

	PROGRAMME SPECIFIC OUTCOMES
1.	To critically evaluate the design and provide optimal solutions to problem areas in advanced signal processing, communications, digital system design, embedded systems and VLSI design.
2.	To develop electronic systems using modern engineering hardware and software tools.
3.	To work professionally and ethically in applied electronics and allied areas.
	PROGRAM EDUCATIONAL OBJECTIVES
1.	Ability to acquire in-depth knowledge in the field of Electronics with a ability to evaluate and analyse the existing knowledge for enhancement.
2.	Ability to analyse critical complex engineering problems and provide solutions through research.
3.	Ability to think latterly and solve engineering problems optimally considering public health and safety, cultural and societal factors in the core areas.
4.	Ability to extract information pertinent to challenging problems through literature survey and by appropriate research methodologies, techniques and tools to the development of technological knowledge.
5.	Ability to select, learn and apply appropriate techniques, resources and modern engineering tools to complex engineering activities with an understanding of limitations
6.	Ability to understand group dynamics, recognize opportunities and contribute positively to multidisciplinary work to achieve common goals for further learning.
7.	Ability to demonstrate engineering principles and apply the same to manage projects efficiently as a team after considering economical and financial factors.
8.	Ability to communicate with engineering community and society regarding complex engineering activities effectively through reports, design documentation and presentation.
9.	Ability to encage with commitment in life-long learning independently to improve knowledge and competence.
10.	Ability to acquire professional and intellectual integrity, professional code and contact, ethics of research and scholarship by considering the research outcomes to the community for sustainable development of society.
11.	Ability to observe and examine critically the outcomes and make corrective measures, and learn from mistakes without depending on external feedback.

M.E APPLIED ELECTRONICS (PG) CURRICULUM DESIGN

CREDIT SUMMARY

SL. NO	SUBJECT AREA	CRED	ITS PER	SEME	STER	CREDITS ACTUAL	% OF CREDITS	TOTAL NO. OF COURSES
		I	Π	III	IV			
1.	BS (FC)	4				4	5.56	1
2.	PC C	15	14	5		34	47.22	12
3.	PE C	3	6	3		12	16.67	4
4.	OEC			3		3	4.16	1
5.	EEC		1	6	12	19	26.39	3
6.	AC	0	0	0		0	0	3
7.	TOTAL	22	21	17	12	72	100	24

GOVERNMENT COLLEGE OF ENGINEERING BARGUR

Regulation – 2018

Full Time M.E.–Applied Electronics (Department of ECE)

SEMESTER-I

SL. No.	COURSE CODE	COURSE TITLE	CAT	CONTACT PERIODS	L	Т	Р	С
THE	ORY							
1.	18AEFC01	Mathematical Foundations for Electronics Engineers	FC	4	4	0	0	4
2.	18AEPC02	Advanced Digital System Design	PCC	3	3	0	0	3
3.	18AEPC03	Advanced Digital Signal Processing	PCC	4	4	0	0	4
4.	18AEPC04	Embedded System Design	PCC	3	3	0	0	3
5.	18AEPC05	Modern communication techniques	PCC	3	3	0	0	3
6.		Professional Elective I	PCC	3	3	0	0	3
7.		Audit Course I	AC	2	2	0	0	0
PRAG	CTICAL							
8.	18AEPC06	Electronic System Design Laboratory I	PCC	4	0	0	4	2
	TOTAL				18	0	8	22

SEMESTER-II

SL. No.	COURSE CODE	COURSE TITLE	CAT	CONTACT PERIODS	L	Т	Р	С
THE	ORY					•	•	
1.	18AEPC07	Soft Computing and Optimization Techniques	PCC	3	3	0	0	3
2.	18AEPC08	VLSI System Design	PCC	3	3	0	0	3
3.	18AEPC09	Digital Image Processing	PCC	3	3	0	0	3
4.	18AEPC10	Internet of Things	PCC	3	3	0	0	3
5.		Professional Elective II	PEC	3	3	0	0	3
6.		Professional Elective III	PEC	3	3	0	0	3
7.		Audit Course II	AC	2	2	0	0	0
PRA	CTICAL			•			•	
8.	18AEPC11	Electronic System Design Laboratory II	PCC	4	0	0	4	2
9.	18AEEE12	Term Paper Writing and Seminar	EEC	2	0	0	2	1
		TC	DTAL	26	18	0	8	21

SEMESTER-III

SL. No.	COURSE CODE	COURSE TITLE	CAT	CONTACT PERIODS	L	Т	Р	С
THE	ORY							
1.	18AEPC13	Electronic Product design and development	PCC	3	3	0	0	3
2.		Professional Elective IV	PEC	3	3	0	0	3
3.		Open Elective	OEC	3	3	0	0	3
4.	18ZAC003	Research Methodology and IPR	AC	2	2	0	0	0
PRA	CTICAL	·						
5.	18AEPC14	Electronic Product Design Laboratory	PCC	4	0	0	4	2
6.	18AEEE15	Project Work Phase I	EEC	12	0	0	12	6
	1	TC	DTAL	27	11	0	16	17

SEMESTER-IV

SL. No.	COURSE CODE	COURSE TITLE	CAT	CONTACT PERIODS	L	Т	Р	С
PRA	CTICAL							
1.	18AEEE16	Project Work Phase II	EEC	24	0	0	24	12
			TOTAL	24	0	0	24	12

TOTAL NO. OF CREDITS: 72

LIST OF PROFESSIONAL ELECTIVES (PEC)

SL. NO	COURSE CODE	COURSE TITLE	CATEGORY	L	Т	Р	С
1.	18AEPE01	Digital Control Engineering	PEC	2	1	0	3
2.	18AEPE02	Computer Architecture	PEC	3	0	0	3
3.	18AEPE03	Digital VLSI design	PEC	3	0	0	3
4.	18AEPE04	Electromagnetic Interference and Compatibility	PEC	3	0	0	3
5.	18AEPE05	CAD for VLSI	PEC	3	0	0	3
6.	18AEPE06	Nano Electronics	PEC	3	0	0	3
7.	18AEPE07	Sensors and Signal Conditioning	PEC	3	0	0	3
8.	18AEPE08	MEMS and NEMS	PEC	3	0	0	3
9.	18AEPE09	DSP Processors Architecture and Programming	PEC	3	0	0	3
10.	18AEPE10	RF System Design	PEC	2	1	0	3
11.	18AEPE11	Speech Signal Processing	PEC	2	1	0	3
12.	18AEPE12	Solid State Device Modeling and simulation	PEC	3	0	0	3
13.	18AEPE13	Advanced Microprocessor and Microcontroller Architecture	PEC	3	0	0	3
14.	18AEPE14	System on Chip	PEC	3	0	0	3
15.	18AEPE15	Robotics	PEC	3	0	0	3
16.	18AEPE16	Physical Design of VLSI Circuits	PEC	3	0	0	3
17.	18AEPE17	High Performance Networks	PEC	3	0	0	3

18.	18AEPE18	Pattern Recognition	PEC	3	0	0	3
19.	18AEPE19	Secure Computing Systems	PEC	3	0	0	3
20.	18AEPE20	Signal Integrity for High Speed Design	PEC	3	0	0	3
21.	18AEPE21	Wireless AD-HOC and Sensor Networks	PEC	3	0	0	3
22.	18AEPE22	Hardware – Software Co- design	PEC	3	0	0	3

LIST OF OPEN ELECTIVES (OE)

SL. NO	COURSE CODE	COURSETITLE	CATEGORY	L	Т	Р	С
1	18AEOE01	Introduction to Nanoelectronics	OE	3	0	0	3
2	18AEOE02	Genetic Algorithms	OE	3	0	0	3
3	18AEOE03	Neural Networks	OE	3	0	0	3
4	18AEOE04	Multimedia Compression Techniques	OE	3	0	0	3

LIST OF AUDIT COURSES (AC)

SL. NO	COURSE CODE	COURSETITLE	CATEGORY	L	Т	Р	С
1	18ZAC001	Disaster Management	AC	2	0	0	0
2	18ZAC002	English for Research Paper Writing	AC	2	0	0	0
3	18ZAC003	Research Methodology and IPR	AC	2	0	0	0
4	18ZAC004	Sanskrit for Technical Knowledge	AC	2	0	0	0

5	18ZAC005	Value Education	AC	2	0	0	0
6	18ZAC006	Pedagogy Studies	AC	2	0	0	0
7	18ZAC007	Stress Management by Yoga	AC	2	0	0	0
8	18ZAC008	Personality Development through Life Enlightenment Skills	AC	2	0	0	0
9	18ZAC009	Electronic Waste Management	AC	2	0	0	0

LIST OF PROFESSIONAL CORE COURSES (PCC)

SL. NO	COURSE CODE	COURSETITLE	CATEGORY	L	Т	Р	С
1.	18AEPC02	Advanced Digital System Design	PCC	3	0	0	3
2.	18AEPC03	Advanced Digital Signal Processing	PCC	4	0	0	4
3.	18AEPC04	Embedded System Design	PCC	3	0	0	3
4.	18AEPC05	Modern Communication Techniques	PCC	3	0	0	3
5.	18AEPC06	Electronic System Design Laboratory I	PCC	0	0	4	2
6.	18AEPC07	Soft Computing and Optimization Techniques	PCC	3	0	0	3
7.	18AEPC08	VLSI System Design	PCC	3	0	0	3
8.	18AEPC09	Digital Image Processing	РСС	3	0	0	3
9.	18AEPC10	Internet of Things	PCC	3	0	0	3
10.	18AEPC11	Electronic System Design Laboratory II	PCC	0	0	4	2

11.	18AEPC13	Electronic Product design and development	PCC	3	0	0	3
12.	18AEPC14	Electronic Product design Lab	PCC	0	0	4	2

LIST OF EMPLOYABILITY ENHANCEMENT COURSES (EEC)

SL.NO	COURSE CODE	COURSETITLE	САТ	L	Т	Р	С
1.	18AEEE12	Term Paper Writing and Seminar	EEC	0	0	2	1
2.	18AEEE15	Project Work Phase I	EEC	0	0	12	6
3.	18AEEE16	Project Work Phase II	EEC	0	0	24	12

LIST OF FOUNDATIONAL COURSES (FC)

SL.NO	COURSE CODE	COURSETITLE	CAT	L	Т	Р	С
1.	18AEFC01	Mathematical Foundations for Electronics Engineers	FC	4	0	0	4

EVALUATIONS :: 2018 REGULATIONS

Sl. No	Category of course	Continuous Assessment	End-Semester Examinations
1.	Theory Courses	50 Marks	50 Marks
2.	Laboratory Courses	50 Marks	50 Marks
3.	Project Work	50 Marks	50 Marks
4.	All other EEC Courses (non theory)	100 Marks	-

Each course shall be evaluated for a maximum of 100 marks as shown below:

Continuous Assessment Mark the following guidelines are to be followed.

Sl.No.	Category Details	CA Marks	Weightage
1.	Test (3 Nos.) {each test is to be conducted for 50 Marks}	30 Marks	60%
2.	Assignment (3 Nos.)	20 Marks	40%
	TOTAL	50 Marks	100%

Marks for Project Work and the Viva-Voce Examination / Term Paper Writing and Seminar will be distributed as indicated below.

Contir	nuous As	sessment 50 M	arks	End Semester Examination 50 Marks			
Review (25 Mark		Review 1 (25 Mark		Report Evaluation (20 Marks)	Viva-Voce (30 Marks)		
Review Committee (Excluding Guide)	Guide	Review Committee (Excluding Guide)	Guide	External Examiner	External Examiner	Internal Examiner **	
15	10	15	10	20	15	15	

**Guide will be the internal

A student has to **secure minimum of 75% attendance** for appearing end semester examination. If a student secures **65% to 75% attendance** in the Current Semester due to medical reasons (hospitalization / accident / specific illness) or due to participation in the College / University / State / National / International Level Sports events with prior permission from the Head of the Department concerned, the student shall apply for **condonation**. Condonation can be allowed only two semesters (i.e **only two condonations**) during the entire course of study.

Students who secure less than 65% attendance will not be permitted to write the End-Semester Examination.

SEMESTER I

	MATHEMATICAL FOUNDATIONS FOR ELECTRONICS ENGINEERSL						
			4	0	0	4	
OBJE	CTIVE	S:	•				
•	To imp	oart knowledge on fuzzy logic.					
•	To und	lerstand the basic concepts of matrix theory and their applicat	ions.				
•	To find	the optimum solution of the random variables.					
•	To und	lerstand the concepts of dynamic programming and queuing n	node	ls.			
UNIT	UNIT I FUZZY LOGIC						
Classica	al logic –	Multivalued logics – Fuzzy propositions – Fuzzy quantifiers.	•				
UNIT	II	MATRIX THEORY				12	
	•	position - Generalized Eigenvectors - Canonical basis - Qethod - Singular value decomposition.	QR fa	actor	izati	on –	
UNIT	III	PROBABILITY AND RANDOM VARIABLE			12		
variable – Binor	es -Proba nial, Poi	Axioms of probability – Conditional probability – Baye's the bility function – Moments – Moment generating functions and sson, Geometric, Uniform, Exponential, Gamma and Norm andom variable.	nd th	eir p	orope	rties	
					12		
UNIT		DYNAMIC PROGRAMMING				12	
Dynami	1 0	DYNAMIC PROGRAMMING amming – Principle of optimality – Forward and bac dynamic programming – Problem of dimensionality.	kwa	rd r	ecur		
Dynami	tions of o	amming – Principle of optimality – Forward and bac	ekwa	rd r	ecur		
Dynami Applica UNIT Poisson	tions of o V Process	amming – Principle of optimality – Forward and bac dynamic programming – Problem of dimensionality.				sion –	
Dynami Applica UNIT Poisson	tions of o V Process	amming – Principle of optimality – Forward and bac dynamic programming – Problem of dimensionality. QUEUEING MODELS – Markovian queues – Single and multi server models -	– Lit	tle's		sion –	
Dynami Applica UNIT Poisson Machino	tions of o V Process	amming – Principle of optimality – Forward and bac dynamic programming – Problem of dimensionality. QUEUEING MODELS – Markovian queues – Single and multi server models - rence model – Steady state analysis – Self service queue. TOTAL:60 PERI	– Lit	tle's		sion –	

	prepositions and fuzzy quantifiers and applications of fuzzy logic.							
2.	Apply various methods in matrix theory to solve system of linear equations.							
3.	Computation of probability and moments, standard distributions of discrete and continuous random variables and functions of a random variable.							
4.	Conceptualize the principle of optimality and sub-optimization, formulation and computational procedure of dynamic programming							
5.	Exposing the basic characteristic features of a queuing system and acquire skills in analyzing queuing models							
6.	Using discrete time Markov chains to model computer systems.							
REFEI	RENCES:							
1.	Bronson, R., "Matrix Operations", Schaum's Outline Series, McGraw Hill, 2011.							
2.	George, J. Klir. and Yuan, B., "Fuzzy sets and Fuzzy logic, Theory and Applications", Prentice Hall of India Pvt. Ltd., 1997.							
3.	<i>Gross, D., Shortle J. F., Thompson, J.M., and Harris, C. M., "Fundamentals of Queueing Theory", 4th Edition, John Wiley, 2014.</i>							
4.	Johnson, R.A., Miller, I and Freund J., "Miller and Freund"s Probability and Statistics for Engineers", Pearson Education, Asia, 8th Edition, 2015.							
5.	Taha, H.A., "Operations Research: An Introduction", 9 th Edition, Pearson Education, Asia, NewDelhi, 2016.							

