
0														
CO1	-	3	-	-	-	-	-	-	2	-	-	-	3	_
CO2	3		-	-	-	-	-	-	-	2	-	-	-	-
CO3	-		-	-	-	-	2	-	-	-	-	3	-	-
CO4	-	2	-	-	-	-	-	-	-	-	2	-	3	2
CO5	-	-	-	-	-	-	-	-	-	-	2	3	-	-

18PEPC12

POWER ELECTRONIC INVERTERS AND AC DRIVES LABORATORY

L	Т	Р	С
0	0	4	2

		U	U	4	4
OBJI	ECTIVES:				
•	To design and analyse the various AC drives.				
•	To generate the firing pulses for inverters using digital processors				
•	To Design controllers for linear and nonlinear systems				
•	To Implement closed loop system using hardware simulation.				
LIST	OF EXPERIMENTS				
	SI fed induction motor drive analysis using MATLAB/PSPICE/PSIM So	oftw	are		
2. P	WM Inverter fed three phase induction motor drive control using MATL	AB	PSP	ICE/P	SIM
Se	oftware				
3. V	ariable frequency operation of three phase AC motor using SCADA and	PL	С		
4. C	yclo converter based Induction Motor drive				
5. Si	ngle phase Multi Level Inverter based induction motor drive				
	oltage regulation of three phase synchronous generator				
	our quadrant operation of three phase induction motor				
	C/PLC based AC motor control operation				
	egenerative/ Dynamic braking operation of AC motor				
_	peed control of three phase slip ring induction motor using static rotor re sing rectifier and chopper MOSFET	sista	ance	contro	ol
11. PI	C Microcontroller based speed control of linear Induction motor				
12. St	udy of power quality analyzer				
	etermination of speed and output voltage of 3-phase A.C. Voltage control	oller	fed	induc	tion
	otor drive				
	udy of permanent Magnet Synchronous Motor drive fed by PWM Invert	ter u	sing	softw	are
15. Sj	peed control of BLDC motor				
		AL	:60	PERI	ODS
OUT	COMES: After completion of this course, the student will be able to:				
1.	Perform various measurements of input/output on power electronics in the issues of results	vert	ers a	nd an	alyze
2.	Build and test various power electronic inverters for drives application different types of motor controllers	s by	usir	ıg	
3.	Design and implement analog circuits for Power Electronic control app	olica	tion	S.	
4.	Design and fabricate a power converter circuit at a reasonable power le				
5	Implement a power converter circuit at a reasonable power level.				
	-				

CO/P	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P10	P11	PSO1	PSO2	PSO3
0														
CO1	-	3	-	-	-	-	-	2	-	-	-	-	3	-
CO2	-	-	-	-	-	-	-	-	-	2	-	-	-	-
CO3	-	3	-	-	-	-	2	-	-	-	-	-	-	-
CO4	-	_	_	_	_	_	_	-	-	-	2	_	3	2
CO5	-	_	_	_	_	-	-	-	-	-	2	_	_	-

18PEEE13	PROJECT PHASE I	L	Т	Р	C								
		0	0	12	6								
COURSE OBJECTIVE	DURSE BJECTIVES: Upon completion of this course, the students will be familiar with												
•													

•	Develop effective use of matter, energy and information to the benefit of mankind.

It is intended to start the project work early in the third semester of Power Electronic and Drives. Literature survey, The design, Analysis and Simulation is expected to be completed in the Third semester and the fabrication and demonstration will be carried out in the fourth semester.

The student individually works on a topic approved by the head of the department under the guidance of a faculty member and prepare a comprehensive project report after completing the work to the satisfaction of the supervisor. The progress of the project is evaluated based on a minimum of three reviews.

The review committee may be constituted by the Head of the Department. A project report is required at the end of the semester. The project work is evaluated based on oral presentation and the project report jointly by external and internal examiners constituted by the Head of the Department.

		T									
		TOTAL PERIODS:180									
OUTCO	OMES:	Upon completion of this course, the students will be able to:									
1.	Identify Demands	research intensive feasible problems by considering societal/industrial s.									
2.	Perform e	Perform exhaustive literature survey on identified problem.									
3.		ign/simulation tools to implement critical methods/algorithms of the identified from the literature.									
4.	Develop	Develop and deliver a good quality formal presentation.									
5.	Write cle	ear, concise, and accurate technical document for journal publication.									

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P10	P11	PSO1	PSO2	PSO3
CO1	3	2	2	3	1	3	2	3	3	2	3	3	1	1
CO2	3	2	1	3	1	3	2	1	3	2	3	3	1	1
CO3	2	2	1	3	1	3	3	1	3	2	3	3	1	1
CO4	2	2	1	2	2	2	3	1	2	2	1	2	3	3
CO5	3	2	2	2	2	2	3	3	2	2	1	2	2	2

18PEEE14	PROJECT PHASE II	L	Т	Р	C								
		0	0	24	12								
COURSE OBJECTIVES	Upon completion of this course, the students will be familiar with:												
•	Usage of mathematical, computational and natural sciences gained by study, experience and practice with judgment												
• Develop effective use of matter, energy and information to the benefit of mankind.													
T . • • • 1			1	.									

It is intended to finish the project work in the fourth semester. The phase-I remaining work is carried out in phase-II. Both design and fabrication in Power Electronic and Drives whose working can be demonstrated.

The progress of the project is evaluated based on a minimum of three reviews.

The review committee may be constituted by the Head of the Department. A project report is required at the end of the semester. The project work is evaluated based on oral presentation and the project report jointly by external and internal examiners constituted by the Head of the Department.

		TOTAL PERIODS:360								
OUTCO	MES:	Upon completion of this course, the students will be able to								
1.	Identify research intensiv Demands.	ve feasible problems by considering societal/industrial								
2.	Perform exhaustive literature survey on identified problem.									
3.	Use design/simulation tools problem from the literature.	to implement critical methods/algorithms of the identified								
4.	Develop and deliver a good of	quality formal presentation.								
5.	Write clear, concise, and accurate technical document for journal publication.									

COURSE ARTICULATION MATRIX

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P10	P11	PSO1	PSO2	PSO3
CO1	3	2	2	3	1	3	2	3	3	2	3	3	1	1
CO2	3	2	1	3	1	3	2	1	3	2	3	3	1	1
CO3	2	2	1	3	1	3	3	1	3	2	3	3	1	1
CO4	2	2	1	2	2	2	3	1	2	2	1	2	3	3
CO5	3	2	2	2	2	2	3	3	2	2	1	2	2	2

PROFESSIONAL ELECTIVES

18	PEPE01 DYNAMICS OF ELECTRICAL MACHINES	L	Τ	P	C
		3	0	0	3
OB	JECTIVES:				
٠	To Learn Performance characteristics of machine.				
٠	To understand the dynamics of the machine.				
٠	To understand how to determine stability of machine.				
٠	To Learn the synchronous machine analysis.				
U	NIT I PRIMITIVE 4 WINDING COMMUTATOR M	ACH	IN	E	9
	ility – Primitive 4 Winding Commutator Machine – Complete Vo nitive 4 Winding Commutator Machine.	ltage	Equ	ation	of
U	NIT II DYNAMICS OF DC AND INDUCTION MACH	IINE	1		9
Thre Indu	ue Equation. Analysis of Simple DC Machines using the Primitive M e Phase Induction Motor – Transformed Equations – Different F action Motor Analysis – Transfer Function Formulation.	Refere	-		
-	NIT III DYNAMICS OF SYNCHRONOUS MACHINE				9
	e Phase Salient Pole Synchronous Machine – Parks Transformation- St	eady S	State	Analy	
UI	NIT IV LARGE SIGNAL TRANISENTS I				9
	e Signal Transient – Small Oscillation Equations in State Variable Forr lysis of Interconnected Machines.	n – D <u>y</u>	ynan	nical	
U	NIT V LARGE SIGNAL TRANISENTS II				9
-	ge Signal Transient Analysis using Transformed Equations – DC Genera em. – Alternator /Synchronous Motor System.	tor /D	OC M	lotor	
	ТОТ	AL:	45 I	PERI	OD
OU	TCOMES: After completion of this course, the student will be able t):			
1	Formulate electrodynamic equations of all electric machines and analy	yze th	e pei	forma	nce
	characteristics	2			
2	Acquire the Knowledge of transformations for the dynamic analysis of				1
3	Acquire the Knowledge of determination of stability of the machines and transient conditions	under	sma	ui sigi	nai
4	Study about electrical machine				
5	Study about synchronous machine				
-	FERENCES:				
1	D.P. Sengupta & J.B. Lynn, "Electrical Machine Dynamics", The Ma 1980	cmille	n Pi	ress L	td.
1	R Krishnan "Electric Motor Drives, Modeling, Analysis, and Control	", Pea	irson	ı	
2	Education., 2001				
	Education., 2001 P.C. Kraus, "Analysis of Electrical Machines", McGraw Hill Book C	ompa		987	
2	Education., 2001	ompa		987	992

CO/P	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P10	P11	PSO1	PSO2	PSO3
0														
CO1	-	2	2	-	-	-	-	-	2	-	-	-	-	-
CO2	-	2	-	-	-	-	-	-	2	-	-	-	-	-
CO3	-	-	-	-	-	-	-	2	-	-	-	-	-	-
CO4	-	2	-	-	-	-	-	-	-	2	-	-	-	-
CO5	-	-	-	-	-	-	-	-	-	-	-	-	-	-

18PEPE02	SOFT COMPUTING TECHNIQUES	L	Τ	Р	С
		3	0	0	3
OBJECTI	ES:				
To intro	duce soft computing concepts and techniques and foster their abi	ilitie	es in	desig	ning
• appropr	ate technique for a given scenario.			-	-
• To imp	ement soft computing based solutions for real-world problems.				
To give	students knowledge of non-traditional technologies and fundame	enta	ls of	artifi	cial
• neural r	etworks, fuzzy sets, fuzzy logic, genetic algorithms.				
• To prov	ide student an hand-on experience on MATLAB to implement va	ario	us sti	rategi	es.
UNIT I	INTRODUCTION TO SOFT COMPUTING				09
Evolution of	Computing - Soft Computing Constituents - From Co	nve	ntior	nal A	I to
	l Intelligence – Machine Learning Basics – Recent Trands i				
	iers – neural networks and genetic algorithm –		-		-
UNIT II	FUZZY LOGIC				09
Fuzzy Sets -	Operations – Fuzzy Relations – Membership Functions – Fuzz	y Ri	ules	and H	Fuzzy
Reasoning – I	Fuzzy Inference Systems – Fuzzy Expert Systems – Fuzzy Decisi	ion I	Maki	ng.	•
UNIT III	NEURAL NETWORKS				09
Machine Lea	ning Using Neural Network – Adaptive Networks – Feed fo	rwa	rd N	letwo	rks –
UNIT IV	Veural networks GENETIC ALGORITHMS				09
	o Genetic Algorithms (GA) – Applications of GA in Machine L	0.000	ina	Мо	• -
	roach to Knowledge Acquisition.	Lan	inig	- 1v1a	cinite
UNIT V	SOFT COMPUTING USING SOFTWARES				09
	o Matlab/Python – Arrays and array operations – Functions an		ilas	Stu	• -
	k toolbox and fuzzy logic toolbox – Simple implementation o				
	Fuzzy Logic – Implementation of recently proposed soft computi				
					IODS
OUTCOM	ES: After completion of this course, the student will be able to:				
Identify			/ 11'		
1 machin		ng ir	ntelli	gent	
Apply f	and describe soft computing techniques and their roles in building	ng ir	itelli	gent	
	and describe soft computing techniques and their roles in buildings	-		-	
2 problen	and describe soft computing techniques and their roles in buildings azzy logic and reasoning to handle uncertainty and solve various	-		-	
² problem	and describe soft computing techniques and their roles in buildings azzy logic and reasoning to handle uncertainty and solve various	-		-	
2problem3Apply g	and describe soft computing techniques and their roles in buildings uzzy logic and reasoning to handle uncertainty and solve various s.	eng	inee	-	
2problem3Apply g4Evaluat	and describe soft computing techniques and their roles in buildings uzzy logic and reasoning to handle uncertainty and solve various s. enetic algorithms to combinatorial optimization problems.	eng oble	inee m.	-	
2problem3Apply g4Evaluat	and describe soft computing techniques and their roles in buildings uzzy logic and reasoning to handle uncertainty and solve various s. enetic algorithms to combinatorial optimization problems. e solutions for various soft computing approaches for a given pro- e solutions by various soft computing approaches for a given pro-	eng oble	inee m.	-	
2problem3Apply g4Evaluat5Compar REFEREN 1Jyh Shin	and describe soft computing techniques and their roles in buildings uzzy logic and reasoning to handle uncertainty and solve various s. enetic algorithms to combinatorial optimization problems. e solutions for various soft computing approaches for a given pro e solutions by various soft computing approaches for a given pro CES: <i>ng Roger Jang, Chuen Tsai Sun, Eiji Mizutani, "Neuro Fuzzy and</i>	eng oble	inee m. n.	ring	ing",
2problem3Apply g4Evaluat5Compar REFEREN 1.Jyh Shin Prentice2George	and describe soft computing techniques and their roles in buildings uzzy logic and reasoning to handle uncertainty and solve various s. enetic algorithms to combinatorial optimization problems. e solutions for various soft computing approaches for a given pro- e solutions by various soft computing approaches for a given pro- cession of the solution	eng oble oblei d So	inee m. n. ft Co	ring	ing",
2problem3Apply g4Evaluat5Compar REFEREN 1.Jyh Shin Prentice2.George Prentice	and describe soft computing techniques and their roles in buildings uzzy logic and reasoning to handle uncertainty and solve various s. enetic algorithms to combinatorial optimization problems. e solutions for various soft computing approaches for a given pro- e solutions by various soft computing approaches for a given pro- cess g Roger Jang, Chuen Tsai Sun, Eiji Mizutani, "Neuro Fuzzy and e Hall of India, 2003	eng oble oblei d So	inee m. n. ft Co	ring	ing",

4.	Devendra k. Chathruvedi, Soft computing techniques and its applications in electrical engineering, Springer.
5.	Hagan, Demuth, Beale, "Neural Network Design", Cengage Learning, 2012.
6.	N.P.Padhy, "Artificial IntelligenceandIntelligentSystems", Oxford, 2013

CO/P	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P10	P11	PSO1	PSO2	PSO3
0														
CO1	-	2	-	-	-	-	-	-	-	2	-	-	-	_
CO2	-	-	-	-	-	-	-	-	-	2	-	1	-	_
CO3	-	-	-	-	-	-	-	-	-	2	-	-	2	_
CO4	-	-	-	-	2	-	-	-	-	2	-	-	-	_
CO5	-	-	-	-	-	_	-	-	-	2	_	_	-	_

18PEPE03	ELECTRIC VEHICLES AND POWER MANAGEMENT	L	T	P	C
OBJECTIV	FG.	3	0	0	3
	estand the concept of electrical vehicles and its operations				
	stand the concept of electrical venicles and its operations				
	de knowledge about various possible energy storage technolog				
	c vehicles	ies u	lat Ca	an be	usea
UNIT I	ELECTRIC VEHICLES AND VEHICLE MECH	TA N		1	09
	cles (EV), Hybrid Electric Vehicles (HEV), Engine ratings, Co				
	combustion Engine vehicles, Fundamentals of vehicle mechani		15011	5 01 L	•
UNIT II	ARCHITECTURE OF EV's AND POWER TRA				09
	COMPONENTS				09
Architecture	of EV's and HEV's – Plug-n Hybrid Electric Vehicles (PHEV)	- Po	wor	train	
	nd sizing, Gears, Clutches, Transmission and Brakes.	-10	wei	uam	
UNIT III	CONTROL OF DC AND AC DRIVES				09
	per based four quadrant operations of DC drives– Inverter base	d/f C	pera	tion	07
	l braking) of induction motor drive system – Induction motor a				
· ·	vector control operation-Switched reluctance motor (SRM) dri	-			
UNIT IV	BATTERY ENERGY STORAGE SYSTEM				09
Battery Basics	s, Different types, Battery Parameters, Battery modelling, Trac	tion	Batte	ries.	
UNIT V	ALTERNATIVE ENERGY STORAGE SYSTEM	1S			09
Fuel cell – Ch	aracteristics – Types – hydrogen Storage Systems and Fuel ce	ll EV	′ – U	ltra	
capacitors.					
	ТО	TAL	:45	PER	IODS
OUTCOME	S: After completion of this course, the student will be able to:				
	nd the operation of Electric vehicle				
	nd the Architecture of Electric vehicle				
	Knowledge on various power electronic converter for electrica		icles		
	Knowledge on battery storage technologies for electrical vehic		1 • 1		
	Knowledge on various energy storage technologies for electric	al ve	hicle	es	
REFERENC	CES: ssain, "Electric and Hybrid Vehicles: Design Fundamentals, S	Tacar	d E.	lition	,,
$\stackrel{I.}{\frown}$ $\stackrel{I.}{\frown}$ $\stackrel{C}{\frown}$ $\stackrel{RC}{\frown}$ Pre	ss, Taylor & Francis Group, Second Edition (2011).				
^{2.} Indian E	li, Mehrdad Ehsani, JohnM.Miller, "Vehicular Electric Power dition, Marcel dekker, Inc2010.	syst	ems	, spe	cial
	sain, "Electric and Hybrid Vehicles" ", CRC Press, 2004	1 ^	~		1
	and M.Abdul Masrur, "Electric and Hybrid Vehicles" by Will			s 201	1
5. Amir Kh	ajepour, , "Electric and Hybrid Vehicles" John Wiley & Sons,	2011			

CO/P	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P10	P11	PSO1	PSO2	PSO3
0														
CO1	-	-	-	-	-	-	-	-	-	-	2	-	-	-
CO2	2	-	-	-	-	-	-	-	-	-	2	-	-	-
CO3	-	-	-	-	-	-	2	-	-	-	-	-	-	-
CO4	-	-	-	-	-	-	-	_	-	-	_	3	-	-
CO5	-	-	-	-	-	-	-	-	-	-	-	3	-	-

	PEPE04	SOLAR AND ENERGY STORAGE SYSTEMS	L	Τ	P	С
			3	0	0	3
OB	JECTIV	ES:				
•	To Study	about solar modules and PV system design and their application	ons.			
•	To Deal v	with Standalone PV System				
٠	To Deal v	with grid connected PV systems.				
•	To Discu	ss about different energy storage systems.				
UN	IT I	INTRODUCTION				09
		s of sunlight–semiconductors and P-N junctions–behavior of so cell interconnection	olar	cells	-cell	
UN	IT II	STANDALONE PV SYSTEM				09
		s–storage systems–power conditioning and regulation-MPPT-p V systems design–sizing	orote	ctior	1—	
UN	IT III	GRID CONNECTED PV SYSTEMS				09
PV	systems in	buildings-design issues for central power stations-safety-Eco	non	nic as	spect	
Eff	ficiency and	l performance- International PV programs – Synchronization is	ssues	5		
UN	IT IV	ENERGY STORAGE SYSTEMS				09
Imj	pact of inter	rmittent generation-Battery energy storage-solar thermal energy	gy st	orag	e–	
Pur	nped hydro	electric energy storage	gy st	orag	e–	
Pur UN	mped hydro IT V	electric energy storage APPLICATIONS				09
Pur UN Wa	mped hydro IT V ater pumpi	electric energy storage APPLICATIONS ing – battery chargers – solar car – direct-drive applie				
Pur UN Wa	mped hydro IT V	electric energy storage APPLICATIONS ing – battery chargers – solar car – direct-drive applic cations	catio	ons -	–Spac	ce –
Pur UN Wa Tel	nped hydro IT V ater pumpi lecommuni	electric energy storage APPLICATIONS ing – battery chargers – solar car – direct-drive applic cations TO	catio	ons -	–Spac	
Pur UN Wa Tel	mped hydro IT V ater pumpi lecommuni TCOME	electric energy storage APPLICATIONS ing – battery chargers – solar car – direct-drive applic cations TOT S: After completion of this course, the student will be able to:	catio	ons -	–Spac	ce –
Pur UN Wa Tel	nped hydro IT V ater pumpi lecommuni TCOME Develop	electric energy storage APPLICATIONS ing - battery chargers - solar car - direct-drive applications TOT S: After completion of this course, the student will be able to: more knowledge on solar energy storage systems	catio	ons -	–Spac	ce –
Pur UN Wa Tel OU	nped hydro IT V ater pumpi lecommuni TCOME Develop	electric energy storage APPLICATIONS ing – battery chargers – solar car – direct-drive applic cations TOT S: After completion of this course, the student will be able to: more knowledge on solar energy storage systems basic knowledge on standalone PV system	catio	ons -	–Spac	ce –
Pur UN Wa Tel OU 1 2	nped hydro IT V ater pumpi lecommuni TCOME Develop Understa	electric energy storage APPLICATIONS ing - battery chargers - solar car - direct-drive applications TOT S: After completion of this course, the student will be able to: more knowledge on solar energy storage systems	catio	ons -	–Spac	ce –
Pur UN: Wa Tel OU 1 2 3	nped hydro IT V ater pumpi lecommuni TCOME Develop Develop Understa Modeling	electric energy storage APPLICATIONS ing – battery chargers – solar car – direct-drive applic cations TOT S: After completion of this course, the student will be able to: more knowledge on solar energy storage systems basic knowledge on standalone PV system nd the issues in grid connected PV systems	catio	ons -	–Spac	ce –
Pun UN Wa Tel 0U 1 2 3 4 5	nped hydro IT V ater pumpi lecommuni TCOME Develop Develop Understa Modeling Attain m	APPLICATIONS ing – battery chargers – solar car – direct-drive applie cations TOT S: After completion of this course, the student will be able to: more knowledge on solar energy storage systems basic knowledge on standalone PV system nd the issues in grid connected PV systems g of different energy storage systems and their performances ore knowledge on different applications of solar energy. ES:		ons -	-Spac	iods
Pun UN Wa Tel 0U 1 2 3 4 5	mped hydro IT V ater pumpi lecommuni TCOME Develop Develop Understa Modeling Attain m FERENC Solanki C Learning	APPLICATIONS ing – battery chargers – solar car – direct-drive applied cations TOT S: After completion of this course, the student will be able to: more knowledge on solar energy storage systems basic knowledge on standalone PV system nd the issues in grid connected PV systems g of different energy storage systems and their performances ore knowledge on different applications of solar energy. ES: C.S., "Solar Photovoltaics: Fundamentals, Technologies And Ap Pvt. Ltd., 2015.	catic	ons -	–Spac	iods
Pun UN Wa Tel OU 1 2 3 4 5 RE	mped hydro IT V ater pumpi lecommuni TCOME Develop Develop Understar Modeling Attain m FERENC Solanki C Learning Stuart R. Photovol	APPLICATIONS ing – battery chargers – solar car – direct-drive applied cations TOT S: After completion of this course, the student will be able to: more knowledge on solar energy storage systems basic knowledge on standalone PV system nd the issues in grid connected PV systems g of different energy storage systems and their performances tore knowledge on different applications of solar energy. CES: C.S., "Solar Photovoltaics: Fundamentals, Technologies And Apply Ltd., 2015. Wenham, Martin A. Green, Muriel E. Watt and Richard Corkiss taics", 2007, Earthscan, UK.	catic ΓΑL	ons :45 catio	–Spac	iods
Pur UN Wa Tel 0U 1 2 3 4 5 RE 1.	mped hydro IT V ater pumpi lecommuni TCOME Develop Develop Understa Modeling Attain m FERENC Solanki C Learning Stuart R. Photovoli Eduardo Progensa	APPLICATIONS ing – battery chargers – solar car – direct-drive applied cations TOT S: After completion of this course, the student will be able to: more knowledge on solar energy storage systems basic knowledge on standalone PV system nd the issues in grid connected PV systems g of different energy storage systems and their performances ore knowledge on different applications of solar energy. YES: <i>C.S., "Solar Photovoltaics: Fundamentals, Technologies And Af</i> <i>Pvt. Ltd., 2015.</i> <i>Wenham, Martin A. Green, Muriel E. Watt and Richard Corkist</i> <i>taics", 2007, Earthscan, UK.</i> <i>Lorenzo G. Araujo, "Solar electricity engineering of photovolta</i> <i>t, 1994.</i>	pplia h, "2	ons :45 <i>catio</i> <i>Appl</i> <i>syste</i>	–Spac PER ns", l	PHI
Pun UN Wa Tel OU 1 2 3 4 5 RE 1. 2.	mped hydro IT V ater pumpi lecommuni TCOME Develop Develop Understat Modeling Attain m FERENC Solanki C Learning Stuart R. Photovol Eduardo Progensa Frank S. Press, 20	APPLICATIONS ing – battery chargers – solar car – direct-drive applied cations TOT S: After completion of this course, the student will be able to: more knowledge on solar energy storage systems basic knowledge on standalone PV system nd the issues in grid connected PV systems g of different energy storage systems and their performances ore knowledge on different applications of solar energy. CES: C.S., "Solar Photovoltaics: Fundamentals, Technologies And Apply. Pvt. Ltd., 2015. Wenham, Martin A. Green, Muriel E. Watt and Richard Corkiss taics", 2007, Earthscan, UK. Lorenzo G. Araujo, "Solar electricity engineering of photovolt to, 1994. Barnes& Jonah G. Levine, "Large Energy storage Systems Hat 11.	catic FAL pplid h, "2 aic s ndbo	ons :45 :45 <i>catio</i> <i>Appl</i> <i>syste</i> <i>pok</i> "	–Spac	PHI
Pun UN Wa Tel OU 1 2 3 4 5 RE 1. 2. 3.	mped hydro IT V ater pumpi lecommuni TCOME Develop Develop Understa Modeling Attain m FERENC Solanki C Learning Stuart R. Photovoli Eduardo Progensa Frank S. Press, 20 McNeils,	APPLICATIONS ing – battery chargers – solar car – direct-drive applications TOT S: After completion of this course, the student will be able to: more knowledge on solar energy storage systems basic knowledge on standalone PV system Ind the issues in grid connected PV systems g of different energy storage systems and their performances tore knowledge on different applications of solar energy. ES: C.S., "Solar Photovoltaics: Fundamentals, Technologies And Ap Pvt. Ltd., 2015. Wenham, Martin A. Green, Muriel E. Watt and Richard Corkiss taics", 2007, Earthscan, UK. Lorenzo G. Araujo, "Solar electricity engineering of photovolt t, 1994. Barnes& Jonah G. Levine, "Large Energy storage Systems Ha	catic FAL pplid h, "2 aic s ndbo	ons :45 :45 <i>catio</i> <i>Appl</i> <i>syste</i> <i>pok</i> "	–Spac	PHI

CO/P	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P10	P11	PSO1	PSO2	PSO3
0														
CO1	2	-	-	-	-	-	-	-	2	-	-	-	-	-
CO2	-	1	-	-	-	-	-	-	-	2	-	-	-	-
CO3	-	-	-	-	-	-	3	2	-	-	-	-	-	-
CO4	-	-	_	_	-	-	-	_	_	-	2	_	2	_
CO5	-	-	_	-	-	-	-	-	-	-	2	-	-	-

		L	Т	Р	C
		3	0	0	3
OBJECTIV					
	the design and control principles of Wind turbine.				
	stand the concepts of fixed speed and variable speed, wind energy	gy c	onv	ersio	n
• To analyz	the grid integration issues.				T
UNIT I	INTRODUCTION				09
	f WECS - WECS schemes - Power obtained from wind - scoefficient - Sabinin's theory - Aerodynamics of Wind turbine.	imp	ole r	nome	entum
UNIT II	WIND TURBINES				09
	WT - Power developed – Thrust – Efficiency - Rotor selection	on -	- Ro	tor d	
	- Tip speed ratio - No of Blades - Blade profile - Power Regula				
	ontrol - stall control - Schemes for maximum power extraction.		5		
UNIT III					09
Generating Sv	stems - Constant speed constant frequency systems - Choice	e o	f Ge	enera	tors -
	rs - Synchronous Generator - Squirrel Cage Induction Generator				
	wind turbine rotor - Drive Train model - Generator model for				
Transient stabi	ity analysis.				
UNIT IV	VARIABLE SPEED SYSTEMS				09
	ems synchronous generator – DFIG – PMSG - Variable riable speed variable frequency schemes.	spe	eed	gene	rators
					r
	GRID CONNECTED SYSTEMS		. 1	•••	
Wind interconr and supply of industry trends		ent	pra	ctices	tions s and
Wind interconr and supply of industry trends	GRID CONNECTED SYSTEMS ection requirements – low-voltage ride through (LVRT) – ram ancillary services for frequency and voltage control – curr wind inter connection impact on steady-state and dynamic pe	ent erfo	pra orma	ctices	tions s and of the
Wind interconr and supply of industry trends power system in	GRID CONNECTED SYSTEMS ection requirements – low-voltage ride through (LVRT) – ram ancillary services for frequency and voltage control – curr wind inter connection impact on steady-state and dynamic per neluding modelling issue.	ent erfo	pra orma	ctices	tions s and of the
Wind interconr and supply of industry trends power system in OUTCOME 1 Acquire 1	GRID CONNECTED SYSTEMS ection requirements – low-voltage ride through (LVRT) – ram ancillary services for frequency and voltage control – curr wind inter connection impact on steady-state and dynamic per including modelling issue. TOTA S: After completion of this course, the student will be able to: knowledge on the basic concepts of Wind energy conversion systems	rent erfc AL	pra orma :45	ctices	tions s and of the
Wind interconr and supply of industry trends power system in OUTCOME 1 Acquire 1 2 Understa	GRID CONNECTED SYSTEMS ection requirements – low-voltage ride through (LVRT) – ram ancillary services for frequency and voltage control – curr wind inter connection impact on steady-state and dynamic per- neluding modelling issue. TOTA S: After completion of this course, the student will be able to: knowledge on the basic concepts of Wind energy conversion system and the mathematical modelling and control of the Wind turbine	rent erfc AL	pra orma :45	ctices	tions s and of the
Wind interconr and supply of industry trends power system in OUTCOME 1 Acquire 1 2 Understa 3 Develop	GRID CONNECTED SYSTEMS ection requirements – low-voltage ride through (LVRT) – ram ancillary services for frequency and voltage control – curr wind inter connection impact on steady-state and dynamic pen- neluding modelling issue. TOTA S: After completion of this course, the student will be able to: knowledge on the basic concepts of Wind energy conversion system and the mathematical modelling and control of the Wind turbine more understanding on the design of Fixed speed system	rent erfc AL	pra orma :45	ctices	tions s and of the
Wind interconr and supply of industry trends power system in OUTCOME 1 Acquire 1 2 Understa 3 Develop 4 Develop	GRID CONNECTED SYSTEMS ection requirements – low-voltage ride through (LVRT) – ram ancillary services for frequency and voltage control – curr wind inter connection impact on steady-state and dynamic per- neluding modelling issue. TOTA S: After completion of this course, the student will be able to: cnowledge on the basic concepts of Wind energy conversion system and the mathematical modelling and control of the Wind turbine more understanding on the design of Fixed speed system more understanding on the design of Variable speed system	erfo AL stem	pra prma :45	ctices nce (PER	tions s and of the IOD
Wind interconr and supply of industry trends power system in OUTCOME 1 Acquire 1 2 Understa 3 Develop 4 Develop	GRID CONNECTED SYSTEMS ection requirements – low-voltage ride through (LVRT) – ram ancillary services for frequency and voltage control – curr wind inter connection impact on steady-state and dynamic pen- neluding modelling issue. TOTA S: After completion of this course, the student will be able to: knowledge on the basic concepts of Wind energy conversion system and the mathematical modelling and control of the Wind turbine more understanding on the design of Fixed speed system more understanding on the design of Variable speed system but Grid integration issues and current practices of wind intercor	erfo AL stem	pra prma :45	ctices nce (PER	tions s and of the IOD
Wind interconr and supply of industry trends power system in OUTCOME 1 Acquire 1 2 Understa 3 Develop 4 Develop 5 Learn abo power sy	GRID CONNECTED SYSTEMS ection requirements – low-voltage ride through (LVRT) – ram ancillary services for frequency and voltage control – curr wind inter connection impact on steady-state and dynamic per- neluding modelling issue. TOTA S: After completion of this course, the student will be able to: encowledge on the basic concepts of Wind energy conversion system and the mathematical modelling and control of the Wind turbine more understanding on the design of Fixed speed system more understanding on the design of Variable speed system but Grid integration issues and current practices of wind intercor stem.	erfo AL stem	pra prma :45	ctices nce (PER	tions s and of the IOD
Wind interconr and supply of industry trends power system in OUTCOME 1 Acquire 1 2 Understa 3 Develop 4 Develop 5 Learn abo power sy REFERENC	GRID CONNECTED SYSTEMS ection requirements – low-voltage ride through (LVRT) – ram ancillary services for frequency and voltage control – curr wind inter connection impact on steady-state and dynamic per- neluding modelling issue. TOTA S: After completion of this course, the student will be able to: encowledge on the basic concepts of Wind energy conversion system and the mathematical modelling and control of the Wind turbine more understanding on the design of Fixed speed system more understanding on the design of Variable speed system but Grid integration issues and current practices of wind intercor stem.	erfo AL stem	pra prma :45	ctices nce (PER	s and of the IOD
Wind interconr and supply of industry trends power system in OUTCOME 1 Acquire 1 2 Understa 3 Develop 4 Develop 5 Learn ab power sy REFERENC 1. L.L. Frer 2 S.N.Bhaa	GRID CONNECTED SYSTEMS ection requirements – low-voltage ride through (LVRT) – ram ancillary services for frequency and voltage control – curr wind inter connection impact on steady-state and dynamic per- neluding modelling issue. TOTA S: After completion of this course, the student will be able to: knowledge on the basic concepts of Wind energy conversion system and the mathematical modelling and control of the Wind turbine more understanding on the design of Fixed speed system more understanding on the design of Variable speed system but Grid integration issues and current practices of wind intercor stem. ES:	AL	pra prma :45 n.	ctices nce of PER	tions s and of the IOD
Wind interconr and supply of industry trends power system in OUTCOME 1 Acquire 1 2 Understa 3 Develop 4 Develop 5 Learn abo power sy REFERENC 1. L.L. Frer 2. S.N.Bhaa 2010.	GRID CONNECTED SYSTEMS ection requirements – low-voltage ride through (LVRT) – ram ancillary services for frequency and voltage control – curr wind inter connection impact on steady-state and dynamic per- neluding modelling issue. TOTA S: After completion of this course, the student will be able to: knowledge on the basic concepts of Wind energy conversion system and the mathematical modelling and control of the Wind turbine more understanding on the design of Fixed speed system more understanding on the design of Variable speed system but Grid integration issues and current practices of wind intercor stem. ES: is "Wind Energy conversion Systems", Prentice Hall, 1990 Tra, D.Kastha, S.Banerjee, "Wind Electrical Sytems", Oxford Ur	AL atem nive	pra prma :45 n.	ctices nce of PER	tions, s and of the IOD
and supply of industry trends power system in OUTCOME 1 Acquire 1 2 Understa 3 Develop 4 Develop 5 Learn ab power sy REFERENC 1. L.L. Frer 2. S.N.Bhaa 2010. 3. Ion Bolda 4 E.W.Gold	GRID CONNECTED SYSTEMS ection requirements – low-voltage ride through (LVRT) – ram ancillary services for frequency and voltage control – curr wind inter connection impact on steady-state and dynamic per- neluding modelling issue. TOTA S: After completion of this course, the student will be able to: cnowledge on the basic concepts of Wind energy conversion system and the mathematical modelling and control of the Wind turbine more understanding on the design of Fixed speed system more understanding on the design of Variable speed system but Grid integration issues and current practices of wind interconstem. DES: is "Wind Energy conversion Systems", Prentice Hall, 1990 bra, D.Kastha, S.Banerjee, "Wind Electrical Sytems", Oxford Un- tea, "Variable speed generators", Taylor & Francis group, 2006 ling "The generation of Electricity by wind power", Red wood b	AL terr nneo	pra prma :45 n. ctior	etices nce of PER	tions s and of the IOD
Wind interconr and supply of industry trends power system in OUTCOME 1 Acquire I 2 Understa 3 Develop 4 Develop 5 Learn ab power sy REFERENC 1. L.L. Frer 2. S.N.Bhaa 2010. 3. Ion Bolda 4. E.W.Gola Trowbria	GRID CONNECTED SYSTEMS ection requirements – low-voltage ride through (LVRT) – ram ancillary services for frequency and voltage control – curr wind inter connection impact on steady-state and dynamic per- neluding modelling issue. TOTA S: After completion of this course, the student will be able to: cnowledge on the basic concepts of Wind energy conversion system and the mathematical modelling and control of the Wind turbine more understanding on the design of Fixed speed system more understanding on the design of Variable speed system but Grid integration issues and current practices of wind interconstem. DES: is "Wind Energy conversion Systems", Prentice Hall, 1990 bra, D.Kastha, S.Banerjee, "Wind Electrical Sytems", Oxford Un- tea, "Variable speed generators", Taylor & Francis group, 2006 ling "The generation of Electricity by wind power", Red wood b	AL terr nneo	pra prma :45 n. ctior	etices nce of PER	tions s and of the IOD