18AEP	C02	ADVANCED DIGITAL SYSTEM DESIGN	L	T	P C					
			3	0	0	3				
OBJE	CTIVE	S:								
•	circuit	ce methods to analyze and design synchronous and asy	nchr	onou	is se	quential				
 Introduce the architecture of programmable device Introduce design and implementation of digital circuits using programming tools 										
UNIT	[SEQUENTIAL CIRCUIT DESIGN				9				
state tab	ole assig	ked synchronous sequential circuits and modelling- State d gnment and reduction-Design of synchronous sequential ASM chart and realization using ASM	U							
UNIT	Π	ASYNCHRONOUS SEQUENTIAL CIRCUIT DESIGN				9				
transition dynamic	n table a and es	nchronous sequential circuit – flow table reduction-race nd problems in transition table- design of synchronous seque sential hazards – data synchronizers – mixed operating r ng vending machine controller	entia	l circ	cuit-S	Static,				
UNIT	III	FAULT DIAGNOSIS AND TESTABILITY ALGORITI	HMS			9				
	e techni	hod-path sensitization method – Boolean difference me ques – The compact algorithm – Fault in PLA – Test gener			-					
UNIT]	[V	SYNCHRONOUS DESIGN USING PROGRAMMABL DEVICES	E			9				
-	-	ogic device families – Designing a synchronous seque ization of finite state machine using PLD – FPGA – Xilinx F				-				
UNIT	V	SYSTEM DESIGN USING VERILOG				9				
Modellin – Synthe Verilog	ng in Ve esis of code –T s – cour	elling with Verilog HDL – Logic System, Data Types rilog HDL - Behavioural Descriptions in Verilog HDL – HI Finite State Machines– structural modeling – compilation est bench -Realization of combinational and sequential circu nters – sequential machine – serial adder – Multiplier- D cessor.	DL B and uits u	ased sim sing	Syn ulati Ver	thesis on of ilog –				
		TOTAL: 45 PE	RIC	DDS						
		14								

OUTC	OMES:	Upon completion the course, the students will have the ability to						
1.	Analyze sequ	ential digital circuits						
2.	design seque	design sequential digital circuits						
3.	Identify the re	Identify the requirements and specifications of the system required for a given application						
4.	Identify the re	dentify the requirements and specifications of the system required for a given application						
5.	use programming tools for implementing digital circuits of industrial standard							
REFER	RENCES:							
1.	Charles H.R	oth Jr "Fundamentals of Logic Design" Thomson Learning 2004						
2.	M.D.Ciletti , Hall, 1999.	Modeling, Synthesis and Rapid Prototyping with the Verilog HDL, Prentice						
3.	M.G.Arnold	, Verilog Digital – Computer Design, Prentice Hall (PTR), 1999.						
4.	Nripendra N	Biswas "Logic Design Theory" Prentice Hall of India,2001						
5.	Parag K.Lald	" "Digital system Design using PLD" B S Publications,2003						
6.	Parag K.La Publications,	8						
7.	S. Palnitkar,	Verilog HDL – A Guide to Digital Design and Synthesis, Pearson, 2003.						

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	3	3	-	-	-	-	-	-	3	-	3	2	-
CO2	2	3	2	-	-	-	-	-	-	2	-	3	2	-
CO3	3	2	2	-	-	2	-	-	-	1	1	3	2	-
CO4	3	3	2	-	-	2	-	-	-	2	-	3	2	-
CO5	2	2	2	-	-	-	-	-	-	2	-	3	2	-
	3	3	2	-	-	2	-	-	-	2	1	3	2	-
1-LOW	2-]	MODE	ERATE	E (MEI	DIUM)	3-	HIGH	•						

		4	0	0	4			
OBJECTIVES								
1. To introduce the basics of random signal processing and spectral estimation								
2. To understand the concepts of estimation and prediction of non stationary signals.								
3. To learn about adaptive filtering and multirate signal processing.								
UNIT I	DISCRETE RANDOM SIGNAL PROCESSING				12			
Discrete Random Processes – Ensemble averages -Wide sense stationary process –Auto- correlation and Auto- covariance matrices - Properties – Parseval's Theorem -Weiner Khintchine relation - Power spectral density – Filtering random process, Spectral Factorization - White noise -Simulation of uniformly distributed/Gaussian distributed white noise – Simulation of Sine wave mixed with Additive White Gaussian Noise.								
UNIT II	SPECTRUM ESTIMATION				12			
estimator - P Barlettmethod - approach - AR	tency of estimators - Non-Parametric methods - Correlation met erformance analysis of estimators –Periodogram–Modifie Welch estimation, Blackman Tukey method.Parametric metho , MA, ARMA Signal modeling - Parameter estimation us ions using Durbin's algorithm.	ed ods:	Peri Moo	odog del b	ram, ased			
UNIT III	LINEAR ESTIMATION AND PREDICTION				12			
algorithm - Wie	n – Forward prediction and Backward prediction– Levinson ener filter - FIR Wiener filter- Filtering and linear prediction er filters - DiscreteKalman filter.							
UNIT IV	ADAPTIVE FILTERS				12			
Adaptive algorit	Iters - Adaptive filters based on steepest descent method - W hm - Adaptive channel equalization - Adaptive echo canceller LS Adaptive filters - Exponentially weighted RLS – Sliding w	: - A	dapt	ive r				
UNIT V	MULTIRATE DIGITAL SIGNAL PROCESSIN	G			12			
Mathematical description of change of sampling rate – Interpolation and Decimation- Decimation by an integer factor – Interpolation by an integer factor – Sampling rate conversion by a rational factor –Filter implementation for sampling rate conversion- direct form FIR								

ADVANCED DIGITAL SIGNAL PROCESSING

16

structures, Polyphase filter structures, time variant structures – Multistage implementation of multirate system.

		TOTAL: 60HOURS
OUTC	OMES:	Upon completion the course, the students will have the ability to
1.	Uunderstand	the basics of random signal processing
2.	Analyse the s	spectral estimation of finite duration signals
3.	Uunderstand	the linear estimation and prediction of non stationary signals.
4.	Able to desig	n adaptive filters and use them in relevant applications
5.	Acquire know	wledge on multirate signal processing and implement the multirate filters.
REFE	RENCES:	
1.		Hayes, "Statistical Digital Signal Processing and Modeling", John Wiley c., New York, 2006.
2.	John G. Prod India, New D	ikis, Dimitris G. Manolakis, "Digital Signal Processing", Prentice Hall of pelhi, 2005.
3.		anathan, "Multirate Systems and Filter Banks", Prentice Hall, 1992.
4.		odern spectrum Estimation theory and application", Prentice Hall, Cliffs, NJ1988.
5.	Simon Hayk	in, "Adaptive Filter Theory", Prentice Hall, Englehood Cliffs, NJ1986
6.	Sophoncles.	J. Orfanidis, "Optimum Signal Processing ", McGraw-Hill, 2000.

COURSE ARTICULATION MATRIX:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	2	2	-	1	1	-	2	-	1	-	-	2	-	1
CO2	2	2	-	2	1	-	2	-	1	-	-	2	-	1
CO3	2	2	-	2	1	-	1	-	1	-	-	2	-	1
CO4	2	2	-	2	2	-	1	-	1	-	-	2	2	1
CO5	2	2	-	2	2	-	1	-	1	-	-	2	2	1
	2	2	-	2	1	-	1	-	1	-	-	2	1	1

1-LOW

2-MODERATE (MEDIUM)

3-HIGH

18AEP	AEPC04EMBEDDED SYSTEM DESIGNLT										
			3	0	0	3					
OBJE	CTIVE	CS:		1	1						
•	To lear	rn the design challenges about embedded system.									
•	To lear	rn various techniques of system processor.									
•	To und	lerstand different state machine and process models.									
UNIT	I	EMBEDDED SYSTEM OVERVIEW				9					
	ology, R	tem Overview, Design Challenges – Optimizing Design T-Level Combinational and Sequential Components, Optimiz fors.				-					
UNIT	II	GENERAL AND SINGLE PURPOSE PROCES	SO	R		ç					
		ture, Pipelining, Superscalar and VLIW architectures, Pr	0-4								
	ntrollers	Environment, Application-Specific Instruction-Set Pres, Timers, Counters and watchdog Timer, UART, LCD Control ers, Memory Concepts.	ocess		`	ASIPs) og-to-					
Microco	ntrollers Converte	s, Timers, Counters and watchdog Timer, UART, LCD Control			`	og-to-					
Microco Digital C UNIT Basic Pr Arbitrati	ntrollers Converte III rotocol C	s, Timers, Counters and watchdog Timer, UART, LCD Control ers, Memory Concepts.	llers	and . Bus-	Anal	og-to- g d I/O,					
Microco Digital C UNIT Basic Pr Arbitrati	ntrollers Converte III rotocol C ion, Ser s Protoco	s, Timers, Counters and watchdog Timer, UART, LCD Control ers, Memory Concepts. BUS STRUCTURES Concepts, Microprocessor Interfacing – I/O Addressing, Port a ial Protocols, I2C, CAN and USB, Parallel Protocols – Pe	llers	and . Bus-	Anal	og-to- g d I/O, l Bus,					
Microco Digital C UNIT Basic Pr Arbitrati Wireless UNIT Basic S Machine Process Model,	ntrollers Converte III rotocol C ion, Ser s Protoco IV tate Ma e in Sec Model, Real-tir	s, Timers, Counters and watchdog Timer, UART, LCD Control ers, Memory Concepts. BUS STRUCTURES Concepts, Microprocessor Interfacing – I/O Addressing, Port a ial Protocols, I2C, CAN and USB, Parallel Protocols – Pe ols – IrDA, Bluetooth, IEEE 802.11. STATE MACHINE AND CONCURRENT	and I CI a: el, C Mod	and A Bus-A nd A aptu el, (sses,	Anal Base ARM ring Conc , Dat	og-to- d I/O, bus, State urrent caflow					
Microco Digital C UNIT Basic Pr Arbitrati Wireless UNIT Basic S Machine Process Model,	ntrollers Converte III rotocol C ion, Ser s Protoco IV tate Ma e in Sec Model, Real-tir on, Reu	s, Timers, Counters and watchdog Timer, UART, LCD Control ers, Memory Concepts. BUS STRUCTURES Concepts, Microprocessor Interfacing – I/O Addressing, Port a ial Protocols, I2C, CAN and USB, Parallel Protocols – Pe ols – IrDA, Bluetooth, IEEE 802.11. STATE MACHINE AND CONCURRENT PROCESS MODELS achine Model, Finite-State Machine with Data path Mode quential Programming Language, Program-State Machine Communication among Processes, Synchronization among p me Systems, Automation: Synthesis, Verification : Hardw	and I CI a: el, C Mod	and A Bus-A nd A aptu el, (sses,	Anal Base ARM ring Conc , Dat	og-to- d I/O, Bus, State urrent caflow e Co-					
Microco Digital C UNIT I Basic Pr Arbitrati Wireless UNIT I Basic S Machine Process Model, Simulati UNIT I	ntrollers Converte III rotocol C ion, Ser s Protoco IV tate Ma e in Sec Model, Real-tir on, Reu V	s, Timers, Counters and watchdog Timer, UART, LCD Control ers, Memory Concepts. BUS STRUCTURES Concepts, Microprocessor Interfacing – I/O Addressing, Port a ial Protocols, I2C, CAN and USB, Parallel Protocols – Pe ols – IrDA, Bluetooth, IEEE 802.11. STATE MACHINE AND CONCURRENT PROCESS MODELS achine Model, Finite-State Machine with Data path Mode quential Programming Language, Program-State Machine Communication among Processes, Synchronization among p ne Systems, Automation: Synthesis, Verification : Hard- se: Intellectual Property Cores, Design Process Models. EMBEDDED SOFTWARE DEVELOPMENT	and I CI a el, C Mod proce ware,	and . Bus-: nd A aptu el, (sses, /Soft	Anal Base ARM ring Conc , Dat	og-to- g d I/O, f Bus, g State urrent caflow e Co- g					

OUTCO	OMES:	Upon the course completion, the student will have the ability						
1.	To explain the	e embedded system design challenges and its optimization						
2.	To explain single purpose processor and its internal peripherals.							
3.	To compare b	us architecture for interfacing and communication protocols.						
4.	To discuss st	ate machine and design process models						
5.	To outline em	bedded software development tools and RTOS						
REFER	RENCES:							
1.		el Douglas, "Real time UML, second edition: Developing efficient objects ed systems", 3rd Edition 1999, Pearson Education.						
2.	Daniel W. L	ewis, "Fundamentals of embedded software where C and assembly meet", ucation, 2002.						
3.		d and Tony Gwargie, "Embedded System Design", John Wiley & sons,						
4.		, "Embedded System Design", Elsevier, Second Edition, 2004.						

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	2	2	-	1	1	-	2	-	1	-	-	2	-	1
CO2	2	2	-	2	1	-	2	-	1	-	-	2	-	1
CO3	2	2	-	2	1	-	1	-	1	-	-	2	-	1
CO4	2	2	-	2	2	-	1	-	1	-	-	2	2	1
CO5	2	2	-	2	2	-	1	-	1	-	-	2	2	1
	2	2	-	2	1	-	1	-	1	-	-	2	1	1

1-LOW 2-MODERATE (MEDIUM) 3-HIGH

18AEPC05	5
-----------------	---

MODERN COMMUNICATION TECHNIQUES

OBJECTIVES:

•	To understand the coherent and non-coherent receivers and its impact on different channel characteristics
•	To understand the operation of different Equalizers
•	To understand the different block coded and convolutional coded digital communication systems

UNIT I POWER SPECTRUM AND COMMUNICATION OVER MEMORYLESS CHANNEL

9

PSD of a Synchronous Data Pulse Stream – M–ary Markov source – Convolutionaly Coded Modulation – Continuous Phase Modulation – Scalar and Vector Communication over Memory less Channel – Detection Criteria.

UNIT II	COHERENT AND NON – COHERENT	9
	COMMUNICATION	

Coherent Receivers – Optimum Receivers in WGN – IQ Modulation & Demodulation – Non– Coherent receivers in Random Phase Channels – M–FSK Receivers – Rayleigh and Rician Channels – Partially Coherent Receivers – DPSK – M –PSK – M –DPSK – BER Performance Analysis.

UNIT III BANDLIMITED CHANNELS AND DIGITAL MODULATIONS

9

Eye pattern – Demodulation in the presence of ISI and AWGN – Equalization techniques – IQ modulations – QPSK – QAM – QBOM – BER Performance Analysis – Continuous Phase Modulation – CPFM – CPFSK – MSK – OFDM

UNIT IV BLOCK CODED DIGITAL COMMUNICATION

9

Architecture and Performance – Binary Block Codes – Orthogonal – Bi–orthogonal – Transorthogonal – Shannon's Channel Coding Theorem – Channel Capacity – Matched Filter – Concepts of Spread Spectrum Communication – Coded BPSK and DPSK Demodulators – Linear Block Codes – Hamming–Golay Cyclic – BCH – Reed– Solomon Codes

UNIT V CONVOLUTIONAL CODED DIGITAL COMMUNICATION

9

Representation of Codes using Polynomial – State Diagram – Tree Diagram and Trellis Diagram

 Decoding Techniques using Maximum Likelihood – Viterbi Algorithm – Sequential and Threshold methods – Error probability performance for BPSK and Viterbi Algorithm – Turbo Coding

		TOTAL: 45 PERIODS
OUTC	OMES:	Upon the course completion, the student will have the ability
1.	to analyze PS	SD of different sources.
2.	to compare o	coherent and non-coherent receivers for different channels.
3.	to compare d	ifferent digital modulations over band limited channels.
4.	to analyze the	e performance of different block codes.
5.	to explain de	coding techniques for convolutional coded digital modulation.
REFE	RENCES:	
1.		., Hinedi S. M. and Lindsey W. C., "Digital Communication Techniques, nd Detection", Prentice Hall India, 1995.
2.	Simon Hayk	in, "Digital communications", John Wiley and Sons, 1998.
3.	John G. Pro 2008.	pakis, "Digital Communication", Fifth Edition, Mc Graw Hill Publication,
4.	Bernard Skl	ar, "Digital Communications", second edition, Pearson Education, 2001.
5.	Wayne Tom Education,	asi, "Advanced Electronic Communication Systems", 4th Edition Pearson 1998.
6.		"Modern Digital and Analog Communication Systems", 3rd Edition, versity Press, 1998.

COURSE ARTICULATION MATRIX:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	2	-	2	2	1	-	-	2	-	1	2	1	1
CO2	3	2	-	2	2	1	-	-	2	-	1	2	1	1
CO3	3	2	-	2	2	1	-	-	2	-	1	2	1	1
CO4	3	2	-	2	2	1	-	-	2	-	1	2	1	1
CO5	3	2	-	2	2	1	-	-	2	-	1	2	1	1
	3	2	-	2	2	1	-	-	2	-	1	2	1	1

1-LOW

2-MODERATE (MEDIUM)

18AEPC	I8AEPC06				ELECTRONIC SYSTEM DESIGN LABORATORY I										I		T	Р	(С					
															()	0	4	2	2					
Objectiv	ves:																								
• To	learn	about t	the	emb	eda	dec	d h	narc	dwa	are															
• To	becon	ne fam	nili	ar wit	th	va	aric	ous	s int	terf	faci	ing	ecl	nnic	que	es									
• To	learn	about t	the	impl	lem	ner	nta	ntio	on o	of fu	unc	ctior	al	moo	dul	es	in 1	FPG	A						
LIST OI	FEX	PERI	IM	EN	ТS	5 U	JS	IN	١G	A]	RN	M P	R	0C	E	SS	50]	R:							
1.	Interfa	icing E	EE	PRO	Mι	usi	ing	g I ²	² C.																
2.	Interfa	icing F	RF	Tran	isce	eiv	/er	usi	sing	g UA	AR	T.													
3.	Interfa	cing D	DC	moto	or &	& s	spe	eed	l coi	ontro	ol ı	usin	P	WN	Л.										
4.	Interfa	cing T	Ten	perat	ture	e	sei	nso	or u	ısin	g I	$^{2}C.$													
5.	Interfa	cing of	of C	raphi	ica	ıl L	LC	D r	mo	odul	e.														
6.	Interfa	cing of	of R	TC.																					
7.	Interfa	cing of	of S	teppe	er N	Mo	oto	or.																	
8.]	Progra	mming	ng ii	n RT(OS	er	nvi	iror	nme	ent															
9.]	Data a	cquisit	itio	n fron	n a	a re	em	ote	e lo	ocati	ion	n and	d	spl	ay	us	ing	graj	phic	al L	CE).			
10.	Impler	nentati	tion	of L	ine	ear	r co	onv	volu	utio	on ı	usin	F	PG.	A.										
11.	Implementation of FFT using FPGA.																								
12.	Design of closed loop system using PROTEUS software.																								
I													,	ГО	T	AI		60	P	ERI	0	DS			
OUTCO	MES	5:	τ	Jpon	coi	mp	ple	etio	on tl	the o	coi	ırse	tł	ne st	tud	len	its v	will	hav	e the	ał	oilit	y to		
1.	Apply	variou	ous	interf	faci	ing	g te	ech	nniq	ques	s u	sing	A	RM	pr	oc	ess	or.							
2.	Demo	nstrate	e va	arious	s co	om	nm	uni	nicat	tior	n p	roto	ol	s.											
3.	Desig	n a sys	ster	n and	d va	alio	dat	te u	usir	ng I	RT	OS													

4.	Design and analyze of real time system.
5.	Design and implementation of mathematical modules in FPGAs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	-	-	1	2	-	-	-	-	-	1	1	-	-
CO2	2	2	-	-	3	-	1	1	-	-	-	-	2	-
CO3	2	3	-	-	3	-	-	2	-	-	1	3	2	-
CO4	2	3	-	1	3	-	3	2	-	-	3	3	1	-
CO5	2	2	-	-	-	-	3	-	-	-	-	3	3	2
18AEPC06	2	2	-	-	3	-	2	2	-	-	-	3	2	-
1-LOW	2-]	MODE	ERATE	E (MEI	DIUM)	3-	HIGH			1		1	1	1

23

SEMESTER II

18AEPC07	SOFT COMPUTING AND OPTIMIZATION TECHNIQUES	L	Т	Р	C
	·	3	0	0	3
OBJECTIVI	ES:	•		1	
•	Learn the basics concepts of Soft Computing				
•	become familiar with various techniques like neural networks algorithms and fuzzy systems.	s, ge	netio	С	
•	Apply soft computing techniques to solve problems				
UNIT I	NEURAL NETWORKS				
Learning Neur Hopfield netwo	ral Networks – Self Organizing map , Adaptive Resonan rk	ce /	Arch	itect	ures,
Hopfield netwo	rk				
UNIT II	FUZZY LOGIC				
•	Operations on Fuzzy Sets – Fuzzy Relations – Memb nd Fuzzy Reasoning – Fuzzy Inference Systems – Fuzzy on Making		-		
UNIT III	NEURO-FUZZY MODELING				
Classification a	ro-Fuzzy Inference Systems – Coactive Neuro-Fuzz nd Regression Trees – Data Clustering Algorithms – Ru - Neuro-Fuzzy Control – Case Studies.	•			
UNIT IV	CONVENTIONAL OPTIMIZATION TECHNIQUES				-
Unconstrained conjugate grad	optimization techniques, Statement of an optimization probl optimization-gradient search method-Gradient of a function, lient, Newton's Method, Marquardt Method, Constrained ar programming, Interior penalty function method, external	steep d op	pest otimi	grad zatic	ient- on –
UNIT V	EVOLUTIONARY OPTIMIZATION TECHNIQUES				
Genetic algorit	hm - working principle, Basic operators and Terminologie	es, B	uildi	ing t	olock

hypothesis, Travelling Salesman Problem, Particle swam optimization, Ant colony optimization.

		TOTAL: 45 PERIODS										
OUTC	OMES:	Upon completion the course, the students will have the ability to										
1.	apply suitable	soft computing techniques for various application										
2.	Integrate vario	ous soft computing techniques for complex problems.										
3.	Implement ma	chine learning through neural networks										
4.	develop a fuzz	develop a fuzzy expert system , model neuro fuzzy system for clustering and classification										
5.	able to use the	optimization techniques to solve the real world problem										
REFE	RENCES:											
1.		oldberg, Genetic Algorithms in Search, Optimization and Machine ddison wesley, 2009.										
2.	Ū.	lir and Bo Yuan, Fuzzy Sets and Fuzzy Logic-Theory and s,Prentice Hall, 1995.										
3.		eeman and David M. Skapura, Neural Networks Algorithms, Applications, nming Techniques, Pearson Edn., 2003.										
4.		oger Jang, Chuen-Tsai Sun, Eiji Mizutani, Neuro-Fuzzy and Soft Prentice-Hall of India, 2003.										
5.	Mitchell Me	lanie, An Introduction to Genetic Algorithm, Prentice Hall, 1998.										
6.	Simon Hayk Internationa	ins, Neural Networks: A Comprehensive Foundation, Prentice Hall Il Inc, 1999.										
7.	Ũ	Rao, Engineering optimization Theory and practice, John Wiley & sons, Edition, 2009										
8.	Timothy J.R	oss, Fuzzy Logic with Engineering Applications, McGraw-Hill, 1997.										
9.		o, Vimal J. Savsani, Mechanical Design Optimization Using Advanced n Techniques, Springer 2012.										

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	3	2	-	-	-	-	-	-	2	-	-	2	2	-
CO2	3	3	3	-	-	-	-	-	-	3	-	-	3	3	-
CO3	2	2	-	-	-	-	-	-	-	1	-	-	3	2	-
CO4	2	3	2	-	2	2	-	-	-	2	2	-	3	2	-
CO5	3	2	2	-	-	-	-	-	-	-	-	-	3	2	-
18LPC303	2	3	2	-	-	1	-	-	-	2	1	-	3	2	-

1-LOW 2-MODERATE (MEDIUM)

3-HIGH

18AEP	PC08	VLSI SYSTEM DESIGN	L	Т	Р	C						
			3	0	0	3						
OBJE	CTIVE	S:										
•	To stuc	ly different types of programming technologies and logic devi	ces.									
•	• To gain knowledge about partitioning, floor planning and routing including circuit extraction of ASIC											
•	To kno	w about different high performance algorithms and its applica	tion	s in	ASI	Cs.						
UNIT	[OVERVIEW OF ASIC AND PLD				9						
Types of	ASICs	- Design flow – CAD tools used in ASIC Design – Programm	ning	Tec	hnol	ogies:						
		c RAM – EPROM and EEPROM technology, Programmab OMs – PLA –PAL. Gate Arrays – CPLDs and FPGAs	le L	ogic	De ^r	vices:						
	nd EPR		le L	ogic	De	vices: 9						

UNIT I	Ι		IC SYNTHESIS, SIMULATION AND FING	9
Design s	ystems	- Log	ic Synthesis - Half gate ASIC -Schematic entry - Low le	evel design
language	- PLA	tools -E	EDIF- CFI design representation. Verilog and logic synthesis -	VHDL and
logic syn	thesis	- types	of simulation -boundary scan test - fault simulation - aut	omatic test
pattern ge	eneratio	on.		
UNIT I	V	FIEL	D PROGRAMMABLE GATE ARRAYS	9
FPGA De	esign:	FPGA	Physical Design Tools -Technology mapping - Placement &	& routing -
Register t	ransfer	· (RT)/I	Logic Synthesis - Controller/Data path synthesis - Logic minin	nization.
UNIT V	7	SOC	DESIGN	9
System-C	n-Chip	Desig	n - SoC Design Flow, Platform-based and IP based SoC Des	igns, Basic
			Communication Architectures. High performance algorithms	
			Canonical Signed Digit Arithmetic, Knowledge Crunching	g Machine,
Distribute	ed Arith	nmetic,	High performance digital filters for sigma-delta ADC.	
			TOTAL: 45 PERIODS	3
OUTCO	OMES	5:	Upon completion the course, the students will have the ability	ty to
1.	Under	stand va	rious programming technologies and logic devices	
2.	Discus	s about	different floor planning and placement techniques.	
3.	Analy	ze the s	ynthesis, simulation and testing of systems.	
4.	Apply	differer	at high performance algorithms in ASICs.	
5.	Discus	s the de	sign issues of SOC.	
REFER	ENC	ES:		
1.	<i>M.J.</i>	S.Smith,	"Application - Specific Integrated Circuits", Pearson, 2003.	
2.	Steve	Kilts '	'Advanced FPGA Design", Wiley Inter-Science, 2007.	
3.	J. Ol	d Field,	, R.Dorf, "Field Programmable Gate Arrays", John Wiley& S	ons, 1995.
4.			& S. Mourad, "Digital Design using Field Programmable II, 1994.	Gate Array",
5.	Sude	ep Pas	richa and NikilDutt, "On-Chip Communication Architectur connect", Elsevier, 2008.	es System on

S.Trimberger, Edr., "Field Programmable Gate Array Technology", Kluwer Academic 6. Pub., 1994.

7. S.Brown, R.Francis, J.Rose, Z.Vransic, "Field Programmable Gate Array", Kluwer Pub., 1992.

COURSE ARTICULATION MATRIX:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	2	2	2	-	-	-	-	2	_	2	2	2	_
CO2	3	2	2	2	-	-	-	-	2	-	2	2	2	-
CO3	3	3	2	2	-	-	-	-	2	-	2	3	3	-
CO4	3	3	2	2	-	-	-	-	2	-	2	3	3	-
CO5	3	2	2	2	-	Ι	Ι	Ι	2	-	2	2	2	-
18AEPC08	3	2	2	2		-	-	Ι	2	-	2	2	2	-

1-Low 2—Moderate (Medium) 3-High

Segmentation - Applications of image segmentation.

18AEPC09	DIGITAL IMAGE PROCESSING	L	T	Р	С
		3	0	0	3
Objectives:					
Understa	and fundamental of digital image				
• Learn di	fferent image transforms				
• Study co	ncept of segmentation				
UNIT I	FUNDAMENTALS OF DIGITAL IMAGE PROCESSING				9
transforms-DFT	al perception-brightness, contrast, hue, saturation, mach band es, DCT, KLT,SVD. Image enhancement in spatial and freq phological image processing.				-
UNIT II	SEGMENTATION				9
-	-Thresholding, Region growing- Fuzzy clustering-Watershed Texture feature based segmentation-Graph based segmentation		-		

UNIT I	II	FEAT	FURE EXTRACTION	9
detecting descriptor	image rs, Moi	curvat ments,	edge detection operators-Phase congruency- Localized feature ure, shape features, Hough transform, shape skeletonizatio Texture descriptors- Autocorrelation, Co-occurrence features based features, Gabor filter, wavelet features.	n, Boundary
UNIT I	V	REG	ISTRATION AND IMAGE FUSION	9
correspon Transform Nearest N	ndence nation Neighbo	- Point function	essing, Feature selection - points, lines, regions and templ pattern matching, Line matching, Region matching, Templa ns - Similarity transformation and Affine Transformation. R Cubic Splines. Image Fusion - Overview of image fusion, egion based fusion.	te matching. Resampling –
UNIT V	7	3D IN	MAGE VISUALIZATION	9
Volumetr	ric disp	olay, St	ets, Slicing the Data set, Arbitrary section planes, The u tereo Viewing, Ray tracing, Reflection, Surfaces, Multipl ing in 3D, Measurements on 3D images	
			TOTAL: 45 PERIODS	
COURS		5:	Upon completion the course , the students will have the abili	ty
1.	To un	Iderstan	d the image fundamentals.	
2.	To un	Iderstan	d the various image segmentation techniques.	
3.	To ex	tract fea	atures for image analysis.	
4.	To in	troduce	the concepts of image registration and image fusion.	
5.	To il	lustrate	3D image visualization.	
REFER	RENC	ES:		
1.	Anil 2002		, Fundamentals of Digital Image Processing', Pearson Educar	tion,Inc.,
2.			oshtasby, " 2D and 3D Image registration for Medical, Remote ial Applications",John Wiley and Sons,2005.	e Sensing
3.	John	C.Russ	s, "The Image Processing Handbook", CRC Press,2007.	
4.		k Nixon s,2008.	, Alberto Aguado, "Feature Extraction and Image Processing	", Academic
5.	•		onzalez, Richard E. Woods, Digital Image Processing', ucation, Inc.,Second Edition, 2004.	

6	Rick S.Blum, Zheng Liu, "Multisensor image fusion and its Applications", Taylor&	;
0.	Francis,2006.	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	2	2	2	2	1	1	-	3	2	-	2	2	1	_
CO2	2	2	3	2	2	1	-	2	1	-	1	2	2	-
CO3	3	2	3	2	1	1	-	2	1	-	2	2	2	1
CO4	3	3	2	2	I	_	_	_	2	_	2	3	2	_
CO5	3	2	2	2	2	2	1	3	2	_	2	2	2	2
18AEPC09	3	3	2	2	1	2	_	3	2	_	2	2	2	2

1-Low 2—Moderate (Medium) 3-High

18AEPC10	INTERNET OF THINGS	L	Т	Р	С			
		3	0	0	3			
OBJECTIVE	CS:							
• Understa	nd the fundamentals of Internet of Things and its protocols.							
Explore Raspbern	and learn about Internet of Things with help of preparing projecty Pi.	ects	desi	gned	for			
• Realize the concept of Internet of Things in the real world scenario								
UNIT I	INTRODUCTION TO IoT				9			
& Deployment	gs - Physical Design- Logical Design- IoT Enabling Technolo Templates - Domain Specific IoTs - IoT and M2M - IoT Sys T-YANG- IoT Platforms Design Methodology	-						
UNIT II	IoT ARCHITECTURE				9			
reference model	l ETSI architecture - IETF architecture for IoT - OGC at - Domain model - information model - functional model rence architecture							

UNIT II	II	IoT PROTOCOLS	9					
Protocol S	Standa	rdization for IoT - Efforts - M2M and WSN Protocols - SCADA	and RFID					
Protocols	– Un	ified Data Standards - Protocols - IEEE 802.15.4 - BACNet I	Protocol –					
Modbus-	Zigbee	e Architecture – Network layer – LowPAN - CoAP – Security						
UNIT I	V	BUILDING IoT WITH RASPBERRY PI&ARDUINO	9					
Building l	IOT wi	th RASPERRY Pi- IoT Systems - Logical Design using Python – Io	T Physical					
Devices a	& End	points - IoT Device -Building blocks -Raspberry Pi -Board -	Linux on					
Raspberry	/ Pi - I	Raspberry Pi Interfaces -Programming Raspberry Pi with Python -	Other IoT					
Platforms	- Ardu	lino.						
UNIT V	T	SIMULATION OF DEVICES	9					
Real worl	d desig	n constraints - Applications - Asset management, Industrial automati	ion, smart					
grid, Com	mercia	l building automation, Smart cities - participatory sensing - Data Ana	alytics for					
IoT – Soft	tware &	& Management Tools for IoT Cloud Storage Models & Communicati	on APIs -					
Cloud for	IoT - A	Amazon Web Services for IoT.						
	TOTAL : 45 PERIODS							
COURSE OUTCOMES: Upon the course completion, the student will have the ability								
1.	To an	alyze various protocols for IoT.						
2.	To de	velop web services to access / control IoT devices.						
3.	Abilit	y to design a portable IoT using Raspberry Pi.						
4.	To de	ploy an IoT application and connect to the cloud.						
5.	Analy	ze applications of IoT in real time scenario.						
REFER	ENC	ES:						
1.	Hwa	yuGeng, "Internet of Things and Data Analytics", Wiley Publication	ıs, 2017.					
2.	Srini	vasa K G, "Internet of Things", CENCAGE Leaning India, 2017.						
3.	-	Kamal, "Internet of Things Architecture and Design Principles", T 2017.	ata McGraw					
4.		deep Bahga, Vijay Madisetti, "Internet of Things – A hands-on ersities Press, 2015	approach",					
5.	Olivi	er Hersent, David Boswarthick, Omar Elloumi , "The Internet of T cations and Protocols", Wiley, 2012	Things – Key					
6.	Honb	bo Zhou, "The Internet of Things in the Cloud: A Middleware Perspe 5, 2012.	ective", CRC					

7. Jan Holler, Vlasios Tsiatsis, Catherine Mulligan, Stamatis, Karnouskos, Stefan Avesand. David Boyle, "From Machine-to-Machine to the Internet of Things -Introduction to a New Age of Intelligence", Elsevier, 2014.