6. S.Heir "Grid Integration of WECS", Wiley 1998

COURSE ARTICULATION MATRIX

CO/P	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P10	P11	PSO1	PSO2	PSO3
0														
CO1	2	-	-	-	-	-	-	-	2	-	-	-	-	-
CO2	-	1	-	-	-	-	-	-	-	2	-	-	-	-
CO3	-	-	-	-	-	-	3	2	-	-	-	-	-	-
CO4	-	-	-	-	-	-	-	-	-	-	2	-	2	-
CO5	-	-	-	-	-	-	-	-	-	-	2	-	-	-

18PEPE	06 PWM CONVERTER AND APPLICATIONS	L	Τ	Р	С
		3	0	0	3
OBJEC	TIVES:				
	nderstand the concepts and basic operation of PWM converters, incl ation and design.	udir	ıg ba	sic ci	rcuit
1	nderstand the steady-state and dynamic analysis of PWM converters	alo	ng w	ith th	e
	ications like solid state drives and power quality.	uio		1111 111	C
UNIT I	FUNDAMENTALS OF CONVERTERS				09
and currer	d DC/AC power conversion – Overview of applications of voltage t source converters – Practical devices in converter – Calculation power losses.				
UNIT II	PWM TECHNIQUES				09
Pulse widt	n modulation techniques for bridge converters – Bus clamping PWM M – Advanced PWM techniques.	[– S	pace	vect	or
UNIT II	I MODEL OF PWM CONVERTER				09
-	ation for dead time and DC voltage regulation - Dynamic model of el converters - Constant V/F induction motor drives.	f PV	VM (conve	rter -
UNIT IV					09
	of current ripple and torque ripple in inverter fed drives – Line-side	con	verte	rs wi	th
1	or compensation.				00
UNIT V	REACTIVE POWER AND HARMONICS COMPENSATION				09
	ver filtering – Reactive power compensation - Harmonic current com		satio	n –	
Selective h	armonic elimination – PWM technique for high power electric drive				
		ſAL	:45	PER	IODS
	MES: After completion of this course, the student will be able to:				
	gn PWM converters.				
	yse the PWM converters in steady-state conditions.				
	yse the PWM converters in dynamic conditions. yse power converters with various PWM techniques for Steady-State	0			
	yse power converters with various I will techniques for Steady-State	С.			
REFER					
Moh	an, Undeland and Robbins, "Power Electronics: Converters, Applic	catie	ons a	nd	
	gn", John's Wiley and Sons.				
	kson RW, "Fundamentals of Power Electronics", Chapman and Ha	ll.			
	vathil. J, "Power Electronics: Principles and Applications", McGra		Iill.		
4. Edis	on Roberto Cabral Da Silva, 'Advanced Power Electronics Converte	er', I	Viley	2.	
$D\overline{G}$	rahame Holmes Thomas A.Lipo, 'Pulse Width Modulation for Powe	$r C \overline{c}$	onver	ters'	Wilev

CO/P	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P10	P11	PSO1	PSO2	PSO3
0														
CO1	2	-	-	-	-	-	2	-	-	-	-	3	-	_
CO2	-	-	-	-	-	-	-	-	2	I	-	-	2	-
CO3	-	-	-	-	-	-	-	-	-	3	-	-	2	-
CO4	-	-	-	-	-	-	-	-	-	I	3	-	-	-
CO5	-	-	-	-	-	-	-	-	2	-	-	-	-	-

3 0 0 3 OBJECTIVES: • To understand different types of converters • To understand different switch mode topologies & control methods • To understand different resonant converter topologies. UNIT I SMPS TOPOLOGIES 09 Buck, Boost, Buck-Boost SMPS Topologies – Basic Operation – Waveforms – modes of operation – switching stresses – Switching and conduction losses – Optimum switching frequency – Practical voltage, current and power limits – dosign relations – Voltage mode control principles – Push-Pull and Forward Converter Topologies – Basic Operation, Waveforms – Flux Imbalance Problem and Solutions 09 UNIT II FERRIFE TRANSFORMERS 09 Transformer Design – Output Filter Design – Switching Stresses and Losses – Forward Converter Magnetics – Voltage Mode Control. 09 UNIT III RESONANT CONVERTERS 09 Classification of Resonant Converters – Basic Resonant Circuit Concepts – Load Resonant Converter – Resonant Switch Converter – Zero Voltage Switching – High Frequency Link Integral Half Cycle Converter – Fly back Converter – discontinuous mode operation, waveforms, control, design relations. 09 VOItage Mode Control of SMPS – Loop Gain and Stability Considerations – Error Amp-frequency Response and Transfer Function – Trans-conductance Current Mode Control IC UC3842 – Modeling of SMPS – Small Signal Approximation – General Second Order Linear Equivalent Circuits – Study of popular PWM Control ICs (SG 3525,TL 494,MC34060 etc.)	101	EPE07	SWITCHED MODE AND RESONANT CONVERTERS	Т	Р	C
• To understand different types of converters • To understand different switch mode topologies & control methods • To understand different resonant converter topologies. UNIT I SMPS TOPOLOGIES 09 Buck, Boost, Buck-Boost SMPS Topologies – Basic Operation – Waveforms – modes of operation – switching stresses – Switching and conduction losses – Optimum switching frequency – Practical voltage, current and power limits – design relations – Voltage mode control principles – Push-Pull and Forward Converter Topologies – Basic Operation, Waveforms – Flux Imbalance Problem and Solutions 09 Transformer Design – Output Filter Design – Switching Stresses and Losses – Forward Converter Magnetics – Voltage Mode Control – Half and Full Bridge Converters – Basic Operation and Waveforms – Magnetics – Output Filter – Flux Imbalance – Switching Stresses and Losses – Power Limits – Voltage Mode Control. 09 UNIT II RESONANT CONVERTERS 09 Classification of Resonant DC Link Inverters with Zero Voltage Switching – Liagh Frequency Link Integral Half Cycle Converter – Fly back Converter – discontinuous mode operation, waveforms, control, design relations. 09 Voltage Mode Control – Magnetics – Switching Stresses and Losses, – Disadvantages – Continuous Mode Operation, waveforms, control, design relations. 09 Classification of Resonant DC Link Inverters with Zero Voltage Switching – High Frequency Link Integral Half Cycle Converter – Fly back Converter – discontinuous mode operation, waveforms, control, design relat			3	0	0	3
• To understand different switch mode topologies & control methods • To understand different resonant converter topologies. UNIT I SMPS TOPOLOGIES 09 Buck, Boost, Buck-Boost SMPS Topologies – Basic Operation – Waveforms – modes of operation – switching stresses – Switching and conduction losses – Optimum witching frequency – Practical voltage, current and power limits – design relations – Voltage mode control principles – Push-Pull and Forward Converter Topologies – Basic Operation, Waveforms – Flux Imbalance Problem and Solutions 09 Transformer Design – Output Filter Design – Switching Stresses and Losses – Forward Converter Magnetics – Voltage Mode Control – Half and Full Bridge Converters – Basic Operation and Waveforms – Magnetics – Output Filter – Flux Imbalance – Switching Stresses and Losses – Power Limits – Voltage Mode Control – Half and Full Bridge Converters – Basic Operation of Resonant COnverters – Earo Voltage Switching – Clamped Voltage Topologies – Resonant DC Link Inverters with Zero Voltage Switching – Load Resonant Converter – Resonant DC Link Inverters with Zero Voltage Switching – High Frequency Link Integral Half Cycle Converter – Fly back Converter – discontinuous mode operation, waveforms, control – Magnetics – Switching Stresses and Losses, – Disadvantages – Continuous Mode Operation, waveforms, control of SMPS – Loop Gain and Stability Considerations – Error Ampfrequency Response and Transfer Function – Trans-conductance Current Mode Control of SMPS – Small Signal Approximation – General Second Order Linear Equivalent Circuit Agout for popular PWM Control ICs (G 3325,TL 494,MC34060 etc.) 09 Voltage Mode SMPS – Small Signal Approximation – General Control Law Consideration = SMPS – Contr	OBJ	ECTIV	ES:			•
To understand different resonant converter topologies. 09 UNIT I SMPS TOPOLOGIES 09 Buck, Boost, Buck-Boost SMPS Topologies – Basic Operation – Waveforms – modes of operation – switching stresses – Switching and conduction losses – Optimum switching frequency – Practical voltage, current and power limits – design relations – Voltage mode control principles – Push-Pull and Forward Converter Topologies – Basic Operation, Waveforms – Flux Imbalance Problem and Solutions 09 Transformer Design – Output Filter Design – Switching Stresses and Losses – Forward Converter Magnetics – Voltage Mode Control – Half and Full Bridge Converters – Basic Operation and Waveforms – Magnetics – Output Filter – Flux Imbalance – Switching Stresses and Losses – Power Limits – Voltage Mode Control. 09 UNIT III RESONANT CONVERTERS 09 Classification of Resonant Converters – Basic Resonant Circuit Concepts – Load Resonant Converter – Resonant Switch Converter – Zero Voltage Switching – High Frequency Link Integral Half Cycle Converter – Fly back Converter – discontinuous mode operation, waveforms, control, design relations. 09 VINT IV CONTROL OF SMPS 09 Voltage Mode Control of SMPS – Loop Gain and Stability Considerations – Error Ampfrequency Response and Transfer Function – Trans-conductance Current Mode Control of SMPS – Loop Gain and Stability Considerations – Error Ampfrequency Response and Transfer Function – Trans-conductance Current Mode Control of SMPS – Control ICs (SG 3525,TL 494,MC34060 etc.) 09 Voltage Mode Control Advantages, Current Mode	•	To under	stand different types of converters			
UNIT I SMPS TOPOLOGIES 09 Buck, Boost, Buck-Boost SMPS Topologies – Basic Operation – Waveforms – modes of operation – switching stresses – Switching and conduction losses – Optimum switching frequency – Practical voltage, current and power limits – design relations – Voltage mode control principles – Push-Pull and Forward Converter Topologies – Basic Operation, Waveforms – Flux Imbalance Problem and Solutions 09 UNIT II FERRITE TRANSFORMERS 09 Transformer Design – Output Filter Design – Switching Stresses and Losses – Forward Converter Magnetics – Voltage Mode Control – Half and Full Bridge Converters – Basic Operation and Waveforms – Magnetics – Output Filter – Flux Imbalance – Switching Stresses and Losses – Power Limits – Voltage Mode Control. 09 UNIT III RESONANT CONVERTERS 09 Classification of Resonant Converters – Basic Resonant Circuit Concepts – Load Resonant Converter – Resonant Switch Converter – Zero Voltage Switching – High Frequency Link Integral Half Cycle Converter – Fly back Converter – discontinuous mode operation, waveforms, control, design relations. 09 Voltage Mode Control of SMPS – Loop Gain and Stability Considerations – Error Ampfrequency Response and Transfer Function – Trans-conductance Current Mode Control of SMPS – Loop Gain and Stability Considerations – Error Ampfrequency Response and Transfer Function – Trans-conductance Current Mode Control of SMPS – Control ICs (SG 3525,TL 494,MC34060 etc.) 09 DC Transformer – Voltage Mode SMPS Transfer Function – General Scond Order Linear Equivalent Circuit Layout for minimum EMI – EMI Filtering at Input an	•	To under	stand different switch mode topologies & control methods			
Buck, Boost, Buck-Boost SMPS Topologies – Basic Operation – Waveforms – mode of operation – switching stresses – Switching and conduction losses – Optimum switching frequency – Practical voltage, current and power limits – design relations – Voltage mode control principles – Push-Pull and Forward Converter Topologies – Basic Operation, Waveforms – Flux Imbalance Problem and Solutions 09 UNIT II FERRITE TRANSFORMERS 09 Transformer Design – Output Filter Design – Switching Stresses and Losses – Forward Converter Magnetics – Voltage Mode Control – Half and Full Bridge Converters – Basic Operation and Waveforms – Magnetics – Output Filter – Flux Imbalance – Switching Stresses and Losses – Power Limits – Voltage Mode Control. 09 UNIT III RESONANT CONVERTERS 09 Classification of Resonant Converters – Basic Resonant Circuit Concepts – Load Resonant Converter – Resonant Switch Converter – Zero Voltage Switching – High Frequency Link Integral Half Cycle Converter – Fly back Converter – discontinuous mode operation, waveforms, control – Magnetics – Switching Stresses and Losses, – Disadvantages – Continuous Mode Operation, waveforms, control, design relations. 09 UNIT IV CONTROL OF SMPS 09 Voltage Mode Control of SMPS – Loop Gain and Stability Considerations – Error Amp-frequency Link Signal Approximation – General Second Order Linear Equivalent Circuit – Study of popular PWM Control ICs (SG 3525,TL 494,MC34060 etc.) 09 UNIT IV DC TRANSFORMER 09 DC Transformer – Voltage Mode SMPS – Conducted and Radiated Emission Mechanisms in – EMI Filtering at I	•	To under	stand different resonant converter topologies.			
operation – switching stresses – Switching and conduction losses – Optimum switching frequency – Practical voltage, current and power limits – design relations – Voltage mode control principles – Push-Pull and Forward Converter Topologies – Basic Operation, Waveforms – Flux Imbalance Problem and Solutions UNIT II FERRITE TRANSFORMERS 09 Transformer Design – Output Filter Design – Switching Stresses and Losses – Forward Converter Magnetics – Voltage Mode Control – Half and Full Bridge Converters – Basic Operation and Waveforms – Magnetics – Output Filter – Flux Imbalance – Switching Stresses and Losses – Power Limits – Voltage Mode Control. 09 UNIT III RESONANT CONVERTERS 09 Classification of Resonant Converters – Basic Resonant Circuit Concepts – Load Resonant Converter – Resonant Switch Converter – Zero Voltage Switching – High Frequency Link Integral Half Cycle Converter – Fly back Converter – discontinuous mode operation, waveforms, control – Magnetics – Switching Stresses and Losses, – Disadvantages – Continuous Mode Operation, waveforms, control, design relations. 09 VNIT IV CONTROL OF SMPS 09 Voltage Mode Control of SMPS – Loop Gain and Stability Considerations – Error Amp-frequency Linear Equivalent Circuits – Study of popular PWM Control ICs (SG 3525,TL 494,MC34060 etc.) 09 UNIT V DC TRANSFORMER 09 DC Transformer – Voltage Mode SMPS Transfer Function – General Control Law Consideration – Effort of EMI Systems 09 DC Transformer – Voltage Mode SMPS Transfer Function – General Control Law Consideratio	UNI	ΤI	SMPS TOPOLOGIES			09
UNIT II FERRITE TRANSFORMERS 09 Transformer Design – Output Filter Design – Switching Stresses and Losses – Forward Converter Magnetics – Voltage Mode Control – Half and Full Bridge Converters – Basic Operation and Waveforms – Magnetics – Output Filter – Flux Imbalance – Switching Stresses and Losses – Power Limits – Voltage Mode Control. 09 UNIT III RESONANT CONVERTERS 09 Classification of Resonant Converters – Basic Resonant Circuit Concepts – Load Resonant Converter – Resonant Switch Converter – Zero Voltage Switching – Clamped Voltage Topologies – Resonant DC Link Inverters with Zero Voltage Switching – High Frequency Link Integral Half Cycle Converter – Fly back Converter – discontinuous mode operation, waveforms, control – Magnetics – Switching Stresses and Losses, – Disadvantages – Continuous Mode Operation, waveforms, control, design relations. 09 Voltage Mode Control of SMPS – Loop Gain and Stability Considerations – Error Amp- frequency Response and Transfer Function – Trans-conductance Current Mode Control of SMPS – Current Mode Control Advantages, Current Mode Vs Voltage Mode – Current Mode Deficiencies – Slope Compensation – Study of a typical Current Mode PWM Control IC UC342 – Modeling of SMPS – Small Signal Approximation – General Second Order Linear Equivalent Circuits – Study of popular PWM Control ICs (SG 3525,TL 494,MC34060 etc.) 09 UNIT V DC TRANSFORMER 09 DC Transformer – Voltage Mode SMPS Transfer Function – General Control Law Consideration – EMI Generation and Filtering in SMPS – Conducted and Radiated Emission Mechanisms in SMPS – Techniques to reduce Emissions – Control of Switching Loci –Shielding a	opera freque contre	tion – sw ency – Pr ol principl	vitching stresses – Switching and conduction losses – Optime actical voltage, current and power limits – design relations – V es – Push-Pull and Forward Converter Topologies – Basic Operatio	um Volta	switc age n	hing 10de
Transformer Design – Output Filter Design – Switching Stresses and Losses – Forward Converter Magnetics – Voltage Mode Control – Half and Full Bridge Converters – Basic Operation and Waveforms – Magnetics – Output Filter – Flux Imbalance – Switching Stresses and Losses – Power Limits – Voltage Mode Control. UNIT III RESONANT CONVERTERS (Classification of Resonant Converters – Basic Resonant Circuit Concepts – Load Resonant Converter – Resonant Switch Converter – Zero Voltage Switching – Clamped Voltage Topologies – Resonant DC Link Inverters with Zero Voltage Switching – High Frequency Link Integral Half Cycle Converter – Fly back Converter – discontinuous mode operation, waveforms, control – Magnetics – Switching Stresses and Losses, – Disadvantages – Continuous Mode Operation, waveforms, control, design relations. UNIT IV CONTROL OF SMPS Voltage Mode Control of SMPS – Loop Gain and Stability Considerations – Error Ampfrequency Response and Transfer Function – Trans-conductance Current Mode Control of SMPS – Current Mode Control IC UX842 – Modeling of SMPS – Small Signal Approximation – General Second Order Linear Equivalent Circuits – Study of popular PWM Control ICs (SG 3525,TL 494,MC34060 etc.) UNIT V DC TRANSFORMER DC Transformer – Voltage Mode SMPS Transfer Function – General Control Law Consideration – SMPS – Conducted and Radiated Emission Mechanisms in SMPS – T						00
UNIT IIIRESONANT CONVERTERS09Classification of Resonant Converters – Basic Resonant Circuit Concepts – Load Resonant Converter – Resonant Switch Converter – Zero Voltage Switching – Clamped Voltage Topologies – Resonant DC Link Inverters with Zero Voltage Switching – High Frequency Link Integral Half Cycle Converter – Fly back Converter – discontinuous mode operation, waveforms, control – Magnetics – Switching Stresses and Losses, – Disadvantages – Continuous Mode Operation, waveforms, control, design relations.09UNIT IVCONTROL OF SMPS09Voltage Mode Control of SMPS – Loop Gain and Stability Considerations – Error Amp- frequency Response and Transfer Function – Trans-conductance Current Mode Control of SMPS – Current Mode Control Advantages, Current Mode Vs Voltage Mode – Current Mode Deficiencies – Slope Compensation – Study of a typical Current Mode PWM Control IC UC3842 – Modeling of SMPS – Small Signal Approximation – General Second Order Linear Equivalent Circuits – Study of popular PWM Control ICs (SG 3525,TL 494,MC34060 etc.)09DC Transformer – Voltage Mode SMPS Transfer Function – General Control Law Consideration = EMI Generation and Filtering in SMPS – Conducted and Radiated Emission Mechanisms in SMPS – Techniques to reduce Emissions – Control of Switching Loci –Shielding and Grounding – Power Circuit Layout for minimum EMI – EMI Filtering at Input and Output – Effect of EMI Filter on SMPS Control Dynamics.TOTAL :45 PERIODSOUTCOMES: A filter completion of this course, the student will be able to: 1Acquire knowledge about the principles of operation of non-isolated hard-switched DC-DC converters.	Conv Opera	erter Mag ation and	netics – Voltage Mode Control – Half and Full Bridge Conve Waveforms – Magnetics – Output Filter – Flux Imbalance – Swit	erters	s – E	Basic
Classification of Resonant Converters – Basic Resonant Circuit Concepts – Load Resonant Converter – Resonant Switch Converter – Zero Voltage Switching – Clamped Voltage Topologies – Resonant DC Link Inverters with Zero Voltage Switching – High Frequency Link Integral Half Cycle Converter – Fly back Converter – discontinuous mode operation, waveforms, control – Magnetics – Switching Stresses and Losses, – Disadvantages – Continuous Mode Operation, waveforms, control, design relations. 09 Voltage Mode Control of SMPS Loop Gain and Stability Considerations – Error Amp- frequency Response and Transfer Function – Trans-conductance Current Mode Control of SMPS – Current Mode Control Advantages, Current Mode Vs Voltage Mode – Current Mode Deficiencies – Slope Compensation – Study of a typical Current Mode PWM Control IC UC3842 – Modeling of SMPS – Small Signal Approximation – General Second Order Linear Equivalent Circuits – Study of popular PWM Control ICs (SG 3525,TL 494,MC34060 etc.) 09 DC TRANSFORMER 09 DC TRANSFORMER 09 DC Transformer – Voltage Mode SMPS Transfer Function – General Control Law Consideration – EMI Generation and Filtering in SMPS – Conducted and Radiated Emission Mechanisms in SMPS – Techniques to reduce Emissions – Control of Switching Loci –Shielding and Grounding – Power Circuit Layout for minimum EMI – EMI Filter						09
Voltage Mode Control of SMPS – Loop Gain and Stability Considerations – Error Amp- frequency Response and Transfer Function – Trans-conductance Current Mode Control of SMPS – Current Mode Control Advantages, Current Mode Vs Voltage Mode – Current Mode Deficiencies – Slope Compensation – Study of a typical Current Mode PWM Control IC UC3842 – Modeling of SMPS – Small Signal Approximation – General Second Order Linear Equivalent Circuits – Study of popular PWM Control ICs (SG 3525,TL 494,MC34060 etc.) 09 UNIT V DC TRANSFORMER 09 DC Transformer – Voltage Mode SMPS Transfer Function – General Control Law Consideration – EMI Generation and Filtering in SMPS – Conducted and Radiated Emission Mechanisms in SMPS – Techniques to reduce Emissions – Control of Switching Loci –Shielding and Grounding – Power Circuit Layout for minimum EMI – EMI Filtering at Input and Output – Effect of EMI Filter on SMPS Control Dynamics. OUTCOMES: After completion of this course, the student will be able to: 1 Acquire knowledge about the principles of operation of non-isolated hard-switched DC-DC converters.	-	-	esonant DC Link Inverters with Zero Voltage Switching - High Fi	reque	ency	Link
frequency Response and Transfer Function – Trans-conductance Current Mode Control of SMPS – Current Mode Control Advantages, Current Mode Vs Voltage Mode – Current Mode Deficiencies – Slope Compensation – Study of a typical Current Mode PWM Control IC UC3842 – Modeling of SMPS – Small Signal Approximation – General Second Order Linear Equivalent Circuits – Study of popular PWM Control ICs (SG 3525,TL 494,MC34060 etc.) UNIT V DC TRANSFORMER 09 DC Transformer – Voltage Mode SMPS Transfer Function – General Control Law Consideration – EMI Generation and Filtering in SMPS – Conducted and Radiated Emission Mechanisms in SMPS – Techniques to reduce Emissions – Control of Switching Loci –Shielding and Grounding – Power Circuit Layout for minimum EMI – EMI Filtering at Input and Output – Effect of EMI Filter on SMPS Control Dynamics. TOTAL :45 PERIODS OUTCOMES: After completion of this course, the student will be able to: 1 Acquire knowledge about the principles of operation of non-isolated hard-switched DC-DC converters.	Integr wave	ral Half forms, cor	esonant DC Link Inverters with Zero Voltage Switching – High Fr Cycle Converter – Fly back Converter – discontinuous mo ttrol – Magnetics – Switching Stresses and Losses, – Disadvantages	reque	ency i opera	Link tion,
UNIT V DC TRANSFORMER 09 DC Transformer – Voltage Mode SMPS Transfer Function – General Control Law Consideration – EMI Generation and Filtering in SMPS – Conducted and Radiated Emission Mechanisms in SMPS – Techniques to reduce Emissions – Control of Switching Loci –Shielding and Grounding – Power Circuit Layout for minimum EMI – EMI Filtering at Input and Output – Effect of EMI Filter on SMPS Control Dynamics. TOTAL :45 PERIODS OUTCOMES: After completion of this course, the student will be able to: Acquire knowledge about the principles of operation of non-isolated hard-switched DC-DC converters.	Integr wave Mode	ral Half forms, cor e Operation T IV	esonant DC Link Inverters with Zero Voltage Switching – High Fr Cycle Converter – Fly back Converter – discontinuous mo atrol – Magnetics – Switching Stresses and Losses, – Disadvantages n, waveforms, control, design relations. CONTROL OF SMPS	reque	opera	Link tion, 1000s
 EMI Generation and Filtering in SMPS – Conducted and Radiated Emission Mechanisms in SMPS – Techniques to reduce Emissions – Control of Switching Loci –Shielding and Grounding – Power Circuit Layout for minimum EMI – EMI Filtering at Input and Output – Effect of EMI Filter on SMPS Control Dynamics. TOTAL :45 PERIODS OUTCOMES: After completion of this course, the student will be able to: Acquire knowledge about the principles of operation of non-isolated hard-switched DC-DC converters. 	Integr waves Mode UNI Volta freque SMPS Defic UC38	ral Half forms, con e Operation T IV ge Mode ency Resp S – Curren iencies – 342 – Mod	esonant DC Link Inverters with Zero Voltage Switching – High Fr Cycle Converter – Fly back Converter – discontinuous mo trol – Magnetics – Switching Stresses and Losses, – Disadvantages n, waveforms, control, design relations. CONTROL OF SMPS Control of SMPS – Loop Gain and Stability Considerations – conse and Transfer Function – Trans-conductance Current Mode nt Mode Control Advantages, Current Mode Vs Voltage Mode – Slope Compensation – Study of a typical Current Mode PWM leling of SMPS – Small Signal Approximation – General Second	- Err de C - Err de C Curr M C	opera ontinu or A contro ent N ontro ler Li	Link tion, lous 09 mp– bl of fode l IC
OUTCOMES: After completion of this course, the student will be able to: 1 Acquire knowledge about the principles of operation of non-isolated hard-switched DC-DC converters.	Integr waves Mode UNI Volta freque SMPS Defic UC38 Equiv	ral Half forms, con e Operation T IV ge Mode ency Resp S – Curren iencies – 342 – Moo valent Circ	esonant DC Link Inverters with Zero Voltage Switching – High Fr Cycle Converter – Fly back Converter – discontinuous mo atrol – Magnetics – Switching Stresses and Losses, – Disadvantages n, waveforms, control, design relations. CONTROL OF SMPS Control of SMPS – Loop Gain and Stability Considerations – conse and Transfer Function – Trans-conductance Current Mode the Mode Control Advantages, Current Mode Vs Voltage Mode – C Slope Compensation – Study of a typical Current Mode PWM deling of SMPS – Small Signal Approximation – General Second uits – Study of popular PWM Control ICs (SG 3525,TL 494,MC34	- Err de C - Err de C Curr M C	opera ontinu or A contro ent N ontro ler Li	Link tion, lous 09 mp– l of fode l IC near
1 Acquire knowledge about the principles of operation of non-isolated hard-switched DC-DC converters.	Integr waves Mode UNI Volta freque SMPS Equiv UC38 Equiv UNI DC T – EM SMPS – Pov	ral Half forms, cor e Operation T IV ge Mode ency Resp S – Curren iencies – 342 – Moo valent Circo T V Fransforme II Generat S – Techn wer Circui	esonant DC Link Inverters with Zero Voltage Switching – High Fr Cycle Converter – Fly back Converter – discontinuous mo trol – Magnetics – Switching Stresses and Losses, – Disadvantages n, waveforms, control, design relations. CONTROL OF SMPS Control of SMPS – Loop Gain and Stability Considerations – conse and Transfer Function – Trans-conductance Current Mode the Mode Control Advantages, Current Mode Vs Voltage Mode – C Slope Compensation – Study of a typical Current Mode PWN deling of SMPS – Small Signal Approximation – General Second uits – Study of popular PWM Control ICs (SG 3525,TL 494,MC34 DC TRANSFORMER rr – Voltage Mode SMPS Transfer Function – General Control Lav ion and Filtering in SMPS – Conducted and Radiated Emission iques to reduce Emissions – Control of Switching Loci –Shielding t Layout for minimum EMI – EMI Filtering at Input and Output –	- Err de C - Err de C Curr M C 060 v Co Mec and	or A ontro or A ontro ent M ontro ler Li etc.) nside hanis Grou	Link tion, Jous 09 mp– ol of fode l IC near 09 ration ms in nding
	Integr waves Mode UNI Volta freque SMPS Equiv UC38 Equiv UNI DC T – EM SMPS – Pov	ral Half forms, cor e Operation T IV ge Mode ency Resp S – Curren iencies – 342 – Moo valent Circo T V Fransforme II Generat S – Techn wer Circui	esonant DC Link Inverters with Zero Voltage Switching – High Fr Cycle Converter – Fly back Converter – discontinuous mo ttrol – Magnetics – Switching Stresses and Losses, – Disadvantages n, waveforms, control, design relations. CONTROL OF SMPS Control of SMPS – Loop Gain and Stability Considerations – bonse and Transfer Function – Trans-conductance Current Mode the Mode Control Advantages, Current Mode Vs Voltage Mode – Slope Compensation – Study of a typical Current Mode PWM deling of SMPS – Small Signal Approximation – General Second uits – Study of popular PWM Control ICs (SG 3525,TL 494,MC34 DC TRANSFORMER r – Voltage Mode SMPS Transfer Function – General Control Law ion and Filtering in SMPS – Conducted and Radiated Emission iques to reduce Emissions – Control of Switching Loci –Shielding t Layout for minimum EMI – EMI Filtering at Input and Output – Control Dynamics.	- Err de C - Err de C Curr M C Ord 060 v Co Mec and - Eff	or A ontro or A ontro ent M ontro ler Li etc.) nside hanis Grou ect of	Link tion, Jous 09 mp- ol of Iode I IC near 09 ration ms in nding E EMI
	Integr waves Mode UNI Volta frequo SMPS Equiv UC38 Equiv UC38 Equiv UNI DC T – EM SMPS – Pov Filter	ral Half forms, cor e Operation T IV ge Mode ency Resp S – Curren iencies – 842 – Moo valent Circo T V iransforme II Generat S – Techn wer Circui on SMPS	esonant DC Link Inverters with Zero Voltage Switching – High Fi Cycle Converter – Fly back Converter – discontinuous mo trol – Magnetics – Switching Stresses and Losses, – Disadvantages n, waveforms, control, design relations. CONTROL OF SMPS Control of SMPS – Loop Gain and Stability Considerations – bonse and Transfer Function – Trans-conductance Current Mode the Mode Control Advantages, Current Mode Vs Voltage Mode – Slope Compensation – Study of a typical Current Mode PWM leling of SMPS – Small Signal Approximation – General Second uits – Study of popular PWM Control ICs (SG 3525,TL 494,MC34 DC TRANSFORMER rr – Voltage Mode SMPS Transfer Function – General Control Law ion and Filtering in SMPS – Conducted and Radiated Emission iques to reduce Emissions – Control of Switching Loci –Shielding t Layout for minimum EMI – EMI Filtering at Input and Output – Control Dynamics. TOTAL S: After completion of this course, the student will be able to: nowledge about the principles of operation of non-isolated hard-swit	$\frac{1}{2} - C_{1}^{2}$	or A ontro or A ontro ent N ontro er Li etc.) nside hanis Grou ect of	Link tion, Jous 09 mp- of of Iode I IC near 09 ration ms in nding f EMI IODS

	converters.
3	Acquire knowledge on various loss components in a switched mode converter
1	Acquire knowledge on choice of switching frequency with a view towards design of such
4	converters.
5	Acquire knowledge about the principles of operation of DC Transformer.
REF	FERENCES:
1.	Abraham I Pressman, "Switching Power Supply Design," McGraw Hill Publishing
1.	<i>Company</i> , 2001.
2.	Daniel M Mitchell, "DC-DC Switching Regulator Analysis," McGraw Hill Publishing
۷.	Company-1988.
3.	Ned Mohan et.al, "Power Electronics," John Wiley and Sons 2006.
4.	Marian K.Kazimierczuk Dariusz Czarkowski, "Resonant ower converters", Wiley.
5.	Simon Ang Alejandro Oliva, "Power Switching Converters", CRC Press.