COURSE ARTICULATION MATRIX:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	2	2	2	2	2	2	-	-	3	-	2	2	1	2
CO2	2	2	2	2	2	3	-	-	3	-	2	2	2	2
CO3	2	2	2	3	3	3	-	-	3	-	2	3	3	2
CO4	2	2	2	3	3	3	-	-	3	-	2	3	3	2
CO5	2	2	2	3	3	3	-	-	3	-	2	3	3	2
	2	2	2	3	3	3	-	-	3	-	2	3	3	2

1-LOW 2-MODERATE (MEDIUM) 3-HIGH

18AEPC	L	T	P	C				
			0	0	4	2		
Objectiv	ves:							
• To	o have	e a brief Understand of self test and fault diagnosis co	once	ept				
• To	o Imp	lementation of ALU in FPGA						
• To	o Fam	iliarize with ASIC design concept						
LIST O	F EX	PERIMENTS:						
1.	Analysis of Asynchronous and clocked synchronous sequential circuits							
2.	Built in self test and fault diagnosis							
3.	Sensor design using simulation tools							
4.	Design	, simulation and analysis of signal integrity						
5.	Design	and Implementation of ALU in FPGA using VHDL and Verilog						
6.	Modeli	ng of Sequential Digital system using Verilog and VHDL						

7.	Flash controlle	ash controller programming - data flash with erase, verify and fusing						
8.	System design	using ASIC						
		TOTAL: 60 PERIODS						
OUTC	OMES:	Upon completion the course , the students will have the ability to						
1.	Design sensor using simulation tools.							
2.	Explain buil	Explain built in self test and fault diagnosis.						
3.	Explain design	Explain design, simulation and analysis of signal integrity						
4.	Demonstrate	Demonstrate design of ALU in FPGA using VHDL and Verilog						
5.	Assess flash c	ontroller programming - data flash with erase, verify and fusing						

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	2	2	2	2	2	2	-	-	3	-	2	2	1	2
CO2	2	2	2	2	2	3	-	-	3	-	2	2	2	2
CO3	2	2	2	3	3	3	-	-	3	-	2	3	3	2
CO4	2	2	2	3	3	3	-	-	3	-	2	3	3	2
CO5	2	2	2	3	3	3	-	-	3	-	2	3	3	2
18AEPC11	2	2	2	3	3	3	-	-	3	-	2	3	3	2
1-LOW	2-	-MOD	ERAT	E (M	EDIUI	M)	3-HIC	θH				•	•	

SEMESTER III

ELECTRONIC PRODUCT DESIGN AND **18AEPC13** Т Р С L DEVELOPMENT 3 0 3 0 **OBJECTIVES:** • To understand the product design and development • To be familiar in PCB and PCB design • To understand hardware and software testing methods **UNIT I** 9 PRODUCT DESIGN AND DEVELOPMENT Introduction, Product development basics, Product development stages, Identification of the

customer requirements, Designing the product ,Techno-commercial feasibility of a product, Pilot production batch, Product assessment, Availability, Screening test of component, redundancy, Effects of environmental conditions on reliability, Comparison between repairable and non-repairable systems, Failure rates of electronic components, Ergonomic and aesthetic design considerations.

UNIT II

FUNDAMENTALS OF PCB AND PCB DESIGN

9

Introduction to PCBs, Layout, Issues related to PCB size, Interconnection parameters, Recommendations for Power and ground traces routing, PCB design for digital circuits, Noise due to ground and supply line, Grounds, Returns and Shields, PCB design rules for analog circuits, Design issues related to supply and ground conductors, Multilayer Boards, Component assembly techniques, Testing of assembled PCBs, Board layout checklist, Bare board testing, Testing of multilayer PCB, Compare of PCBs.

UNIT III MODERN PCB DESIGN

9

Introduction, Computer-aided design, Automation in design, Soldering techniques, Soldering testing, Packages for semiconductor devices and ICs, Reliability issues in ICs, Parastic elements, High-speed PCBs and parasitic elements, PCB designing for microprocessor-based circuits, High speed PCB design, Design consideration in high speed PCBs, Component mounting under vibration ,SMDs, Cable.

UNIT	IV		OWARE, SOFTWARE DESIGN AND ING METHODS	9
and lim instrum Structur	nitation entation red prog es, Sele	of Differ n. Introdu gram, Te	alyzer, uses of logic analyze, Oscilloscope Probes, Signal in rent types of analysis, SPICE, Monte-Carlo analysis, evolutio uction, Phases of software design, Goals of software design esting and debugging of program, Algorithmic state machine, language for software development, Assemblers, Compilers,	on of virtual , Design of Finite state
UNIT	V	ELEC	CTRONIC PRODUCT TESTING	9
test cha Compli Importa standare	ambers ance, C ance of ds, CE	and roon Conducte	trical overstress testing, Altitude testing, Special testing, Em ns, Various test on enclosures, EMI and EMC related testing ed emission test using time domain principle, Radiated em rds, Standards and Standard developing organisations, Lis and certification, UL marking and certification, IEC standards rds.	g, EMC and nission test, st of some
			TOTAL : 45 PERIODS	S
OUTO	COME	S:	Upon completion the course , the students will have the abili	ty to
1.	Desi	gn electr	ronic products	
2.	App	ly fundai	mentals of PCB and PCB design	
3.	Imp	ement a	nd Test hardware design	
4.	Mod	lel Softw	vare design and testing	
	Pren	are prod	uct documentation	
5.	Incp	•		
5. REFE		CES:		
	CRENC		car, V.B.Baru, Electronic Product design, second edition	
REFE		G.Kadusk	car,V.B.Baru,Electronic Product design, second edition Portable Electronics Product design and development	
REFE	RENC R.C Ber	G.Kadusk t Haskell,	~	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	2	3	3	-	-	-	-	-	2	-	-	2	2	-
CO2	3	3	2	-	-	-	-	-	3	-	-	3	3	-
CO3	2	2	2	-	-	-	-	-	1	-	2	3	2	-
CO4	2	3	2	2	-	2	-	-	2	-	-	3	2	-
CO5	3	2	2	-	-	-	-	-	2	-	-	3	2	-
	2	3	2	1	-	1	-	-	2	-	-	3	2	-

	1-LOW	2-MODERATE (MEDIUM)	3-HIGH
--	-------	---------------------	--------

18AEPC	C14 ELECTRONIC PRODUCT DESIGN LABORATORY	L	T	Р	C
		0	0	4	2
Objectiv	ves:				
• To	o understand the process of electronic product design				
• To	be familiar in PCB and PCB design				
• To	be familiar in designing of interfaces				
LIST O	F EXPERIMENTS:				
	Design template, PCB, assemble components and verify the workin supplies	ng of	Regu	lated	l Power
2.	Design template, PCB, assemble components and verify the working of	Inver	ter /	UPS	
3.	Design template, PCB, assemble components and verify the working of	Func	tion	Gene	rator
	Design template, PCB, assemble components and verify the workin Modulator / Demodulator	g of	PAM	[/PW	M/PPM
	Design template, PCB, assemble components and verify the working Receiver	of AN	1/FM	Ger	nerator /
	Design template, PCB, assemble components and verify the work Amplifier	ting o	f Au	dio/V	/ideo

7.	Design templa	te, PCB, assemble components and verify the working of Computer interfaces
8.	Design templa Microprocesso	te, PCB, assemble components and verify the working of Microcontroller / r interfaces
9.	Design templa	te, PCB, assemble components and verify the working of RF circuits
		TOTAL : 60 PERIODS
OUTC	OMES:	Upon completion the course , the students will have the ability to
1.	Design of po	wer supplies and Inverter/UPS
2.	Design of di	fferent modulators
3.	Design of tra	nsmitter and receiver
4.	Design of dif	ferent interfaces
5.	Analyze the	working of audio/video amplifiers

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	2	3	3	-	-	-	-	-	2	-	-	2	2	-
CO2	3	3	2	-	-	-	-	-	3	-	-	3	3	-
CO3	2	2	2	-	-	-	-	-	1	-	2	3	2	-
CO4	2	3	2	2	-	2	-	-	2	-	-	3	2	-
CO5	3	2	2	-	-	-	-	-	2	-	-	3	2	-
	2	3	2	1	-	1	-	-	2	-	-	3	2	-

PROFESSIONAL ELECTIVES (PE)

18AEI	PE01	DIGITAL CONTROL ENGINEERING	L	Т	P	С
			2	1	0	3
OBJE	CTIV	ES:		I		I
•	To lea	arn the principles of PI,PD,PID controllers				
•	To an	alyse time and frequency response of discrete time control syst	em			
•	To be	familiar in digital control algorithms.				
UNIT	I	CONTROLLERS IN FEEDBACK SYSTEMS				6+3
order fe	edback	quency and time response analysis and specifications of first control systems, need for controllers, continuous time compen D controllers, digital PID controllers.				
UNIT	II	BASIC DIGITAL SIGNAL PROCESSING IN CONTROL SYSTEMS				6+3
-	of samp	rem, quantization, aliasing and quantization error, hold opera le and hold, zero and first order hold, factors limiting the choic				
UNIT	III	MODELING OF SAMPLED DATA CONTROL SYSTEM				6+3
and free Jury's s	quency stability	ation description, Z-transform method of description, pulse tran response of discrete time control systems, stability of digita test, state space description, first companion, second c els, discrete state variable models (elementary principles only).	al co	ontro	ol sy	vstems,
UNIT	IV	DESIGN OF DIGITAL CONTROL ALGORITH	MS			6+3
using fr	equenc	ciple of compensator design, Z-plane specifications, digital c y response plots, discrete integrator, discrete differentiator, dev transfer function, design in the Z-plane.	-			U
UNIT	V	PRACTICAL ASPECTS OF DIGITAL CONTRO ALGORITHMS	DL			6+3
implement based to	entation empera	elopment of PID control algorithms, standard programmes f n, finite word length effects, choice of data acquisition system ture control systems, microcontroller based motor speed con n of motor control system.	ns, 1	nicr	ocor	ntroller

		TOTAL: 45 PERIODS
OUTCO	OMES:	Upon completion the course, the students will have the ability to
1.	Describe con	tinuous time and discrete time controllers analytically.
2.	Define and st	ate basic analog to digital and digital to analog conversion principles.
3.	Analyze sam	pled data control system in time and frequency domains.
4.	Design simpl	e PI, PD, PID continuous and digital controllers.
5.	Develop sch systems.	emes for practical implementation of temperature and motor control
REFER	RENCES:	
1.	John J. D'Az Graw Hill,	zzo, "ConstantiveHoupios, Linear Control System Analysis and Design", Mc 1995
2.		yala, "The 8051 Microcontroller- Architecture, Programming and Applications", national, 2nd Edition, 1996.
3.	M.Gopal, "D	igital Control and Static Variable Methods", Tata McGraw Hill, New Delhi, 1997

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	3	3	-	-	-	-	-	-	3	-	3	2	-
CO2	2	3	2	-	-	-	-	-	-	2	-	3	2	-
CO3	3	2	2	-	-	2	-	-	-	1	1	3	2	-
CO4	3	3	2	-	-	2	-	-	-	2	-	3	2	-
CO5	2	2	2	-	-	-	-	-	-	2	-	3	2	-
18AEPE01	3	3	2	-	-	2	-	-	-	2	1	3	2	-

1-LOW 2-MODERATE (MEDIUM)

3-HIGH

18AEF	PE02	C	COMP	UTE	RAF	RCI	HITE	CT	URE	L	Т	Р	C
										3	0	0	3
OBJE	CTIV	ES:											
٠	To un	derstand the	e differe	nce be	etween	n pip	eline a	nd p	parallel processi	ng co	once	pts	
•		tudy variou ectures	is types	s of p	proces	ssor	archite	ctu	ares and the i	mpor	tanc	e of	scalable
٠	To stu	udy Memory	y Optim	ization	n and 7	Tech	nnique.						
UNIT	Ι	COMPU' MEASUI		DESI	GN A	ANI) PER	FC	ORMANCE				9
Multi-	vector	and SIMI	D arch	itectur	res –	- M	ultithre	ade	e Architectures ed architectures nce Measures		-		
UNIT	II	PARALI	LEL P	ROC	ESSI	ING	G, PIP	EL	INING AND	ILI)		9
Specula Processo UNIT	ors	Multiple Issu							fficiency in Adv	ance	d M	ultip	le Issue
-	ne Per	-	-				-		ns – Cache men Ial Memory -	-	_	-	
UNIT	IV	MULTIP	PROC	ESSO	ORS								9
Issues –	Synch		issues –	Mode	els of l				ache coherence istency - Interco				
UNIT	V	MULTI-	CORE	E ARG	CHIJ	ГЕС	CTUR	ES	5				9
	– Intel			-					rchitectures – D ecture – IBM c	-			
									TOTAL: 4	5 P	ER	IOD	S
OUTC	COME	ZS:	Upon	comple	etion t	the c	course,	the	e students will ha	ave th	ne ab	oility	to

1.	Discuss about d	ifferent architectures .
2.	Explain parallel	processing and pipelining.
3.	Explain design	of memory hierarchies.
4.	Assess Performa	ance Issues and Synchronization issues.
5.	Compare multic	core architectures.
REFE	RENCES:	
1.		, Jaswinder Pal Singh, "Parallel Computing Architecture: A hardware/ ach", Morgan Kaufmann / Elsevier, 1997.
2.		ris, Axel Jantsch, "Scalable Multi-core Architectures: Design and Tools", Springer, 2012.
3.	Hwang Briggs,	"Computer Architecture and parallel processing", McGraw Hill, 1984.
4.		sey and David A. Patterson, "Computer Architecture – A quantitative rgan Kaufmann / Elsevier, 4th. edition, 2007.
5.	John P. Hayes,	"Computer Architecture and Organization", McGraw Hill
6.	John P. Shen, "	Modern processor design. Fundamentals of super scalar processors",

 John P. Shen, "Modern processor design. Fundamentals of super scalar processors", Tata McGraw Hill 2003.
 Kai Hwang, "Advanced Computer Architecture", McGraw Hill International, 2001.
 William Stallings, "Computer Organization and Architecture – Designing for Performance", Pearson Education, Seventh Edition, 2006.

COURSE ARTICULATION MATRIX:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	3	3	-	-	-	-	-	-	3	-	2	2	-
CO2	2	3	1	1	-	-	-	-	-	2	-	2	2	-
CO3	2	2	1	-	-	2	-	-	-	1	1	2	2	-
CO4	2	3	2	1	-	2	1	-	-	2	-	2	2	-
CO5	2	2	2	-	-	-	-	-	-	2	-	2	2	-
18AEPE02	2	3	2	-	-	2	-	-	-	2	1	2	2	-

1-LOW

2-MODERATE (MEDIUM)

3-HIGH

IðAEP	E03			DIG	TAL	VLSI I	DESIG	N		L	Т	Р	C
										3	0	0	3
OBJEC	CTIV	ES:									1	1	
•	To un	derstand	l the pr	inciple	es of M	OS trans	istor and	CMOS inv	verter.				
•	To stu	udy the v	arious	latche	s and re	gisters,	layout an	d stick diag	gram o	of dig	gital	circ	uits.
•	To ga	in knowl	ledge a	bout d	ifferent	building	g blocks	and archite	cture.				
UNIT I	I	MOS Z			FOR I	PRINC	IPLES	AND CN	IOS				Ģ
Seconda	ry Effe dels C	ects, Proc MOS Inv	cess Va verter -	riatior	ns, Tecł	nnology S	Scaling, I	nic Condition Internet Par Character	ramete	r an	d ele	ectric	al
UNIT I	II	COM	BINA	TION	NAL I	OGIC	CIRC	UITS					ç
		•	-		•	-	s, Examp				-		-
Elmore ⁴⁴ Design p UNIT I Static La	s const princip III atches	tant, Dyn les. SEQU and Regi	namic I I <mark>ENT</mark> isters, I	Logic (IAL I Dynam	Gates, F	Pass Tran	CUITS Registers	ogic, Power	[.] Dissij	patio	on, L	.ow]	Power
Elmore ⁴⁴ Design p UNIT I Static La	s const princip III atches	tant, Dyn les. SEQU and Regi	namic I I <mark>ENT</mark> isters, I	Logic (IAL I Dynam	Gates, F	Pass Tran	nsistor Lo	ogic, Power	[.] Dissij	patio	on, L	.ow]	Power
Elmore ⁴⁴ Design p UNIT I Static La	s const princip III atches aplifier	tant, Dyn les. SEQU and Regi based R ARITI	namic I I <mark>ENT</mark> isters, I Legister HME	Logic (IAL I Dynam rs, Non TIC I	Gates, F LOGI nic Latc bistable BUIL	Pass Tran	CUITS Registers ntial Circ BLOCH	ogic, Power	[.] Dissij	patio	on, L	.ow]	Power
Elmore ⁴⁴ Design p UNIT I Static La sense am UNIT I Data pat	s constorrincip III atches aplifier IV	tant, Dyn les. SEQU and Regi based R ARITI MEM uits, Arc	isters, I cegister HME ORY	Logic (IAL I Dynam rs, Non TIC I ARC rres fo	Gates, F LOGI iic Late bistable BUILI HITE r Adde	Pass Tran C CIR hes and e Sequer DING I CCTUR	CUITS Registers ntial Circ BLOCH ES imulators	ogic, Power	Dissip	Pipe	on, L	.ow] s, Pu	Power
Elmore ⁴⁴ Design p UNIT I Static La sense am UNIT I Data pat	s constorincip III atches aplifier IV th circ a Trade	tant, Dyn les. SEQU and Regi based R ARITI MEM uits, Arc eoffs, Me	Anamic I UENT isters, I Legister HME ORY chitectu	Logic (IAL I Dynam s, Non TIC I ARC Ires for Archite	Gates, F LOGI nic Late bistable BUILI HITE r Adde ectures,	Pass Tran C CIR hes and e Sequer DING I CTUR rs, Accu and Me	CUITS Registers ntial Circ BLOCH ES mulators mory cor	ogic, Power s, Timing Is uits. KS AND , Multiplie	Dissip	Pipe rrel	eline	.ow] s, Pu	Power
Elmore [®] Design p UNIT I Static La sense am UNIT I Data pat and Area UNIT V Intercont	s constorincip III atches a	tant, Dyn les. SEQU and Regi based R ARITI MEM uits, Arc eoffs, Me INTEI arameter	Anamic I DENT isters, I degister HME ORY chitectu emory A chitectu emory A RCOP	Logic (IAL I Dynam s, Non TIC I ARC Archite NNE(apacita	Gates, F LOGI nic Latc bistable BUILI HITE r Adde ectures, CT AN ance, F	Pass Tran C CIR(hes and e Sequer DING I CTUR rs, Accu and Me ND CL(Resistanc	CUITS Registers ntial Circ BLOCH ES mory con OCKIN re, and I	egic, Power s, Timing Is uits. XS AND , Multiplie ntrol circuit	Dissip ssues, 5 rs, Ba s. TEG Elect	Pipe rrel IES	Shirt	fters,	Power
Elmore [®] Design p UNIT I Static La sense am UNIT I Data pat and Area UNIT V Intercont	s constorincip III atches a	tant, Dyn les. SEQU and Regi based R ARITI MEM uits, Arc eoffs, Me INTEI arameter	Anamic I DENT isters, I degister HME ORY chitectu emory A chitectu emory A RCOP	Logic (IAL I Dynam s, Non TIC I ARC Archite NNE(apacita	Gates, F LOGI nic Latc bistable BUILI HITE r Adde ectures, CT AN ance, F	Pass Tran C CIR(hes and e Sequer DING I CTUR rs, Accu and Me ND CL(Resistanc	CUITS Registers ntial Circ BLOCH ES mulators mory con OCKIN ce, and I pus Desig	egic, Power s, Timing Is uits. XS AND , Multiplie ntrol circuit (G STRA nductance,	Dissip ssues, rs, Ba s. TEG Elect ned Cir	Pipe Pipe rrel IES rcuit	Shit	s, Pu fters,	Power
Elmore [®] Design p UNIT I Static La sense am UNIT I Data pat and Area UNIT V Intercont	s constorincip III atches a	tant, Dyn les. SEQU and Regi based R ARITI MEM uits, Arc eoffs, Me INTEI carameter cation of	Anamic I ENT isters, I degister HME ORY chitectur emory <i>I</i> RCO rs – C f Digita	Logic (IAL I Dynam rs, Non TIC I ARC Archite NNE(apacita al Syste	Gates, F LOGI iic Latc ibistable BUILI HITE r Adde ectures, CT AN ance, F ems, Sy	Pass Tran C CIR(hes and e Sequer DING I CCTUR rs, Accu and Me ND CL(Resistanc /nchrono	CUITS Registers ntial Circ BLOCH ES mulators mory con OCKIN ce, and I ous Desig	egic, Power s, Timing Is uits. KS AND , Multiplie ntrol circuit IG STRA nductance, n, Self-Tin	Dissip ssues, rs, Ba s. TEG Elect ned Cin PEH	Pipe Pipe rrel IES rcuit RIO	Shit	s, Pu fters,	Power
Elmore [®] Design p UNIT I Static La sense am UNIT I Data pat and Area UNIT V Intercom Timing c	s constorincip III atches atches atches atches IV th circ a Trade V nect P classifi	tant, Dyn les. SEQU and Regi based R ARITI MEM uits, Arc eoffs, Me INTEI Parameter cation of	Image: Additional of the second se	Logic (IAL I Dynam s, Non TIC I ARC TIC I ARC TIC I ARC Archite Archite NNE(apacita al Syste	Gates, F LOGI iic Latc ibistable BUILI HITE r Adde ectures, CT AN ance, F ems, Sy letion th	Pass Tran C CIR(hes and e Sequer DING I CCTUR rs, Accu and Me ND CL(Resistanc /nchrono	CUITS Registers ntial Circ BLOCH ES mulators mory con OCKIN ce, and I ous Desig	egic, Power s, Timing Is uits. KS AND , Multiplie ntrol circuit IG STRA nductance, n, Self-Tin FAL : 45 idents will	Dissip ssues, rs, Ba s. TEG Elect ned Cin PEH	Pipe Pipe rrel IES rcuit RIO	Shit	s, Pu fters,	Power

3.	Discuss various latches and registers in sequential circuits.
4.	Discuss design methodology of arithmetic building block.
5.	Analyze tradeoffs of the various circuit choices for each of the building blocks.
REFEI	RENCES:
1.	Jan Rabaey, Anantha Chandrakasan, B Nikolic, "Digital Integrated Circuits: A Design Perspective", Second Edition, Prentice Hall of India, 2003.
2.	N.Weste, K. Eshraghian, "Principles of CMOS VLSI Design", Second Edition, Addison Wesley, 1993.
3.	Jacob Baker, "CMOS: Circuit Design, Layout, and Simulation", Third Edition Wiley IEEE Press 2010.
4.	Kaushik Roy and S.C.Prasad, "Low power CMOS VLSI circuit design", Wiley, 2000.
5.	M J Smith, "Application Specific Integrated Circuits", Addisson Wesley, 1997.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	3	2	_	_	_	_	_	2	_	2	3	3	_
CO2	3	3	2	_	_	_	_	_	2	_	2	2	2	_
CO3	3	2	2	_	-	-	-	_	2	_	2	2	2	-
CO4	3	3	2	_	-	-	-	_	2	_	2	3	3	-
CO5	3	2	2	_	_	_	-	-	2	-	2	2	2	-
18AEPE03	3	3	2	-	-	-	-	-	2	-	2	2	2	-

1-Low 2—Moderate (Medium) 3-High

18AEF	PE04	ELECTROMAGNETIC INTERFERENCE AND COMPATIBILITY	L	Т	Р	С
			3	0	0	3
OBJE	CTIV	ES:	_ I			
•	To le	arn the basics of EMI				
•	Be fa	miliar with EMI sources and problems.				
•	To ur	nderstand about EMI/EMC standards.				
UNIT	Ι	BASIC THEORY				9
Victims	of El on haza	EMI and EMC, Intra and inter system EMI, Elements of Inter MI, Conducted and Radiated EMI emission and susceptibi rds to humans, Various issues of EMC, EMC Testing categori	lity,	Cas	e Hi	stories,
UNIT	II	COUPLING MECHANISM				9
coupling	g, Radi	g, Differential mode coupling, Impedance coupling, Inductionactive coupling, Ground loop coupling, Cable related emistices, Automotive transients. EMI MITIGATION TECHNIQUES			-	
Working shieldin sealing, Large sy	g prind g effed PCB I ystems	ciple of Shielding and Murphy"s Law, LF Magnetic shiel ctiveness, Choice of Materials for H, E, and free space fie Level shielding, Principle of Grounding, Isolated grounds, Gro , Grounding for mixed signal systems, Filter types and operation tent Protection.	elds, undi	Gas ng s	ketti trate	res and ng and gies for
UNIT	IV	STANDARD AND REGULATION				9
Standaro ANSI,	ds, Pro FCC,	lards, Generic/General Standards for Residential and Industria duct Standards, National and International EMI Standardizing AS/NZS, CISPR, BSI, CENELEC, ACEC. Electro Mag tandards and specifications, MIL461E Standards.	Org	aniz	ation	s; IEC,
UNIT	V	EMI TEST METHODS AND INSTRUMENTAT	ION	I		9
immuni analyzei	ty test, r, EMl	considerations, EMI Shielding effectiveness tests, Open field Shielded chamber, Shielded anechoic chamber, EMI test test wave simulators, EMI coupling networks, Line imp through capacitors, Antennas, Current probes, MIL -STD te	rece edan	ivers	s, Sp stabi	bectrum lization

STD tes	st methods.		
			TOTAL: 45 PERIODS
OUTC	COMES:	Upon completion the course ,	the students will have the ability to
1.	Define source	es and hazards of EMI and EM	С.
2.	Compare dif	ferent coupling mechanisms.	
3.	Identify Star	dards.	
4.	Compare EN	II test methods.	
5.	Discuss EM	I mitigation techniques.	
REFE	RENCES:		
1.		eiser, "Principles of Electroma 1986.	gnetic Compatibility", 3rd Ed, Artech house,
2.		uul, "Introduction to Electron	nagnetic Compatibility", Wiley Interscience,
3.	~	and William Kimmel, "EDN"s De y", Elsevier Science & Technolog	signer''s Guide to Electromagnetic 9 Books. 2002.
4.			ompatibility Handbook", CRC Press 2005.
5.	Electromagn	etic Compatibility by Norman Vio	lette ,Published by Springer, 2013.
6.	1 of A Handl	book Series on Electromagnetic In	y: Electrical noise and EMI specifications Volume terference and Compatibility, Donald R. J. White a the University of Michigan Digitized 6 Dec
7.	Henry W. Ot 2009.	t, "Electromagnetic Compatibility	Engineering", John Wiley & Sons Inc, Newyork,
8.	V Prasad Ko	dali, "Engineering Electromagnet	ic Compatibility", IEEE Press, Newyork, 2001.
9.		nett, "Control and Measurement o s Inc., (Wiley Interscience Series)	f Unintentional Electromagnetic Radiation", John 1997.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	2	-	1	-	1	-	-	-	2	-	-	1	2	2
CO2	2	-	1	1	-	-	-	-	2	-	-	1	2	2
CO3	3	-	1	1	-	-	-	-	2	1	-	-	-	1
CO4	2	-	1	1	-	-	-	-	2	-	-	-	-	-
CO5	3	-	1	-	-	-	-	-	2	1	-	1	2	2
18AEPE04	2	-	1	1	-	-	-	-	2	-	-	1	2	2

18AEP	E05	CAD FOR VLSI	L	Т	Р	С
			3	0	0	3
OBJEC	TIV	ES:				
		arn VLSI Design methodologies and understand the concepts be and routing techniques	ehino	d the	e VL	SI design
•	To stu	dy the simulation techniques at various levels in VLSI design	flow			
	To un techni	derstand the concepts of various algorithms used for floor plan ques.	ning	and	rout	ing
UNIT I	-	INTRODUCTION TO VLSI DESIGN FLOW				9
Algorithr	nic G	o VLSI Design methodologies, Basics of VLSI design raph Theory and Computational Complexity, Tractable and In e methods for combinatorial optimization.				
UNIT I	I	LAYOUT, PLACEMENT AND PARTITIONING				9
•	on, l	action, Design rules, Problem formulation, Algorithms for Placement and partitioning, Circuit representation, Place				01

UNIT I	II FLOO	OR PLANNING AND ROUTING	9
		s, Shape functions and floor plan sizing, Types of local routing, Global routing, Algorithms for global routing	ng problems,
Alea lou	ung, Channel	routing, Global routing, Argonullins for global routing	
UNIT I	IV SIMU	LATION AND LOGIC SYNTHESIS	9
		l modeling and simulation, Switch-level modeling and ynthesis, Binary Decision Diagrams, Two Level Logic Synthe	
Comonic		ynnesis, Dinary Decision Diagrams, 1 wo Lever Logie Synare	
UNIT V	V HIGH	I LEVEL SYNTHESIS	9
		high level synthesis, internal representation, allocation, ass algorithms, Assignment problem, High level transformations.	ignment and
		TOTAL : 45 PERIODS	8
OUTC	OMES:	Upon completion the course , the students will have the abili	ty to
1.	Discuss the	VLSI automation tools and design methodologies.	
2.	Analyze the	various placement algorithms.	
3.	Analyze the	concepts of floor planning and routing.	
4.	Use the simu	lation techniques at various levels in VLSI design flow.	
5.	Outline the h	hardware models for high level synthesis.	
REFER	ENCES:		
1.	S.H. Gerez,	"Algorithms for VLSI Design Automation", John Wiley & Son.	s, 2002.
2.	N.A. Sherw Publishers,	ani, "Algorithms for VLSI Physical Design Automation", Kli 2002.	uwer Academic
3.	Sadiq M. Practice",	Sait, Habib Youssef, "VLSI Physical Design automation World scientific 1999.	•
4.	Steven M.R.	ubin, "Computer Aids for VLSI Design", Addison Wesley Publ	lishing 1987.
5.		orenzatti, "Physical Design and Automation of VLSI systems" ublishers, 1998.	, The Benjamin

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	2	2	2	3	-	3	1	3	2	2	3	3	2
CO2	3	3	2	3	1	-	2	1	2	1	2	2	2	2
CO3	3	3	2	3	1	-	2	1	2	1	2	2	2	2
CO4	3	2	2	2	3	-	3	1	3	2	2	3	3	2
CO5	3	2	2	2	2	-	2	1	2	1	2	2	2	2
18AEPE05	3	3	2	2	3	-	2	1	2	1	2	2	2	2

1-Low 2—Moderate (Medium) 3-High

18AEPE	06	NANOELECTRONICS	L	T	Р	С
			3	0	0	3
OBJECT	IV	ES:				
• T	o lea	rn and understand basic concepts of Nano electronics.				
• T	o kn	ow about electronic and photonic materials.				
• T	o un	derstand how transistor as Nano device.				
UNIT I		SEMICONDUCTOR NANO DEVICES				9
Nanocomp	uters	stors; Nanorobotics and Nanomanipulation; Mechanical Moles: Optical Fibers for Nanodevices; Photochemical Molecular D Gas-Based Nanodevices.				
UNIT II		ELECTRONIC AND PHOTONIC MOLECULAR MATERIALS	R			9
Quantum c Quantum v LEDs base	casca wire ed on	Electroluminescent Organic materials - Laser Diodes - Qu de lasers- Cascade surface-emitting photonic crystal laser- Q lasers:- White LEDs - LEDs based on nanowires - LEDs ba nanorods - High Efficiency Materials for OLEDs- High Effi tum well infrared photo detectors.	uant ased	tum on	dot i nano	lasers - tubes -