CO/P	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P10	P11	PSO1	PSO2	PSO3
0														
CO1	-	2	-	-	-	-	2	-	-	-	-	3	-	-
CO2	-	2	-	-	-	-	-	2	-	-	-	3	-	-
CO3	-	2	-	-	-	-	-	-	-	2	-	3	-	-
CO4	-	-	2	-	-	-	-	-	-	2	-	3	-	-
CO5	-	-	2	-	-	-	-	2	-	-	-	3	-	-

18P	EPE08	DIGITAL SIGNAL PROCESSING AND APPLICATIONS	L	T	P	C
<u>OR</u>	JECTIV	FS.	2	1	0	3
UD		t signals mathematically in continuous and discrete-time, and in	the	freq	uenc	V
٠	domain.	t signals matientatearly in continuous and discrete-time, and m		neg	uene	y
•		discrete-time systems using z-transform.				
•		nd the Discrete-Fourier Transform (DFT) and the FFT algorithm	ns.			
•	Design d	igital filters for various applications.				
•	-	gital signal processing for the analysis of real-life signals.				
UNI		DISCRETE TIME SIGNALS AND SYSTEMS				09
using		resentation of signals on orthogonal basis; Representation of e equations, Sampling and reconstruction of signals - aliasing; S e				
UNI	IT II	Z TRANSFORM				09
trans	form, Prop	Region of Convergence, Analysis of Linear Shift Invariant sperties of z-transform for causal signals, Interpretation of stabi	•		•	_
	rse z transf [T III	DISCRETE FOURIER TRANSFORM				09
		main Analysis, Discrete Fourier Transform (DFT), Prop	orti	00 0	f Γ	
Conv	volution of	signals, Fast Fourier Transform Algorithm, Parseval's Identity e Systems.				
	ΤΙ	DESIGN OF DIGITAL FILTERS				09
Cheb Effec	yshev and at of finite	od, Park-McClellan's method. Design of IIR Digital Filte Elliptic Approximations; Low-pass, Band-pass, Band-stop and e register length in FIR filter design. Parametric and non-pa oduction to multi-rate signal processing.	Hig	ghpa	ss fil	ters.
UNI	[T V	APPLICATIONS OF DIGITAL SIGNAL PROCE	SS	ING	(F	09
		nctions and Power Spectra, Stationary Processes, Optimal filter Mean-Square Estimation, Wiener Filter.	ring	usir	ig Al	RMA
		ТОТ	AL	:45	PER	IODS
<u>OU'</u>		S: After completion of this course, the student will be able to:				
1		o operate with discrete signals and systems				
2		ransform in signal processing				
3 4		screte fourier transform for processing discrete signals				
4 5		ne digital FIR and IIR filters using various methods gital signal processing technique in real time applications				
	FEREN(
<u>I.</u>	S. K. Mit	ra, "Digital Signal Processing: A computer based approach", N	ЛсG	raw	Hill,	
1.	2011.					

2	J. G. Proakis and D.G. Manolakis, "Digital Signal Processing: Principles, Algorithms And Applications", Prentice Hall, 1997.
5.	Applications", Prentice Hall, 1997.
1	L. R. Rabiner and B. Gold, "Theory and Application of Digital Signal Processing",
4.	Prentice Hall, 1992.
5.	J. R. Johnson, "Introduction to Digital Signal Processing", Prentice Hall, 1992.
6	D. J. DeFatta, J. G. Lucas and W. S. Hodgkiss, "Digital Signal Processing", John Wiley &
0.	Sons, 1988.

CO/P	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P10	P11	PSO1	PSO2	PSO3
0														
CO1	2	-	-	-	-	-	-	2	-	-	-	3	-	-
CO2	2	-	-	-	-	-	-	2	-	-	-	3	-	-
CO3	2	-	-	-	-	-	-	2	-	-	-	-	-	_
CO4	-	-	-	2	-	-	-	2	-	-	-	-	-	_
CO5	2	-	-	-	-	_	-	2	-	-	_	-	_	_

18F	PEPE09	INDUSTRIAL LOAD MODELING AND CONTROL	L	Т	Р	С			
			3	0	0	3			
OB.	JECTIV	ES:							
•	To under	stand the energy demand scenario							
•	To under	stand the modeling of load and its ease to study load demand in	dust	rially	7				
•	To know	Electricity pricing models							
•	To Study	Reactive power management in Industries							
UN	IT I	DEMAND SIDE MANAGEMENT				09			
Elec	tric Energy	Scenario – Demand Side Management – Industrial Load Ma	nag	emer	nt – L	load			
		l Shaping Objectives – Methodologies – Barriers; Classifica	<u> </u>						
		uous and Batch processes – Load Modeling.							
UN	IT II	ECONOMICS				09			
Elec	tricity prici	ing – Dynamic and spot pricing – Models – Direct load cont	rol -	- Int	errupt	ible			
load	control –]	Bottom up approach - scheduling - Formulation of load mode	els –	Opt	imiza	tion			
and o	control algo	prithms – Case studies.							
UN	IT III	ENERGY SAVING				09			
Reac	ctive power	management in industries - controls - power quality impact	is –	appli	catio	n of			
filter	rs – Energy	saving in industries.							
UN	IT IV	THERMAL MANAGEMENT				09			
Cool	ling and h	eating loads - load profiling - Modeling - Cool storage -	Typ	bes -	- Cor	ıtrol			
		imal operation – Problem formulation – Case studies.	• 1						
UN	IT V	OPTIMAL OPERATION				09			
Ener Peak	gy banking load sav	units – Operating and control strategies – Power Pooling – Ope g – Industrial Cogeneration – Selection of Schemes Optimal Op ing – Constraints – Problem formulation – Case study r Industries	erati – Ir	ing S ntegr	trateg ated	gies –			
O U'	ТСОМЕ	S: After completion of this course, the student will be able to:							
1		Knowledge about load control techniques in industries and its a	ppli	catio	n.				
2	· ·	e different types of industrial processes and optimize the process				ike			
3	Know the different types of industrial processes and optimize the process using tools lil LINGO.								
4	Apply loa	ad management to reduce demand of electricity during peak tin	ne.						
5	Apply di	fferent energy saving opportunities in industries.							
RE	FERENC	CES:							
1.	U	rk "Industrial Load Management - Theory, Practice and Simul erlands,1989.	atio	ns", 1	Elsevi	er,			
2.	C.W. Gel 1986,pp.	<i>lings and S.N. Talukdar, "Load management concepts," IEEE 3-28.</i>	Pres	ss, N	ew Yo	ork,			
3.	V Manic	haikul and F.C. Schweppe ," Physically based Industrial load",	IEF	EE T	rans	on			

	PAS, April 1981.
4.	H. G. Stoll, "Least cost Electricity Utility Planning", Wiley Inter science Publication, USA, 1989.
5.	I.J.Nagarath and D.P.Kothari, .Modern Power System Engineering., Tata McGraw Hill publishers, New Delhi, 1995.
6.	<i>IEEE Bronze Book- "Recommended Practice for Energy Conservation and cost effective Planning in Industrial facilities", IEEE Inc, USA.</i>

CO/P	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P10	P11	PSO1	PSO2	PSO3
0														
CO1	2	-	-	-	-	-	-	-	2	-	-	-	-	2
CO2	-	-	-	2	-	-	-	-	2	-	-	-	-	2
CO3	-	-	-	-	-	2	-	-	2	-	-	-	-	-
CO4	-	-	-	2	-	-	-	-	2	-	-	-	-	-
CO5	-	-	-	-	-	-	-	-	2	-	-	-	-	-

18P	EPE10	MICROCONTROLLER BASED SYSTEMS	L	Т	Р	С								
			3	0	0	3								
OB.	JECTIV	ES:												
•	To under	stand the architecture of advance microcontrollers												
•	To under	stand the applications of these controllers												
٠	To get so	me introduction to FPGA.												
UNI	ΠΙ	BASIC COMPUTER ORGANIZATION				09								
		er Organization – Accumulator based processes – Architect I/O Organization	ture	– N	Iemoi	y –								
UNI	IT II	MICRO-CONTROLLERS				09								
		ers – Registers, Memories – I/O Ports, Serial Communi ramming – Image Process.	catio	on –	- Tin	ners,								
		INTEL 8051				09								
		Assembly language programming – Addressing – Opera terrupts – DMA.	tions	5 —	Stack	x &								
UNI	IT IV	PIC 16F877				09								
Arch	itecture F	rogramming – Interfacing Memory/ I/O Devices, Seria	al L	0	and	data								
comr	nunication					1								
UNI	IT V	DIGITAL SIGNAL PROCESSOR AND APPLIC	AT	ION	NS	09								
		applications - Stepper motor control using micro controlle	er –	Con	verte	r and								
inver	ter design.				DED	IODO								
	TCOME		ſAL	:45	PER	IODS								
1		S: After completion of this course, the student will be able to:												
$\frac{1}{2}$	-	applications based on an advanced processor based system e different peripherals in a digital system												
3		and debug a Program												
4		and debug a Program using PIC Controller.												
5		and debug a Program using DSP.												
REI	FERENC													
1.	John.F.V 1981.	Vakerly: "Microcomputer Architecture and Programming", Jo	ohn V	Viley	, and	Sons								
2.		S.Gaonker: "Microprocessor Architecture, Programming and A ", Penram International Publishing (India), 1994.	Appl	icati	ons w	vith								
3.		al: "The Concepts and Features of Microcontrollers", Wheeler	r Pu	blish	ing, 2	2005.								
4.	John Morton," The PIC microcontroller: your personal introductory course", Elsevier,													
4. 5.				:", E	lsevie	r,								
	John Moi 2005. Dogan Ib		ourse											

CO/P	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P10	P11	PSO1	PSO2	PSO3
0														
CO1	2	-	-	-	-	-	-	-	-	2	-	-	-	-
CO2	-	-	-	-	-	-	-	2	-	-	-	2	-	-
CO3	-	-	-	-	-	-	-	-	-	-	2	-	-	2
CO4	-	-	-	-	-	-	-	-	-	2	-	-	-	-
CO5	-	-	-	-	-	-	-	-	-	2	-	-	-	-

	DISTRIBUTED POWER GENERATION	L	Τ	Р	C
		3	0	0	3
OBJECTIV	ES:				
• To illustr	ate the concept of distributed generation				
• To analy	ze the impact of grid integration.				
• To study	concept of Micro grid and its configuration				
• To Unde	rstand and analyse of micro grid operations.				
UNIT I	MICROGRIDS				09
	micro-grids – Types of micro-grids: autonomous and no -grids – Modeling & analysis of Micro-grids with multiple D		onor	nous	grids
UNIT II	GRID INTEGRATION OF DGS				09
scenario in Di placement of D	ributed generation – Renewable sources in distributed generation – Planning of DGs – Sitting and sizi of sources in distribution systems – Grid integration of DGs rerter based DGs and rotating machine based interfaces. – Agg	ing o – Di	f D0 ffere	Gs op nt typ	otima bes o
UNIT III	IMPACTS OF DGS IN POWER SYSTEM				09
	acts of DGs – Transmission systems – Distribution Syste	ms _	De	-regu	
Impact of DGs	upon protective relaying – Impact of DGs upon transient and ution systems – Steady-state and Dynamic analysis.				
UNIT IV	ΕΛΟΝΟΜΙΟς ΟΕ ΝΟ ΟΒΕΝΑΤΙΟΝ				- 09
	ECONOMICS OF DG OPERATION				
Economic and DGs, Voltage of	control aspects of DGs Market facts – Issues and challeng control techniques – Reactive power control – Harmonics – Po G based systems.				ns o
Economic and DGs, Voltage of Reliability of E UNIT V	control aspects of DGs Market facts – Issues and challeng control techniques – Reactive power control – Harmonics – Po G based systems. PROTECTION OF MICROGRID	ower	quali	ty iss	ns o sues -
Economic and DGs, Voltage of Reliability of D UNIT V Micro-grids wi	control aspects of DGs Market facts – Issues and challeng ontrol techniques – Reactive power control – Harmonics – Po G based systems. PROTECTION OF MICROGRID th power electronic interfacing units – Transients in micro-g	ower	quali	ty iss	ns o sues -
Economic and DGs, Voltage of Reliability of D UNIT V Micro-grids wi	control aspects of DGs Market facts – Issues and challeng control techniques – Reactive power control – Harmonics – Po G based systems. PROTECTION OF MICROGRID th power electronic interfacing units – Transients in micro-g Case studies – Recent Trends in Microgrid	grids	quali – Pr	ty iss	ns o sues - 0 9 on o
Economic and DGs, Voltage of Reliability of D UNIT V Micro-grids wi micro-grids – O	control aspects of DGs Market facts – Issues and challeng ontrol techniques – Reactive power control – Harmonics – Po G based systems. PROTECTION OF MICROGRID th power electronic interfacing units – Transients in micro-g Case studies – Recent Trends in Microgrid TO	grids	quali – Pr	ty iss	ns o sues - 0 9 on o
Economic and DGs, Voltage of Reliability of E UNIT V Micro-grids wi micro-grids – O OUTCOME	control aspects of DGs Market facts – Issues and challeng control techniques – Reactive power control – Harmonics – Po G based systems. PROTECTION OF MICROGRID th power electronic interfacing units – Transients in micro-g Case studies – Recent Trends in Microgrid TO S: After completion of this course, the student will be able to	grids DTAL	quali – Pr , :45	ty iss otecti PER	ns o sues - 09 on o
Economic and DGs, Voltage of Reliability of D UNIT V Micro-grids wi micro-grids – O OUTCOME 1 Understa	control aspects of DGs Market facts – Issues and challeng control techniques – Reactive power control – Harmonics – Po G based systems. PROTECTION OF MICROGRID th power electronic interfacing units – Transients in micro-g Case studies – Recent Trends in Microgrid TO S: After completion of this course, the student will be able to nd the planning and operational issues related to Distributed C	grids DTAL	quali – Pr , :45	ty iss otecti PER	ns o sues - 0 9 on o
Economic and DGs, Voltage of Reliability of D UNIT V Micro-grids wi micro-grids – O OUTCOME 1 Understa 2 Understa	control aspects of DGs Market facts – Issues and challeng control techniques – Reactive power control – Harmonics – Po G based systems. PROTECTION OF MICROGRID th power electronic interfacing units – Transients in micro-g Case studies – Recent Trends in Microgrid TO S: After completion of this course, the student will be able to nd the planning and operational issues related to Distributed C nd integration related to Distributed Generation.	grids DTAL	quali – Pr , :45	ty iss otecti PER	ns o sues - 0 9 on o
Economic and DGs, Voltage of Reliability of E UNIT V Micro-grids wi micro-grids – O OUTCOME 1 Understa 2 Understa 3 Understa	control aspects of DGs Market facts – Issues and challeng control techniques – Reactive power control – Harmonics – Po G based systems. PROTECTION OF MICROGRID th power electronic interfacing units – Transients in micro-g Case studies – Recent Trends in Microgrid TO S: After completion of this course, the student will be able to nd the planning and operational issues related to Distributed C nd integration related to Distributed Generation. nd the impact of Distributed Generation in Power system.	grids DTAL	quali – Pr , :45	ty iss otecti PER	ns o sues - 0 9 on o
Economic and DGs, Voltage of Reliability of D UNIT V Micro-grids wi micro-grids – O OUTCOME 1 Understa 2 Understa 3 Understa 4 Understa	control aspects of DGs Market facts – Issues and challeng control techniques – Reactive power control – Harmonics – Po G based systems. PROTECTION OF MICROGRID th power electronic interfacing units – Transients in micro-g case studies – Recent Trends in Microgrid TO S: After completion of this course, the student will be able to nd the planning and operational issues related to Distributed C nd integration related to Distributed Generation. nd the impact of Distributed Generation in Power system. nd economic operation related to Distributed Generation.	grids DTAL	quali – Pr , :45	ty iss otecti PER	ns o sues - 09 on o
Economic and DGs, Voltage of Reliability of E UNIT V Micro-grids wi micro-grids – O OUTCOME 1 Understa 2 Understa 3 Understa 4 Understa 5 Acquire	control aspects of DGs Market facts – Issues and challeng control techniques – Reactive power control – Harmonics – Po G based systems. PROTECTION OF MICROGRID th power electronic interfacing units – Transients in micro-g Case studies – Recent Trends in Microgrid TO S: After completion of this course, the student will be able to nd the planning and operational issues related to Distributed C nd integration related to Distributed Generation. nd the impact of Distributed Generation in Power system. nd economic operation related to Distributed Generation. Knowledge about Distributed Generation Learn Micro-Grids	grids DTAL	quali – Pr , :45	ty iss otecti PER	ns o sues - 09 on o
Economic and DGs, Voltage of Reliability of D UNIT V Micro-grids wi micro-grids – O OUTCOME 1 Understa 2 Understa 3 Understa 4 Understa 5 Acquire REFERENO	control aspects of DGs Market facts – Issues and challeng control techniques – Reactive power control – Harmonics – Po G based systems. PROTECTION OF MICROGRID th power electronic interfacing units – Transients in micro-g Case studies – Recent Trends in Microgrid TO S: After completion of this course, the student will be able to nd the planning and operational issues related to Distributed C nd integration related to Distributed Generation. nd the impact of Distributed Generation in Power system. nd economic operation related to Distributed Generation. Knowledge about Distributed Generation Learn Micro-Grids CES:	grids TAL Genera	quali	ty iss otecti PER	ns o sues - 0 9 on o
Economic and DGs, Voltage of Reliability of D UNIT V Micro-grids wi micro-grids – O OUTCOME 1 Understa 2 Understa 3 Understa 4 Understa 5 Acquire REFERENC 1 H. Lee W	control aspects of DGs Market facts – Issues and challenge control techniques – Reactive power control – Harmonics – Po G based systems. PROTECTION OF MICROGRID th power electronic interfacing units – Transients in micro-g Case studies – Recent Trends in Microgrid TO S: After completion of this course, the student will be able to nd the planning and operational issues related to Distributed C nd integration related to Distributed Generation. nd the impact of Distributed Generation in Power system. nd economic operation related to Distributed Generation. Knowledge about Distributed Generation Learn Micro-Grids CES: <i>Walter G. Scott, "Distributed Power Generation – Plann</i>	grids TAL Genera	quali	ty iss otecti PER	ns o sues - 0 9 on o
Economic and DGs, Voltage of Reliability of D UNIT V Micro-grids wi micro-grids – O OUTCOME 1 Understa 2 Understa 3 Understa 3 Understa 5 Acquire REFERENC 1. H. Lee W Evaluatio 2 M.Godoy	control aspects of DGs Market facts – Issues and challeng control techniques – Reactive power control – Harmonics – Po G based systems. PROTECTION OF MICROGRID th power electronic interfacing units – Transients in micro-g case studies – Recent Trends in Microgrid TO S: After completion of this course, the student will be able to nd the planning and operational issues related to Distributed C nd integration related to Distributed Generation. nd the impact of Distributed Generation in Power system. nd economic operation related to Distributed Generation. Knowledge about Distributed Generation Learn Micro-Grids CES: <i>Tillis, Walter G. Scott, "Distributed Power Generation – Plannon", Marcel Decker Press.</i> <i>Simoes, Felix A.Farret, "Renewable Energy Systems – Design</i>	grids TAL Genera	quali	otecti	ns o sues - 09 on o IOD
Economic and DGs, Voltage of Reliability of E UNIT V Micro-grids wi micro-grids – O OUTCOME 1 Understa 2 Understa 3 Understa 4 Understa 5 Acquire REFERENO 1. <i>H. Lee W</i> <i>Evaluatio</i> 2. <i>M.Godoy</i> <i>Induction</i>	control aspects of DGs Market facts – Issues and challeng control techniques – Reactive power control – Harmonics – Po G based systems. PROTECTION OF MICROGRID th power electronic interfacing units – Transients in micro-g Case studies – Recent Trends in Microgrid TO S: After completion of this course, the student will be able to nd the planning and operational issues related to Distributed C nd integration related to Distributed Generation. nd the impact of Distributed Generation in Power system. Ind economic operation related to Distributed Generation. Knowledge about Distributed Generation Learn Micro-Grids CES: <i>fillis, Walter G. Scott, "Distributed Power Generation – Plannon", Marcel Decker Press.</i> <i>Simoes, Felix A.Farret, "Renewable Energy Systems – Design</i> <i>a Generators", CRC press.</i>	ower of grids of the second se	quali – Pr , :45 ation	otecti	ns o sues - on o IOD
Economic and DGs, Voltage of Reliability of D UNIT V Micro-grids wi micro-grids – O OUTCOME 1 Understa 2 Understa 3 Understa 3 Understa 5 Acquire REFERENO 1. <i>H. Lee W</i> <i>Evaluatio</i> 2. <i>M.Godoy</i> <i>Induction</i> 3. <i>Stuart Bo</i>	control aspects of DGs Market facts – Issues and challeng control techniques – Reactive power control – Harmonics – Po G based systems. PROTECTION OF MICROGRID th power electronic interfacing units – Transients in micro-g Case studies – Recent Trends in Microgrid TO S: After completion of this course, the student will be able to nd the planning and operational issues related to Distributed C nd integration related to Distributed Generation. Ind the impact of Distributed Generation in Power system. Ind economic operation related to Distributed Generation. Knowledge about Distributed Generation Learn Micro-Grids CES: <i>Villis, Walter G. Scott, "Distributed Power Generation – Plannon", Marcel Decker Press.</i> <i>Simoes, Felix A.Farret, "Renewable Energy Systems – Design</i> <i>Generators", CRC press.</i> <i>Sorlase. "Smart Grid: Infrastructure Technology Solutions" Ch</i>	pwer of grids of DTAL : D TAL : Deneration of the second	quali – Pr , :45 ation	otecti	ns o sues - on o IOD
Economic and DGs, Voltage of Reliability of E UNIT V Micro-grids wi micro-grids – O OUTCOME 1 Understa 2 Understa 3 Understa 4 Understa 5 Acquire REFERENC 1. <i>H. Lee W Evaluation</i> 3. <i>Stuart Bo</i> 4. <i>H.Lee W</i>	control aspects of DGs Market facts – Issues and challeng control techniques – Reactive power control – Harmonics – Po G based systems. PROTECTION OF MICROGRID th power electronic interfacing units – Transients in micro-g Case studies – Recent Trends in Microgrid TO S: After completion of this course, the student will be able to nd the planning and operational issues related to Distributed C nd integration related to Distributed Generation. nd the impact of Distributed Generation in Power system. Ind economic operation related to Distributed Generation. Knowledge about Distributed Generation Learn Micro-Grids CES: <i>fillis, Walter G. Scott, "Distributed Power Generation – Plannon", Marcel Decker Press.</i> <i>Simoes, Felix A.Farret, "Renewable Energy Systems – Design</i> <i>a Generators", CRC press.</i>	ower of grids TAL Genera Genera n and <u>RC Pr</u> ress.	quali – Pr :45 ation und Ana ress	ty iss otecti PER	ns o sues - on o IOD

Planning "Springer.

CO/P	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P10	P11	PSO1	PSO2	PSO3
0														
CO1	-	-	2	-	-	-	-	-	1	-	-	-	-	3
CO2	-	-	-	-	-	1	-	-	-	2	-	-	-	-
CO3	-	-	-	-	-	-	-	-	-	-	2	-	-	-
CO4	-	-	-	-	-	-	-	-	-	-	2	-	-	-
CO5	-	-	-	-	-	-	-	-	3	-	-	-	-	-