UNIT III	THERMAL SENSORS	9
Thermal er	nergy sensors -temperature sensors, heat sensors - Electromagnetic sensor	ors - electrical
	sensors, electrical current sensors, electrical voltage sensors, electrical p	
magnetism	sensors - Mechanical sensors - pressure sensors, gas and liquid flow sen	sors, position
sensors - C	hemical sensors - Optical and radiation sensors.	1
UNIT IV	GAS SENSOR MATERIALS	9
Criteria for	the choice of materials - Experimental aspects - materials, properties, mo	easurement of
gas sensing	g property, sensitivity; Discussion of sensors for various gases, Gas sen	sors based on
semicondu	ctor devices.	
	BIOSENSORS	0
UNIT V		9
Principles	- DNA based biosensors - Protein based biosensors - materials	for biosensor
application	s - fabrication of biosensors - future potential.	
	TOTAL : 45 PERIOD	S
OUTCO	MES: Upon completion the course , the students will have the abil	ity to
1. ¹	understand the operation of micro devices, micro systems and their application	ations
2.	design the micro devices, micro systems using the MEMS fabrication proc	ess.
3.	Gain a knowledge of basic approaches for various sensor design	
4.	Gain a knowledge of basic approaches for various actuator design	
5. []]	Develop experience on micro/nano systems for photonics .	
REFERI	ENCES:	
1.	K.E. Drexler, "Nano systems", Wiley, 1992.	
2.	M.C. Petty, "Introduction to Molecular Electronics", 1995.	
З.	W. Ranier, "Nano Electronics and Information Technology", Wiley, 2003.	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	2	1	-	-	-	-	-	-	-	3	-	3	2	-
CO2	3	-	-	-	-	-	-	-	-	2	-	3	2	-
CO3	2	2	-	-	-	2	-	-	-	1	1	3	2	-
CO4	2	2	-	-	2	2	-	-	-	2	-	3	2	-
CO5	2	1	-	3	1	-	-	-	-	2	-	3	2	-
18AEPE06	3	2	-	2	1	2	-	-	-	2	1	3	2	-

1-LOW

2-MODERATE (MEDIUM)

A) 3-HIGH

18AEI	PE07	SENSORS AND SIGNAL CONDITIONING	L	T	Р	С
			3	0	0	3
OBJE	CTIV	ES:				
٠	Unde	rstand static and dynamic characteristics of measurement syste	ms.			
٠	study	about the various types of sensors				
٠	study	different types of actuators and their usage.				
UNIT	I	SENSOR CHARACTERISTICS				9
characte other o	eristics: characte eristics	cation, general input-output configuration, methods of com static characteristics of measurement systems, accuracy, p eristics: linearity, resolution, systematic errors, randor of measurement systems: zero-order, first-order, and second sponse.	orecis n e	ion, rrors	sens , d	sitivity, ynamic
UNIT	II	RESISTIVE AND REACTIVE SENSORS				9
light-dej calibrati reductio	pendent on and n, Reac	prs: potentiometers, strain gages, resistive temperature detector tresistors, Signal conditioning for resistive sensors: Wheatstone compensation, Instrumentation amplifiers, sources of interfere trance variation and electromagnetic sensors, capacitive sensors, variable differential transformers (LVDT), magneto elastic	bridg ence diffe	ge, so and renti	enson inter al, in	r bridge ference ductive

sensors, Signal conditioning for reactance-based sensors & application to the LVDT.

UNIT	III SELF	-GENERATING SENSORS	9
photovo chopper	taic sensors,	rs: thermoelectric sensors, piezoelectric sensors, pyroelec electrochemical sensors, Signal conditioning for self-genera amplifiers, offset and drifts amplifiers, electrometer ampli plifiers.	ting sensors:
UNIT		UATORS DRIVE CHARACTERISTICS AND LICATIONS	9
motor co	ontrol, 4-to-20	e, Stepper Motors, Voice-Coil actuators, Servo Motors, DC mA Drive, Hydraulic actuators, variable transformers: synchr p-digital and digital-to-resolver converters.	
UNIT		TAL SENSORS AND SEMICONDUCTOR ICE SENSORS	9
vibrating	g wire strain ga	ion encoders, variable frequency sensors – quartz digital tages, vibrating cylinder sensors, saw sensors, digital flow me or junctions: thermometers based on semiconductor junctions,	
-		magneto transistors, photodiodes and phototransistors, sense CCD imaging sensors, ultrasonic sensors, fiber-optic sensors.	ors based on
		TOTAL : 45 PERIODS	8
OUTC	OMES:	Upon completion the course , the students will have the abili	ty to
1.	Discuss the cl	haracteristics of Sensors	
2.	Discuss Resis	stive and Reactive sensors	
3.	Discuss Self-	generating sensors.	
4.	Compare Act	uators.	
5.	Evaluate dig	ital sensors and semiconductor device sensors.	
REFE	RENCES:		
1.	Andrzej M. 2006.	Pawlak Sensors and Actuators in Mechatronics Design and Ap	oplications,
2.		, "Process Control Instrumentation Technology", John Wiley	and Sons.
3.	D.Patranab	bis, "Sensors and Transducers", TMH 2003.	
4.		in, "Measurement System : Applications and Design", McGra	w Hill
7.	publication	S.	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	2	2	2	2	2	2	1	1	3	1	2	2	1	2
CO2	2	2	2	2	2	3	1	1	3	1	2	2	2	2
CO3	2	2	2	3	3	3	1	1	3	1	2	3	3	2
CO4	2	2	2	3	3	3	1	1	3	1	2	3	3	2
CO5	2	2	2	3	3	3	1	1	3	1	2	3	3	2
18AEPE07	2	2	2	3	3	3	1	1	3	1	2	3	3	2
1-LOW	2	-MOD	ERAT	TE (M	EDIU	M)	3-HIC	GΗ	I			1	1	1

18AEF	PE08	MEMS AND NEMS	L	T	Р	С
			3	0	0	3
OBJE	CTIVE	ES:	•		•	
٠	To int	roduce the concepts of micro electromechanical devices.				
٠	To kno	ow the fabrication process of Microsystems.				
٠	To kno	ow the design concepts of micro sensors and micro actuators.				
UNIT	I	OVERVIEW				9
MEMS	and NE	Engineering and Science: Micro and Nanoscale systems, Intro- EMS, MEMS and NEMS – Applications, Devices and struct , silicon compounds, polymers, metals.				-
UNIT	II	MEMS FABRICATION TECHNOLOGIES				9
Thin fill and we	n depos t etchir	brication processes: Photolithography, Ion Implantation, D sitions: LPCVD, Sputtering, Evaporation, Electroplating; Etch ng, electrochemical etching; Micromachining: Bulk Micro g, High Aspect- Ratio (LIGA and LIGA-like) Tech	ing mac	tech hinir	niquo 1g, S	es: Dry Surface

Micromachining, High Aspect- Ratio (LIGA and LIGA-like) Technology; Packag Microsystems packaging, Essential packaging technologies, Selection of packaging materials.

UNIT I	II MICR	RO SENSORS	9
Capacitiv	e and Piezo	gn of Acoustic wave sensors, resonant sensor, Vibratory Resistive Pressure sensors- engineering mechanics b dy: Piezo-resistive pressure sensor.	•••
UNIT I	V MICR	RO ACTUATORS	9
Actuation bar, Com	n using piezoel nb drive actu	Actuation using thermal forces, Actuation using shape men lectric crystals, Actuation using Electrostatic forces (Parallel p ators), Micromechanical Motors and pumps. Case study: , Eye diagrams , jitter , inter-symbol interference Bit-error	late, Torsion Comb drive
UNIT V	/ NANG	DSYSTEMS AND QUANTUM MECHANICS	9
Schroding Molecula	ger Equation a	nd Quantum Mechanics, Molecular and Nanostructure and Wave function Theory, Density Functional Theory, Nanost Electromagnetic Fields and their quantization, Molecular	ructures and
		TOTAL : 45 PERIODS	5
OUTCO	OMES:	Upon completion the course , the students will have the abili	ty to
1.	understand th	ne operation of micro devices, micro systems and their application	tions.
2.	design the m	icro devices, micro systems using the MEMS fabrication proce	ess.
3.	Gain a know	ledge of basic approaches for various sensor design.	
4.	Gain a know	ledge of basic approaches for various actuator design.	
5.	Develop exp	erience on micro/Nano systems for photonics.	
REFER	RENCES:		
1.	Chang Liu,	"Foundations of MEMS", Pearson education India limited, 20	006.
2.	Marc Mado	u, "Fundamentals of Microfabrication", CRC press 1997	
3.	Stephen D. 3	Senturia, " Micro system Design", Kluwer Academic Publisher	rs,2001
4.	Sergey Edw Press, 2002	ard Lyshevski, "MEMS and NEMS: Systems, Devices, and Stra	uctures" CRC
5.		ı, "MEMS and Microsystems Design and Manufacture", Tata	McGraw Hill,

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	-	-	-	2	2	-	3	2	3	-	3	2	-
CO2	2	2	2	-	2	-	3	-	-	-	-	3	2	-
CO3	2	3	-	2	-	2	-	-	-	-	3	3	2	-
CO4	2	3	2	-	-	-	2	2	-	2	-	3	2	-
CO5	-	2	2	-	3	2	-	2	2	-	2	3	2	-
18AEPE08	-	-	-	2	3	3	-	-	2	-	-	3	2	-

18AEI	8AEPE09DSP PROCESSORS ARCHITECTURE AND PROGRAMMINGLTPC							
			3	0	0	3		
OBJE	CTIV	ES:						
•	To lea	arn about basics of DSP processors						
٠	To kn	ow about the internal architectures of advanced DSP processo	ors					
•	To be	come familiar with programming techniques						
UNIT	Ι	FUNDAMENTALS OF PROGRAMMABLE DSF	Ps			9		
Multiple	e acces	Multiplier accumulator – Modified Bus Structures and Memors s memory – Multi-port memory – VLIW architecture- F des in P-DSPs – On chip Peripherals.	-					
UNIT	II	SPECIAL FUNCTIONS				9		
- Pipeli	ne struc	Assembly language syntax - Addressing modes – Assembly l cture, Operation – Block Diagram of DSP starter kit – Apple time signals	-	-				
UNIT	III	LINEAR PROGRAMMING				9		

DSP Star	ter Kit Suppor	x Processor - Instruction Set - DSP Development System: In rt Tools- Code Composer Studio - Support Files - Programmi – Application Programs for processing real time signals.						
UNIT I	V LINE	LINEAR PROGRAMMING						
	cture of ADSP-21XX and ADSP-210XX series of DSP processors- Addressing modes and ly language instructions – Application programs –Filter design, FFT calculation.							
UNIT V	ALGE	ALGEBRAIC EQUATIONS						
	C6X - Archite	20C54X: Pipe line operation, Code Composer studio – Ar cture of Motorola DSP563XX – Comparison of the features of	f DSP family					
		TOTAL: 45 PERIODS						
OUTCO	OMES:	Upon completion the course , the students will have the abili	ty to					
1.	Understand various modules in the DSP processor							
2.	Understand t	he special functions of DSP processors						
3.	Demonstrate	various programming techniques						
	D							

4.	Demonstrate Digital Signal processing technique
5	Design DSP based System.

REFERENCES:

1.	Avtar Singh and S. Srinivasan, Digital Signal Processing – Implementations using DSP
	Microprocessors with Examples from TMS320C54xx, cengage Learning India Private
	Limited, Delhi 2012.
2.	B.Venkataramani and M.Bhaskar, "Digital Signal Processors – Architecture,
	<i>Programming and Applications</i> " – <i>Tata McGraw</i> – <i>Hill Publishing Company Limited.</i>
	New Delhi, 2003.
3.	RulphChassaing, Digital Signal Processing and Applications with the C6713 and C6416 DSK, A
	JOHN WILEY & SONS, INC., PUBLICATION, 2005
4.	User guides Texas Instrumentation, Analog Devices, Motorola.

PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
3	-	-	-	1	-	-	-	-	-	-	-	-	-
3	-	-	-	1	-	-	-	-	-	-	-	-	-
3	1	-	-	-	-	-	-	-	-	-	-	3	-
2	2	2	-	3	-	2	2	2	-	-	3	3	1
1	-	2	2	2	-	3	2	1	-	-	3	3	1
3	-	1	-	1	-	-	1	-	-	-	1	3	1
	3 3 3 2 1	3 - 3 - 3 1 2 2 1 -	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 \cdot \cdot 1 \cdot <									

1-LOW 2-MODERATE (MEDIUM) 3-HIGH

18AEF	PE10	RF SYSTEM DESIGN	L	T	Р	С		
OBJE	CTIV	ES:						
•		roduce the principles of operation and design principles associ tant blocks of RF Front end.	ated	with	the			
٠	To design RF amplifier, oscillators and mixers.							
•	To stu	dy about the characteristics of PLL and frequency synthesizer	5.					
UNIT	I	CMOS PHYSICS, TRANSCEIVER SPECIFICATIONS ANDARCHITECTURES				6+3		
theory, over a	Noise commu	MOSFET Physics, Noise: Thermal, shot, flicker, popcorn Figure, THD, IP2, IP3, Sensitivity, SFDR, Phase noise - Sp unication link, Homodyne Receiver, Heterodyne Receiver, tectures Direct upconversion Transmitter, Two step upconvers	ecifi Imag	catio ge re	on di eject,	stribution Low IF		
UNIT	II	I IMPEDANCE MATCHING AND AMPLIFIERS 6+3						

S-parameters with Smith chart, Passive IC components, Impedance matching networks, Common Gate, Common Source Amplifiers, OC Time constants in bandwidth estimation and enhancement, High frequency amplifier design, Power match and Noise match, Single ended and Differential LNAs, Terminated with Resistors and Source Degeneration LNAs.

6+3	ACK SYSTEMS AND POWER FIERS		UNIT
nd F amplifiers,	ems: Gain and phase margin, Root-locus techniques, Time ompensation, General model – Class A, AB, B, C, D, E an ation Techniques, Efficiency boosting techniques, ACPR	in consideration	domain o Power a
6+3	S AND OSCILLATORS	ΓΙ ΜΙ	UNIT
ing Functions,	-linear based mixers, Quadratic mixers, Multiplier based m lanced mixers, subsampling mixers, Oscillators describ ators, Tuned Oscillators, Negative resistance oscillators, Ph	ced and doub	balanced
6+3	D FREQUENCY SYNTHESIZERS	T V PL	UNIT
	roperties, Phase detectors, Loop filters and Charge pumps, rect Digital Frequency synthesizers.		
	TOTAL : 45 PERIOD		
ty to	pon completion the course, the students will have the abili	COMES:	OUTC
·S.	ransceiver specifications and compare different transceiver	Define va	1.
	ce matching networks for different amplifiers.	Design in	2.
	pility of feedback systems	Analyze	3.
	t types of mixers and oscillators	Discuss d	4.
	t phase locked loops and frequency synthesizers.	Explain c	5.
		ERENCES	REFEI
2001	sign of Analog CMOS Integrated Circuits", McGraw Hill, .	B.Razav	1.
	Microelectronics", Pearson Education, 1997.	B.Razav	2.
uwer Academic	chiel Steyaert, "CMOS Wireless Transceiver Design", Kl 97.	Jan Cro Publishe	З.
e6240/	res and notes available at . http://www.ee.iitm.ac.in/~ani/e	Recorde	4.
	of CMOS RF Integrated Circuits", Cambridge, 2004.		5.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
	-								-					
CO1	3	1	-	1	2	-	-	-	2	-	-	1	1	2
CO2	3	1	-	2	2	-	-	1	2	-	-	1	2	2
CO3	2	1	-	1	2	-	-	1	1	-	-	1	2	2
CO4	2	1	-	2	3	-	-	-	-	-	-	-	1	-
CO5	2	1	-	1	2	-	-	1	2	-	-	-	1	1
18AEPE10	2	1	-	1	2	-	-	1	2	-	-	1	1	2
1-LOW	2-1	MODEI	RATE (MEDI	UM)	3-1	HIGH	•	•					

18AEF	E 11	SPEECH SIGNAL PROCESSING	L	T	Р	С
			2	1	0	3
OBJE	CTIV	ES:	•			•
•	To st	udy basic concepts of processing speech signals.				
•	To st	udy time and frequency domain speech processing methods				
•	To ur	nderstand predictive analysis of speech.				
UNIT	I	MECHANICS OF SPEECH AND AUDIO				6+3
Speech – Phone Thresho Spread philosop	signal es – P ld of 1 of M of M	Review of Signal Processing Theory-Speech production med- Discrete time modelling of Speech production – Classificati honemes – Phonetic and Phonemic alphabets – Articulator Hearing - Critical Bands- Simultaneous Masking, Masking- asking- Non-simultaneous Masking - Perceptual Entropy objective versus objective perceptual testing - The perceptual a gnitive effects in judging audio quality.	on o y fea Asyn - B	f Spe ature nmet asic	eech s. A rry, a me	sounds bsolute and the asuring

UNIT II TIME-FREQUENCY ANALYSIS: FILTER BANKS AND TRANSFORMS

Introduction - Analysis-Synthesis Framework for M-band Filter Banks- Filter Banks for Audio Coding: Design Considerations - Quadrature Mirror and Conjugate Quadrature Filters - Tree-Structured QMF and CQF M-band Banks - Cosine Modulated "Pseudo QMF" M-band Banks -Cosine Modulated Perfect Reconstruction (PR) M-band Banks and the Modified Discrete Cosine Transform (MDCT) - Discrete Fourier and Discrete Cosine Transform - Pre-echo Distortion- Preecho Control Strategies

UNIT III AUDIO CODING AND TRANSFORM CODERS
--

6+3

Lossless Audio Coding – Lossy Audio Coding - ISO-MPEG-1A, 2A, 2A-Advaned, 4A Audio Coding - Optimum Coding in the Frequency Domain - Perceptual Transform Coder – Brandenburg - Johnston Hybrid Coder - CNET Coders - Adaptive Spectral Entropy Coding – Differential Perceptual Audio Coder - DFT Noise Substitution -DCT with Vector Quantization - MDCT with Vector Quantization.

UNIT IV TIME AND FREQUENCY DOMAIN METHODS FOR SPEECH PROCESSING

6+3

Time domain parameters of Speech signal – Methods for extracting the parameters :Energy, Average Magnitude – Zero crossing Rate – Silence Discrimination using ZCR and energy Short Time Fourier analysis – Formant extraction – Pitch Extraction using time and frequency domain methods Homomorphic Speech Analysis: Cepstral analysis of Speech – Formant and Pitch Estimation – HomomorphicVocoders.

UNIT V PREDICTIVE ANALYSIS OF SPEECH

6+3

Formulation of Linear Prediction problem in Time Domain – Basic Principle – Auto correlation method – Covariance method – Solution of LPC equations – Cholesky method – Durbin"s Recursive algorithm – lattice formation and solutions – Comparison of different methods – Application of LPC parameters – Pitch detection using LPC parameters – Formant analysis – VELP – CELP

TOTAL: 45 PERIODS								
OUTCO	OMES:	Upon completion the course , the students will have the ability to						
1.	Discuss mech	Discuss mechanics of Speech and Audio.						
2.	Discuss variou	s M-band filter-banks for audio coding						
3.	Evaluate aud	Evaluate audio coding and transform coders						
4.	Discuss time	and frequency domain methods for speech processing						

5.	Explain pred	Explain predictive analysis of speech						
REFER	RENCES:							
1.	B.Gold and	N.Morgan, "Speech and Audio Signal Processing", Wiley and Sons, 2000.						
2.	<i>L.R.Rabiner</i> 1978.	and R.W.Schaffer, "Digital Processing of Speech Signals", Prentice Hall,						
3. Mark Kahrs, Karlheinz Brandenburg, Kluwer Applications of Digital Signal Proces to Audio And Acoustics, Academic Publishers								
4.	UdoZölzer,	"Digital Audio Signal Processing", Second Edition A John Wiley& sons Ltd						

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	2	2	2	2	2	2	1	1	3	1	2	2	1	2
CO2	2	2	2	2	2	3	1	1	3	1	2	2	2	2
CO3	2	2	2	3	3	3	1	1	3	1	2	3	3	2
CO4	2	2	2	3	3	3	1	1	3	1	2	3	3	2
CO5	2	2	2	3	3	3	1	1	3	1	2	3	3	2
18AEPE11	2	2	2	3	3	3	1	1	3	1	2	3	3	2
1-LOW	2	MOD	FRAT	$\mathbf{FE} \overline{\mathbf{M}}$		M)	3-HIO	зн						

2-MODERATE (MEDIUM) 3-HIGH

IOAE	PE12	SOLID STATE DEVICE MODELLING AND SIMULATION	L	T	Р	C
			3	0	0	3
OBJE	CTIV	ES:			I	
٠	To stu	udy physics of MOSFET devices.				
٠	To ur	nderstand the concept of device modelling.				
٠	To stu	udy mathematical techniques of device simulations.				
UNIT	Ι	MOSFET DEVICE PHYSICS MOSFET				Ģ
transist	or and	uivalent circuit representation of MOS transistor, High frequen A.C small signal modeling, model parameter extraction, moc acitors, Inductors.	•			
UNIT	II	DEVICE MODELLING				9
hybrid	analysis	nce of circuit and device simulations in VLSI; Nodal, mesh, s equations. Solution of network equations: Sparse matrix tec orks through Newton-Raphson technique, convergence and sta	chniq	lues,		
hybrid nonline UNIT Solutio	analysis ear netw III n of stif	s equations. Solution of network equations: Sparse matrix tec	chniq bility	jues, y.	solu	ution of
hybrid nonline UNIT Solutio	analysis ear netw III n of stif ks, gene	s equations. Solution of network equations: Sparse matrix tec orks through Newton-Raphson technique, convergence and sta MULTISTEP METHODS If systems of equations, adaptation of multistep methods to the	chniq bility	jues, y.	solu	ution of
hybrid nonline UNIT Solutio networl UNIT Poisson hydrody	analysis ear netw III n of stif ks, gene IV n equa ynamic	s equations. Solution of network equations: Sparse matrix tec orks through Newton-Raphson technique, convergence and sta MULTISTEP METHODS If systems of equations, adaptation of multistep methods to the eral purpose circuit simulators. MATHEMATICAL TECHNIQUES DEVICE	solu nrodi	jues, y. tion	solu of el	ution of ectrical
hybrid nonline UNIT Solutio networl UNIT Poisson hydrody	analysis ear netw III n of stif ks, gene IV n equa ynamic grid gen	s equations. Solution of network equations: Sparse matrix tec orks through Newton-Raphson technique, convergence and state MULTISTEP METHODS If systems of equations, adaptation of multistep methods to the eral purpose circuit simulators. MATHEMATICAL TECHNIQUES DEVICE SIMULATIONS Ition, continuity equation, drift-diffusion equation, Sch equations, trap rate, finite difference solutions to these equation	solu nrodi	jues, y. tion	solu of el	ution of ectrical
hybrid nonline UNIT Solutio networl UNIT Poisson hydrody space, g	analysis ear netw III n of stif ks, gene IV n equa ynamic grid gen V tation o	s equations. Solution of network equations: Sparse matrix tec orks through Newton-Raphson technique, convergence and state MULTISTEP METHODS If systems of equations, adaptation of multistep methods to the eral purpose circuit simulators. MATHEMATICAL TECHNIQUES DEVICE SIMULATIONS Ition, continuity equation, drift-diffusion equation, Sch equations, trap rate, finite difference solutions to these equa heration. SIMULATION OF DEVICES If characteristics of simple devices like p-n junction, MOS capa	solu arodi	iues, y. tion ngei s in	solu of el	ution of ectrical juation, and 2D
hybrid nonline UNIT Solution network UNIT Poisson hydrody space, g UNIT Compu	analysis ear netw III n of stif ks, gene IV n equa ynamic grid gen V tation o	s equations. Solution of network equations: Sparse matrix tec orks through Newton-Raphson technique, convergence and state MULTISTEP METHODS If systems of equations, adaptation of multistep methods to the eral purpose circuit simulators. MATHEMATICAL TECHNIQUES DEVICE SIMULATIONS Ition, continuity equation, drift-diffusion equation, Sch equations, trap rate, finite difference solutions to these equa heration. SIMULATION OF DEVICES If characteristics of simple devices like p-n junction, MOS capa	solur solur arodi	iues, y. tion nger s in r and	solu of el 1D a 1 MC	ution of ectrical juation, and 2D
hybrid nonline UNIT Solutio networl UNIT Poisson hydrody space, g UNIT Compu	analysis ar netw III n of stif ks, gene IV n equa ynamic grid gen V tation o signal an	s equations. Solution of network equations: Sparse matrix tec orks through Newton-Raphson technique, convergence and sta MULTISTEP METHODS If systems of equations, adaptation of multistep methods to the eral purpose circuit simulators. MATHEMATICAL TECHNIQUES DEVICE SIMULATIONS Ition, continuity equation, drift-diffusion equation, Sch equations, trap rate, finite difference solutions to these equa eration. SIMULATION OF DEVICES of characteristics of simple devices like p-n junction, MOS capa nalysis. TOTAL : 45 PE	solur solur acito	iues, y. tion nger s in r and	solu of el 1D a 1 MC	ution of ectrical juation, and 2D

2.	Apply and determine the drift diffusion equation and stiff system equation.							
3.	Offer clues to qualitative understanding of the physics of a new device and conversion of his understanding into equations.							
4.	Model the MOS transistor using schrodinger equation and Multistep methods.							
5.	Explain how the equations get lengthy and parameters increase in number while developing a compact model.							
REFE	RENCES:							
1.	Arora, N., "MOSFET Modeling for VLSI Simulation", Cadence Design Systems, 2007							
2.	Chua, L.O. and Lin, P.M., "Computer-Aided Analysis of Electronic Circuits: Algorithms and Computational Techniques", Prentice-Hall., 1975							
3.	Fjeldly, T., Yetterdal, T. and Shur, M., "Introduction to Device Modeling and Circuit Simulation", Wiley-Interscience., 1997							
4.	Grasser, T., "Advanced Device Modeling and Simulation", World Scientific Publishing Company., 2003							
5.	Selberherr, S., "Analysis and Simulation of Semiconductor Devices", Springer- Verlag., 1984							
6.	Trond Ytterdal, Yuhua Cheng and Tor A. FjeldlyWayne Wolf, "Device Modeling for Analog and RF CMOS Circuit Design", John Wiley & Sons Ltd.							

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	3	3	3	3	2	2	-	-	3	-	2	3	2
CO2	3	3	3	3	3	2	2	-	-	3	-	2	3	2
CO3	3	3	3	3	3	2	2	-	-	3	-	2	3	2
CO4	3	3	3	3	3	2	2	-	-	3	-	2	3	2
CO5	3	3	3	3	3	2	2	-	-	3	-	2	3	2
18AEPE12	3	3	3	3	3	2	2	-	-	3	-	2	3	2

18AEPE13

ADVANCED MICROPROCESSOR AND MICROCONTROLLER ARCHITECTURES

OBJECTIVES:

•	To familiarize about the features, specification and features of modern microprocessors.
•	To gain knowledge about the architecture of 32 and 64 bit microprocessors and microcontrollers salient features associated with them.
•	To study interfacing of microprocessor/microcontroller with the external peripheral.

UNIT I FEATURES OF MODERN MICROPROCESSORS

Evolution of microprocessors - Data and Address buses – clock speed – memory interface - multi-core architectures – cache memory hierarchy – operating modes – super scaler execution – dynamic execution – over clocking – integrated graphics processing - performance benchmarks.

UNIT II HIGH PERFORMANCE CISC ARCHITECTURES

9

9

Introduction to IA 32 bit architecture – Intel Pentium Processors family tree – Memory Management – Branch prediction logic - Superscalar architecture – Hyper threading technology – 64 bit extension technology – Intel 64 bit architecture - Intel Core processor family tree – Turbo boost technology – Smart cache - features of Nehalem microarchitecture

UNIT III HIGH PERFORMANCE RISC ARCHITECTURE – ARM

9

RISC architecture merits and demerits – The programmer's model of ARM Architecture – 3stage pipeline ARM organization - 3-stage pipeline ARM organization – ARM instruction execution – Salient features of ARM instruction set - ARM architecture profiles (A, R and M profiles)

UNIT IV FEATURES OF MODERN MICROCONTROLLER

9

Introduction to microcontrollers – microcontroller vs microprocessors – microcontroller architecture - Processor Core – Memory interfaces– Communication interfaces (SPI,I2C, USB and CAN) – ADC - PWM – Watchdog timers – Interrupts – Debugging interfaces .

UNIT V HIGH PERFORMANCE MICROCONTROLLER ARCHITECTURES

9

Introduction to the Cortex-M Processor Family - ARM 'Cortex-M3' architecture for microcontrollers – Thumb 2 instruction technology – Internal Registers - Nested Vectored Interrupt controller - Memory map - Interrupts and exception handling – Applications of Cotex-

M3 archi	tecture	
		TOTAL : 45 PERIODS
COURS	SE OUTCOMES:	Upon completion the course , the students will have the ability
1.	To explain the features	s and important specifications of modern microprocessors.
2.	To explain the salient architectures.	features CISC microprocessors based on IA-32 bit and IA-64 bit
3.	To explain the salient application profiles of	features RISC processors based on ARM architecture and different ARM core .
4.	To explain the features	s and important specifications of modern microcontrollers.
5.	To explain about ARM	I – M3 architecture and its salient features
REFER	RENCES:	
1.	Barry. B. Breg," The	e Intel Microprocessors", PHI,2008.
2.	Gene .H.Miller ." Micro	o Computer Engineering, "Pearson Education, 2003.
3.	Intel Inc, "Intel 64 and	IA-32 Architectures Developer"s Manual", Volume-I, 2016
4.	Joseph Yiu, "The Defin	itive Guide to the ARM [®] Cortex-M3", Newnes, 2010.
5.	Scott Mueller, "Upgrad	ling and Repairing PCs", 20th edition, Que.
6.	Steve Furber, "" ARM	System –On –Chip architecture "Addision Wesley , 2000.
7.	Trevor Martin, "The De	esigner"s Guide to the Cortex-M Processor Family", Newnes, 2013.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	2	2	2	-	2	-	-	3	-	2	2	2	3
CO2	3	2	2	2	-	3	-	-	3	-	2	2	2	3
CO3	3	2	2	2	-	3	-	-	3	-	2	3	2	3
CO4	3	2	2	2	-	3	-	-	3	-	2	3	2	3
CO5	3	2	2	2	-	3	-	-	3	-	2	3	2	3
18AEPE13	3	2	2	2	-	3	-	-	3	-	2	3	2	3

18AEP	E14	SYSTEM ON CHIP	L	Т	Р	C
		3 0				
OBJEC	CTIV	ES:				
•	To un	derstand what SOC is and what the difference between SOC ar	nd Ei	mbe	dded	system.
•	To co	ver the basics of SOC design, hardware software co design and	syn	thes	is.	
•	To stu	ady different levels of SOC verification.				
UNIT I	[INTRODUCTION				
schedulii Network	ng, en on Ch	a, processing units, memories; operating systems: prediction of abedded OS, middle ware; Platform based SoC design, mult ip, Low power SoC Design				
UNIT I	Ι	SYSTEM LEVEL MODELLING				
-		view, Data types, modules, notion of time, dynamic proce nunication, ports and interfaces, Design with examples	ess,	basi	c ch	annels,
UNIT I	III	HARDWARE AND SOFTWARE CO -DESIGN				
voltage s	scaling	tioning, high level optimisations, real-time scheduling, har and power management; Virtual platform models, co-simula HW/SW systems.				
UNIT I	IV	SYNTHESIS				
•	oping,	sis: Transaction Level Modelling (TLM) based design, automa platform synthesis; software synthesis: code generation, m xternal communication; Hardware synthesis: RTL architec	nulti	tasl	c sy	nthesis,
internal	on and	optimisation, resource sharing and pipelining and scheduling.				
internal		optimisation, resource sharing and pipelining and scheduling. SOC VERIFICATION AND TESTING				
internal estimation UNIT SoC and overview requirem	V IP int v: systements a		co-v	erifi	catio	dology, on; Test