COURSE ARTICULATION MATRIX

18PEPE12	SMART GRID TECHNOLOGIESL	T	P	С
	3	0	0	3
OBJECTIV	ES:			
• To under	stand concept of smart grid and its advantages over conventional g	rid.		
• To know	smart metering techniques.			
• To learn	wide area measurement techniques.			
To under	stand the problems associated with integration of distributed gener	atio	n & it	S
	hrough smart grid.			
UNIT I	INTRODUCTION TO SMART GRID			9
Introduction to	Smart Grid - Evolution of Electric Grid Concept of Smart Grid	1 –	Defin	itions
Need of Smar	t Grid Concept of Robust &Self-Healing Grid – Present d	leve	lopm	ent 8
	olicies in Smart Grid			
UNIT II	SMART GRID AUTOMATION			9
	Smart Meters – Real Time Prizing – Smart Appliances – App			
U (R) – Outage Management System (OMS) – Plug in H	•		
	7) – Vehicle to Grid – Smart Sensors – Home & Building Auton	mat	on –	Smar
<u>UNIT III</u>	ubstation Automation – Feeder Automation			9
	SMART GRID TECHNOLOGIES			9
for monitoring Air Energy St	ormation System (GIS) – Intelligent Electronic Devices (IED) & t & protection – Smart storage like Battery, SMES, Pumped Hydro torage – Wide Area Measurement System (WAMS) – Phase) – (Comp	resse
for monitoring Air Energy St Unit(PMU).	& protection – Smart storage like Battery, SMES, Pumped Hydro orage – Wide Area Measurement System (WAMS) – Phase) – (Comp	ressee
for monitoring Air Energy St Unit(PMU). UNIT IV	& protection – Smart storage like Battery, SMES, Pumped Hydro orage – Wide Area Measurement System (WAMS) – Phase POWER QUALITY IN SMART GRID	р — (е М	Comp leasur	eressed remen 9
for monitoring Air Energy St Unit(PMU). UNIT IV Power Quality	& protection – Smart storage like Battery, SMES, Pumped Hydro orage – Wide Area Measurement System (WAMS) – Phase POWER QUALITY IN SMART GRID & EMC in Smart Grid – Power Quality issues of Grid conne	o – 0 e N ctec	Comp leasur	ewab
for monitoring Air Energy St Unit(PMU). UNIT IV Power Quality Energy Source	& protection – Smart storage like Battery, SMES, Pumped Hydro orage – Wide Area Measurement System (WAMS) – Phase POWER QUALITY IN SMART GRID & EMC in Smart Grid – Power Quality issues of Grid conne s – Power Quality Conditioners for Smart Grid – Web based	o – 0 e N ctec	Comp leasur	ewab
for monitoring Air Energy St Unit(PMU). UNIT IV Power Quality Energy Source monitoring – Pe	& protection – Smart storage like Battery, SMES, Pumped Hydro orage – Wide Area Measurement System (WAMS) – Phase POWER QUALITY IN SMART GRID & EMC in Smart Grid – Power Quality issues of Grid conne s – Power Quality Conditioners for Smart Grid – Web based ower Quality Audit	o – 0 e N ctec	Comp leasur	ewab
for monitoring Air Energy St Unit(PMU). UNIT IV Power Quality Energy Source monitoring – Pe UNIT V	 & protection – Smart storage like Battery, SMES, Pumped Hydro orage – Wide Area Measurement System (WAMS) – Phase POWER QUALITY IN SMART GRID & EMC in Smart Grid – Power Quality issues of Grid conne s – Power Quality Conditioners for Smart Grid – Web based ower Quality Audit COMMUNICATION IN SMART GRID 	e N ctec Po	Comp leasur Ren wer	ressed remen 9 ewab Qualit
for monitoring Air Energy St Unit(PMU). UNIT IV Power Quality Energy Source monitoring – Pe UNIT V Advanced Meter	& protection – Smart storage like Battery, SMES, Pumped Hydro orage – Wide Area Measurement System (WAMS) – Phase POWER QUALITY IN SMART GRID & EMC in Smart Grid – Power Quality issues of Grid conne s – Power Quality Conditioners for Smart Grid – Web based ower Quality Audit	b – 0 e N ctec Po hbo	Comp leasur Ren wer (urhoo	resser remen 9 ewab Qualit 9 od Are
for monitoring Air Energy St Unit(PMU). UNIT IV Power Quality Energy Source monitoring – Po UNIT V Advanced Meto Network (NAN communication	& protection – Smart storage like Battery, SMES, Pumped Hydro torage – Wide Area Measurement System (WAMS) – Phase POWER QUALITY IN SMART GRID & EMC in Smart Grid – Power Quality issues of Grid conne s – Power Quality Conditioners for Smart Grid – Web based ower Quality Audit COMMUNICATION IN SMART GRID ering Infrastructure (AMI) – Home Area Network (HAN) – Neight) – Wide Area Network (WAN) – Bluetooth, ZigBee, GPS, Wi-Fi – Wireless Mesh Network. Basics of CLOUD Computing &Cyber	e N ctec Po hbo	Comp leasur l Ren wer (urhoo i-Maz	ressec remen 9 ewab Qualit 9 d Are x base
for monitoring Air Energy St Unit(PMU). UNIT IV Power Quality Energy Source monitoring – Po UNIT V Advanced Meto Network (NAN communication	& protection – Smart storage like Battery, SMES, Pumped Hydro torage – Wide Area Measurement System (WAMS) – Phase POWER QUALITY IN SMART GRID & EMC in Smart Grid – Power Quality issues of Grid conne s – Power Quality Conditioners for Smart Grid – Web based ower Quality Audit COMMUNICATION IN SMART GRID ering Infrastructure (AMI) – Home Area Network (HAN) – Neight) – Wide Area Network (WAN) – Bluetooth, ZigBee, GPS, Wi-Fi – Wireless Mesh Network. Basics of CLOUD Computing &Cyber – Broadband over Power line (BPL) – IP based protocols) – (e M ctec Po hbo	Comp leasur Ren wer urhoo i-Max curity	ewab Qualit 9 Qualit 9 d Are x base
for monitoring Air Energy St Unit(PMU). UNIT IV Power Quality Energy Source monitoring – Po UNIT V Advanced Meto Network (NAN communication for Smart Grid	& protection – Smart storage like Battery, SMES, Pumped Hydro torage – Wide Area Measurement System (WAMS) – Phase POWER QUALITY IN SMART GRID & EMC in Smart Grid – Power Quality issues of Grid conne s – Power Quality Conditioners for Smart Grid – Web based ower Quality Audit COMMUNICATION IN SMART GRID ering Infrastructure (AMI) – Home Area Network (HAN) – Neight) – Wide Area Network (WAN) – Bluetooth, ZigBee, GPS, Wi-Fi – Wireless Mesh Network. Basics of CLOUD Computing &Cyber – Broadband over Power line (BPL) – IP based protocols TOTAI) – (e M ctec Po hbo	Comp leasur Ren wer urhoo i-Max curity	ewab Qualit 9 Qualit 9 d Are x base
for monitoring Air Energy St Unit(PMU). UNIT IV Power Quality Energy Source monitoring – Pe UNIT V Advanced Mete Network (NAN communication for Smart Grid	& protection – Smart storage like Battery, SMES, Pumped Hydro torage – Wide Area Measurement System (WAMS) – Phase POWER QUALITY IN SMART GRID & EMC in Smart Grid – Power Quality issues of Grid conne s – Power Quality Conditioners for Smart Grid – Web based ower Quality Audit COMMUNICATION IN SMART GRID ering Infrastructure (AMI) – Home Area Network (HAN) – Neight) – Wide Area Network (WAN) – Bluetooth, ZigBee, GPS, Wi-Fi – Wireless Mesh Network. Basics of CLOUD Computing &Cyber – Broadband over Power line (BPL) – IP based protocols TOTAI S: After completion of this course, the student will be able to:) – (e M ctec Po hbo	Comp leasur Ren wer urhoo i-Max curity	ewab Qualit 9 Qualit 9 d Are x base
for monitoring Air Energy St Unit(PMU). UNIT IV Power Quality Energy Source monitoring – Po UNIT V Advanced Meto Network (NAN communication for Smart Grid 0UTCOME 1 Apprecia	& protection – Smart storage like Battery, SMES, Pumped Hydro orage – Wide Area Measurement System (WAMS) – Phase POWER QUALITY IN SMART GRID & EMC in Smart Grid – Power Quality issues of Grid conne s – Power Quality Conditioners for Smart Grid – Web based ower Quality Audit COMMUNICATION IN SMART GRID ering Infrastructure (AMI) – Home Area Network (HAN) – Neight) – Wide Area Network (WAN) – Bluetooth, ZigBee, GPS, Wi-Fi – Wireless Mesh Network. Basics of CLOUD Computing &Cyber – Broadband over Power line (BPL) – IP based protocols TOTAI S: After completion of this course, the student will be able to: te the difference between smart grid & conventional grid.) – (e M ctec Po hbo	Comp leasur Ren wer urhoo i-Max curity	ewab Qualit 9 Qualit 9 d Are x base
for monitoring Air Energy St Unit(PMU). UNIT IV Power Quality Energy Source monitoring – Pe UNIT V Advanced Mete Network (NAN communication for Smart Grid 0UTCOME 1 Apprecia 2 Apply sn	& protection – Smart storage like Battery, SMES, Pumped Hydro orage – Wide Area Measurement System (WAMS) – Phase POWER QUALITY IN SMART GRID & EMC in Smart Grid – Power Quality issues of Grid conne s – Power Quality Conditioners for Smart Grid – Web based ower Quality Audit COMMUNICATION IN SMART GRID ering Infrastructure (AMI) – Home Area Network (HAN) – Neight) – Wide Area Network (WAN) – Bluetooth, ZigBee, GPS, Wi-Fi – Wireless Mesh Network. Basics of CLOUD Computing &Cyber – Broadband over Power line (BPL) – IP based protocols TOTAI S: After completion of this course, the student will be able to: te the difference between smart grid & conventional grid. hart metering concepts to industrial and commercial installations.) – (ctec Po hbo i, W r Se	Comp leasur l Ren wer (urhoo i-Maz curity 5 PEI	ewable Quality d Area x base 7
for monitoring Air Energy St Unit(PMU). UNIT IV Power Quality Energy Source monitoring – Po UNIT V Advanced Meto Network (NAN communication for Smart Grid OUTCOME 1 Apprecia 2 Apply sm 3 Formulat	& protection – Smart storage like Battery, SMES, Pumped Hydro torage – Wide Area Measurement System (WAMS) – Phase POWER QUALITY IN SMART GRID & EMC in Smart Grid – Power Quality issues of Grid connels s – Power Quality Conditioners for Smart Grid – Web based ower Quality Audit COMMUNICATION IN SMART GRID ering Infrastructure (AMI) – Home Area Network (HAN) – Neight) – Wide Area Network (WAN) – Bluetooth, ZigBee, GPS, Wi-Fi – Wireless Mesh Network. Basics of CLOUD Computing & Cyber – Broadband over Power line (BPL) – IP based protocols TOTAI S: After completion of this course, the student will be able to: te the difference between smart grid & conventional grid. hart metering concepts to industrial and commercial installations. e solutions in the areas of smart substations, distributed generation) – (ctec Po hbo i, W r Se	Comp leasur l Ren wer (urhoo i-Maz curity 5 PEI	ewab Qualit d Are x base
for monitoring Air Energy St Unit(PMU). UNIT IV Power Quality Energy Source monitoring – Po UNIT V Advanced Meto Network (NAN communication for Smart Grid OUTCOME 1 Apprecia 2 Apply sn 3 Formulat measurer	& protection – Smart storage like Battery, SMES, Pumped Hydro torage – Wide Area Measurement System (WAMS) – Phase POWER QUALITY IN SMART GRID & EMC in Smart Grid – Power Quality issues of Grid connels s – Power Quality Conditioners for Smart Grid – Web based ower Quality Audit COMMUNICATION IN SMART GRID ering Infrastructure (AMI) – Home Area Network (HAN) – Neight) – Wide Area Network (WAN) – Bluetooth, ZigBee, GPS, Wi-Fi – Wireless Mesh Network. Basics of CLOUD Computing & Cyber – Broadband over Power line (BPL) – IP based protocols TOTAI S: After completion of this course, the student will be able to: te the difference between smart grid & conventional grid. hart metering concepts to industrial and commercial installations. e solutions in the areas of smart substations, distributed generation nents.	p = 0 ctec Po hbo hbo hbo r Se 1 - 14 n an	Comp leasur leasur l Ren wer (urhoo i-Max curity 5 PEI	ressed remen 9 ewab Qualit 0 d Are x base 7 RIOD de are
for monitoring Air Energy St Unit(PMU). UNIT IV Power Quality Energy Source monitoring – Po UNIT V Advanced Mete Network (NAN communication for Smart Grid OUTCOME 1 Apprecia 2 Apply sn 3 Formulat measurer 4 Analyze	& protection – Smart storage like Battery, SMES, Pumped Hydro torage – Wide Area Measurement System (WAMS) – Phase POWER QUALITY IN SMART GRID & EMC in Smart Grid – Power Quality issues of Grid connels s – Power Quality Conditioners for Smart Grid – Web based ower Quality Audit COMMUNICATION IN SMART GRID ering Infrastructure (AMI) – Home Area Network (HAN) – Neight) – Wide Area Network (WAN) – Bluetooth, ZigBee, GPS, Wi-Fri – Wireless Mesh Network. Basics of CLOUD Computing & Cyber – Broadband over Power line (BPL) – IP based protocols TOTAL S: After completion of this course, the student will be able to: te the difference between smart grid & conventional grid. hart metering concepts to industrial and commercial installations. e solutions in the areas of smart substations, distributed generation nents. Power quality solutions in the areas of smart substations, distributed generation Power quality solutions in the areas of smart substations, distributed generation Power quality solutions in the areas of smart substations, distributed generation Power quality solutions in the areas of smart substations, distributed generation Power quality solutions in the areas of smart substations, distributed generation Power quality solutions in the areas of smart substations, distributed generation Power quality solutions in the areas of smart substations, distributed generation Power quality solutions in the areas of smart substations, distributed generation power quality solutions in the areas of smart substations, distributed generation power quality solutions in the areas of smart substations, distributed generation protection of the substations of smart substations, distributed generation protection of the substations of smart substations, distributed generation protection of the substation of smart substations, distributed generation protection of the substation of smart substations, distributed generation protection of the substation of smart substation of smart substation of	p = 0 ctec Po hbo hbo hbo r Se 1 - 14 n an	Comp leasur leasur l Ren wer (urhoo i-Max curity 5 PEI	resser remen 9 ewab Qualit 9 d Are x base 7 RIOD de are
for monitoring Air Energy St Unit(PMU). UNIT IV Power Quality Energy Source monitoring – Pe UNIT V Advanced Mete Network (NAN communication for Smart Grid OUTCOME 1 Apprecia 2 Apply sn 3 Formulat measurer 4 Analyze and wide	& protection – Smart storage like Battery, SMES, Pumped Hydro orage – Wide Area Measurement System (WAMS) – Phase POWER QUALITY IN SMART GRID & EMC in Smart Grid – Power Quality issues of Grid conne s – Power Quality Conditioners for Smart Grid – Web based ower Quality Audit COMMUNICATION IN SMART GRID ering Infrastructure (AMI) – Home Area Network (HAN) – Neig) – Wide Area Network (WAN) – Bluetooth, ZigBee, GPS, Wi-Fi – Wireless Mesh Network. Basics of CLOUD Computing &Cyber – Broadband over Power line (BPL) – IP based protocols TOTAI S: After completion of this course, the student will be able to: te the difference between smart grid & conventional grid. art metering concepts to industrial and commercial installations. e solutions in the areas of smart substations, distributed generation ments. Power quality solutions in the areas of smart substations, distributed generation area measurements	hbo i, W r Se	Comp leasur leasur l Ren wer (urhoo i-Max curity 5 PEI	resser remen 9 ewab Qualit 9 d Are x base 7 RIOD de are
for monitoring Air Energy St Unit(PMU). UNIT IV Power Quality Energy Source monitoring – Po UNIT V Advanced Mete Network (NAN communication for Smart Grid OUTCOME 1 Apprecia 2 Apply sn 3 Formulat measurer 4 Analyze and wide 4 Come up	& protection – Smart storage like Battery, SMES, Pumped Hydro orage – Wide Area Measurement System (WAMS) – Phase POWER QUALITY IN SMART GRID & EMC in Smart Grid – Power Quality issues of Grid conne s – Power Quality Conditioners for Smart Grid – Web based ower Quality Audit COMMUNICATION IN SMART GRID ering Infrastructure (AMI) – Home Area Network (HAN) – Neig) – Wide Area Network (WAN) – Bluetooth, ZigBee, GPS, Wi-Fi – Wireless Mesh Network. Basics of CLOUD Computing &Cybe – Broadband over Power line (BPL) – IP based protocols TOTAI S: After completion of this course, the student will be able to: te the difference between smart grid & conventional grid. hart metering concepts to industrial and commercial installations. e solutions in the areas of smart substations, distributed generation nents. Power quality solutions in the areas of smart substations, distributed generation with smart grid solutions using modern communication technolog	hbo i, W r Se	Comp leasur leasur l Ren wer (urhoo i-Max curity 5 PEI	resser remen 9 ewab Qualit 9 d Are x base 7 RIOD de are
for monitoring Air Energy St Unit(PMU). UNIT IV Power Quality Energy Source monitoring – Pe UNIT V Advanced Mete Network (NAN communication for Smart Grid OUTCOME 1 Apprecia 2 Apply sn 3 Formulat measurer 4 Analyze and wide 4 Come up REFERENC	& protection – Smart storage like Battery, SMES, Pumped Hydro orage – Wide Area Measurement System (WAMS) – Phase POWER QUALITY IN SMART GRID & EMC in Smart Grid – Power Quality issues of Grid conne s – Power Quality Conditioners for Smart Grid – Web based ower Quality Audit COMMUNICATION IN SMART GRID ering Infrastructure (AMI) – Home Area Network (HAN) – Neig) – Wide Area Network (WAN) – Bluetooth, ZigBee, GPS, Wi-Fi – Wireless Mesh Network. Basics of CLOUD Computing &Cyber – Broadband over Power line (BPL) – IP based protocols TOTAI S: After completion of this course, the student will be able to: te the difference between smart grid & conventional grid. mart metering concepts to industrial and commercial installations. e solutions in the areas of smart substations, distributed generation ments. Power quality solutions in the areas of smart substations, distributed generation with smart grid solutions using modern communication technolog CES:	p = 0 p	Comp leasur leasur wer urhoo i-Max curity 5 PEI nd wid	ewab Qualit Qualit d Are x base RIOD de are eratic
for monitoring Air Energy St Unit(PMU). UNIT IV Power Quality Energy Source monitoring – Po UNIT V Advanced Meto Network (NAN communication for Smart Grid 0UTCOME 1 Apprecia 2 Apply sn 3 Formulat measurer 4 Analyze and wide 4 Come up REFERENC 1. Ali Keyho	& protection – Smart storage like Battery, SMES, Pumped Hydro orage – Wide Area Measurement System (WAMS) – Phase POWER QUALITY IN SMART GRID & EMC in Smart Grid – Power Quality issues of Grid conne s – Power Quality Conditioners for Smart Grid – Web based ower Quality Audit COMMUNICATION IN SMART GRID ering Infrastructure (AMI) – Home Area Network (HAN) – Neig) – Wide Area Network (WAN) – Bluetooth, ZigBee, GPS, Wi-Fi – Wireless Mesh Network. Basics of CLOUD Computing &Cybe – Broadband over Power line (BPL) – IP based protocols TOTAI S: After completion of this course, the student will be able to: te the difference between smart grid & conventional grid. hart metering concepts to industrial and commercial installations. e solutions in the areas of smart substations, distributed generation nents. Power quality solutions in the areas of smart substations, distributed generation with smart grid solutions using modern communication technolog	p = 0 p	Comp leasur leasur l Ren wer (urhoo i-Maz curity 5 PEI nd wid d gen	ewab Qualit Qualit d Are k base RIOD de are eratic

	<i>CRC Press</i> , 2009.
3.	Janaka Ekanayake, Nick Jenkins, Kithsiri Liyanage, "Smart Grid: Technology and Applications", Wiley 2012.
4.	Stuart Borlas'e, "Smart Grid:Infrastructure, Technology and solutions "CRC Press.
5.	A.G.Phadke, "Synchronized Phasor Measurement and their Applications", Springer.

CO/P	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P10	P11	PSO1	PSO2	PSO3
0														
CO1	-	-	-	1	-	-	-	2	-	-	-	-	-	-
CO2	-	-	-	-	-	-	-	-	-	2	-	-	-	-
CO3	-	-	-	1	-	-	-	-	-	-	2	-	-	-
CO4	-	-	-	-	-	-	-	-	-	-	1	-	2	-
CO5	-	-	-	-	-	-	-	1	-	-	-	-	-	-

18	PEPE13	SCADA SYSTEMS AND APPLICATIONS	L	Τ	Р	C
			3	0	0	3
OB	JECTIV	ES:				
•	To under	stand what is meant by SCADA and its functions.				
•	To know	SCADA communication.				
•	To get an	insight into its application.				
UN	IT I	INTRODUCTION TO SCADA				9
		n systems, Evolution of SCADA, Communication technologie				g an
		ctions – SCADA applications in Utility Automation – Industri		CAE	D A	0
	IT II	INDUSTRIES SCADA SYSTEM COMPONENT				9
		note Terminal Unit (RTU) – Intelligent Electronic Devices (IE				
		er (PLC) – Communication Network – SCADA Server – SCA	DA/f		Syste	1
	IT III	SCADA ARCHITECTURE			-1-	9
		A architectures – advantages and disadvantages of each syst ecture – IEC 61850.	em -	- s1n	gle ui	1111e
	IT IV	SCADA COMMUNICATION				9
			1	1 61		-
		rial communication technologies – wired and wireless method	as ar	10 110	ber op	otics
Inno						
		communication protocols.				0
UN Utili impi	IT V ity applicati rovement –	SCADA APPLICATIONS ions – Transmission and Distribution sector – Operations, mor Industries: Oil, gas and water – Case studies, Implementation,		-	-	-
UN Utili impi Exei	IT V ity applicati rovement – rcises	SCADA APPLICATIONS ions – Transmission and Distribution sector – Operations, mor Industries: Oil, gas and water – Case studies, Implementation, TO	, Sim TAL	nulati	-	
UN Utili impi Exei	IT V ity applicati rovement – rcises TCOME	SCADA APPLICATIONS ions – Transmission and Distribution sector – Operations, mor Industries: Oil, gas and water – Case studies, Implementation, TO S: After completion of this course, the student will be able to	, Sim TAL :	ulati	on PER	is ar IOD
UN Utili impi Exei	IT V ity application rovement – rcises TCOME Describe	SCADA APPLICATIONS ions – Transmission and Distribution sector – Operations, mor Industries: Oil, gas and water – Case studies, Implementation, TO S: After completion of this course, the student will be able to the basic tasks of Supervisory Control Systems (SCADA) as w	, Sim TAL :	ulati	on PER	is ar IOD
UN Utili impr Exer OU	IT V ity application rovement – rcises TCOME Describe application	SCADA APPLICATIONS ions – Transmission and Distribution sector – Operations, mor Industries: Oil, gas and water – Case studies, Implementation, TO S: After completion of this course, the student will be able to the basic tasks of Supervisory Control Systems (SCADA) as v ons.	, Sim TAL : well a	as the	on PER eir typ	is ar IOD
UN Utili impr Exer	IT V ity application rovement – rcises TCOME Describe application	SCADA APPLICATIONS ions – Transmission and Distribution sector – Operations, mor Industries: Oil, gas and water – Case studies, Implementation, TO S: After completion of this course, the student will be able to the basic tasks of Supervisory Control Systems (SCADA) as v ons. knowledge about SCADA architecture, various advantages and	, Sim TAL : well a	as the	on PER eir typ	is ar IOD
UN Utili impr Exer OU	IT V ity application rovement – rcises TCOME Describe application Acquire I each syst	SCADA APPLICATIONS ions – Transmission and Distribution sector – Operations, mor Industries: Oil, gas and water – Case studies, Implementation, TO S: After completion of this course, the student will be able to the basic tasks of Supervisory Control Systems (SCADA) as v ons. knowledge about SCADA architecture, various advantages and em.	, Sim TAL : well a	as the	on PER eir typ	is ar IOD
UN Utili Exer OU 1 2 3	IT V ity application rovement – rcises TCOME Describe application Acquire l each syst Knowled	SCADA APPLICATIONS ions – Transmission and Distribution sector – Operations, mor Industries: Oil, gas and water – Case studies, Implementation, TO S: After completion of this course, the student will be able to the basic tasks of Supervisory Control Systems (SCADA) as v ons. knowledge about SCADA architecture, various advantages and	, Sim TAL : well a 1 disa	advan	on PER eir typ	is ar IOD
UN Utili impr Exer OU 1 2	IT V ity application rovement – rcises TCOME Describe application Acquire I each syst Knowled To learn electronic	SCADA APPLICATIONS ions – Transmission and Distribution sector – Operations, mor Industries: Oil, gas and water – Case studies, Implementation, TO S: After completion of this course, the student will be able to the basic tasks of Supervisory Control Systems (SCADA) as v ons. knowledge about SCADA architecture, various advantages and em. ge about single unified standard architecture IEC 61850. about SCADA system components: remote terminal units, PLC c devices, HMI systems, SCADA server.	, Sim TAL : well a d disa	as the advan	on PER eir typ ntages gent	is ar IOD Dical
UN Utili Exer OU 1 2 3 4	IT V ity application rovement – rcises TCOME Describe application Acquire I each syst Knowled To learn electronion Learn and	SCADA APPLICATIONS ions – Transmission and Distribution sector – Operations, mor Industries: Oil, gas and water – Case studies, Implementation, TO S: After completion of this course, the student will be able to the basic tasks of Supervisory Control Systems (SCADA) as v ons. knowledge about SCADA architecture, various advantages and em. ge about single unified standard architecture IEC 61850. about SCADA system components: remote terminal units, PLC c devices, HMI systems, SCADA server. d understand about SCADA applications in transmission and d	, Sim TAL : well a d disa	as the advan	on PER eir typ ntages gent	is ar IOE pical
UN Utili Exer OU 1 2 3 4 5	IT V ity application rovement – rcises TCOME Describe application Acquire I each syst Knowled To learn and industries	SCADA APPLICATIONS ions – Transmission and Distribution sector – Operations, mor Industries: Oil, gas and water – Case studies, Implementation, TO S: After completion of this course, the student will be able to the basic tasks of Supervisory Control Systems (SCADA) as v ons. knowledge about SCADA architecture, various advantages and em. ge about single unified standard architecture IEC 61850. about SCADA system components: remote terminal units, PLC c devices, HMI systems, SCADA server. d understand about SCADA applications in transmission and d s etc.	, Sim TAL : well a d disa	as the advan	on PER eir typ ntages gent	is ar IOD Dical
UN Utili Exer OU 1 2 3 4 5	IT V ity application rovement – rcises TCOME Describe application Acquire I each syst Knowled To learn electronico Learn and industries FERENC	SCADA APPLICATIONS ions – Transmission and Distribution sector – Operations, mor Industries: Oil, gas and water – Case studies, Implementation, TO S: After completion of this course, the student will be able to the basic tasks of Supervisory Control Systems (SCADA) as v ons. knowledge about SCADA architecture, various advantages and em. ge about single unified standard architecture IEC 61850. about SCADA system components: remote terminal units, PLC c devices, HMI systems, SCADA server. d understand about SCADA applications in transmission and d s etc. CES:	, Sim TAL : well a d disa Cs, ir	as the advar	on PER eir typ ntages gent n sect	is ar IOD pical
UN Utili Exer OU 1 2 3 4 5	IT V ity application rovement – rcises TCOME Describe application Acquire leach syst Knowled To learn electronic Learn and industries FERENC	SCADA APPLICATIONS ions – Transmission and Distribution sector – Operations, mor Industries: Oil, gas and water – Case studies, Implementation, TO S: After completion of this course, the student will be able to the basic tasks of Supervisory Control Systems (SCADA) as v ons. knowledge about SCADA architecture, various advantages and em. ge about single unified standard architecture IEC 61850. about SCADA system components: remote terminal units, PLC c devices, HMI systems, SCADA server. d understand about SCADA applications in transmission and d s etc. CES: Boyer, "SCADA-Supervisory Control and Data Acquisition",	, Sim TAL : well a d disa Cs, ir	as the advar	on PER eir typ ntages gent n sect	is ar IOD pical
UN Utili Exer OU 1 2 3 4 5 RE	IT V ity application rovement – rcises TCOME Describe application Acquire I each syst Knowled To learn and industries FERENC Stuart A. of America	SCADA APPLICATIONS ions – Transmission and Distribution sector – Operations, mor Industries: Oil, gas and water – Case studies, Implementation, TO S: After completion of this course, the student will be able to the basic tasks of Supervisory Control Systems (SCADA) as v ons. knowledge about SCADA architecture, various advantages and em. ge about single unified standard architecture IEC 61850. about SCADA system components: remote terminal units, PLC c devices, HMI systems, SCADA server. d understand about SCADA applications in transmission and d s etc. CES: Boyer, "SCADA-Supervisory Control and Data Acquisition", ca Publications, USA, 2004.	, Sim TAL : well a d disa Cs, in listril	as the advant	on PER eir typ ntages gent n sect <i>nt Soc</i>	is ar IOD pical 3 of tor,
UN Utili Exer OU 1 2 3 4 5 RE	IT V ity application rovement – rcises TCOME Describe application Acquire I each syst Knowled To learn electronic Learn and industries FERENC Stuart A. of Americ Gordon (SCADA APPLICATIONS ions – Transmission and Distribution sector – Operations, mor Industries: Oil, gas and water – Case studies, Implementation, TO S: After completion of this course, the student will be able to the basic tasks of Supervisory Control Systems (SCADA) as v ons. knowledge about SCADA architecture, various advantages and em. ge about single unified standard architecture IEC 61850. about SCADA system components: remote terminal units, PLC c devices, HMI systems, SCADA server. d understand about SCADA applications in transmission and d s etc. CES: Boyer, "SCADA-Supervisory Control and Data Acquisition", ca Publications, USA, 2004. Clarke, Deon Reynders: "Practical Modern SCADA Protocols	, Sim TAL : well a d disa Cs, in listril	as the advant	on PER eir typ ntages gent n sect <i>nt Soc</i>	is ar IOD pical 3 of tor,
UN Utili impr Exer 0U 1 2 3 4 5 RE 1. 2.	IT V ity application rovement – rcises TCOME Describe application Acquire I each syst Knowled To learn electronic Learn and industries FERENC Stuart A. of America Gordon C and Relation	SCADA APPLICATIONS ions – Transmission and Distribution sector – Operations, mor Industries: Oil, gas and water – Case studies, Implementation, TO S: After completion of this course, the student will be able to the basic tasks of Supervisory Control Systems (SCADA) as v ons. knowledge about SCADA architecture, various advantages and em. ge about single unified standard architecture IEC 61850. about SCADA system components: remote terminal units, PLC c devices, HMI systems, SCADA server. d understand about SCADA applications in transmission and d s etc. CES: Boyer, "SCADA-Supervisory Control and Data Acquisition", ca Publications, USA, 2004. Clarke, Deon Reynders: "Practical Modern SCADA Protocols ted Systems", Newnes Publications, Oxford, UK,2004.	, Sim TAL : well a d disa Cs, ir listril <i>Instr</i> : DN	2 : 45 as the advantelli butio	on PER eir typ ntages gent n sect <i>nt Soc</i>	is ar IOD bical 3 of tor,
UN Utili impr Exer 0U 1 2 3 4 5 RE 1.	IT V ity application rovement – rcises TCOME Describe application Acquire I each syst Knowled To learn electronic Learn and industries FERENC Stuart A. of America Gordon C and Relat	SCADA APPLICATIONS ions – Transmission and Distribution sector – Operations, mor Industries: Oil, gas and water – Case studies, Implementation, TO S: After completion of this course, the student will be able to the basic tasks of Supervisory Control Systems (SCADA) as v ons. knowledge about SCADA architecture, various advantages and em. ge about single unified standard architecture IEC 61850. about SCADA system components: remote terminal units, PLC c devices, HMI systems, SCADA server. d understand about SCADA applications in transmission and d s etc. CES: Boyer, "SCADA-Supervisory Control and Data Acquisition", ca Publications, USA, 2004. Clarke, Deon Reynders: "Practical Modern SCADA Protocols	, Sim TAL : well a d disa Cs, in listril <i>Instri</i> : DN cs, 20	as the advant of the second se	on PER eir typ ntages gent n sect <i>nt Soc</i>	is ar IOD bical bical ciety

CO/P	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P10	P11	PSO1	PSO2	PSO3
0														
CO1	2	-	1	-	-	-	-	2	-	-	-	-	-	-
CO2	-	-	-	-	1	-	-	2	-	-	-	-	-	-
CO3	-	2	-	-	-	-	-	-	-	2	-	-	-	-
CO4	-	-	-	-	-	-	-	-	_		2	-	-	1
CO5	-	-	-	-	-	-	-	1	-	-	-	-	-	-

18PEPE14	MODERN POWER SYSTEM ANALYSIS	L	T	Р	C
		2	1	0	3
OBJECTI	VES:				
• Study v	arious methods of load flow and their advantages and				
• Unders	tand how to analyze various types of faults in power system disad	lvar	itage	S	
	tand power system security concepts and study the methods to rar	nk tl	he		
• conting					
• Unders	tand need of state estimation and study simple algorithms for state	e es	tima	tion	
• Study v	oltage instability phenomenon				1
UNIT I	LOAD FLOW				9
sparsity techn effects – AV	Newton-Raphson, Gauss-Siedel fast decoupled methods – Conve iques – Handling Qmax – Violations in constant matrix – Inclu <u>R in load flow – Handling of discrete variable in load flow</u>	usio	on in	frequ	iency
UNIT II	FAULT ANALYSIS		•		9
	faults – Open conductors faults – Generalized method of fault an	naly	/\$1\$		-
	SECURITY ANALYSIS				9
•	e diagram – Contingency analysis – Generator shift distributio	on t	acto	rs –	Line
outage distrit	ution factor – Multiple line outages Overload index ranking				
					Δ
UNIT IV Power System measurement	POWER SYSTEM EQUIVALENT AND STATE ESTIMATION n Equivalents: WARD – REI.equivalents – State Estimation: S – Virtual and Pseudo, – Measurement – Observability – Track				
UNIT IV Power System measurement – WSL metho UNIT V	POWER SYSTEM EQUIVALENT AND STATE ESTIMATION n Equivalents: WARD – REI.equivalents – State Estimation: S – Virtual and Pseudo, – Measurement – Observability – Tracking od – Bad data correction. VOLTAGE STABILITY	ing	state	estir	ors i natio
UNIT IV Power System measurement – WSL metho UNIT V Voltage colla	POWER SYSTEM EQUIVALENT AND STATE ESTIMATION n Equivalents: WARD – REI.equivalents – State Estimation: S – Virtual and Pseudo, – Measurement – Observability – Tracking od – Bad data correction. VOLTAGE STABILITY pse – P-V curve – Multiple power flow solution – Continuation	ing	state	estir	ors i natio
UNIT IV Power System measurement – WSL metho UNIT V Voltage colla	POWER SYSTEM EQUIVALENT AND STATE ESTIMATION n Equivalents: WARD – REI.equivalents – State Estimation: S – Virtual and Pseudo, – Measurement – Observability – Tracking od – Bad data correction. VOLTAGE STABILITY pse – P-V curve – Multiple power flow solution – Continuation iple load flow – Voltage collapse proximity indices	ing pov	state wer f	estir low -	ors i natio 9
UNIT IV Power System measurement – WSL metho UNIT V Voltage colla Optimal mult	POWER SYSTEM EQUIVALENT AND STATE ESTIMATION n Equivalents: WARD – REI.equivalents – State Estimation: S – Virtual and Pseudo, – Measurement – Observability – Tracking od – Bad data correction. VOLTAGE STABILITY pse – P-V curve – Multiple power flow solution – Continuation iple load flow – Voltage collapse proximity indices TOT	ing pov	state wer f	estir low -	ors i natio 9
UNIT IV Power System measurement - WSL methe UNIT V Voltage colla Optimal mult OUTCOM 1 Able to flow	POWER SYSTEM EQUIVALENT AND STATE ESTIMATION n Equivalents: WARD – REI.equivalents – State Estimation: S – Virtual and Pseudo, – Measurement – Observability – Tracking od – Bad data correction. VOLTAGE STABILITY pse – P-V curve – Multiple power flow solution – Continuation iple load flow – Voltage collapse proximity indices TOT ES: After completion of this course, the student will be able to: calculate voltage phasors at all buses , given the data using vario	ing pov T AL	wer f	estir low - <u>PER</u>	ors i natio 9
UNIT IV Power System measurement - WSL method UNIT V Voltage collad Optimal multi OUTCOM 1 Able to flow 2 Able to flow	POWER SYSTEM EQUIVALENT AND STATE ESTIMATION n Equivalents: WARD – REI.equivalents – State Estimation: S – Virtual and Pseudo, – Measurement – Observability – Tracking od – Bad data correction. VOLTAGE STABILITY pse – P-V curve – Multiple power flow solution – Continuation iple load flow – Voltage collapse proximity indices TOT ES: After completion of this course, the student will be able to: calculate voltage phasors at all buses , given the data using vario	ing pov T AL	wer f	estir low - <u>PER</u>	ors i natio 9
UNIT IV Power System measurement – WSL method UNIT V Voltage colla Optimal mult OUTCOM 1 Able to flow 2 Able to 3 Rank v	POWER SYSTEM EQUIVALENT AND STATE ESTIMATION n Equivalents: WARD – REI.equivalents – State Estimation: S – Virtual and Pseudo, – Measurement – Observability – Tracking od – Bad data correction. VOLTAGE STABILITY pse – P-V curve – Multiple power flow solution – Continuation iple load flow – Voltage collapse proximity indices TOT ES: After completion of this course, the student will be able to: calculate voltage phasors at all buses , given the data using vario calculate fault currents in each phase arious contingencies according to their severity	ing pov TAL ous r	state wer f	estir low - PER ods o	rors i matio 9 - IOD f load
UNIT IV Power System measurement - WSL method - WSL method UNIT V Voltage colla Optimal multi OUTCOM 1 Able to 1 Able to 2 Able to 3 Rank v 4 Estima CB star	POWER SYSTEM EQUIVALENT AND STATE ESTIMATION n Equivalents: WARD – REI.equivalents – State Estimation: S – Virtual and Pseudo, – Measurement – Observability – Tracking od – Bad data correction. VOLTAGE STABILITY pse – P-V curve – Multiple power flow solution – Continuation iple load flow – Voltage collapse proximity indices TOT ES: After completion of this course, the student will be able to: calculate fault currents in each phase arious contingencies according to their severity e the bus voltage phasors given various quantities viz. power flow	ing 1 pov CAL ous r	state wer f	estir low - PER ods o	ors i natio 9 IOD f load
UNIT IV Power System measurement - WSL method UNIT V Voltage colla Optimal multi OUTCOM 1 Able to 1 Able to 2 Able to 3 Rank v 4 Estima CB stat CB stat	POWER SYSTEM EQUIVALENT AND STATE ESTIMATION n Equivalents: WARD – RELequivalents – State Estimation: S – Virtual and Pseudo, – Measurement – Observability – Tracking od – Bad data correction. VOLTAGE STABILITY pse – P-V curve – Multiple power flow solution – Continuation iple load flow – Voltage collapse proximity indices TOT ES: After completion of this course, the student will be able to: calculate voltage phasors at all buses , given the data using vario calculate fault currents in each phase arious contingencies according to their severity e the bus voltage phasors given various quantities viz. power flow	ing 1 pov CAL ous r	state wer f	estir low - PER ods o	rors i natio 9 IOD f load
UNIT IV Power System measurement - WSL method UNIT V Voltage collad Optimal multi OUTCOM 1 Able to 10 Flow 2 Able to 3 Rank v 4 Estima 5 Estima flow Flow	POWER SYSTEM EQUIVALENT AND STATE ESTIMATION n Equivalents: WARD – REI.equivalents – State Estimation: S – Virtual and Pseudo, – Measurement – Observability – Track od – Bad data correction. VOLTAGE STABILITY pse – P-V curve – Multiple power flow solution – Continuation iple load flow – Voltage collapse proximity indices TOT ES: After completion of this course, the student will be able to: calculate voltage phasors at all buses , given the data using vario calculate fault currents in each phase arious contingencies according to their severity e the bus voltage phasors given various quantities viz. power flow us etc e closeness to voltage collapse and calculate PV curves using cor	ing 1 pov CAL ous r	state wer f	estir low - PER ods o	rors i natio 9 IOD f load
UNIT IV Power System measurement - WSL method UNIT V Voltage colla Optimal mult OUTCOM 1 Able to 1 flow 2 Able to 3 Rank v 4 Estima CB stat 5 Estima flow REFEREN 1. J.J. Gr	POWER SYSTEM EQUIVALENT AND STATE ESTIMATION In Equivalents: WARD – REI.equivalents – State Estimation: S – Virtual and Pseudo, – Measurement – Observability – Tracking ed – Bad data correction. VOLTAGE STABILITY pse – P-V curve – Multiple power flow solution – Continuation iple load flow – Voltage collapse proximity indices TOT ES: After completion of this course, the student will be able to: calculate voltage phasors at all buses , given the data using vario calculate fault currents in each phase arious contingencies according to their severity e the bus voltage phasors given various quantities viz. power flow us etc e closeness to voltage collapse and calculate PV curves using cor CES: uinger &W.D.Stevenson, "Power system analysis ", McGraw Hill	ing pov <u>rAL</u> w, v	state wer f . :45 neth oltag	estir low - PER ods o	ors i natio 9 IOD f load
UNIT IV Power System measurement - WSL method UNIT V Voltage colla Optimal mult OUTCOM 1 Able to flow 2 Able to 3 Rank v 4 Estima CB stat 5 Estima flow REFEREN 1. J.J. Gr 2. A. R. B	POWER SYSTEM EQUIVALENT AND STATE ESTIMATION n Equivalents: WARD – REI.equivalents – State Estimation: S – Virtual and Pseudo, – Measurement – Observability – Track od – Bad data correction. VOLTAGE STABILITY pse – P-V curve – Multiple power flow solution – Continuation iple load flow – Voltage collapse proximity indices TOT ES: After completion of this course, the student will be able to: calculate voltage phasors at all buses , given the data using vario calculate fault currents in each phase arious contingencies according to their severity e the bus voltage phasors given various quantities viz. power flow us etc e closeness to voltage collapse and calculate PV curves using cor fCES: minger &W.D.Stevenson, "Power system analysis", McGraw Hill ergen & Vijay Vittal , "Power System Analysis", Pearson , 2000	ing pov TAL ous r w, v ntinu	state wer f .:45 neth oltag uatio	estir low - PER ods o ges, ta n pov	rors i matio 9 IOD f load
UNIT IV Power System measurement - WSL method UNIT V Voltage colla Optimal mult OUTCOM 1 Able to flow 2 Able to 3 Rank v 4 Estima CB stat 5 Estima flow REFEREN 1. J.J. Gr 2. A. R. B	POWER SYSTEM EQUIVALENT AND STATE ESTIMATION In Equivalents: WARD – REI.equivalents – State Estimation: S – Virtual and Pseudo, – Measurement – Observability – Tracking ed – Bad data correction. VOLTAGE STABILITY pse – P-V curve – Multiple power flow solution – Continuation iple load flow – Voltage collapse proximity indices TOT ES: After completion of this course, the student will be able to: calculate voltage phasors at all buses , given the data using vario calculate fault currents in each phase arious contingencies according to their severity e the bus voltage phasors given various quantities viz. power flow us etc e closeness to voltage collapse and calculate PV curves using cor CES: uinger &W.D.Stevenson, "Power system analysis ", McGraw Hill	ing pov TAL ous r w, v ntinu	state wer f .:45 neth oltag uatio	estir low - PER ods o ges, ta n pov	f load

A.J. Wood, "Power generation, operation and control", John Wiley, 1994 P.M. Anderson, "Faulted power system analysis", IEEE Press, 1995 5.

6.

COURSE ARTICULATION MATRIX:

CO/P	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P10	P11	PSO1	PSO2	PSO3
0														
CO1	-	-	1	-	-	-	-	-	1	-	-	-	-	-
CO2	-	-	-	-	1	-	-	-	1	-	-	-	-	-
CO3	-	2	-	-	-	-	-	-	1	-	-	-	-	_
CO4	-	-	-	-	-	-	-	-	1	-	-	-	-	1
CO5	-	-	-	-	-	-	-	-	1	-	-	-	-	_

18PEPE15	HVDC L T P	C
		3
OBJECTIV	ES:	
	rstand state of the art HVDC technology.	
	the Methods to carry out modeling and analysis of HVDC system frontier-a	rea
_	ow regulation.	
	1 HVDC in power systems	
• To under	stand HVDC standards and digital techniques.	
UNIT I	HVDC INTRODUCTION	9
Development of configuration.	f HVDC Technology – DC versus AC Transmission – Selection of converter	•
UNIT II	POWER ELECTRONIC CIRCUITS IN HVDC	9
	Inverter operation - Digital Simulation of converters - Control of H	
	Systems - Individual phase control, Equidistant firing controls, Higher	level
	acteristics and non-characteristics harmonics filter design	1
UNIT III	HVDC IN POWER SYSTEMS	9
	nent and protection - Interaction between AC-DC power systems - Over vo	oltages
	– Multi-terminal HVDC systems – Control of MTDC systems	1
UNIT IV	HVDC MODELING	9
	VDC systems – Per unit system – Representation for power flow solution - for stability studies.	
UNIT V	STANDARDS AND DIGITAL TECHNIQUES IN HVDC	9
Introduction to	relevant national and international standards – safe clearances for HV – Stud	ly
regulations for	HV tests – Digital techniques in HV measurements.	
	TOTAL :45 PER	IODS
	S: After completion of this course, the student will be able to:	
_	he students to the state of the art HVDC technology	
	ad analysis of Power electronics circuits in HVDC system	
	knowledge of HVDC in Power system.	
	and analysis of HVDC system for inter-area power flow regulation.	
	knowledge of digital techniques used in HVDC transmission.	
REFERENC		
	ga, "High Voltage Direct Transmission", Peter Peregrinus Ltd. London, 196	53.
	diyar, "HVDC Power Transmission Systems", Wiley Eastern Ltd., 1990.	
	nbark, "Direct Current Transmission", Vol. I, Wiley Interscience, 1971.	
	Imann, "Power Transmission by Direct Current", B.S. Publications, 2004.	
5. Hadi Sad	udat, 'Power System Analysis,' PSA Publishing; Third Edition, 2010.	

CO/P	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P10	P11	PSO1	PSO2	PSO3
0														
CO1	-	-	2	-	-	-	-	-	-	2	-	-	-	2
CO2	-	-	-	-	-	-	-	-	1	-	-	-	-	2
CO3	-	-	-	-	-	-	-	-	-	-	2	-	-	2
CO4	-	-	-	-	-	-	-	-	-	-	1	-	-	2
CO5	-	-	-	-	-	-	_	-	_	-	1	_	-	2

18PEPC16	POWER QUALITY L	T	P	C
	3	0	0	3
OBJECTIV				
	erstand the different power quality issues to be addressed			
	erstand the recommended practices by various standard bodies like	IEE	E, IEO	C, etc
	age & frequency, harmonics			
• To und	erstanding STATIC VAR Compensators			
UNIT I	INTRODUCTION			9
Power quality -	- Voltage quality – Overview of power quality phenomena – Classif	ficat	ion of	
power quality i	ssues – Power quality measures and standards – THD – TIF – DIN -	- C -	– mes	sage
weights – Flick	er factor - Transient phenomena - Occurrence of power quality pro	obler	ns – I	Powe
acceptability cu	rves – IEEE guides – Standards and recommended practices.			
UNIT II	POWER ANALYSIS FOR AC SYSTEMS			9
Single phase si	nusoidal, non-sinusoidal source supplying linear and non linear load	ls −7	Three	phas
	n – Three phase unbalanced system – Three phase unbalanced and c			
supplying on 1	inear loads – Concept of PF – Three phase three wire – Three p	ohas	e fou	r wir
system.				
UNIT III	HARMONICS			9
Harmonics – i	ndividual and total harmonic distortion – RMS value of a harmon	nic v	vavef	orm ·
Triplex harmo	nics – Important harmonic introducing devices. – SMPS – Thre	e pl		nowe
	nics – Important harmonic introducing devices. – SMPS – Thre		nase	
converters – A	rcing devices - Saturable devices - Harmonic distortion of fluor		nase	
converters – A Effect of power	rcing devices – Saturable devices – Harmonic distortion of fluor system harmonics on power system equipment and loads.	resce	nase	nps ·
converters – A	rcing devices – Saturable devices – Harmonic distortion of fluor system harmonics on power system equipment and loads. MODELING OF NETWORKS AND COMPONENT	resce	nase	
converters – A Effect of power UNIT IV	rcing devices – Saturable devices – Harmonic distortion of fluor system harmonics on power system equipment and loads. MODELING OF NETWORKS AND COMPONENT UNDER NON-SINUSOIDAL CONDITIONS	resce 'S	nase j ent la	mps - 9
converters – A Effect of power UNIT IV Transmission a	rcing devices – Saturable devices – Harmonic distortion of fluor system harmonics on power system equipment and loads. MODELING OF NETWORKS AND COMPONENT UNDER NON-SINUSOIDAL CONDITIONS nd distribution systems – Shunt capacitors – transformers –.Electric	sesce S	nase j ent lan	mps - 9 s -
converters – A Effect of power UNIT IV Transmission a Ground system	rcing devices – Saturable devices – Harmonic distortion of fluor system harmonics on power system equipment and loads. MODELING OF NETWORKS AND COMPONENT UNDER NON-SINUSOIDAL CONDITIONS nd distribution systems – Shunt capacitors – transformers –.Electric s – loads that cause power quality problems – Power quality problem	sesce S	nase j ent lan	mps - 9 s -
converters – A Effect of power UNIT IV Transmission a Ground system drives and its in	rcing devices – Saturable devices – Harmonic distortion of fluor system harmonics on power system equipment and loads. MODELING OF NETWORKS AND COMPONENT UNDER NON-SINUSOIDAL CONDITIONS nd distribution systems – Shunt capacitors – transformers –.Electric s – loads that cause power quality problems – Power quality problem npact on drive.	sesce S	nase j ent lan	mps - 9 1 by
converters – A Effect of power UNIT IV Transmission a Ground system drives and its in UNIT V	rcing devices – Saturable devices – Harmonic distortion of fluor system harmonics on power system equipment and loads. MODELING OF NETWORKS AND COMPONENT UNDER NON-SINUSOIDAL CONDITIONS nd distribution systems – Shunt capacitors – transformers –.Electric s – loads that cause power quality problems – Power quality problem npact on drive. POWER FACTOR IMPROVEMENT	resce S mains c	nase j ent lan chine reated	mps - 9 1 by 9
converters – A Effect of power UNIT IV Transmission a Ground system drives and its in UNIT V Power Factor In	rcing devices – Saturable devices – Harmonic distortion of fluor system harmonics on power system equipment and loads. MODELING OF NETWORKS AND COMPONENT UNDER NON-SINUSOIDAL CONDITIONS nd distribution systems – Shunt capacitors – transformers –.Electric s – loads that cause power quality problems – Power quality problem npact on drive. POWER FACTOR IMPROVEMENT mprovement Introduction – Passive Compensation – Passive Filterin	resce S mains c	nase part lan chineareated Harn	mps - 9 3 - 1 by 9 nonic
converters – A Effect of power UNIT IV Transmission a Ground system drives and its in UNIT V Power Factor In Resonance –Im	rcing devices – Saturable devices – Harmonic distortion of fluor system harmonics on power system equipment and loads. MODELING OF NETWORKS AND COMPONENT UNDER NON-SINUSOIDAL CONDITIONS nd distribution systems – Shunt capacitors – transformers –.Electric s – loads that cause power quality problems – Power quality problem npact on drive. POWER FACTOR IMPROVEMENT mprovement Introduction – Passive Compensation – Passive Filterin pedance Scan Analysis – Active Power Factor Corrected Single Pha	resce S ms c ng – ase l	nase j ent lan chine reated Harn Front	mps 9 s – 1 by 9 nonic End
converters – A Effect of power UNIT IV Transmission a Ground system drives and its in UNIT V Power Factor In Resonance –Im Control Method	rcing devices – Saturable devices – Harmonic distortion of fluor system harmonics on power system equipment and loads. MODELING OF NETWORKS AND COMPONENT UNDER NON-SINUSOIDAL CONDITIONS nd distribution systems – Shunt capacitors – transformers –.Electric s – loads that cause power quality problems – Power quality problem npact on drive. POWER FACTOR IMPROVEMENT mprovement Introduction – Passive Compensation – Passive Filterin pedance Scan Analysis – Active Power Factor Corrected Single Phase ds for Single Phase APFC – Three Phase APFC and Control Technic	resce S ms c ng – ase l	nase j ent lan chine reated Harn Front	mps 9 s – 1 by 9 nonic End
converters – A <u>Effect of power</u> UNIT IV Transmission a Ground system <u>drives and its in</u> <u>UNIT V</u> Power Factor In Resonance –Im Control Method	rcing devices – Saturable devices – Harmonic distortion of fluor system harmonics on power system equipment and loads. MODELING OF NETWORKS AND COMPONENT UNDER NON-SINUSOIDAL CONDITIONS nd distribution systems – Shunt capacitors – transformers –.Electric s – loads that cause power quality problems – Power quality problem npact on drive. POWER FACTOR IMPROVEMENT mprovement Introduction – Passive Compensation – Passive Filterin pedance Scan Analysis – Active Power Factor Corrected Single Phase ds for Single Phase APFC – Three Phase APFC and Control Technic ral Single Phase and Three Phase Converter.	resce S ms c ng – ase l ques	hase joint land chineareated Harn Front 5 – PF	nps 9 s – 1 by 9 nonic End C
converters – A <u>Effect of power</u> UNIT IV Transmission a Ground system <u>drives and its in</u> <u>UNIT V</u> Power Factor In Resonance –Im Control Method based on Bilate	rcing devices – Saturable devices – Harmonic distortion of fluor system harmonics on power system equipment and loads. MODELING OF NETWORKS AND COMPONENT UNDER NON-SINUSOIDAL CONDITIONS nd distribution systems – Shunt capacitors – transformers –.Electric s – loads that cause power quality problems – Power quality problem npact on drive. POWER FACTOR IMPROVEMENT mprovement Introduction – Passive Compensation – Passive Filterin pedance Scan Analysis – Active Power Factor Corrected Single Phase ds for Single Phase APFC – Three Phase APFC and Control Technic ral Single Phase and Three Phase Converter. TOTAL	resce S ms c ng – ase l ques	hase joint land chineareated Harn Front 5 – PF	nps 9 s – 1 by 9 nonic End C
converters – A Effect of power UNIT IV Transmission a Ground system drives and its in UNIT V Power Factor In Resonance –Im Control Method based on Bilate OUTCOME	rcing devices – Saturable devices – Harmonic distortion of fluor system harmonics on power system equipment and loads. MODELING OF NETWORKS AND COMPONENT UNDER NON-SINUSOIDAL CONDITIONS nd distribution systems – Shunt capacitors – transformers –.Electric s – loads that cause power quality problems – Power quality problem npact on drive. POWER FACTOR IMPROVEMENT mprovement Introduction – Passive Compensation – Passive Filterin pedance Scan Analysis – Active Power Factor Corrected Single Phase ds for Single Phase APFC – Three Phase APFC and Control Technic ral Single Phase and Three Phase Converter. TOTAL S: After completion of this course, the student will be able to:	S max ms c ng – ase l ques :45	hase joint land chineareated Harm Front G – PF PER	nps 9 s – d by 9 nonic End C IOD
converters – A Effect of power UNIT IV Transmission a Ground system drives and its in UNIT V Power Factor In Resonance –Im Control Methor based on Bilate OUTCOME 1 Acquir	rcing devices – Saturable devices – Harmonic distortion of fluor system harmonics on power system equipment and loads. MODELING OF NETWORKS AND COMPONENT UNDER NON-SINUSOIDAL CONDITIONS nd distribution systems – Shunt capacitors – transformers –.Electric s – loads that cause power quality problems – Power quality problem npact on drive. POWER FACTOR IMPROVEMENT mprovement Introduction – Passive Compensation – Passive Filterin pedance Scan Analysis – Active Power Factor Corrected Single Phase for Single Phase APFC – Three Phase APFC and Control Technic ral Single Phase and Three Phase Converter. TOTAL S: After completion of this course, the student will be able to: the knowledge about the harmonics, harmonic introducing devices and	S max ms c ng – ase l ques :45	hase joint land chineareated Harm Front G – PF PER	9 s – d by 9 nonic End C IOD
converters – A Effect of power UNIT IV Transmission a Ground system drives and its in UNIT V Power Factor In Resonance –Im Control Methor based on Bilate OUTCOME 1 Acquir harmor	rcing devices – Saturable devices – Harmonic distortion of fluor system harmonics on power system equipment and loads. MODELING OF NETWORKS AND COMPONENT UNDER NON-SINUSOIDAL CONDITIONS nd distribution systems – Shunt capacitors – transformers –.Electric s – loads that cause power quality problems – Power quality problem npact on drive. POWER FACTOR IMPROVEMENT mprovement Introduction – Passive Compensation – Passive Filterin pedance Scan Analysis – Active Power Factor Corrected Single Phase for Single Phase APFC – Three Phase APFC and Control Technic ral Single Phase and Three Phase Converter. S: After completion of this course, the student will be able to: the knowledge about the harmonics, harmonic introducing devices and tics on system equipment and loads	'S max c mg – ase l ques :45 d eff	hase joint land chines reated Harn Front S – PF PER	9 s – d by 9 honic End C IODS
converters – A Effect of power UNIT IV Transmission a Ground system drives and its in UNIT V Power Factor In Resonance –Im Control Method based on Bilate OUTCOME 1 Acquir harmor 2 Analys	rcing devices – Saturable devices – Harmonic distortion of fluor system harmonics on power system equipment and loads. MODELING OF NETWORKS AND COMPONENT UNDER NON-SINUSOIDAL CONDITIONS nd distribution systems – Shunt capacitors – transformers –.Electric s – loads that cause power quality problems – Power quality problem mpact on drive. POWER FACTOR IMPROVEMENT mprovement Introduction – Passive Compensation – Passive Filterin pedance Scan Analysis – Active Power Factor Corrected Single Phase ds for Single Phase APFC – Three Phase APFC and Control Technic ral Single Phase and Three Phase Converter. S: After completion of this course, the student will be able to: the knowledge about the harmonics, harmonic introducing devices and tics on system equipment and loads the Polyphase AC systems with linear and nonlinear loads for po	'S max c mg – ase l ques :45 d eff	hase joint land chines reated Harn Front S – PF PER	9 s – d by 9 honic End C IODS
converters – A Effect of power UNIT IV Transmission a Ground system drives and its in UNIT V Power Factor In Resonance –Im Control Method based on Bilate OUTCOME 1 Acquir harmor 2 Analys harmor	rcing devices – Saturable devices – Harmonic distortion of fluor system harmonics on power system equipment and loads. MODELING OF NETWORKS AND COMPONENT UNDER NON-SINUSOIDAL CONDITIONS nd distribution systems – Shunt capacitors – transformers –.Electric s – loads that cause power quality problems – Power quality problem npact on drive. POWER FACTOR IMPROVEMENT mprovement Introduction – Passive Compensation – Passive Filterin pedance Scan Analysis – Active Power Factor Corrected Single Phase ds for Single Phase APFC – Three Phase APFC and Control Technic ral Single Phase and Three Phase Converter. TOTAL S: After completion of this course, the student will be able to: the knowledge about the harmonics, harmonic introducing devices and thics on system equipment and loads the Polyphase AC systems with linear and nonlinear loads for po- tic analysis.	resce S S ms c ms c ase l ques :45 d eff	hase joint land chine: reated Harn Front S – PF PER Fect of facto	9 s – d by 9 nonic End - C IOD f
converters – A Effect of power UNIT IV Transmission a Ground system drives and its in UNIT V Power Factor In Resonance –Im Control Methor based on Bilate OUTCOME 1 Acquir harmor 2 Analys harmor 3 Develo	rcing devices – Saturable devices – Harmonic distortion of fluor system harmonics on power system equipment and loads. MODELING OF NETWORKS AND COMPONENT UNDER NON-SINUSOIDAL CONDITIONS nd distribution systems – Shunt capacitors – transformers –.Electric s – loads that cause power quality problems – Power quality problem mpact on drive. POWER FACTOR IMPROVEMENT mprovement Introduction – Passive Compensation – Passive Filterin pedance Scan Analysis – Active Power Factor Corrected Single Phase ds for Single Phase APFC – Three Phase APFC and Control Technic ral Single Phase and Three Phase Converter. S: After completion of this course, the student will be able to: the knowledge about the harmonics, harmonic introducing devices and tics on system equipment and loads the Polyphase AC systems with linear and nonlinear loads for po	resce S S ms c ms c ase l ques :45 d eff	hase joint land chine: reated Harn Front S – PF PER Fect of facto	9 s – d by 9 nonic End C IOD f
converters – A Effect of power UNIT IV Transmission a Ground system drives and its in UNIT V Power Factor In Resonance –Im Control Method based on Bilate OUTCOME 1 Acquir harmor 2 Analys harmor 3 Develo networ 4 Unders	rcing devices – Saturable devices – Harmonic distortion of fluor system harmonics on power system equipment and loads. MODELING OF NETWORKS AND COMPONENT UNDER NON-SINUSOIDAL CONDITIONS nd distribution systems – Shunt capacitors – transformers –.Electric s – loads that cause power quality problems – Power quality problem mpact on drive. POWER FACTOR IMPROVEMENT mprovement Introduction – Passive Compensation – Passive Filterin pedance Scan Analysis – Active Power Factor Corrected Single Pha ds for Single Phase APFC – Three Phase APFC and Control Technic ral Single Phase and Three Phase Converter. TOTAL S: After completion of this course, the student will be able to: the knowledge about the harmonics, harmonic introducing devices and thics on system equipment and loads the Polyphase AC systems with linear and nonlinear loads for po- tic analysis. p analytical modeling skills needed for modeling and analysis o ks and components tand active power factor correction based on static VAR compe	sesce S mac ms c ng – ase I ques :45 d eff	hase joint land chine: reated Harn Front s – PF PER Fect of facto	9 s – d by 9 100 F 100 f f ics in
converters – A Effect of power UNIT IV Transmission a Ground system drives and its in UNIT V Power Factor In Resonance –Im Control Method based on Bilate OUTCOME 1 Acquir harmor 2 Analys harmor 3 Develo networ 4 Unders control	rcing devices – Saturable devices – Harmonic distortion of fluor system harmonics on power system equipment and loads. MODELING OF NETWORKS AND COMPONENT UNDER NON-SINUSOIDAL CONDITIONS nd distribution systems – Shunt capacitors – transformers –.Electric s – loads that cause power quality problems – Power quality problem mpact on drive. POWER FACTOR IMPROVEMENT mprovement Introduction – Passive Compensation – Passive Filterin pedance Scan Analysis – Active Power Factor Corrected Single Pha- ds for Single Phase APFC – Three Phase APFC and Control Technic ral Single Phase and Three Phase Converter. TOTAL S: After completion of this course, the student will be able to: the knowledge about the harmonics, harmonic introducing devices and the system equipment and loads the Polyphase AC systems with linear and nonlinear loads for po- tic analysis. p analytical modeling skills needed for modeling and analysis o ks and components tand active power factor correction based on static VAR comper- techniques	resce S S ms c ms c ng – ase l ques :45 d eff wer of ha	hase joint land chine: reated Harn Front s – PF PER Fect of facto	9 s – d by 9 1 by 9 1 onic End C 1 OD f or and ics i
converters – A Effect of power UNIT IV Transmission a Ground system drives and its in UNIT V Power Factor In Resonance –Im Control Method based on Bilate OUTCOME 1 Acquir harmor 2 Analys harmor 3 Develo networ 4 Unders control	rcing devices – Saturable devices – Harmonic distortion of fluor system harmonics on power system equipment and loads. MODELING OF NETWORKS AND COMPONENT UNDER NON-SINUSOIDAL CONDITIONS nd distribution systems – Shunt capacitors – transformers –.Electric s – loads that cause power quality problems – Power quality problem mpact on drive. POWER FACTOR IMPROVEMENT mprovement Introduction – Passive Compensation – Passive Filterin pedance Scan Analysis – Active Power Factor Corrected Single Pha ds for Single Phase APFC – Three Phase APFC and Control Technic ral Single Phase and Three Phase Converter. TOTAL S: After completion of this course, the student will be able to: the knowledge about the harmonics, harmonic introducing devices and thics on system equipment and loads the Polyphase AC systems with linear and nonlinear loads for po- tic analysis. p analytical modeling skills needed for modeling and analysis o ks and components tand active power factor correction based on static VAR compe	resce S S ms c ms c ng – ase l ques :45 d eff wer of ha	hase joint land chine: reated Harn Front s – PF PER Fect of facto	nps 9 3 - 4 by 9 1 by 9 1 onic End C TOD f f or an ics i

REF	ERENCES:
1.	G.T. Heydt, "Electric power quality", McGraw-Hill Professional, 2007
2.	Math H. Bollen, "Understanding Power Quality Problems", IEEE Press, 2000
3.	J. Arrillaga, "Power System Quality Assessment", John wiley, 2000
4.	J. Arrillaga, B.C. Smith, N.R. Watson & A. R.Wood, "Power system Harmonic Analysis", Wiley, 1997
5.	E.Aeha and M.Madrigal, "Power System Harmonics, Computer Modelling and Analysis, "WileyIndia, 2012.

CO/	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
PO														
CO1	-	2	-	-	-	-	-	-	1	-	-	-	-	-
CO2	-	-	-	-	-	2	-	-	-	-	1	-	-	-
CO3	-	-	-	-	-	-	-	-	1	-	-	-	2	-
CO4	-	3	-	-	-	-	-	-	1	-	-	-	-	-
CO5	-	-	-	-	-	2	-	-	-	-	-	-	-	-

ANALOG AND DIGITAL CONTROLLERS

			0 3									
OBJECT	TIVES:		·									
٠	To provide a overview of the control system and converter control me	ethodologie	es									
٠	To provide an insight to the analog controllers generally used in practice											
٠	To introduce Embedded Processers for Digital Control											
_	To study on the driving techniques, isolation requirements, signal conditioning and											
•	protection methods	_										
•	To provide a Case Study by implementing an analog and a digital con	ntroller on a	a									
•	converter											
UNIT I	CONTROL SYSTEM- OVERVIEW		09									
Stability, control, P	and Feed-forward control, Right Half Plane Zero, Gain margin a Analysis and Transfer function of PI and PID controllers and its effer Peak Current mode Control, Average Current mode Control for C es and disadvantages.	ects . Volta	ge mode									
UNIT II			09									
Ramp or ' UC3524,F design usi	ial gains in terms of Resistance and Capacitance, Error Amplifiers, PV Triangular generator and comparator, and Driver, Voltage mode con Peak Current mode controller design using UC3842, Average Current ing UC3854, PFC-CCM (UCC28070).	troller desi	gn using ontroller									
UNIT III	I DIGITAL CONTROLLERS		09									
Modules : instantane	ontrollers and Digital Signal Controllers for Converter Control Ap for Converter Control–A/D, Capture, Compare and PWM, Analogeous overcurrent detection, interrupts, Discrete PI and PID equations, A ementation, Example Code for PWM generation.	g Compar	ators for									
UNIT IV			09									
	AND PROTECTION											
Low off solution Need for	Feedback sensing circuits, Hall effect sensors and Shunts for curren set Op-Amps for signal conditioning, Single and dual supply op-amps, isolated drivers, Optically isolated drivers, low side drivers, high sic ver supply, Vcesat sensing, CT based Device current sensing and pulse	To tempole le drivers v	e drivers,									
UNIT V		09										
plot, PI	nd Digital Controller Design for Buck Converter–Power circuit transfe controller bode plot, Combined bode plot with required Gain a ntation of Analog controller and Digital controller.											
	TOTAL :45 PERIODS											
OUTCO		.0:										
1. Ur	nderstand control system and converter control methodologies.											

2.	Design of analog controllers
3.	Design of digital controllers.
4.	Understand signal conditioning and protection
5.	Implement Controllers in Electrical systems.
REFE	RENCE:
1.	Nadim Maluf, "An Introduction to Micro Electro Mechanical System Design", Artech House, 2000.
2.	Mohamed Gad-el-Hak, editor, " The MEMS Handbook", CRC press Baco Raton, 2001.
3.	Julian w. Gardner, Vijay K. Varadan, Osama O.Awadelkarim, Micro Sensors MEMS and Smart Devices, John Wiley & Son LTD, 2002.
4.	James J.Allen, Micro Electro Mechanical System Design, CRC Press Publisher, 2005.
5.	Thomas M.Adams and Richard A.Layton, "Introduction MEMS, Fabrication and Application, "Springer, 2010.

CO/P	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P10	P11	PSO1	PSO2	PSO3
0														
CO1	-	-	2	-	-	-	-	-	-	2	-	-	-	-
CO2	-	-	-	-	-	-	-	1	-	-	-	2	-	-
CO3	-	-	-	-	2	-	-	-	-	-	2	-	-	-
CO4	-	-	-	-	-	-	-	-	-	1	-	-	-	-
CO5	-	-	-	-	-	-	-	-	-	1	-	-	-	-

18PEPE18	MEMS TECHNOLOGY	L	Т	Р	C								
		3	0	0	3								
OBJECTIV													
•	To teach the students properties of materials ,microstructure methods.	e and f	abric	ation	1								
•	To teach the design and modeling of Electrostatic sensors a	nd actu	iator	s.									
	To teach the characterizing thermal sensors and actuators the				nd								
•	modeling												
•	To teach the fundamentals of piezoelectric sensors and actu exposure	ators t	hrou	gh									
UNIT I	MICRO-FABRICATION, MATERIALS AND				09								
	ELECTRO-MECHANICAL CONCEPTS												
	micro fabrication-Silicon and other material based f												
Concepts: Co	onductivity of semiconductors-Crystal planes and orientati	on-stre	ess a	nd	strain-								
flexural bean quality factor	n bending analysis-torsional deflections-Intrinsic stress- re	sonant	free	luenc	ey and								
UNIT II	ELECTROSTATIC SENSORS AND ACTUAT	ION			09								
	terial ,design and fabrication of parallel plate capacitors a		rosta										
and actuators					•								
UNIT III	THERMAL SENSING AND ACTUATION				09								
Principle ,ma	aterial ,design and fabrication of thermal couples ,therr	nal bi	mor	oh se	ensors,								
thermal resist	or sensors-Applications												
UNIT IV	PIEZOELECTRIC SENSING AND ACTUATION				09								
			at mi		••								
Applications.	effect-cantilever piezoelectric actuator model-properties of p	iezoei	ectric	: mai	erials-								
UNIT V	CASE STUDIES				09								
	e sensors, Magnetic actuation, Micro fluidics applications,	Medic	al a		••								
	ISNEMS Devices	wicuit	ur u	pine	ations,								
-	room discussions and tutorial scan include the following gu	ideline	es fo	r im	proved								
teaching/learn	ning process : Discussions/Exercise/Practice on Work bench	: on th	ne ba	sics/	device								
model design	aspects of thermal/peizo/resistive sensors etc.												
	TOTAL :45 PERI	ODS											
OUTCOME):									
1	Understand basics of micro fabrication, develop models and electrostatic and electromagnetic sensors and actuators	l simul	ate										
2	Understand material properties important for MEMS system												
	performance, analyse dynamics of resonant micromechanic	al struc											
3		al struc			ed								

	and learn the state of the art in optical micro systems.						
5	Improved Employability and entrepreneurship capacity due to knowledge						
5	upgradation on recent trends in embedded systems design.						
REFERENCE	C:						
1	Vikas Choudhary, "Fundamental Technology and Applications", CRC Press.						
2	Ai-Qun liu, "RF Mems Switchs and integrated switching circuits", Springer.						
3	Jeffrey H.Lang, "Multi-wafer rotating Mems Machines", Springer.						
4	Herbert R. Shea, "Mems Relibility", Springer.						
5	Chandan kumar sarkar, "Mems and Nanotechnology for Gas sensors", CRC						
5	Press.						

CO/P	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P10	P11	PSO1	PSO2	PSO3
0														
CO1	-	-	-	2	-	-	-	-	1	-	-	-	-	-
CO2	-	-	-	-	-	-	-	-	-	-	1	-	2	-
CO3	-	-	2	-	-	-	-	-	2	-	-	-	-	-
CO4	2	-	-	-	-	-	-	-	1	-	-	-	-	_
CO5	-	-	-	-	-	-	-	-	-	-	2	-	-	2

18PEPE19	ENERGY ECONOMICS, MANAGEMENT AND AUDITING	L	Т	Р	С								
		3	0	0	3								
OBJECTIV	ES:												
•	To study the concepts behind economic analysis and Load man	nage	men	t.									
	To emphasize the energy management on various electrical equipments and												
•	metering.												
•	To illustrate the concept of lighting systems and cogeneration.												
UNIT I	INTRODUCTION 09												
Need for ener	gy management - energy basics- designing and starting an e	nerg	gy m	anag	ement								
	nergy accounting -energy monitoring, targeting and report												
process.													
UNIT II	ENERGY COST AND LOAD MANAGEMENT			()9								
	es-cost of electricity-Loss evaluation-Load management : tility monitoring and control system-HVAC and energy man ENERGY MANAGEMENT FOR MOTORS,			-Eco									
	SYSTEMS, AND ELECTRICAL EQUIPMENT												
Systems and	equipment- Electric motors-Transformers and reactors-Capa	cito	rs a	nd									
synchronous													
UNIT IV	METERING FOR ENERGY MANAGEMENT			()9								
	between parameters-Units of measure-Typical cost factors			ty m	neters-								
Relationships Timing of n	between parameters-Units of measure-Typical cost factors neter disc for kilowatt measurement-Demand meters –Para	alleli	ng	ty m of c	eters- urrent								
Relationships Timing of n transformers-	between parameters-Units of measure-Typical cost factors neter disc for kilowatt measurement-Demand meters –Para Instrument transformer burdens-Multitasking solid-state meters	alleli	ng	ty m of c	eters- urrent								
Relationships Timing of n transformers- vs .requireme	between parameters-Units of measure-Typical cost factors neter disc for kilowatt measurement-Demand meters –Para Instrument transformer burdens-Multitasking solid-state meters nts-Metering techniques and practical examples.	alleli	ng	ty m of c ng lo	eters- urrent cation								
Relationships Timing of n transformers- vs.requireme UNIT V	between parameters-Units of measure-Typical cost factors neter disc for kilowatt measurement-Demand meters –Para Instrument transformer burdens-Multitasking solid-state meters nts-Metering techniques and practical examples. LIGHTING SYSTEMS & COGENERATION	alleli s-Me	ing eterii	ty m of c ng loo	neters- urrent cation								
Relationships Timing of n transformers- vs .requireme UNIT V Concept of light	between parameters-Units of measure-Typical cost factors neter disc for kilowatt measurement-Demand meters –Para Instrument transformer burdens-Multitasking solid-state meters nts-Metering techniques and practical examples. LIGHTING SYSTEMS & COGENERATION hting systems-The task and the working space-Light sources-B	alleli s-Me allas	ng eterin sts- I	ty m of c ng loo (neters- urrent cation)9 naries								
Relationships Timing of n transformers- vs .requireme UNIT V Concept of lighting controls of the second s	between parameters-Units of measure-Typical cost factors neter disc for kilowatt measurement-Demand meters –Para Instrument transformer burdens-Multitasking solid-state meters <u>nts-Metering techniques and practical examples.</u> LIGHTING SYSTEMS & COGENERATION hting systems-The task and the working space-Light sources-B trols-Optimizing lighting energy - Power factor and effect of ha	alleli s-Me allas armo	eterin sts- I	ty m of c ng lo (Lumi s on j	neters- urrent cation)9 naries power								
Relationships Timing of n transformers- vs .requireme UNIT V Concept of lig - Lighting cont quality-Cost a	between parameters-Units of measure-Typical cost factors neter disc for kilowatt measurement-Demand meters –Para Instrument transformer burdens-Multitasking solid-state meters nts-Metering techniques and practical examples. LIGHTING SYSTEMS & COGENERATION hting systems-The task and the working space-Light sources-B trols-Optimizing lighting energy - Power factor and effect of ha unalysis techniques-Lighting and energy standards Cogene	alleli s-Me allas armo	eterin sts- I	ty m of c ng lo (Lumi s on j	neters- urrent cation)9 naries power								
Relationships Timing of n transformers- vs .requireme UNIT V Concept of lig - Lighting cont quality-Cost a	between parameters-Units of measure-Typical cost factors neter disc for kilowatt measurement-Demand meters –Para Instrument transformer burdens-Multitasking solid-state meters nts-Metering techniques and practical examples. LIGHTING SYSTEMS & COGENERATION hting systems-The task and the working space-Light sources-B trols-Optimizing lighting energy - Power factor and effect of hanalysis techniques-Lighting and energy standards Cogene ceasibility of cogeneration- Electrical interconnection	alleli s-Me allas armo eratio	eterin sts- I	ty m of c ng lo (Lumi s on j	neters- urrent cation)9 naries power								
Relationships Timing of n transformers- vs .requireme UNIT V Concept of ligi - Lighting cont quality-Cost a cogeneration-f	between parameters-Units of measure-Typical cost factors neter disc for kilowatt measurement-Demand meters –Para Instrument transformer burdens-Multitasking solid-state meters nts-Metering techniques and practical examples. LIGHTING SYSTEMS & COGENERATION hting systems-The task and the working space-Light sources-B trols-Optimizing lighting energy - Power factor and effect of ha analysis techniques-Lighting and energy standards Cogene feasibility of cogeneration- Electrical interconnection TOTAL :45 PERIOD	alleli s-Me allas armo eratio	ing eterin sts- I onics on:	ty m of c ng lo (Lumi s on j	neters- urrent cation)9 naries power								
Relationships Timing of n transformers- vs .requireme UNIT V Concept of lig - Lighting cont quality-Cost a	between parameters-Units of measure-Typical cost factors neter disc for kilowatt measurement-Demand meters –Para Instrument transformer burdens-Multitasking solid-state meters nts-Metering techniques and practical examples. LIGHTING SYSTEMS & COGENERATION hting systems-The task and the working space-Light sources-B trols-Optimizing lighting energy - Power factor and effect of ha analysis techniques-Lighting and energy standards Cogene feasibility of cogeneration- Electrical interconnection TOTAL :45 PERIOD CS: After completion of this course, the student will be ab	alleli s-Me allas armo eratio	ing eterin sts- I onics on:	ty m of c ng lo (Lumi s on j	neters- urrent cation)9 naries power								
Relationships Timing of n transformers- vs .requireme UNIT V Concept of ligi - Lighting cont quality-Cost a cogeneration-f	between parameters-Units of measure-Typical cost factors neter disc for kilowatt measurement-Demand meters –Para Instrument transformer burdens-Multitasking solid-state meters nts-Metering techniques and practical examples. LIGHTING SYSTEMS & COGENERATION hting systems-The task and the working space-Light sources-B trols-Optimizing lighting energy - Power factor and effect of ha analysis techniques-Lighting and energy standards Cogene feasibility of cogeneration- Electrical interconnection TOTAL :45 PERIOD CS: After completion of this course, the student will be ab Learn about the need for energy management and auditing pro-	alleli s-Me allas armo eratio 95 ile to cess	ing eterin sts- I onics on:	ty m of c ng loo (Lumi s on j Form	neters- urrent cation)9 naries power								
Relationships Timing of n transformers- vs .requireme UNIT V Concept of lig - Lighting cont quality-Cost a cogeneration-f OUTCOME 1 2	between parameters-Units of measure-Typical cost factors neter disc for kilowatt measurement-Demand meters –Para Instrument transformer burdens-Multitasking solid-state meters ints-Metering techniques and practical examples. LIGHTING SYSTEMS & COGENERATION hting systems-The task and the working space-Light sources-B trols-Optimizing lighting energy - Power factor and effect of has analysis techniques-Lighting and energy standards Cogene feasibility of cogeneration- Electrical interconnection TOTAL :45 PERIOD CS: After completion of this course, the student will be ab Learn about the need for energy management and auditing pro- Learn about basic concepts of economic analysis and load mar	alleli s-Me allas armo eratio S lle to cess nage	ing eterin sts- I onics on: o: ment	ty m of c ng loo (Lumi s on j Form	neters- urrent cation)9 naries power								
Relationships Timing of n transformers- vs .requireme UNIT V Concept of ligi - Lighting cont quality-Cost a cogeneration-f OUTCOME 1 2 3	between parameters-Units of measure-Typical cost factors neter disc for kilowatt measurement-Demand meters –Para Instrument transformer burdens-Multitasking solid-state meters nts-Metering techniques and practical examples. LIGHTING SYSTEMS & COGENERATION hting systems-The task and the working space-Light sources-B trols-Optimizing lighting energy - Power factor and effect of ha malysis techniques-Lighting and energy standards Cogene feasibility of cogeneration- Electrical interconnection TOTAL :45 PERIOD CS: After completion of this course, the student will be ab Learn about the need for energy management and auditing pro Learn about basic concepts of economic analysis and load mar Understand the energy management on various electrical equip	allas armo eratio OS le to cess nager	ing eterin sts- I onics on: o: ment nts.	ty m of c ng loo (Lumi s on j Form	neters- urrent cation)9 naries power								
Relationships Timing of n transformers- vs.requireme UNIT V Concept of lig - Lighting cont quality-Cost a cogeneration-f OUTCOME 1 2	between parameters-Units of measure-Typical cost factors neter disc for kilowatt measurement-Demand meters –Para Instrument transformer burdens-Multitasking solid-state meters ints-Metering techniques and practical examples. LIGHTING SYSTEMS & COGENERATION hting systems-The task and the working space-Light sources-B trols-Optimizing lighting energy - Power factor and effect of has analysis techniques-Lighting and energy standards Cogene feasibility of cogeneration- Electrical interconnection TOTAL :45 PERIOD CS: After completion of this course, the student will be ab Learn about the need for energy management and auditing pro Learn about basic concepts of economic analysis and load mar Understand the energy management on various electrical equip Have knowledge on the concepts of metering and factors influe	allas armo eratio OS le to cess nager	ing eterin sts- I onics on: o: ment nts.	ty m of c ng loo (Lumi s on j Form	neters- urrent cation)9 naries power								
Relationships Timing of n transformers- vs.requireme UNIT V Concept of lig - Lighting cont quality-Cost a cogeneration-f OUTCOME 1 2 3 4	between parameters-Units of measure-Typical cost factors neter disc for kilowatt measurement-Demand meters –Para Instrument transformer burdens-Multitasking solid-state meters nts-Metering techniques and practical examples. LIGHTING SYSTEMS & COGENERATION hting systems-The task and the working space-Light sources-B trols-Optimizing lighting energy - Power factor and effect of has analysis techniques-Lighting and energy standards Cogene feasibility of cogeneration- Electrical interconnection TOTAL :45 PERIOD CS: After completion of this course, the student will be ab Learn about the need for energy management and auditing pro Learn about basic concepts of economic analysis and load mar Understand the energy management on various electrical equip Have knowledge on the concepts of metering and factors influe Function	allas armo eratio 9S le to cess nager encin	eterin sts- I ponics on: <u>mentats.</u> ng co	ty m of c ng loo (Lumi s on j Form t.	neters- urrent cation)9 naries power ns of								
Relationships Timing of n transformers- vs .requireme UNIT V Concept of ligi - Lighting cont quality-Cost a cogeneration-f OUTCOME 1 2 3	between parameters-Units of measure-Typical cost factors neter disc for kilowatt measurement-Demand meters –Para Instrument transformer burdens-Multitasking solid-state meters ints-Metering techniques and practical examples. LIGHTING SYSTEMS & COGENERATION hting systems-The task and the working space-Light sources-B trols-Optimizing lighting energy - Power factor and effect of ha analysis techniques-Lighting and energy standards Cogene feasibility of cogeneration- Electrical interconnection TOTAL :45 PERIOD CS: After completion of this course, the student will be ab Learn about the need for energy management and auditing pro Learn about basic concepts of economic analysis and load mar Understand the energy management on various electrical equip Have knowledge on the concepts of metering and factors influe Function Learn about the concept of lighting systems, light sources and	allas armo eratio 9S le to cess nager encin	eterin sts- I ponics on: <u>mentats.</u> ng co	ty m of c ng loo (Lumi s on j Form t.	neters- urrent cation)9 naries power ns of								
Relationships Timing of n transformers- vs .requireme UNIT V Concept of lig - Lighting cont quality-Cost a cogeneration-f OUTCOME 1 2 3 4	between parameters-Units of measure-Typical cost factors neter disc for kilowatt measurement-Demand meters –Para Instrument transformer burdens-Multitasking solid-state meters ints-Metering techniques and practical examples. LIGHTING SYSTEMS & COGENERATION hting systems-The task and the working space-Light sources-B trols-Optimizing lighting energy - Power factor and effect of hanalysis techniques-Lighting and energy standards Cogene feasibility of cogeneration- Electrical interconnection TOTAL :45 PERIOD CS: After completion of this course, the student will be ab Learn about the need for energy management and auditing pro Learn about basic concepts of economic analysis and load mar Understand the energy management on various electrical equip Have knowledge on the concepts of metering and factors influe Function Learn about the concept of lighting systems, light sources and of cogeneration	allas armo eratio 9S le to cess nager encin	eterin sts- I ponics on: <u>mentats.</u> ng co	ty m of c ng loo (Lumi s on j Form t.	neters- urrent cation)9 naries power ns of								

2	Steve Doty, "Commercial Energy Auditing".
3	Robin Smith, "Water and Energy Management in Food Processing".
4	Albert Thumann, "Energy Audits".
5	Barun Kumar De, "Energy Management, Audit and Conservation"

CO/P	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P10	P11	PSO1	PSO2	PSO3
0														
CO1	-	2	-	-	-	-	-	2	-	-	-	-	-	-
CO2	-	-	-	-	-	-	-	-	2	-	-	2	-	-
CO3	-	-	3	-	-	-	-	-	-	-	1	-	-	-
CO4	-	-	-	-	2	-	-	-	-	2	-	-	-	-
CO5	-	-	-	-	-	-	-	1	-	-	-	-	-	1

18PEPE20		SYSTEM THEORY			_	P	C
OBJECTIV	ES:			3	0	0	3
•		l the fundamentals of physical systems i	n terms of its line	ear ai	nd	Nor	1
•		representing systems in state variable f	orm				
٠	To exploit t	properties of linear systems such as con	ntrollability and o	bser	vał	oilit	у
•		stability analysis of systems using Lya					
٠	To educate	modal concepts and design of state and	l output feedback	cont	rol	lers	
UNIT I	STATE V	RIABLE REPRESENTATION)9	
	uniqueness of	ate – State equations for Dynamic S state model –Physical Systems and Sta ams.					
UNIT II		N OF STATE EQUATIONS)9	
Varying Stat	e equations	solutions to Continuous-time state equa State transition matrix and its pro Role of Eigen values and Eigen vectors					
UNIT III	STABILI	Y ANALYSIS OF LINEAR SYS	STEMS		()9	
-	y-Reducibility	nuous time Systems-Time varying and System Realizations.		case)000 09	out
	ESTIMA	OR					
Effect of State	Controllable e Feedback o	OR d Observable Companion Forms-SIS Controllability and Observability – Pole stems-Full Order and Reduced Order O	Placement by St				
Effect of State	Controllable e Feedback of and MIMO S	d Observable Companion Forms-SIS Controllability and Observability – Pole	Placement by St		Fee		
Effect of State for both SISO UNIT V Introduction-H Lyapunov – E Method of Ly	Controllable e Feedback of and MIMO S LYAPUN Equilibrium F Equilibrium S yapunov and r Nonlinear	d Observable Companion Forms-SIS Controllability and Observability – Pole stems-Full Order and Reduced Order Ob V STABILTY ANALYSIS ints–BIBO Stability-Stability of LTI Sy pility of Nonlinear Continuous-Time Autonomou ontinuous-Time Autonomous Systems	e Placement by St bservers. stems-Stability in tonomous Systen us Systems-Findin s-Krasovskil's a	the Ins-Ting L	Fee se he	dba)9 nse Dire pun	ck of ect ov
Effect of State for both SISO UNIT V Introduction-H Lyapunov – E Method of Ly Functions for Gradient Meth	Controllable e Feedback of and MIMO S LYAPUN Equilibrium F Equilibrium S yapunov and r Nonlinear hod.	d Observable Companion Forms-SIS Controllability and Observability – Pole stems-Full Order and Reduced Order Of V STABILTY ANALYSIS ints–BIBO Stability-Stability of LTI Sy pility of Nonlinear Continuous-Time Autonomou ontinuous-Time Autonomous ontinuous-Time Autonomous TOTAL :	e Placement by St bservers. stems-Stability in itonomous Systen us Systems-Findin s–Krasovskil's a 45 PERIODS	n the ns-T ng L nd	Fee se he	dba)9 nse Dire pun	ck of ect ov
Effect of State for both SISO UNIT V Introduction-H Lyapunov – E Method of Ly Functions for	Controllable e Feedback of and MIMO S LYAPUN Equilibrium F Equilibrium S yapunov and r Nonlinear hod.	Id Observable Companion Forms-SIS Controllability and Observability – Pole stems-Full Order and Reduced Order Ob V STABILTY ANALYSIS Ints–BIBO Stability-Stability of LTI Sy polity of Nonlinear Continuous-Time Autonomous ontinuous-Time Autonomous Systems TOTAL : After completion of this course, the stude	e Placement by St bservers. stems-Stability in tonomous Systen as Systems-Findin s–Krasovskil's a 45 PERIODS ent will be able to	tate I n the ns-T ng L nd	Fee se he J yaj Vai	dba)9 nse Dire pun iab	ck of ect ov le-
Effect of State for both SISO UNIT V Introduction-H Lyapunov – E Method of Ly Functions for Gradient Meth	Controllable e Feedback of and MIMO S LYAPUN Equilibrium F Equilibrium S yapunov and r Nonlinear hod.	d Observable Companion Forms-SIS Controllability and Observability – Pole stems-Full Order and Reduced Order Of V STABILTY ANALYSIS ints–BIBO Stability-Stability of LTI Sy pility of Nonlinear Continuous-Time Autonomou ontinuous-Time Autonomous ontinuous-Time Autonomous TOTAL :	e Placement by St bservers. stems-Stability in tonomous Systen as Systems-Findin s–Krasovskil's a 45 PERIODS ent will be able to	tate I n the ns-T ng L nd	Fee se he J yaj Vai	dba)9 nse Dire pun iab	ck of ect ov le-
Effect of State for both SISO UNIT V Introduction-H Lyapunov – E Method of Ly Functions for Gradient Meth	Controllable e Feedback of and MIMO S LYAPUN Equilibrium F Equilibrium S yapunov and r Nonlinear hod.	A Observable Companion Forms-SISC Controllability and Observability – Pole stems-Full Order and Reduced Order OF V STABILTY ANALYSIS Ints–BIBO Stability-Stability of LTI Sy polity of Nonlinear Continuous-Time Autonomou ontinuous-Time Autonomous Systems TOTAL : After completion of this course, the stude state space model for the given electrical lacement controller for the given system	e Placement by St bservers. stems-Stability in tonomous Systen as Systems-Findin s-Krasovskil's a 45 PERIODS ent will be able to al/electro-mechan	ate I n the ns-T ng L nd ` : ical	Fee se he J yaj Vai	dba)9 nse Dire pun iab	ck of ect ov le-

4	Identify the stability of the given linear system using Lyapunov stability theory.
5	Identify the stability of the given nonlinear system using Lyapunov stability theory.
TEXT BOO	KS:
1.	M.Gopal, "Modern Control SystemTheory", New AgeInternational,2005.
2.	K. Ogatta, "Modern Control Engineering", PHI,2002.
3.	JohnS. Bay, "FundamentalsofLinear StateSpaceSystems", McGraw-Hill, 1999.
REFEREN	CES:
1.	D.Roy Choudhury, "Modern Control Systems", NewAge International, 2005.
2.	JohnJ. D'Azzo, C.H.HoupisandS. N.Sheldon, "Linear Control System Analysis and Design with MATLAB", Taylor Francis, 2003.
3.	Z.Bubnicki, "Modern Control Theory", Springer, 2005.
4.	C.T.Chen, "Linear Systems Theory and Design" Oxford University Press, 3 rd Edition, 1999.
5.	M.Vidyasagar, "Nonlinear Systems Analysis', 2 nd edition, Prentice Hall, Englewood Cliffs, New Jersey.

CO/P	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P10	P11	PSO1	PSO2	PSO3
0														
CO1	-	-	-	3	-	-	-	-	1	-	-	-	-	-
CO2	-	1	-	-	-	-	-	-	1	-	-	-	-	-
CO3	-	-	-	-	-	-	-	-	-	1	-	2	-	-
CO4	-	-	-	-	-	2	-	-	-	1	-	-	-	-
CO5	-	-	-	-	-	-	-	-	1	-	-	-	-	-

ROBOTICS AND CONTROL

		3	0	0	3
OBJECTI	VES:	1			
٠	To introduce robot terminologies and robotic sensors				
•	To educate direct and inverse kinematic relations				
•	To educate on formulation of manipulator Jacobians and introduce	path	pla	nnir	ıg
	techniques				
•	To educate on robot dynamics.				
•	To introduce robot control techniques.				
UNIT I	INTRODUCTION AND TERMINOLOGIES		()9	
Definition-C	Classification-History-Robots components-Degrees of freedom-I	Rob	ot	joir	its-
	Reference frames-workspace-Robot languages-actuators-sensors-Po				
	tion sensors-Torque sensors-tactile and touch sensors-proximity and	rang	ge se	ensc	ors-
	n-social issues.				
UNIT II	KINEMATICS		-)9	
Mechanism-	matrix representation-homogenous transformation-DH represen	tatic	n-Iı	nver	se
	olution and programming-degeneracy and dexterity				
UNIT III	DIFFERENTIAL MOTION AND PATH		()9	
	PLANNING				
Jacobian-dif	ferential motion of frames-Interpretation-calculation of Jacobian-Inve	erse .	Jaco	obia	n-
Robot Path J	planning.				
UNIT IV	DYNAMIC MODELLING		()9	
Lagrangian	mechanics-Two-DOF manipulator-Lagrange-Euler formulation-Newt	ton-			
	lation–Inverse dynamics				
UNIT V	ROBOT CONTROL SYSTEM		()9	
Linear contr	ols chemes-joint actuators-decentralized PID control- Extend	ed	K	alm	an
Filter-comp	puted torque control-force control- hybrid position force control- Imp	edar	nce/	Tor	que
control.					•
	TOTAL :45 PERIODS				
OUTCOM		:			
1	Understand the components in Robotics				
2	Understand the basic terminology of Robotics				
3	Model the motion of Robots and analyze the workspace and trajector	ory I	Panr	ning	of
	robots				
4	Ability to develop application based Robots				
5	Formulate models for the control of mobile robots in various				
REFERENC	industrial applications				
<u>kefeke</u> nu <i>1</i> .	R.K.Mittal and I J Nagrath, "Robotics and Control", Tata MacGrav	\mathbf{u}, \mathbf{H}	11 1	Tour	th
1.		v 11l	ιι, Ι	011	111

	edition.
2.	Saeed B. Niku, "Introduction to Robotics ", Pearson Education, 2002
3.	<i>R.K.Mittal and I.J.Nagrath, Robotics and Control, Tata McGraw Hill, New Delhi, 4th Reprint, 2</i>
4.	JohnJ.Craig ,Introduction to Robotics Mechanics and Control, Third edition, Pearson Education2009.
5.	M.P.Groover, M.Weiss, R.N. Nageland N. G.Odrej, Industrial Robotics, McGraw- Hil Singapore, 1996

CO/P	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P10	P11	PSO1	PSO2	PSO3
0														
CO1	-	-	2	-	-	-	-	-	2	-	-	-	-	-
CO2	-	-	-	-	-	-	-	-	1	-	-	-	-	-
CO3	-	-	2	-	-	-	-	-	-	1	-	-	-	-
CO4	-	-	-	-	-	-	-	-	-	-	2	-	-	2
CO5	-	-	-	-	-	-	-	-	-	-	2	-	-	-

OPEN ELECTIVE COURSES

18PE	OE01	WASTE TO ENERGY L	Τ	P	C
		3	0	0	3
OBJE	CTIVES	5:			
•	To study	the various types of wastes			
•	To study	the pyrolysis, gasification and combustion process of biomass			
•	To study	the properties, features, and applications of biogas			
UNIT	I	INTRODUCTION TO ENERGY FROM WASTE			09
		vaste as fuel – Agro based, Forest residue, Industrial waste – MSW tors, gasifiers, digestors	/	Conve	ersion
UNIT	II	BIOMASS PYROLYSIS			09
		s, slow fast – Manufacture of charcoal – Methods – Yields and vrolytic oils and gases, yields and applications.	l ap	plicat	ion –
UNIT	III	BIOMASS GASIFICATION			09
construc	ction and	bed system – Downdraft and updraft gasifiers – Fluidized bed gasi operation – Gasifier burner arrangement for thermal heating – C electrical power – Equilibrium and kinetic consideration in gasifier	Gasi	fier e	ngine
anangen					
UNIT	IV	BIOMASS COMBUSTION Improved chullahs, types, some exotic designs – Fixed bed comb	oust	ors. T	09
UNIT D Biomass inclined Operation	IV s stoves – grate co on of all th	Improved chullahs, types, some exotic designs – Fixed bed comb mbustors, Fluidized bed combustors, – Design, construction ar ne above biomass combustors.			ypes, ion -
UNIT Biomass inclined Operation UNIT	IV s stoves – grate co on of all th V	Improved chullahs, types, some exotic designs – Fixed bed comb mbustors, Fluidized bed combustors, – Design, construction ar a above biomass combustors. BIOGAS	nd (operat	ypes, ion - 09
UNIT Biomass inclined Operatio UNIT Propertic energy s Biomass gasificat of bioga	IV s stoves – grate co on of all th V es of biog system – s conversi tion – Pyr as Plants	Improved chullahs, types, some exotic designs – Fixed bed comb mbustors, Fluidized bed combustors, – Design, construction ar ne above biomass combustors.	nd of nd s nd s class ion estio	tatus sificat – bio n – 7	ypes, ion - 09 - Bio ion - omass Fypes
UNIT Biomass inclined Operation UNIT Propertion energy s Biomass gasificat of bioga	IV s stoves – grate co on of all th V es of biog system – s conversi tion – Pyr as Plants	Improved chullahs, types, some exotic designs – Fixed bed comb mbustors, Fluidized bed combustors, – Design, construction and a above biomass combustors. BIOGAS as (Calorific value and composition) – Biogas plant technology and Design and constructional features – Biomass resources and their of the processes – Thermo chemical conversion – Direct combust olysis and liquefaction – biochemical conversion – anaerobic dige – Applications – Alcohol production from biomass – Bio diese	nd o nd s class ion estio 1 pr	tatus sificat – bic n – 7 oduct	ypes, ion - Bio ion – omass Types ion –
UNIT Biomass inclined Operation UNIT Propertion energy s Biomass gasificat of bioga Urban w	IV s stoves – grate co on of all th V es of biog system – 1 s converse tion – Pyr as Plants vaste to en	Improved chullahs, types, some exotic designs – Fixed bed combustors, Fluidized bed combustors, – Design, construction are above biomass combustors. BIOGAS as (Calorific value and composition) – Biogas plant technology and Design and constructional features – Biomass resources and their of the processes – Thermo chemical conversion – Direct combusts olysis and liquefaction – biochemical conversion – anaerobic dige – Applications – Alcohol production from biomass – Bio diese ergy conversion – Biomass energy programme in India.	nd o nd s class ion estio 1 pr	tatus sificat – bic n – 7 oduct	ypes, ion - Bio ion – omass Types ion –
UNIT Biomass inclined Operation UNIT Propertion energy s Biomass gasificat of bioga Urban w	IV s stoves – grate co on of all th V es of biog system – I s convers tion – Pyr as Plants vaste to en	Improved chullahs, types, some exotic designs – Fixed bed combustors, Fluidized bed combustors, – Design, construction are above biomass combustors. BIOGAS as (Calorific value and composition) – Biogas plant technology and Design and constructional features – Biomass resources and their of the processes – Thermo chemical conversion – Direct combust olysis and liquefaction – biochemical conversion – anaerobic dige – Applications – Alcohol production from biomass – Bio diese ergy conversion – Biomass energy programme in India. TOTAL :4	nd o nd s class ion estio 1 pr	tatus sificat – bic n – 7 oduct	ypes, ion - Bio ion – omass Types ion –
UNIT Biomass inclined Operation UNIT Propertion energy s Biomass gasificat of bioga Urban w OUTC 1 2	IV s stoves – grate co on of all th V es of biog system – 1 s convers tion – Pyr as Plants vaste to en COMES: Explain t Apply py	Improved chullahs, types, some exotic designs – Fixed bed combustors, Fluidized bed combustors, – Design, construction are above biomass combustors. BIOGAS as (Calorific value and composition) – Biogas plant technology and Design and constructional features – Biomass resources and their of the processes – Thermo chemical conversion – Direct combusts olysis and liquefaction – biochemical conversion – anaerobic dige – Applications – Alcohol production from biomass – Bio diese ergy conversion – Biomass energy programme in India. TOTAL :4 After completion of this course, the student will be able to: he types of wastes and its applications in energy conversion rolysis, combustion, gasification process of biomass to produce energy conversion.	nd s class ion l pr l5 F	tatus sificat – bic n – 5 oduct	ypes, ion - Bio ion – omass Types ion –
UNIT Biomass inclined Operation UNIT Propertion energy s Biomass gasificat of bioga Urban w OUTC 1 2	IV s stoves – grate co on of all th V es of biog system – 1 s convers tion – Pyr as Plants vaste to en COMES: Explain t Apply py	Improved chullahs, types, some exotic designs – Fixed bed combustors, Fluidized bed combustors, – Design, construction and above biomass combustors. BIOGAS as (Calorific value and composition) – Biogas plant technology and Design and constructional features – Biomass resources and their of the processes – Thermo chemical conversion – Direct combust olysis and liquefaction – biochemical conversion – anaerobic dige – Applications – Alcohol production from biomass – Bio diese ergy conversion – Biomass energy programme in India. TOTAL :4 After completion of this course, the student will be able to: the types of wastes and its applications in energy conversion	nd s class ion l pr l5 F	tatus sificat – bic n – 5 oduct	ypes, ion - Bio ion – omass Types ion –
UNIT Biomass inclined Operation UNIT Propertion energy s Biomass gasificat of bioga Urban w OUTC 1 2 3 REFE I	IV s stoves – grate co on of all th V es of biog system – I s convers tion – Pyr as Plants vaste to en COMES: Explain t Apply py Apply the RENCE	Improved chullahs, types, some exotic designs – Fixed bed combustors, Fluidized bed combustors, – Design, construction and above biomass combustors. BIOGAS as (Calorific value and composition) – Biogas plant technology and Design and constructional features – Biomass resources and their of the processes – Thermo chemical conversion – Direct combusts olysis and liquefaction – biochemical conversion – anaerobic dige – Applications – Alcohol production from biomass – Bio diese ergy conversion – Biomass energy programme in India. TOTAL :4 After completion of this course, the student will be able to: he types of wastes and its applications in energy conversion rolysis, combustion, gasification process of biomass to produce energy and other manufacturing process. S:	nd s class ion l pr l5 F	tatus sificat – bic n – 5 oduct	ypes, ion - Bio ion – omass Types ion –
UNIT Biomass inclined Operation UNIT Propertion energy s Biomass gasificat of bioga Urban w OUTC 1 2 3 REFE <i>1</i> .	IV s stoves – grate co on of all th V es of biog system – 1 s converse tion – Pyr as Plants vaste to en COMES: Explain t Apply py Apply the RENCE Non Con	Improved chullahs, types, some exotic designs – Fixed bed comb mbustors, Fluidized bed combustors, – Design, construction and the above biomass combustors. BIOGAS (as (Calorific value and composition) – Biogas plant technology and Design and constructional features – Biomass resources and their of the processes – Thermo chemical conversion – Direct combust olysis and liquefaction – biochemical conversion – anaerobic dige – Applications – Alcohol production from biomass – Bio diese ergy conversion – Biomass energy programme in India. TOTAL :4 After completion of this course, the student will be able to: the types of wastes and its applications in energy conversion rolysis, combustion, gasification process of biomass to produce energy e biogases to produce energy and other manufacturing process. S: <i>ventional Energy, Desai, Ashok V., Wiley Eastern Ltd., 1990.</i>	nd s nd s class ion estio 1 pr I5 H	tatus sificat – bic n – 5 oduct	ypes, ion - Bio ion - omass Types ion -
UNIT Biomass inclined Operation UNIT Propertice energy s Biomass gasificat of bioga Urban w OUTC 1 2 3 REFEI 1. 2	IV s stoves – grate co on of all th V es of biog system – I s convers tion – Pyr as Plants vaste to en COMES: Explain t Apply py Apply the RENCE Non Con Biogas T	Improved chullahs, types, some exotic designs – Fixed bed comb mbustors, Fluidized bed combustors, – Design, construction at the above biomass combustors. BIOGAS (Calorific value and composition) – Biogas plant technology at Design and constructional features – Biomass resources and their of the processes – Thermo chemical conversion – Direct combust olysis and liquefaction – biochemical conversion – anaerobic dige – Applications – Alcohol production from biomass – Bio diese ergy conversion – Biomass energy programme in India. TOTAL :4 After completion of this course, the student will be able to: the types of wastes and its applications in energy conversion rolysis, combustion, gasification process of biomass to produce energy e biogases to produce energy and other manufacturing process. S: <i>ventional Energy, Desai, Ashok V., Wiley Eastern Ltd., 1990.</i> <i>echnology - A Practical Hand Book - Khandelwal, K. C. and Mahdu</i>	nd s nd s class ion estio 1 pr I5 H	tatus sificat – bic n – 5 oduct	ypes, ion - Bio ion – omass Types ion –
UNIT Biomass inclined Operation UNIT Propertice energy s Biomass gasificat of bioga Urban w OUTC 1 2 3 REFEI 1. 2.	IV s stoves – grate co on of all th V es of biog system – I s convers tion – Pyr as Plants vaste to en COMES: Explain t Apply py Apply the RENCE Non Con Biogas T II, Tata M	Improved chullahs, types, some exotic designs – Fixed bed comb mbustors, Fluidized bed combustors, – Design, construction and the above biomass combustors. BIOGAS (as (Calorific value and composition) – Biogas plant technology and Design and constructional features – Biomass resources and their of the processes – Thermo chemical conversion – Direct combust olysis and liquefaction – biochemical conversion – anaerobic dige – Applications – Alcohol production from biomass – Bio diese ergy conversion – Biomass energy programme in India. TOTAL :4 After completion of this course, the student will be able to: the types of wastes and its applications in energy conversion rolysis, combustion, gasification process of biomass to produce energy e biogases to produce energy and other manufacturing process. S: <i>ventional Energy, Desai, Ashok V., Wiley Eastern Ltd., 1990.</i>	nd s class ion estio 1 pr I5 F ergy	tatus sificat – bic n – 1 oduct PERI	ypes, ion - 09 - Bio ion - omass Types ion - ODS
UNIT Biomass inclined Operation UNIT Propertion energy s Biomass gasificat of bioga Urban w OUTC 1 2 3 REFEI 1. 2. 3. 3. 4.	IV s stoves – grate co on of all th V es of biog system – 1 s converse tion – Pyr as Plants vaste to en COMES: Explain t Apply py Apply the RENCE Non Con Biogas T II, Tata M Food, Fe Biomass & Sons, L	Improved chullahs, types, some exotic designs – Fixed bed comb mbustors, Fluidized bed combustors, – Design, construction and the above biomass combustors. BIOGAS as (Calorific value and composition) – Biogas plant technology and Design and constructional features – Biomass resources and their of the processes – Thermo chemical conversion – Direct combusts olysis and liquefaction – biochemical conversion – anaerobic dige – Applications – Alcohol production from biomass – Bio diese ergy conversion – Biomass energy programme in India. TOTAL :4 After completion of this course, the student will be able to: the types of wastes and its applications in energy conversion rolysis, combustion, gasification process of biomass to produce energy e biogases to produce energy and other manufacturing process. S: <i>ventional Energy, Desai, Ashok V., Wiley Eastern Ltd., 1990.</i> <i>echnology - A Practical Hand Book - Khandelwal, K. C. and Mahdu</i> <i>ACGraw Hill Publishing Co. Ltd., 1983.</i> <i>ed and Fuel from Biomass, Challal, D. S., IBH Publishing Co. Pvt.</i> <i>Conversion and Technology, C. Y. WereKo-Brobby and E. B. Haga</i>	nd s classion estio l pr l5 H ergy	tatus sificat – bic n – 1 oduct PERI	ypes, ion - Bio ion – omass Types ion – ODS

CO/P	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P10	P11	PSO1	PSO2	PSO3
0														
CO1	-	-	-	2	-	-	-	2	-	-	-	-	-	-
CO2	-	-	-	-	-	-	-	-	2	-	-	1	-	-
CO3	-	2	-	-	-	-	-	1	-	-	-	-	-	-

18P	EOE02	MACHINE LEARNING AND AUTOMATION	L	T	Р	C
			3	0	0	3
OBJ	ECTIV					
•		stand the need for machine learning for various problem solvin	-	1	• .1	
•	To study machine	the various supervised, semi-supervised and unsupervised learning	nıng	algo	orithn	ns in
•		stand the latest trends in machine learning				
•		appropriate machine learning algorithms for problem solving				
- UNI	_	INTRODUCTION				09
		ems – Perspectives and Issues – Concept Learning – Version S	nace	es an	d	09
	0	inations – Inductive bias – Decision Tree learning – Represent				thm –
	istic Space	• •			8	
TINI	TI	NEURAL NETWORKS AND GENETIC ALGO	TTS	'HN	16	09
		Representation – Problems – Perceptrons – Multilayer Netwo				07
		gorithms – Advanced Topics – Genetic Algorithms – Hypothes				ch –
-	-	mming – Models of Evaluation and Learning.		1		
UNI	T III	BAYESIAN AND COMPUTATIONAL LEARNI	NG			09
Baye	s Theorem	n - Concept Learning - Maximum Likelihood - Minimum	Desc	cripti	ion L	ength
		yes Optimal Classifier - Gibbs Algorithm - Naïve Bayes Classifier				
		x – EM Algorithm – Probability Learning – Sample Compl	lexit	у —	Finit	e and
		esis Spaces – Mistake Bound Model				00
	ΊΤΙ	INSTANT BASED LEARNING				09
	earest Nei d Learning	ghbour Learning – Locally weighted Regression – Radial Basis	s Fu	nctic	ons – (Case
UNI	T V	ADVANCED LEARNING				09
		f Rules – Sequential Covering Algorithm – Learning Rule Set				
		Order Rules – Induction on Inverted Deduction – Inverting Res				lytica
		ect Domain Theories – Explanation Base Learning – FOCL Al		thm	—	
Reini	torcement	Learning – Task – Q-Learning – Temporal Difference Learnin	-	<u> </u>		
	FCOME	TOTA	L :4	45 F	'EKI	
00.		S: After completion of this course, the student will be able to:				
1	Different	iate between supervised, unsupervised, semi-supervised maching	ne le	earni	ng	
1	approach	es				
2	•••	he decision tree algorithm and indentity and overcome the prob	olem	of	verfi	tting
		nd apply the back propagation algorithm and genetic algorithm				00
3			18 10	vall	ous	
	problems					
4	Apply the	e Bayesian concepts to machine learning				
	Analyse a		ne ta	mes	of	
5		and suggest appropriate machine learning approaches for various	usiy	pes	UI	
5	problems	and suggest appropriate machine learning approaches for various	us ty	pes	01	

REF	FERENCES:
1	Tom M. Mitchell, —Machine Learning, McGraw-Hill Education (India) Private Limited, 2013.
2	Ethem Alpaydin, —Introduction to Machine Learning (Adaptive Computation and Machine Learning), The MIT Press 2004.
3	Stephen Marsland, —Machine Learning: An Algorithmic Perspective, CRC Press, 2009.
4	Carlos Puerto – Santana, "Industrial Applications of Machine Learning", CRC Press.
5	Tom M.Mitchell, "Machine Learning", McGraw-Hill Education (India) Private Limited

CO/P	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P10	P11	PSO1	PSO2	PSO3
0														
CO1	3	2	-	2	-	2	1	2	-	2	-	-	3	-
CO2	-	3	2	-	-	-	-	2	2	-	-	3	-	-
CO3	-	2	-	-	-	-	-	1	2	-	-	3	-	-
CO4	-	-	-	-	3	-	-	-	-	2	-	3	-	-
CO5	3	2	_	_	_	-	_	_	_	2	_	_	-	3

18PEOE03	SOFTWARE FOR CIRCUIT SIMULATION	L	T	P	C
		3	0	0	3
OBJECTIV					
-	de Knowledge about power electronic components.				
• To analys	se Various algorithms in power electronics systems.				
• To analys	se DC and AC circuits				
To provid	de student hand-on experience on MATLAB to implement var	ious	strate	egies.	
UNIT I	INTRODUCTION				09
Importance of power electron	simulation – General purpose circuit analysis – programs – M nic systems– Review of modeling of power electronic compone	letho ents a	d of and s	analy: systen	sis of ns.
UNIT II	ADVANCED TECHNIQUES IN SIMULATION				09
trends in comp	ithms for computing steady state solution in power electro outer simulation. PSPICE	onic s	syste	ms–F	uture 09
time domain -	Pspice overview – DC circuit Analysis – AC circuit analysis - Fourier Series and Harmonic components – An introductio	n to	Pspi		
	SFET and is model-Amplifiers and Oscillators-Nor linear De	vices	5.		1
UNIT IV	SFET and is model—Amplifiers and Oscillators—Nor linear De MATLAB	vices	5.		09
UNIT IV Introduction –	MATLAB function description – Data types–Tool boxes–Graphical Disp			ort and	
UNIT IV Introduction – Export of data	MATLAB function description – Data types–Tool boxes–Graphical Disp –Programs for solution of state equations.			ort and	d
UNIT IV Introduction – Export of data UNIT V	MATLAB function description – Data types–Tool boxes–Graphical Disp –Programs for solution of state equations. SIMULINK	olay :	Impo		d 09
UNIT IV Introduction – Export of data UNIT V	MATLAB function description – Data types–Tool boxes–Graphical Disp –Programs for solution of state equations. SIMULINK Graphical user Interface – Selection of objects – Blocks – 1	olay :	Impo		d 09
UNIT IV Introduction – Export of data UNIT V Introduction –	MATLAB function description – Data types–Tool boxes–Graphical Disp –Programs for solution of state equations. SIMULINK Graphical user Interface – Selection of objects – Blocks – 1	olay : ines	Impo Sim	ulatio	d 09 on -
UNIT IV Introduction – Export of data UNIT V Introduction – Application pr	MATLAB function description – Data types–Tool boxes–Graphical Disp –Programs for solution of state equations. SIMULINK Graphical user Interface – Selection of objects – Blocks – 1 rograms.	ines	Impo Sim	ulatio	d 09 on -
UNIT IV Introduction – Export of data UNIT V Introduction – Application pr	MATLAB function description – Data types–Tool boxes–Graphical Disp –Programs for solution of state equations. SIMULINK Graphical user Interface – Selection of objects – Blocks – 1 ograms. TOTA	ines	Impo Sim	ulatio	d 09 on -
UNIT IV Introduction – Export of data UNIT V Introduction – Application pr OUTCOME 1 Acquire 1	MATLAB function description – Data types–Tool boxes–Graphical Disp –Programs for solution of state equations. SIMULINK Graphical user Interface – Selection of objects – Blocks – 1 ograms. TOTA S: After completion of this course, the student will be able to:	ines	Impo Sim	ulatio	d 09 on -
UNIT IV Introduction – Export of data UNIT V Introduction – Application pr OUTCOME 1 Acquire 1 2 Learn Va	MATLAB function description – Data types–Tool boxes–Graphical Disp –Programs for solution of state equations. SIMULINK - Graphical user Interface – Selection of objects – Blocks – I ograms. TOTA S: After completion of this course, the student will be able to: Knowledge about the simulation of Power Electronics Devices rious advance techniques in Simulation.	ines	Impo Sim	ulatio	d 09 on -
UNIT IV Introduction – Export of data UNIT V Introduction – Application pr OUTCOME 1 Acquire 1 2 Learn Va 3 Learn abo	MATLAB function description – Data types–Tool boxes–Graphical Disp –Programs for solution of state equations. SIMULINK Graphical user Interface – Selection of objects – Blocks – 1 ograms. TOTA S: After completion of this course, the student will be able to: Knowledge about the simulation of Power Electronics Devices rious advance techniques in Simulation. but DC and AC circuits analysis using Pspice.	ines	Impo Sim	ulatio	d 09 on -
UNIT IV Introduction – Export of data UNIT V Introduction – Application pr OUTCOME 1 Acquire 1 2 Learn Va 3 Learn abo 4 Learn abo	MATLAB function description – Data types–Tool boxes–Graphical Disp –Programs for solution of state equations. SIMULINK Graphical user Interface – Selection of objects – Blocks – 1 ograms. TOTA S: After completion of this course, the student will be able to: Knowledge about the simulation of Power Electronics Devices rious advance techniques in Simulation. out DC and AC circuits analysis using Pspice. out DC and AC circuits analysis using Matlab.	ines	Impo Sim	ulatio	d 09 on -
UNIT IV Introduction – Export of data UNIT V Introduction – Application pr OUTCOME 1 Acquire 1 2 Learn Va 3 Learn about 1 4 Learn about 5	MATLAB function description – Data types–Tool boxes–Graphical Disp –Programs for solution of state equations. SIMULINK Graphical user Interface – Selection of objects – Blocks – 1 ograms. TOTA S: After completion of this course, the student will be able to: Knowledge about the simulation of Power Electronics Devices rious advance techniques in Simulation. out DC and AC circuits analysis using Pspice. out DC and AC circuits analysis using Matlab. Knowledge about Graphical user Interface	ines	Impo Sim	ulatio	d 09 on -
UNIT IV Introduction – Export of data UNIT V Introduction – Application pr OUTCOME 1 Acquire 1 2 Learn Va 3 Learn abo 4 Learn abo 5 Acquire 1 REFERENC Rajagor 1 Rajagor 1 Rajagor	MATLAB function description – Data types–Tool boxes–Graphical Disp Programs for solution of state equations. SIMULINK Graphical user Interface – Selection of objects – Blocks – 1 ograms. TOTA S: After completion of this course, the student will be able to: Knowledge about the simulation of Power Electronics Devices rious advance techniques in Simulation. out DC and AC circuits analysis using Pspice. out DC and AC circuits analysis using Matlab. Knowledge about Graphical user Interface CES: palan .V 'Computer aided analysis of power electronic systems 287.	ines L:4	Sim	enulation PERI	d 09 on -
UNIT IV Introduction – Export of data UNIT V Introduction – Application priving to the second secon	MATLAB function description – Data types–Tool boxes–Graphical Disp Programs for solution of state equations. SIMULINK Graphical user Interface – Selection of objects – Blocks – 1 ograms. TOTA S: After completion of this course, the student will be able to: Knowledge about the simulation of Power Electronics Devices rious advance techniques in Simulation. out DC and AC circuits analysis using Pspice. out DC and AC circuits analysis using Matlab. Knowledge about Graphical user Interface CES: palan .V 'Computer aided analysis of power electronic systems 287. own 'Microsim Pspice and circuit analysis' Prentice hall Inc,	ines L:4	Sim	enulation PERI	d 09 on -
UNIT IV Introduction – Export of data UNIT V Introduction – Application pr OUTCOME 1 Acquire 1 2 Learn Va 3 Learn about 1 4 Learn about 1 5 Acquire 1 7 Rajagop 1 Rajagop 2 John Keo 3 Orcad P	MATLAB function description – Data types–Tool boxes–Graphical Disp Programs for solution of state equations. SIMULINK Graphical user Interface – Selection of objects – Blocks – 1 ograms. TOTA S: After completion of this course, the student will be able to: Knowledge about the simulation of Power Electronics Devices rious advance techniques in Simulation. out DC and AC circuits analysis using Pspice. out DC and AC circuits analysis using Matlab. Knowledge about Graphical user Interface VES: palan .V 'Computer aided analysis of power electronic systems 287. own 'Microsim Pspice and circuit analysis" Prentice hall Inc, spice User manual,Orcad Corporation, 2006.	ines L:4	Sim	enulation PERI	d 09 on -
UNIT IV Introduction – Export of data UNIT V Introduction – Application prisition prisition prisition prisition prisition OUTCOME 1 Acquire 1 2 Learn Va 3 Learn about the state of the stat	MATLAB function description – Data types–Tool boxes–Graphical Disp Programs for solution of state equations. SIMULINK Graphical user Interface – Selection of objects – Blocks – 1 ograms. TOTA S: After completion of this course, the student will be able to: Knowledge about the simulation of Power Electronics Devices rious advance techniques in Simulation. out DC and AC circuits analysis using Pspice. out DC and AC circuits analysis using Matlab. Knowledge about Graphical user Interface CES: palan .V 'Computer aided analysis of power electronic systems 287. own 'Microsim Pspice and circuit analysis' Prentice hall Inc,	ines L:4	Sim	enulation PERI	d 09 on -

CO/P	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P10	P11	PSO1	PSO2	PSO3
0														
CO1	3	2	-	2	-	-	-	2	-	1	2	3	-	-
CO2	3	3	-	2	-	-	-	-	2	1	2	3	-	_
CO3	3	3	3	2	-	-	-	3	-	2	2	3	-	_
CO4	3	3	3	2	-	-	-	3	-	2	2	3	-	-
CO5	3	3	-	2	-	-	-	-	-	2	2	3	-	-

18PEOE04	POWER ELECTRONICS FOR SOLAR PHOTOVOLTAIC SYSTEMS	L	T	P	C
OBJECTIV	FS.	3	0	0	3
	stand PV cell and its characteristics.				
• To estimate	ate Sun's Solar Energy.				
• To under	stand Battery and its Application for PV.				
• To study	different Power converters for Solar PV.				
• To Know	the applications of solar PV.				
UNIT I	THE PV CELL AND CHARACTERISTICS				09
Circuit, Open temperature, T cells in series, modules in ser parallel, protec	rspective, PV cell characteristics and equivalent circuit, Mod Circuit and peak power parameters, Datasheet study, Cell e emperature effect calculation example, Fill factor, PV cell s Load line, Non-identical cells in series, protecting cells in ser ies, Simulation of cells in series, identical cells in parallel, N ting cells in parallel, interconnecting modules in parallel, Si	effici simu ries, lon-i	iency latio inte dent	7, Eff n. Ide rconn ical c	ect of entical ecting ells in
Darallel, Measu	ring I-V characteristics. SUN INCIDENT ENERGY ESTIMATION				09
UNIT III Sizing PV for a	nospheric effects, Clearness index. BATTERY FOR PV pplications without batteries, Batteries - Capacity, C-rate, Effic , Battery selection, other energy storage methods, Direct PV-b				
-	er, Battery charger - Understanding current control, slope com	pens	satio	n, Bat	teries
	ge equalization, Batteries in parallel				0.0
UNIT IV	POWER ELECTRONICS IN PV				09
size.MPPT con Buck-Boost co	sign, Load profile, Days of autonomy and recharge, Batt acept, Input impedance of DC-DC converters -Boost conver- nverter - PV and DC-DC interface.Impedance control method, Power slope methods, Hill climbing method. PV APPLICATIONS	ter,	Buck	conv	verter,
		Λ	light	0.00.0	
electrification p head, Numerica	nting systems – Solar street lighting systems - Solar lanterns – a process -Water pumping principle, Hydraulic energy and power al solution - Colebrook formula, Centrifugal pump, Reciprocati hydro application	r, To ing p	otal d oump	ynam , PV	ic
		IAL	· :45	PER	IODS
	S: After completion of this course, the student will be able to:				
	but the solar PV systems.				
	of the estimation of solar energy from Sun.				
3 Learn ab	out Batteries for PV systems.				

4	Acquire knowledge about the power electronics in PV system.
5	Acquire knowledge about PV Applications.
REI	FERENCES:
1	Chenming, H. and White, R.M., Solar Cells from B to Advanced Systems, McGraw Hill Book Co, 1983
2	Ruschenbach, HS, Solar Cell Array Design Hand Varmostrand, Reinhold, NY, 1980.
3	HP Garg and J Prakash: Solar Energy: Fundamentals and Applications, Tata McGraw Hill, 2010
4	Martin A. Green, Solar Cells Operating Principles, Technology, and System Applications Prentice- Hall, 2008.
5	Rai, G.D., Solar Energy Utilization, Khanna Publishers, Delhi, 2010.
6	Rashid .M. H "power electronics Hand book", Academic press, 2007.
7	Electrochemical technologies for energy storage and conversion, Ru-shiliu, Leizhang, Xueliang sun, Wiley publications, 2012.

CO/P	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P10	P11	PSO1	PSO2	PSO3
0														
CO1	3	2	-	2	-	-	-	2	-	-	2	3	3	-
CO2	3	2	-	2	-	-	-	1	-	-	-	3	3	-
CO3	-	2	-	-	-	-	-	1	-	-	-	3	3	-
CO4	3	1	-	-	-	-	-	1	-	-	2	3	3	-
CO5	3	1	-	-	-	-	-	2	-	-	3	3	3	-

18PEOE05	ELECTRIC VEHICLE L	Τ	Р	С
	3	0	0	3
OBJECTIVE	S:			
• To Under	stand basics of Electric Vehicles			
• To Under	stand different Electric drive motors.			
• To Know	about Energy storage methods.			
• To design	drive system			
• To unders	stand management of electrical energy in Electric vehicles			
UNIT I	INTRODUCTION			09
modern drive-tra	vehicles, social and environmental importance of electric vehi ains on energy supplies. Conventional Vehicles: Basics of vehic ource characterization, transmission characteristics, and mathema performance.	le po	erforn	nance
UNIT II	ELECTRIC DRIVES			09
Motor drives, C Permanent Mag	electric components used in electric vehicles, Configuration and onfiguration and control of Induction Motor drives, configuration net Motor drives, Configuration and control of Switch Reluctance	and	l cont	rol c
drive system effi	ciency.			
drive system effi				09
UNIT III	ENERGY STORAGE	ene	rgv si	
UNIT III Introduction to 1	ENERGY STORAGE Energy Storage Requirements in Electric Vehicles, Battery based			torag
UNIT III Introduction to 2 and its analysis,	ENERGY STORAGE Energy Storage Requirements in Electric Vehicles, Battery based Fuel Cell based energy storage and its analysis, Super Capacito	or ba	used e	torag
UNIT III Introduction to and its analysis, storage and its a	ENERGY STORAGE Energy Storage Requirements in Electric Vehicles, Battery based Fuel Cell based energy storage and its analysis, Super Capacito nalysis, Flywheel based energy storage and its analysis, Hybridizar	or ba	used e	torag
UNIT III Introduction to 2 and its analysis,	ENERGY STORAGE Energy Storage Requirements in Electric Vehicles, Battery based Fuel Cell based energy storage and its analysis, Super Capacito nalysis, Flywheel based energy storage and its analysis, Hybridizar	or ba	used e	torag merg feren
UNIT III Introduction to and its analysis, storage and its a energy storage d UNIT IV	ENERGY STORAGE Energy Storage Requirements in Electric Vehicles, Battery based Fuel Cell based energy storage and its analysis, Super Capacito nalysis, Flywheel based energy storage and its analysis, Hybridizar evices. DESIGN OF ELECTRIC DRIVE	or ba tion	of dif	torag mergg feren
UNIT III Introduction to 2 and its analysis, storage and its a energy storage d UNIT IV Matching the ele	ENERGY STORAGE Energy Storage Requirements in Electric Vehicles, Battery based Fuel Cell based energy storage and its analysis, Super Capacito nalysis, Flywheel based energy storage and its analysis, Hybridizar evices.	or ba tion	of dif	torag merg feren
UNIT III Introduction to and its analysis, storage and its a energy storage d UNIT IV Matching the elect the energy storage	ENERGY STORAGE Energy Storage Requirements in Electric Vehicles, Battery based Fuel Cell based energy storage and its analysis, Super Capacito nalysis, Flywheel based energy storage and its analysis, Hybridiza evices. DESIGN OF ELECTRIC DRIVE ectric machine, Sizing the propulsion motor, sizing the power electron	or ba tion	of dif	torag nerg feren 09 ectin
UNIT III Introduction to and its analysis, storage and its a energy storage d UNIT IV Matching the elect the energy storage UNIT V Introduction to e	ENERGY STORAGE Energy Storage Requirements in Electric Vehicles, Battery based Fuel Cell based energy storage and its analysis, Super Capacito nalysis, Flywheel based energy storage and its analysis, Hybridizate evices. DESIGN OF ELECTRIC DRIVE extric machine, Sizing the propulsion motor, sizing the power electric ge technology, Communications, supporting subsystems. ENERGY MANAGEMENT AND STRATEGIES mergy management strategies used in hybrid and electric vehicles,	or bation	sed e of dif es, sel	torag inerg feren 09 ectin 09 ion c
UNIT III Introduction to and its analysis, storage and its a energy storage d UNIT IV Matching the elect the energy storage UNIT V Introduction to e	ENERGY STORAGE Energy Storage Requirements in Electric Vehicles, Battery based Fuel Cell based energy storage and its analysis, Super Capacito nalysis, Flywheel based energy storage and its analysis, Hybridizatevices. DESIGN OF ELECTRIC DRIVE extric machine, Sizing the propulsion motor, sizing the power electric technology, Communications, supporting subsystems. ENERGY MANAGEMENT AND STRATEGIES	or bation	sed e of dif es, sel	torag inerg feren 09 ectin 09 ion c
UNIT III Introduction to and its analysis, storage and its a energy storage d UNIT IV Matching the electhe energy storage UNIT V Introduction to edifferent energy implementation	ENERGY STORAGE Energy Storage Requirements in Electric Vehicles, Battery based Fuel Cell based energy storage and its analysis, Super Capacito nalysis, Flywheel based energy storage and its analysis, Hybridizate evices. DESIGN OF ELECTRIC DRIVE extric machine, Sizing the propulsion motor, sizing the power electric getechnology, Communications, supporting subsystems. ENERGY MANAGEMENT AND STRATEGIES energy management strategies used in hybrid and electric vehicles, management strategies, comparison of different energy management strategies.	or bation	sed e of dif es, sel	torag inerg feren 09 ectin 09 ion c
UNIT III Introduction to and its analysis, storage and its a energy storage d UNIT IV Matching the electhe energy storage UNIT V Introduction to edifferent energy implementation	ENERGY STORAGE Energy Storage Requirements in Electric Vehicles, Battery based Fuel Cell based energy storage and its analysis, Super Capacito nalysis, Flywheel based energy storage and its analysis, Hybridizate evices. DESIGN OF ELECTRIC DRIVE extric machine, Sizing the propulsion motor, sizing the power electric ge technology, Communications, supporting subsystems. ENERGY MANAGEMENT AND STRATEGIES mergy management strategies used in hybrid and electric vehicles, management strategies, comparison of different energy management strategies. esign of a Battery Electric Vehicle (BEV).	or ba tion ronic class ment	sificat	torag inerg iferer 09 ectin 09 ion c egies
UNIT III Introduction to and its analysis, storage and its a energy storage d UNIT IV Matching the electhe energy storage UNIT V Introduction to edifferent energy implementation	ENERGY STORAGE Energy Storage Requirements in Electric Vehicles, Battery based Fuel Cell based energy storage and its analysis, Super Capacito nalysis, Flywheel based energy storage and its analysis, Hybridizate evices. DESIGN OF ELECTRIC DRIVE extric machine, Sizing the propulsion motor, sizing the power electric getechnology, Communications, supporting subsystems. ENERGY MANAGEMENT AND STRATEGIES energy management strategies used in hybrid and electric vehicles, management strategies, comparison of different energy management strategies.	or ba tion ronic class ment	sificat	toragenerg ferer 09 ectin 09 ion c
UNIT III Introduction to and its analysis, storage and its a energy storage d UNIT IV Matching the elect the energy storag UNIT V Introduction to e different energy implementation Case Studies: De OUTCOMES	ENERGY STORAGE Energy Storage Requirements in Electric Vehicles, Battery based Fuel Cell based energy storage and its analysis, Super Capacito nalysis, Flywheel based energy storage and its analysis, Hybridizate evices. DESIGN OF ELECTRIC DRIVE extric machine, Sizing the propulsion motor, sizing the power electric ge technology, Communications, supporting subsystems. ENERGY MANAGEMENT AND STRATEGIES mergy management strategies used in hybrid and electric vehicles, management strategies, comparison of different energy management strategies. esign of a Battery Electric Vehicle (BEV). TOTAL Capacity After completion of this course, the student will be able to:	or ba tion ronic class ment	sificat	torag inerg iferer 09 ectin 09 ion c egies
UNIT III Introduction to and its analysis, storage and its a energy storage d UNIT IV Matching the elect the energy storag UNIT V Introduction to e different energy implementation Case Studies: De OUTCOMES	ENERGY STORAGE Energy Storage Requirements in Electric Vehicles, Battery based Fuel Cell based energy storage and its analysis, Super Capacito nalysis, Flywheel based energy storage and its analysis, Hybridizate evices. DESIGN OF ELECTRIC DRIVE extric machine, Sizing the propulsion motor, sizing the power electric ge technology, Communications, supporting subsystems. ENERGY MANAGEMENT AND STRATEGIES energy management strategies used in hybrid and electric vehicles, management strategies, comparison of different energy management strategies. esign of a Battery Electric Vehicle (BEV).	or ba tion ronic class ment	sificat	torag inerg feren 09 ectin 09 ion c egies
UNIT III Introduction to 2 and its analysis, storage and its a energy storage d UNIT IV Matching the ele the energy storag UNIT V Introduction to e different energy implementation Case Studies: De OUTCOMES 1 Understat	ENERGY STORAGE Energy Storage Requirements in Electric Vehicles, Battery based Fuel Cell based energy storage and its analysis, Super Capacito nalysis, Flywheel based energy storage and its analysis, Hybridizate evices. DESIGN OF ELECTRIC DRIVE extric machine, Sizing the propulsion motor, sizing the power electric ge technology, Communications, supporting subsystems. ENERGY MANAGEMENT AND STRATEGIES mergy management strategies used in hybrid and electric vehicles, management strategies, comparison of different energy management strategies. esign of a Battery Electric Vehicle (BEV). TOTAL Capacity After completion of this course, the student will be able to:	ronic class ment	sificat PER	torag inerg feren 09 ectin ion o egies
UNIT IIIIntroduction to 1and its analysis,storage and its aenergy storage dUNIT IVMatching the electthe energy storageUNIT VIntroduction to edifferent energyimplementation 1Case Studies: De1Understar2Acquire F	ENERGY STORAGE Energy Storage Requirements in Electric Vehicles, Battery based Fuel Cell based energy storage and its analysis, Super Capacitor nalysis, Flywheel based energy storage and its analysis, Hybridizate evices. DESIGN OF ELECTRIC DRIVE extric machine, Sizing the propulsion motor, sizing the power electric ge technology, Communications, supporting subsystems. ENERGY MANAGEMENT AND STRATEGIES energy management strategies used in hybrid and electric vehicles, management strategies, comparison of different energy management strategies. esign of a Battery Electric Vehicle (BEV). TOTAL Capacity After completion of this course, the student will be able to: nd the operation of Electric Vehicles	ronic class ment	sificat PER	torag inerg feren 09 ectin 09 ion c egies
UNIT III Introduction to 1 and its analysis, storage and its a energy storage d UNIT IV Matching the electhe energy storage UNIT V Introduction to e different energy implementation Case Studies: De 1 Understat 2 Acquire H 3 Learn above	ENERGY STORAGE Energy Storage Requirements in Electric Vehicles, Battery based Fuel Cell based energy storage and its analysis, Super Capacito nalysis, Flywheel based energy storage and its analysis, Hybridizat evices. DESIGN OF ELECTRIC DRIVE extric machine, Sizing the propulsion motor, sizing the power electric technology, Communications, supporting subsystems. ENERGY MANAGEMENT AND STRATEGIES energy management strategies used in hybrid and electric vehicles, management strategies, comparison of different energy management strategies, comparison of different energy management strategies. Essign of a Battery Electric Vehicle (BEV). TOTAL After completion of this course, the student will be able to: ad the operation of Electric Vehicles Knowledge on various Energy storage technologies for Electric Vehicle	ronic class ment	sificat PER	torag inerg iferer 09 ectin 09 ion c egies
UNIT IIIIntroduction to 1and its analysis,storage and its aenergy storage dUNIT IVMatching the electthe energy storageUNIT VIntroduction to edifferent energyimplementation 1Case Studies: De1Understar2Acquire I34Understar	ENERGY STORAGE Energy Storage Requirements in Electric Vehicles, Battery based Fuel Cell based energy storage and its analysis, Super Capacito nalysis, Flywheel based energy storage and its analysis, Hybridizat evices. DESIGN OF ELECTRIC DRIVE cetric machine, Sizing the propulsion motor, sizing the power electric ge technology, Communications, supporting subsystems. ENERGY MANAGEMENT AND STRATEGIES mergy management strategies used in hybrid and electric vehicles, management strategies, comparison of different energy management strategies, comparison of different energy management strategies. Esign of a Battery Electric Vehicle (BEV). TOTAL After completion of this course, the student will be able to: and the operation of Electric Vehicles Knowledge on various Energy storage technologies for Electric Vehicule study of energy vehicles.	ronic class ment	sificat PER	torag inerg iferer 09 ectin 09 ion c egies
UNIT IIIIntroduction to 1and its analysis,storage and its aenergy storage dUNIT IVMatching the electthe energy storageUNIT VIntroduction to edifferent energyimplementation 1Case Studies: De1Understar2Acquire I34Understar	ENERGY STORAGE Energy Storage Requirements in Electric Vehicles, Battery based Fuel Cell based energy storage and its analysis, Super Capacito nalysis, Flywheel based energy storage and its analysis, Hybridizat evices. DESIGN OF ELECTRIC DRIVE cetric machine, Sizing the propulsion motor, sizing the power electric te technology, Communications, supporting subsystems. ENERGY MANAGEMENT AND STRATEGIES nergy management strategies used in hybrid and electric vehicles, management strategies, comparison of different energy manage sisues of energy management strategies. Exign of a Battery Electric Vehicle (BEV). TOTAL C. After completion of this course, the student will be able to: nd the operation of Electric Vehicles Knowledge on various Energy storage technologies for Electric Vehicle the need for energy vehicles. D. Management.	ronic class ment	sificat PER	toragenerg ferer 09 ectin 09 ion c
UNIT III Introduction to 1 and its analysis, storage and its a energy storage d UNIT IV Matching the elect the energy storage UNIT V Introduction to e different energy implementation Case Studies: De OUTCOMES 1 Understan 2 Acquire H 3 Learn abo 4 Understan 5 Understan	ENERGY STORAGE Energy Storage Requirements in Electric Vehicles, Battery based Fuel Cell based energy storage and its analysis, Super Capacito nalysis, Flywheel based energy storage and its analysis, Hybridizat evices. DESIGN OF ELECTRIC DRIVE cetric machine, Sizing the propulsion motor, sizing the power electric te technology, Communications, supporting subsystems. ENERGY MANAGEMENT AND STRATEGIES nergy management strategies used in hybrid and electric vehicles, management strategies, comparison of different energy manage sisues of energy management strategies. Exign of a Battery Electric Vehicle (BEV). TOTAL C. After completion of this course, the student will be able to: nd the operation of Electric Vehicles Knowledge on various Energy storage technologies for Electric Vehicle the need for energy vehicles. D. Management.	ronic class ment icles	es, sel	toragenerge feren 09 ectin 09 ion o regie

	Electric and Hybrid Vehicles" by Tom Denton Taylor and Francis, 2016.
3	MehrdadEhsani, Yimi Gao, Sebastian E. Gay, Ali Emadi, Modern Electric, Hybrid Electric and Fuel Cell Vehicles: Fundamentals, Theory and Design, CRC Press, 2004.
5	and Fuel Cell Vehicles: Fundamentals, Theory and Design, CRC Press, 2004.
4	James Larminie, John Lowry, Electric Vehicle Technology Explained, Wiley, 2003.
5	<i>"Build Your Own Electric Vehicle" by Seth Leitman and Bob Brant Mccraw Hills – MCGRA 2nd Edition, 2013</i>
5	MCGRA 2 nd Edition, 2013
6	"Introduction to Hybrid Vehicle System Modeling and Control" by Wei Liu John Willy &
0	Sons.
7	"Advanced Electric Drive Vehicles (Energy, Power Electronics, and Machines)" by Ali
/	Emadi CRC Press, 2015.

CO/P	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P10	P11	PSO1	PSO2	PSO3
0														
CO1	3	3	-	2	-	-	-3	2	-	2	-	-	3	-
CO2	3	2	-	-	-	-	-	-	2	2	-	1	3	2
CO3	3	2	-	-	-	-	3	1	-	2	-	-	3	-
CO4	3	2	-	-	-	-	-	-	-	1	-	-	3	2
CO5	3	3	-	-	-	-	2	-	-	2	-	-	3	1

AUDIT COURSES (I&II)

18ZAC001	DISASTER MANAGEMENT	L	Τ	Р	С
		2	0	0	0
OBJECTIV	ES:				
• To under	stand various disasters, hazards and its effects.				
To moni	or and manage the disasters				
• To prepa	re risk assessment report				
• To under	stand the various methods to mitigate the disasters.				
UNIT I	INTRODUCTION TO DISASTERS				6
and manmade prone to flood	ition, factors and significance – Difference between hazard an lisasters: Difference, nature, types and magnitude – Study of so and droughts – Landslides and avalanches – Areas prone to ecial reference to tsunami – Post-disaster diseases and epidemi REPERCUSSIONS OF DISASTERS AND HAZA	eism cycl cs	ic zo onic	nes –	Areas
Economic dan disasters: Ear Landslides and	hage – Loss of human and animal life – Destruction of e hquakes, Volcanisms, Cyclones, Tsunamis, Floods, Drou Avalanches – Man-made disaster: Nuclear reactor meltdown, pills, Outbreaks of disease and Epidemics, War and conflicts.	cosy ghts	stem and	d Fai	latural nines,
UNIT III	DISASTER PREPAREDNESS AND MANAGEM	1EN	T		6
application of	Monitoring of phenomena triggering a disaster or hazard – remote sensing – Data from Meteorological and other agenc and Community preparedness.				
UNIT IV	RISK ASSESSMENT				6
situation – Tec	Concept and elements – Disaster risk reduction – Global and Maniques of risk assessment – Global co- operation in risk assessment – Strategies for survival				
UNIT V	DISASTER MITIGATION				6
U	ncept and strategies of disaster mitigation – Emerging tre ation and Non-structural mitigation – Programs of disaster mit	igatio	on in	India	
0.1150.03.63			:30	PER	IODS
	S: After completion of this course, the student will be able to:			1	
	rate a critical understanding of key concepts in disaster risk rec rian response.	lucti	on a	na	
	disaster risk reduction and humanitarian response policy and p	oracti	ce fi	om	
² multiple					
2multiple3Developspecific	an understanding of standards of humanitarian response and prypes of disasters and conflict situations.				
2 multiple 3 Develop specific Understa	an understanding of standards of humanitarian response and pr	oache	es, p	annin	g and

1	R. Nishith, Singh AK, "Disaster Management in India: Perspectives, issues and strategies"
1.	New Royal book Company.
c	Sahni, Pardeep Et.Al. (Eds.), "Disaster Mitigation Experiences And Reflections", Prentice Hall Of India, New Delhi.
Ζ.	Hall Of India, New Delhi.
	Goel S. L., Disaster Administration And Management Text And Case Studies", Deep
3.	&Deep
	Publication Pvt. Ltd., New Delhi.

CO/P	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P10	P11	PSO1	PSO2	PSO3
0														
CO1	3	-	-	2	-	-	-	2	-	-	-	-	-	-
CO2	-	-	-	-	-	3	-	-	2	-	-	-	-	-
CO3	-	2	-	-	-	-	-	1	-	-	-	-	-	-
CO4	-	-	-	-	-	-	-	-	-	3	-	-	-	-

18Z	AC002	ENGLISH FOR RESEARCH PAPER WRITING	T		P	C
OBJ	ECTIV	ES:	0		0	0
•		nd that how to improve your writing skills and level of readability				
•		but what to write in each section				
•		nd the skills needed when writing a Title				
•		e good quality of paper at very first-time submission				
-	NIT I	PLANNING AND PREPARATION				6
Sente	nces, Beir	reparation, Word Order, Breaking up long sentences, Structuring g Concise and Removing Redundancy, Avoiding Ambiguity and V		_		
		RESEARCH FINDINGS				6
	• •	Did What, Highlighting Your Findings, Hedging and Criticising, F	Para	ph	irasin	ig an
	IT III	tions of a Paper, Abstracts. Introduction LITERATURE REVIEW				6
UN						U
Revie	w of the I	iterature Methods Results Discussion Conclusions The Final Ch	neck			
		iterature, Methods, Results, Discussion, Conclusions, The Final Ch	neck	ζ.		6
UN	IT IV	PAPER WRITING SKILLS-I			strac	6
UN key sl	IT IV kills are r are need		an A	٩b		t, ke
UN key sl skills Litera UN	IT IV kills are r are need ture, IT V	PAPER WRITING SKILLS-I eeded when writing a Title, key skills are needed when writing a ed when writing an Introduction, skills needed when writing a PAPER WRITING SKILLS-II	an A Re	Ab evi	iew o	t, ke of th
UN key sl skills Litera UN skills neede	IT IV kills are r are need ture, NT V are neede	PAPER WRITING SKILLS-I eeded when writing a Title, key skills are needed when writing a ed when writing an Introduction, skills needed when writing a PAPER WRITING SKILLS-II ed when writing the Methods, skills needed when writing the Re- writing the Discussion, skills are needed when writing the Cor- ensure paper is as good as it could possibly be the first- time subm	an A Re esul	Ab evi ts, isie	ew o , skil ons	t, ke of th 6 ls ar usefu
UN key sl skills Litera UN skills neede phrase	IT IV kills are r are need ture, NT V are need at when we es, how to	PAPER WRITING SKILLS-I eeded when writing a Title, key skills are needed when writing a ed when writing an Introduction, skills needed when writing a PAPER WRITING SKILLS-II ed when writing the Methods, skills needed when writing the Re- writing the Discussion, skills are needed when writing the Con- ensure paper is as good as it could possibly be the first- time subm TOTAL	an A Re esul	Ab evi ts, isie	ew o , skil ons	t, ke of th 6 ls ar usefu
UN key sl skills Litera UN skills neede phrase	IT IV kills are r are need ture, IT V are need of when we es, how to	PAPER WRITING SKILLS-I eeded when writing a Title, key skills are needed when writing a ed when writing an Introduction, skills needed when writing a PAPER WRITING SKILLS-II ed when writing the Methods, skills needed when writing the Reverting the Discussion, skills are needed when writing the Corrensure paper is as good as it could possibly be the first- time submation TOTAI S: After completion of this course, the student will be able to:	an A Re esul	Ab evi ts, isie	ew o , skil ons	t, ke of th 6 ls ar usefu
UN key sl skills Litera UN skills neede phrase OUT	IT IV kills are r are need ture, IT V are need of when we es, how to CCOME Write the	PAPER WRITING SKILLS-I eeded when writing a Title, key skills are needed when writing a ed when writing an Introduction, skills needed when writing a PAPER WRITING SKILLS-II ed when writing the Methods, skills needed when writing the Re- writing the Discussion, skills are needed when writing the Cor- ensure paper is as good as it could possibly be the first- time subm TOTAL S: After completion of this course, the student will be able to: technical report, research proposal without grammatical errors,	an A Re esul	Ab evi ts, isie	ew o , skil ons	t, ke of th 6 ls ar usefu
UN key sl skills Litera UN skills neede phrase OUT 1 2	IT IV kills are r are need ture, IT V are need of when y es, how to CCOME Write the Write the	PAPER WRITING SKILLS-I eeded when writing a Title, key skills are needed when writing a ed when writing an Introduction, skills needed when writing a PAPER WRITING SKILLS-II ed when writing the Methods, skills needed when writing the Re- writing the Discussion, skills are needed when writing the Cor- ensure paper is as good as it could possibly be the first- time subm TOTAL S: After completion of this course, the student will be able to: technical report, research proposal without grammatical errors, literature review on specific research topic	an A Re esul	Ab evi ts, isie	ew o , skil ons	t, ke of th 6 ls ar usefu
UN key sl skills Litera UN skills neede phrase OUT 1 2 3	IT IV kills are r are need ture, IT V are need of when we es, how to COME Write the Write the Write the	PAPER WRITING SKILLS-I eeded when writing a Title, key skills are needed when writing a ed when writing an Introduction, skills needed when writing a PAPER WRITING SKILLS-II ed when writing the Methods, skills needed when writing the Re- writing the Discussion, skills are needed when writing the Cor- ensure paper is as good as it could possibly be the first- time subm TOTAL S: After completion of this course, the student will be able to: technical report, research proposal without grammatical errors, literature review on specific research topic research paper for the proposal	an A Re esul	Ab evi ts, isie	ew o , skil ons	t, ke of th 6 ls ar usefu
UN key sl skills Litera UN skills neede phrase OUT 1 2 3 REF	IT IV kills are r are need ture, IT V are need of when v es, how to CCOME Write the Write the Write the ERENC	PAPER WRITING SKILLS-I eeded when writing a Title, key skills are needed when writing a ed when writing an Introduction, skills needed when writing a PAPER WRITING SKILLS-II ed when writing the Methods, skills needed when writing the Re- writing the Discussion, skills are needed when writing the Cor- ensure paper is as good as it could possibly be the first- time subm TOTAL S: After completion of this course, the student will be able to: technical report, research proposal without grammatical errors, literature review on specific research topic research paper for the proposal EES:	an Z Re esul nclu issid z :3	Ab evi ts, isio 0 1	ew (, skil ons T	t, ke of th 6 ls ar usefu
UN key sl skills Litera UN skills neede phrase OUT 1 2 3 REF 1.	IT IV kills are r are need ture, IT V are need of when we es, how to COME Write the Write the Write the ERENC Goldbort	PAPER WRITING SKILLS-I eeded when writing a Title, key skills are needed when writing a ed when writing an Introduction, skills needed when writing a PAPER WRITING SKILLS-II ed when writing the Methods, skills needed when writing the Rewriting the Discussion, skills are needed when writing the Conensure paper is as good as it could possibly be the first- time subm TOTAI S: After completion of this course, the student will be able to: technical report, research proposal without grammatical errors, literature review on specific research topic research paper for the proposal ES: <i>R</i> (2006) Writing for Science, Yale University Press (available on	an A Re esul nclu issic z :30	Ab evi ts, isic on 0 1	ew of the second	t, ke of th 6 ls ar usefu IOD:
UN key sl skills Litera UN skills neede phrase OUT 1 2 3 REF	IT IV kills are r are need ture, NT V are need of when es, how to CCOME Write the Write the Write the ERENC Goldbort Day R (2	PAPER WRITING SKILLS-I eeded when writing a Title, key skills are needed when writing a ed when writing an Introduction, skills needed when writing a PAPER WRITING SKILLS-II ed when writing the Methods, skills needed when writing the Re- writing the Discussion, skills are needed when writing the Cor- ensure paper is as good as it could possibly be the first- time subm TOTAL S: After completion of this course, the student will be able to: technical report, research proposal without grammatical errors, literature review on specific research topic research paper for the proposal EES:	an A Re esul nclu issid a :3 Gov	Ab evi ts, ision 0 1	iew of skil ons per state per state	t, ke of th 6 ls ar usefu IODS Docks) ess

CO/P	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P10	P11	PSO1	PSO2	PSO3
0														
CO1	-	-	-	2	-	-	-	-	-	-	-	-	-	-
CO2	-	-	-	-	2	-	-	-	-	-	-	-	-	-
CO3	-	-	-	-	-	-	-	-	1	-	-	-	-	-

18ZA	C003	RESEARCH METHODOLOGY AND IPR	L	Τ	Р	С
			2	0	0	0
<u>OBJE</u>		ES:				
•	To ide	ntify the problems and solutions for research in various areas				
•	To pre	pare literature survey and write thesis report				
•	To pre	pare research proposal in various agencies like DST, AICTE e	tc,			
•	To uno	lerstand the Intellectual property rights and patenting				
•	To uno	lerstand the patent rights and its developments				
UNI	ΠΙ	RESEARCH PROBLEM AND SOLUTION				6
researcl problen	h proble n – Apj	earch problem – Sources of research problem – Criteria Chan m – Errors in selecting a research problem – Scope and of proaches of investigation of solutions for research problem pretation – Necessary instrumentations	bject	ives	of re	searc
UNI		LITERATURE SURVEY AND WRITING				6
	ve litera al writin	ture studies approaches – Analysis – Plagiarism – Researcl g.	n etł	nics	– Eff	ective
UNI	ГШ	RESEARCH PROPOSAL				6
		port and Paper Developing a Research Proposal – Format of r	esea	rch p	propos	sal –
-		d assessment by a review committee.				
UNI	ΓΙ	NATURE OF INTELLECTUAL PROPERTY				6
research	h – ini	ns – Trade and Copyright – Process of Patenting and Develop novation – patenting – development – International Sce Intellectual Property – Procedure for grants of patents – Patent	nari	o: Ii	nterna	tiona
UNI	- •	PATENT RIGHTS AND NEW DEVELOPMENT				6
– Geog	graphical	Rights – Licensing and transfer of technology – Patent inform Indications – Administration of Patent System –IPR of B ware etc – Traditional knowledge – Case Studies: IPR and IITs	iolog	gical	Syste	ems -
	OME		IAL	4:30	PER	
1		S: After completion of this course, the student will be able to: stand research problem formulation.				
$\frac{1}{2}$		ze research related information				
3	-	stand that tomorrow world will be ruled by ideas, concept, and	crea	ativit	y.	
4	1	stand that IPR would require in growth of individuals & nation			5	
5	Under	stand the importance of IPR protection.				
	RENC					
	Stuart	Melville and Wayne Goddard, "Research methodology:	an i	ntro	ductio	on fo
	1					
1.		e & engineering students'"				
<i>1</i> . 2.	Wayne					1 0

4.	Halbert, "Resisting Intellectual Property", Taylor & Francis Ltd ,2007.
5.	Mayall, "Industrial Design", McGraw Hill, 1992.
6.	Niebel, "Product Design", McGraw Hill, 1974.
7.	Asimov, "Introduction to Design", Prentice Hall, 1962.
8.	Robert P. Merges, Peter S. Menell, Mark A. Lemley, "Intellectual Property in New
0.	Technological Age", 2016.
9.	T. Ramappa, "Intellectual Property Rights Under WTO", S. Chand, 2008

CO/P	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P10	P11	PSO1	PSO2	PSO3
0														
CO1	-	-	2	-	-	-	-	2	-	-	-	-	-	3
CO2	-	-	-	2	-	-	-	-	2	-	-	-	-	-
CO3	-	2	-	-	-	3	-	1	-	-	-	-	2	_
CO4	-	-	-	-	-	-	-	-	-	2	-	-	-	-
CO5	-	-	_	_	-	_	-	-	_	-	1	-	-	_

18ZAC004	SANSKRIT FOR TECHNICAL KNOWLEDGE	L	T	Р	C
		2	0	0	0
OBJECTIV	ES:				
• To get a	working knowledge in illustrious Sanskrit, the scientific langu	age i	n the	worl	d
• Learning	of Sanskrit to improve brain functioning				
	of Sanskrit to develop the logic in mathematics, science	e &	oth	er su	bject
enhancin	g the memory power				Ū
	ineering scholars equipped with Sanskrit will be able to ge from ancient literature	o ex	plore	e the	hug
UNIT I	BASICS				6
Alphabets in Sa	anskrit – Past/Present/Future Tense,				<u> </u>
UNIT II	SENTENCES				6
Simple Sentence	es				1
UNIT III	ROOTS				6
Order – Introdu	iction of roots				
UNIT IV	TECHNICAL INFORMATION				6
Technical infor	mation about Sanskrit Literature				<u> </u>
UNIT V	SANSKRIT IN ENGINEERING				6
Technical conc	epts of Engineering-Electrical, Mechanical, Architecture, Math	emat	ics		
	TO	TAL	:30	PER	IOD
OUTCOME	S: After completion of this course, the student will be able to				
	nding basic Sanskrit language				
	anskrit literature about science & technology can be understood				
	ogical language will help to develop logic in students				
REFERENC					
	vas, "Abhyaspustakam", Samskrita-Bharti Publication, New L				
	a Deeksha-Vempati Kutumbshastri, Rashtriya Sanskrit Sansth	anan	ı, "T	each	
Yourself	Sanskrit", New Delhi Publication oni, "India's Glorious Scientific Tradition" Ocean books (P) I			N 11	
3. Suresh S			A /	13.11.	-

CO/P	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P10	P11	PSO1	PSO2	PSO3
0														
CO1	3	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	-	-	-	-	2	-	-	-	-	-	-	-	-	-
CO3	-	-	-	-	-	-	-	-	1	-	-	-	-	-

18ZAC005	VALUE EDUCATION L	_		P	C
OBJECTIV	FS.	(<u> </u>	0	0
	stand value of education and self- development				
	e good values in students				
	about the importance of character				
UNIT I	ETHICS				6
	development – Social values and individual attitudes. Work eth foral and non- moral valuation. Standards and principles. Value ju				vision
UNIT II	ELEMENTS OF VALUE EDUCATION				6
1	ultivation of values. Sense of duty. Devotion, Self-reliance. Confid		,		
	Truthfulness, Cleanliness. Honesty, Humanity. Power of faith,	Na	atic	onal	Unity
Patriotism. Lov					[
UNIT III	PERSONALITY DEVELOPMENT				6
	Behavior Development - Soul and Scientific attitude. Positive T	hinł	cin	g. Int	egrity
and discipline.					-
UNIT IV	DIFFERENT VALUES				6
Punctuality, Lo	we and Kindness. Avoid fault Thinking. Free from anger, D	igni	ty	of l	abour
	erhood and religious tolerance. True friendship. Happiness Vs s			0	
	self-destructive habits. Association and Cooperation. Doing best	for	sav	ing r	ature
UNIT V	CHARACTER AND COMPETENCE				6
	Competence -Holy books vs Blind faith. Self-management a				
	carnation. Equality, Nonviolence, Humility, Role of Women.	All	rel	ligior	is and
same message.	Mind your Mind, Self-control. Honesty, Studying effectively		10		
	ТОТА	L ::	<u>30</u> .	PER	IOD
	S: After completion of this course, the student will be able to:				
	e knowledge of self-development				
	importance of Human values				
· ·	ne overall personality				
REFERENC					
1. Chakrobe	orty, S.K. "Values and Ethics for organizations Theory and practi	ce"	, C	Ixford	d

CO/P	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P10	P11	PSO1	PSO2	PSO3
0														
CO1	-	-	-	-	-	-	-	-	3	-	-	-	-	-
CO2	-	-	-	-	-	-	-	-	-	2	-	-	-	_
CO3	1	-	-	-	-	-	-	-	-	-	-	-	-	-

18ZAC006	PEDAGOGY STUDIESL	T	P	C
	2	0	0	0
OBJECTIV				
	w existing evidence on the review topic to inform programme de	esigr	and	policy
	ndertaken by the HRD, other agencies and researchers.			
• To Identi	fy critical evidence gaps to guide the development.			
UNIT I	INTRODUCTION AND METHODOLOGY			6
Aims and ratio	nale – Policy background – Conceptual framework and terminolog	gy –	Theo	ries of
learning, Curri	culum, Teacher education - Conceptual framework - Research	ch o	questi	ons. –
Overview of me	ethodology and Searching			
UNIT II	THEMATIC OVERVIEW			6
Pedagogical pra	ctices are being used by teachers in formal and informal classroom	s in	devel	oping
countries Cur	riculum – Teacher education.			
UNIT III	EVIDENCE ON THE EFFECTIVENESS OF			6
	PEDAGOGICAL PRACTICES			
and the school change – Strer	ent of included studies – How can teacher education (curriculum curriculum and guidance materials best support effective pedagog agth and nature of the body of evidence for effective pedagog	gy? ical	– The pract	ory of ices –
	ry and pedagogical approaches -Teachers' attitudes and beliefs	and	1 Ped	agogic
strategies.	PROFESSIONAL DEVELOPMENT	and	1 Ped	agogic
strategies. UNIT IV	PROFESSIONAL DEVELOPMENT			6
strategies. UNIT IV Alignment with	PROFESSIONAL DEVELOPMENT classroom practices and followup support – Peer support – Suppo	rt fr	om th	6 e head
strategies. UNIT IV Alignment with	PROFESSIONAL DEVELOPMENT classroom practices and followup support – Peer support – Suppo community – Curriculum and assessment – Barriers to learning: In	rt fr	om th	6 e head
strategies. UNIT IV Alignment with teacher and the	PROFESSIONAL DEVELOPMENT classroom practices and followup support – Peer support – Suppo community – Curriculum and assessment – Barriers to learning: In	rt fr	om th	6 e head
strategies. UNIT IV Alignment with teacher and the and large class a UNIT V Research desig	PROFESSIONAL DEVELOPMENT classroom practices and followup support – Peer support – Suppo community – Curriculum and assessment – Barriers to learning: li sizes	rt fr imit	om th ed res	6 e head ources 6
strategies. UNIT IV Alignment with teacher and the and large class a UNIT V Research desig	PROFESSIONAL DEVELOPMENT classroom practices and followup support – Peer support – Suppo community – Curriculum and assessment – Barriers to learning: It sizes RESEARCH GAPS AND FUTURE DIRECTIONS n – Contexts – Pedagogy – Teacher education – Curriculum ar	rt fr imit	om th ed res ssessr	6 e head ources 6 nent –
strategies. UNIT IV Alignment with teacher and the and large class UNIT V Research desig Dissemination a	PROFESSIONAL DEVELOPMENT classroom practices and followup support – Peer support – Suppo community – Curriculum and assessment – Barriers to learning: It sizes RESEARCH GAPS AND FUTURE DIRECTIONS n – Contexts – Pedagogy – Teacher education – Curriculum ar and research impact.	rt fr imitend a	om th ed res ssessr	6 e head ources 6 nent –
strategies. UNIT IV Alignment with teacher and the and large class = UNIT V Research desig Dissemination a OUTCOME 1 Understat	PROFESSIONAL DEVELOPMENT classroom practices and followup support – Peer support – Suppo community – Curriculum and assessment – Barriers to learning: It sizes RESEARCH GAPS AND FUTURE DIRECTIONS n – Contexts – Pedagogy – Teacher education – Curriculum ar and research impact. TOTAL	rt fr imit nd a $\frac{2}{130}$	om th ed res ssessr PER nd:	6 e head ources 6 nent –
strategies. UNIT IV Alignment with teacher and the and large class UNIT V Research desig Dissemination a OUTCOME 1 Understat classroon	PROFESSIONAL DEVELOPMENT classroom practices and followup support – Peer support – Support community – Curriculum and assessment – Barriers to learning: It sizes RESEARCH GAPS AND FUTURE DIRECTIONS n – Contexts – Pedagogy – Teacher education – Curriculum ar and research impact. TOTAL S: After completion of this course, the student will be able to under a the pedagogical practices are being used by teachers in formal a	rt fr imit nd a $\frac{2}{130}$	om th ed res ssessr PER nd:	6 e head ources 6 nent –
strategies. UNIT IV Alignment with teacher and the and large class UNIT V Research desig Dissemination a OUTCOME 1 Understat 2 Understat	PROFESSIONAL DEVELOPMENT classroom practices and followup support – Peer support – Suppo community – Curriculum and assessment – Barriers to learning: It sizes RESEARCH GAPS AND FUTURE DIRECTIONS n – Contexts – Pedagogy – Teacher education – Curriculum ar and research impact. TOTAL S: After completion of this course, the student will be able to unde nd the pedagogical practices are being used by teachers in formal a ns in developing countries.	rt fr imit nd a <u>:30</u> rstan nd i	om th ed res ssessr PER nd: nform	6 e head ources 6 nent – 10DS al
strategies. UNIT IV Alignment with teacher and the and large class = UNIT V Research desig Dissemination a OUTCOME 1 Understat classroom 2 Understat 3 Understat	PROFESSIONAL DEVELOPMENT classroom practices and followup support – Peer support – Suppo community – Curriculum and assessment – Barriers to learning: It sizes RESEARCH GAPS AND FUTURE DIRECTIONS n – Contexts – Pedagogy – Teacher education – Curriculum ar and research impact. TOTAL S: After completion of this course, the student will be able to under and the pedagogical practices are being used by teachers in formal a as in developing countries. and the evidence on the effectiveness of pedagogical practices.	rt fr imit nd a <u>:30</u> rstan nd i	om th ed res ssessr PER nd: nform	6 e head ources 6 nent – 110DS
strategies. UNIT IV Alignment with teacher and the and large class = UNIT V Research desig Dissemination a OUTCOME 1 Understat classroom 2 Understat 3 Understat	PROFESSIONAL DEVELOPMENT classroom practices and followup support – Peer support – Suppo community – Curriculum and assessment – Barriers to learning: It sizes RESEARCH GAPS AND FUTURE DIRECTIONS n – Contexts – Pedagogy – Teacher education – Curriculum ar and research impact. TOTAL S: After completion of this course, the student will be able to under and the pedagogical practices are being used by teachers in formal a as in developing countries. In the evidence on the effectiveness of pedagogical practices. In the teacher education (curriculum and practicum) and the school and the teacher education (curriculum and practicum) and the school and the teacher education (curriculum and practicum) and the school and the teacher education (curriculum and practicum) and the school and the teacher education (curriculum and practicum) and the school and the school and schoo	rt fr imit nd a <u>:30</u> rstan nd i	om th ed res ssessr PER nd: nform	6 e head ources 6 nent – 110DS
strategies. UNIT IV Alignment with teacher and the and large class UNIT V Research desig Dissemination a OUTCOME 1 Understat classroom 2 Understat and guida REFERENC	PROFESSIONAL DEVELOPMENT classroom practices and followup support – Peer support – Suppo community – Curriculum and assessment – Barriers to learning: If sizes RESEARCH GAPS AND FUTURE DIRECTIONS n – Contexts – Pedagogy – Teacher education – Curriculum ar and research impact. TOTAI S: After completion of this course, the student will be able to under nd the pedagogical practices are being used by teachers in formal a as in developing countries. and the evidence on the effectiveness of pedagogical practices. and the teacher education (curriculum and practicum) and the schoo ance materials best support effective pedagogy. EES: Hardman F (2001) Classroom interaction in Kenyan primary school	rt fr imit nd a 	om th ed res ssessr PER nd: nform	6 e head ources 6 nent – citods al
strate gies.UNIT IVAlignment with teacher and the and large class and the class and Dissemination and Dissemination and Dissemination and classroomOUTCOME1Understate classroom2Understate and guidaREFERENCE and guidaREFERENCE and guida1Ackers J, 31 (2):24 Agrawal	PROFESSIONAL DEVELOPMENT classroom practices and followup support – Peer support – Suppor community – Curriculum and assessment – Barriers to learning: It sizes RESEARCH GAPS AND FUTURE DIRECTIONS n – Contexts – Pedagogy – Teacher education – Curriculum ar and research impact. S: After completion of this course, the student will be able to under and the pedagogical practices are being used by teachers in formal a as in developing countries. nd the evidence on the effectiveness of pedagogical practices. nd the teacher education (curriculum and practicum) and the school and the teacher education (curriculum and practicum) and the school and the teacher education (curriculum and practicum) and the school and the teacher education (curriculum and practicum) and the school and the teacher education (curriculum and practicum) and the school and the teacher education (curriculum and practicum) and the school and the teacher education (curriculum and practicum) and the school and the teacher education (curriculum and practicum) and the school and the teacher education (curriculum and practicum) and the school and the teacher education (curriculum and practicum) and the school and the teacher education (curriculum and practicum) and the school and the teacher education (curriculum and practicum) and the school and the teacher education (curriculum and practicum) and the school and the teacher education (curriculum and practicum) and the school and the teacher education (curriculum and practicum) and the school and the teacher education (curriculum and practicum) and the school and the teacher education (curriculum and practicum) and the school and the teacher education (curriculum and practicum) and the school and the teacher education (curriculum education (curriculum education (cur	rt fr imit nd a 2 :30 rstan nd i 1 cun	om th ed res ssessr PER nd: nform riculu	6 e head ources 6 nent – 10DS al
strategies. UNIT IV Aligment with teacher and the and large class UNIT V Research desig Dissemination a OUTCOME 1 Understat classroom 2 Understat and guida REFERENC 1. Ackers J, 31 (2):24 2. Agrawal Curricula 3 Akyeamp	PROFESSIONAL DEVELOPMENT classroom practices and followup support – Peer support – Suppor community – Curriculum and assessment – Barriers to learning: It sizes RESEARCH GAPS AND FUTURE DIRECTIONS n – Contexts – Pedagogy – Teacher education – Curriculum ar and research impact. S: After completion of this course, the student will be able to under the pedagogical practices are being used by teachers in formal a as in developing countries. nd the evidence on the effectiveness of pedagogical practices. nd the teacher education (curriculum and practicum) and the school unce materials best support effective pedagogy. ES: Hardman F (2001) Classroom interaction in Kenyan primary school 5-261.	rt fr imit nd a <u>2 :30</u> rstar nd i 1 cun	om th ed res ssessr PER nd: nform rriculu <i>Com</i>	6 e head ources 6 nent – 1005 al

	of basic maths and reading in Africa: Does teacher preparation count? International
	Journal Educational Development, 33 (3): 272–282.
5	Alexander RJ (2001) Culture and pedagogy: International comparisons in primary education. Oxford and Boston: Blackwell.
5.	education. Oxford and Boston: Blackwell.
6.	Chavan M (2003) Read India: A mass scale, rapid, 'learning to read' campaign.
7.	www.pratham.org/images/resource%20working%20paper%202.pdf

CO/P	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P10	P11	PSO1	PSO2	PSO3
0														
CO1	2	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	-	-	-	2	-	-	-	-	-	-	-	-	-	-
CO3	-	-	-	-	-	-	-	-	-	1	-	-	-	-

18ZAC007	STRESS MANAGEMENT BY YOGA	L	Τ	P	С
		2	0	0	0
OBJECTIV	ES:				
• To achiev	ve overall health of body and mind				
• To overc	ome stress				
UNIT I	ASHTANGA				6
Definitions of I	Eight parts of yog.				
UNIT II	YAM				6
Do's and Don't	's in life: Ahinsa, satya, astheya, bramhacharya and aparigraha	ı			
UNIT III	NIYAM				6
Do's and Don't	's in life: Shaucha, santosh, tapa, swadhyay, Ishwar pranidhan				
UNIT IV	ASAN				6
Various yoga p	oses and their benefits for mind & body				
UNIT V	PRANAYAM				6
Regularization	of breathing techniques and its effects-Types of pranayam				
	ΤΟ	TAL	:30	PER	IODS
OUTCOME	S:				
After completion	on of this course, the student will be able to understand:				
1	healthy mind in a healthy body thus improving social health al	so			
2 Improve	efficiency				
REFERENC	CES:				
1. Janardar	n Swami Yogabhyasi Mandal, ''Yogic Asanas for Group Tarini	ng-P	art-l	", Na	gpur
/	ivekananda, "Rajayoga or conquering the Internal Nature" Ac	lvait	a Asl	hrama	l
² (Publicat	ion Department), Kolkata				

CO/P	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P10	P11	PSO1	PSO2	PSO3
0														
CO1	-	-	-	-	1	-	-	-	I	-	I	_	-	_
CO2	-	-	-	-	1	-	-	-	-	-	-	-	-	-

18ZA	C008

PERSONALITY DEVELOPMENT THROUGH LIFE ENLIGHTENMENT SKILLS

		SKILLS				1						
		2	0	0	0							
OB	IECTIV	ES:										
•	To learn to achieve the highest goal happily											
•	To becom	ne a person with stable mind, pleasing personality and determine	natio	n								
•	To awak	en wisdom in students										
U	UNIT I HOLISTIC DEVELOPMENT OF PERSONALITY											
_		Holistic development of personality: Wisdom (Verses- 19,20,		2) - 1	Pride	6 &						
Hero	ism (Verse	es- 29,31,32) – Virtue (Verses- 26,28,63,65)										
UI	II TIN	DO'S AND DONT'S				6						
Neet	isatakam –	Dont's (Verses- 52,53,59) – Do's (Verses- 71,73,75,78)										
UN	UNIT III APPROACH TO DAY TO DAY WORK AND DUTIES											
Shrir	nad Bhagv	vad Geeta : Chapter 2 (Verses 41, 47,48) – Chapter 3 (Verses 1	3, 21	1, 27	, 35)	_						
Chap	oter 6 (Ver	ses 5,13,17,23, 35) – Chapter 18 (Verses 45, 46, 48)				1						
UN	UNIT IV STATEMENTS OF BASIC KNOWLEDGE											
Shrir	nad Bhagv	vad Geeta: Chapter2 (Verses 56, 62, 68) – Chapter 12 (Verses 1	3, 14	I, 15	, 16,1	7, 18)						
UI	VIT V	PERSONALITY OF ROLE MODEL				6						
		vad Geeta: Chapter2 (Verses 17) – Chapter 3 (Verses 36,37,42)	-Ch	iapte	er 4 (V	/erses						
18, 3	8,39) – Ch	apter18 (Verses 37,38,63)										
	_ ~ ~					IODS						
OU		S: After completion of this course, the student will be able to u										
1	Study of Shrimad-Bhagwad-Geeta will help the student in developing his personality and											
2		he highest goal in life		and		moniter						
23	The person who has studied Geeta will lead the nation and mankind to peace and prosperityStudy of Neetishatakam will help in developing versatile personality of students.											
-	TEREN(stuut	<u></u>								
NĽ		x 25. warupananda "Srimad Bhagavad Gita" by Advaita Ashram (Pa	uhlic	ratio	<u></u>							
1.		ent), Kolkata	лонс	un	""							
2		ith, "Bhartrihari's Three Satakam (Niti-sringar-vairagya)", Ra	ishtr	iya S	Sansk	rit						
2.	Sansthan	am Now Dalhi										

^{2.} Sansthanam, New Delhi.

CO/P	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P10	P11	PSO1	PSO2	PSO3
0														
CO1	-	-	-	2	-	-	-	-	-	-	-	-	-	-
CO2	-	-	-	-	2	-	-	-	-	-	-	-	-	-
CO3	-	-	-	-	-	-	-	-	1	-	-	-	-	-