OUTCO	OMES:	Upon completion the course, the students will have the ability to						
1.	acquire know	ledge about Top-down SoC design flow						
2.	apply knowle	apply knowledge about Front-end and back-end chip design						
3.	model design	designing communication Networks						
4.	Understand h	ardware, software and interface synthesis						
5.	interpret the	design methodologies for SoC						
REFER	RENCES:							
1.	D. Black, J.	Donovan, SystemC: From the Ground Up, Springer, 2004.						
2.	v	S. Abdi, A. Gerstlauer, G. Schirner, Embedded System Design: Modeling, ferification, Springer, 2009						
3.		u, "The Internet of Things in the Cloud: A Middleware Perspective", CRC						
4.	Avesand. L	er, VlasiosTsiatsis, Catherine Mulligan, Stamatis, Karnouskos, Stefan David Boyle, "From Machine-to-Machine to the Internet of Things - a to a New Age of Intelligence", Elsevier, 2014.						
5.	Olivier Her	sent, David Boswarthick, Omar Elloumi, "The Internet of Things – Key and Protocols", Wiley, 2012						
6.		Kangmin Lee, Jun Kyoungkim, "Low power NoC for high performance ,CRC press, 2008.						
7.	M. L. Bushr	nell and V.D. Agrawal, Essentials of Electronic Testing for Digital Memory Signal VLSI Circuits, Springer, 2005						
8.	M. Abramo	vici, M. Breuer, and A. Friedman, Digital System Testing and Testable E Press, 1994						
9.	P. Marwede	el, Embedded System Design, Springer, 2003. G. De Micheli, Synthesis and n of Digital Circuits						
10.	Prakash Ra	shinkar, Peter Paterson and Leena Singh, System-on-a chip verification: y and techniques, kluwer Academic Publishers 2002						
11.	T. Noergaa	rd, Embedded Systems Architecture: A Comprehensive Guide for Engineers nmers, Newnes						
12.	Vijay K. M	adisettiChonlamethArpikanondt, "A Platform-Centric Approach to System- OC) Design", Springer, 2005.						
13.		Steve Lin, Essential Issues in SOC Design Designing Complex Systems-on-						

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	2	-	-	-	-	-	-	-	-	-	3	2	-
CO2	3	2	-	-	-	-	-	1	-	-	-	3	2	-
CO3	2	1	-	-	-	-	-	-	-	-	1	3	2	-
CO4	3	2	1	-	1	2	1	1	-	-	-	3	2	-
CO5	1	2	2	-	1	1	2	-	-	-	-	3	2	-
18AEPE14	3	2	1	-	2	2	1	2	-	-	1	3	2	-

1-LOW

2-MODERATE (MEDIUM)

3-HIGH

18AEPE	E15	ROBOTICS	Т	Р	С	
			3	0	0	3
OBJEC	TIVE	S:	1			
•	Го und	erstand robot locomotion and mobile robot kinematics.				
• [Го und	erstand mobile robot localization.				
• [Го und	erstand robot planning and navigation.				
UNIT I]	LOCOMOTION AND KINEMATICS				9
	erial n	Robotics – key issues in robot locomotion – legged rob nobile robots – introduction to kinematics – kinematics mo ability				
UNIT II	[]	ROBOT PERCEPTION				9
Sensors fo	or mot	bile robots – vision for robotics – cameras – image forma	tion -	– str	uctui	e from

stereo – structure from motion – optical flow – color tracking – place recognition – range data

UNIT III		LE ROBOT LOCALIZATION	9
representat – EKF loo	ion – map re calization –	ation – challenges in localization – localization and navigate presentation – probabilistic map-based localization – Markov UKF localization – Grid localization – Monte Carlo lo environments	localization
UNIT IV	MOB	ILE ROBOT MAPPING	9
extended K	Kalman Filte	ding – occupancy grip mapping – MAP occupancy mapping r SLAM – graph-based SLAM – particle filter SLAM – spar SLAM algorithm.	
UNIT V	PLAN	NING AND NAVIGATION	9
		g and navigation – planning and reacting – path planning – obs navigation architectures – basic exploration algorithms.	stacle
		TOTAL: 45 PERIODS	6
OUTCO	MES:	Upon completion the course, the students will have the ability	ty to
1. I	Define robot	locomotion, kinematics models and constraints	
2. U	Understand d	lifferent types of robot localization techniques	
3. I	mplement ro	bot mapping techniques	
4. U	Understand p	lanning and navigation in robotics	
5. I	Build and an	alyse the obstacle avoidance robot	
REFERE	ENCES:		
1.	0.	IdekandMichael Jenkin, "Computational Principles of Mol	bile Robotics",
	Howie Cho	ion, Cambridge University Press, 2010. oset et al., "Principles of Robot Motion: Theory, Al tions", A Bradford Book, 2005.	gorithms, and
3.	Maja J. Mat	aric, "The Robotics Primer", MIT Press, 2007.	
4.		gwart, Illah Reza Nourbakhsh, and Davide Scaramuzza, "I mobile robots", Second Edition, MIT Press, 2011.	Introduction to
5.	Sebastian T Press, 2005.	hrun, Wolfram Burgard, and Dieter Fox, "Probabilistic R	Robotics", MIT

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	-	-	-	-				-			-	-	-
CO2	3	-	-	-	2	-	-	-	-	-		-	-	-
CO3	-	3	-	-	3	-	2	-	-	-	-	-	-	2
CO4	2	2	-	-	3	-	3	-	-	-	-	2	-	-
CO5	2	-	2	-	3	-	3	-	2	-	-	3	3	3

1-LOW 2-MODERATE (MEDIUM) 3-HIGH

18AEF	PE16	PHYSICAL DESIGN OF VLSI CIRCUITS	PHYSICAL DESIGN OF VLSI CIRCUITS L T						
			3	0	0	3			
OBJE	CTIV	ES:	•	•					
•		troduce the physical design concepts such as layout rules, circu odologies and packaging.	iit ab	strac	ction	, layout			
•	To stu	udy placement of design using top down approach.							
•	To stu	udy the performance of circuits layout designs, compaction tec	hniqu	les.					
UNIT	I	INTRODUCTION TO VLSI TECHNOLOGY					9		
chaining gates, f	, Wein ield p	Circuit abstraction Cell generation using programmable n Berger arrays and gate matrices-layout of standard cells g rogrammable gate array(FPGA)-layout methodologies Pac Algorithmic Paradigms	ate a	array	vs an	d sea of			
UNIT	II	PLACEMENT USING TOP-DOWN APPROACE	H				9		

Partitioning: Approximation of Hyper Graphs with Graphs, Kernighan-Lin Heuristic Ratio cut partition with capacity and i/o constrants. Floor planning: Rectangular dual floor planning hierarchical approach- simulated annealing- Floor plan sizing Placement: Cost function- force directed method- placement by simulated annealing partitioning placement- module placement on a resistive network – regular placement linear placement.

UNIT III 9 **ROUTING USING TOP DOWN APPROACH** Fundamentals: Maze Running- line searching- Steiner trees Global Routing: Sequential Approaches - hierarchial approaches - multi commodity flow based techniques - Randomised Routing- One Step approach - Integer Linear Programming Detailed Routing: Channel Routing -Switch box routing. Routing in FPGA: Array based FPGA- Row based FPGAs UNIT IV PERFORMANCE ISSUES IN CIRCUIT LAYOUT 9 Delay Models: Gate Delay Models- Models for interconnected Delay- Delay in RC trees. Timing -Driven Placement: Zero Stack Algorithm- Weight based placement- Linear Programming Approach Timing riving Routing: Delay Minimization- Click Skew Problem- Buffered Clock Trees. Minimization: constrained via Minimization unconstrained via Minimization- Other issues in minimization UNIT V SINGLE LAYER ROUTING, CELL GENERATION 9 AND COMPACTION Planar subset problem(PSP)- Single Layer Global Routing- Single Layer detailed Routing- Wire length and bend minimization technique - Over The Cell (OTC) Routing Multiple chip modules(MCM)- programmable Logic Arrays- Transistor chaining- Wein Burger Arrays- Gate matrix layout- 1D compaction- 2D compaction. **TOTAL: 45 PERIODS** Upon completion the course, the students will have the ability to **OUTCOMES:** 1. Understand different gate arrays in VLSI. 2. Analyze different placement methods. 3. Explain different types of routing 4. Discuss performance issues in circuit layout 5. Outline 1D compaction- 2D compaction. **REFERENCES:** Preas M. Lorenzatti, "Physical Design and Automation of VLSI systems", The Benjamin 1. Cummins Publishers, 1998. Sarafzadeh, C.K. Wong, "An Introduction to VLSI Physical Design", McGraw Hill Int. 2. Edition 1995 3. N.A. Sherwani, "Algorithms for VLSI Physical Design Automation", Kluwer Academic Publishers, 2002. Sadiq M. Sait, Habib Youssef, "VLSI Physical Design automation: Theory and Practice", 4. World scientific 1999. .5. Steven M.Rubin, "Computer Aids for VLSI Design", Addison Wesley Publishing 1987. 70

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PSO 1	PSO 2	PSO 3
CO1	3	1	1	2	-	-	2	-	2	2	2	1	1	2
CO2	3	2	2	3	-	-	2	-	2	1	2	2	2	2
CO3	3	1	1	2	-	-	2	-	2	2	2	1	1	2
CO4	3	1	1	1	-	-	2	_	2	2	2	1	1	2
CO5	2	1	1	2	-	-	1	_	2	2	2	1	1	2
18AEPE1 6	3	2	1	2	-	-	2	-	2	2	2	1	1	2

1-Low 2-Moderate (Medium) 3-High

18AEPE 1	7 HIGH PERFORMANCE NETWORKS	L	Т	Р	С
		3	0	0	3
OBJECT	VES:				
• To	develop a comprehensive understanding of multimedia network	ks.			
• To	study the types of VPN and tunnelling protocols for security.				
• To	discuss traffic modelling.				
UNIT I	INTRODUCTION				9
	OSI, TCP/IP; Multiplexing, Modes of Communication, Switchin SL – ISDN – BISDN, ATM.	ng, Ro	uting	g. SC	DNET –
UNIT II	MULTIMEDIA NETWORKING APPLICATIO	DNS			9
interactive	stored Audio and Video – Best effort service – pro applications – Beyond best effort – scheduling and policing m SVP- differentiated services.				
UNIT III	ADVANCED NETWORKS CONCEPTS				9
operation,	e-Access VPN, site-to-site VPN, Tunneling to PPP, Sec Routing, Tunneling and use of FEC, Traffic Engineering, an works- P2P connections.	•			

UNIT	IV	TRAF	FIC MODELLING	9
Little's	theore	m, Need	for modeling, Poisson modeling and its failure, Non- poi	sson models,
Network	k perfo	rmance e	evaluation.	
UNIT	V	NETV	VORK SECURITY AND MANAGEMENT	9
Access Infrastru	contro	1 and fi for netwo	aphy – Authentication – integrity – key distribution and c re walls – attacks and counter measures – security in pork management – The internet standard management frame and administration – ASN.1	many layers.
			TOTAL: 45 PERIOD	S
OUTC	OME	ES:	Upon completion the course , the students will have the ability	ity to
1.	Disc	cuss abou	t different communication network technologies	
2.	Exp	lain diffe	rent protocols and services for multimedia applications	
3.	Dese	cribe VP	N concepts and services	
4.	Ana	lyze traff	ic of networks with mathematical techniques	
5.	Disc	uss abou	t network security and attacks.	
REFE	REN	CES:		
1.			mar, D. M Anjunath, Joy Kuri, "Communication Networking Publishers, 1st edition 2004.	", Morgan
2.	Fre	d Halsa	ll and Lingana Gouda Kulkarni, "Computer Networking and , Pearson education 2006	d the Internet",
3.	Her		Irle & Petit, "IP Telephony, packet Pored Multimedia Pearson education 2003	communication
4.	J.F	. Kurose	& K.W. Ross, "Computer Networking- A top down approace earson, 2nd edition, 2003	ch featuring the
5.			rson & Bruce S.David, "Computer Networks: A System Appro	oach"- 1996
6.	LE	OM-Gar	CIA, WIDJAJA, "Communication networks", TMH seventh re	eprint 2002.
7.	Nad	der F.Mi	r ,Computer and Communication Networks, first edition 2010)
8.			Varatya, High performance communication network, Morg sia Pvt. Ltd. 2nd Edition, 2000.	gan Kauffman -

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	2	-	1	-	-	2	2	2	-	-	2	1	1
CO2	2	2	1	1	-	-	2	2	-	-	-	2	1	-
CO3	3	2	-	1	-	-	1	2	2	-	-	2	-	-
CO4	3	3	1	3	-	-	2	3	-	-	-	-	-	1
CO5	2	2	-	2	-	-	2	2	-	-	-	-	-	-
18AEPE17	3	2	-	1	-	-	2	2	-	-	-	2	-	-
1-LOW	2-]	MODE	ERATE	E (MEI	DIUM)	3-	HIGH	•	•					

18AEPE 1	PATTERN RECOGNITION	L	T	Р	С
		3	0	0	3
OBJECTI	VES:				
• To	earn about supervised and unsupervised pattern classifiers				
• To	earn about different clustering methods.				
• To	amiliarize about different feature extraction techniques				
• To	explore the role of Hidden Marko model and SVM in pattern rec	ognit	ion		
• To	understand the application of Fuzzy logic and genetic algorithms	for p	patte	rn cl	assifier
UNIT I	PATTERN CLASSIFIER				9
estimation -	Pattern recognition – Discriminant functions – Supervised le Maximum Likelihood Estimation – Bayesian parameter Estin pproach– Pattern classification by distance functions – Minimu	natic	on –	Pro	olems
UNIT II	CLUSTERING				9
Clustering for	r unsupervised learning and classification-Clustering concept -	C M	eans	algo	rithm

- Hierarchical clustering - Graph theoretic approach to pattern Clustering - Validity of Clusters.

UNIT			URE EXTRACTION AND STRUCTURAL ERN RECOGNITION	9
Feature	selection	throug	nalysis, Independent component analysis, Linear discriminan gh functional approximation – Elements of formal grammars, grammars – Structural Representation.	•
UNIT	_ ·		EN MARKOV MODELS AND SUPPORT 'OR MACHINE	9
	achines – e Selectio		en Markov Models – Training – Classification – Support vecto	r Machine
UNIT	V R	ECE	INT ADVANCES	9
			Pattern Classifiers – Pattern Classification using Genetic Alg y Pattern Classifiers and Perception.	;orithms –
			TOTAL : 45 PERIODS	
OUTC	OMES:		Upon completion the course, the students will have the ability	y to
1.	Differen	tiate b	between supervised and unsupervised classifiers	
2.	Analyze	differ	rent clustering methods.	
3.	Classify	the da	ata and identify the patterns.	
4.	Extract f	feature	e set and select the features from given data set.	
5.	Apply fu	ızzy lo	ogic and genetic algorithms for classification problems	
REFE	RENCE	S:		
1.	Andrew	v Wel	bb, "Stastical Pattern Recognition", Arnold publishers, Londor	1,1999
2.	C.M.B	ishop,	, "Pattern Recognition and Machine Learning", Springer, 2006	б.
3.	M. Nai	rasimi	ha Murthy and V. Susheela Devi, "Pattern Recognition", Sprin	iger 2011.
4.	Statisti	ical, S	riedman , Abraham Kandel, "Introduction to Pattern Recogniti Structural, Neural and Fuzzy Logic Approaches", World Scient Co. Ltd, 2000.	
5.	Robert	J.Sch	nalkoff, "Pattern Recognition Statistical, Structural and Neural ", John Wiley & Sons Inc., New York, 1992.	!
6.			P.E.Hart and D.G.Stork, "Pattern Classification", John Wiley,	2001
7.	S.Theo 2009.	odorid	is and K.Koutroumbas, "Pattern Recognition", 4th Ed., Acade	mic Press.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	2	2	2	3	1	2	1	2	2	2	3	2	1	1
CO2	2	2	1	3	1	2	1	2	1	1	2	1	1	-
CO3	3	2	2	1	2	1	-	1	2	-	-	2	1	-
CO4	3	3	1	2	2	1	-	2	-	2	2	1	1	1
CO5	2	2	1	2	-	-	2	1	1	-	1	2	2	1
18AEPE17	3	2	2	1	1	2	2	2	1	-	1	2	1	1

1-LOW

2-MODERATE (MEDIUM) 3-HIGH

18AEPI	E19	SECURE COMPUTING SYSTEMS	L	Т	Р	C
			3	0	0	3
OBJEC	TIV	ES:			•	
•	To le	arn different computer security mechanism and management tee	chnie	ques		
•	To ga	in knowledge about computer hardware security.				
•	To ap	ply programming knowledge in hardware.				
UNIT I		COMPUTER SECURITY AND MANAGEMENT	7			9
Control,	Secu	Computer Security, Threats, Malware, Vulnerabilities, Auth urity Management Models, Security Management Prac legal aspects of security, Ethical Hacking.				
UNIT I	I	HARDWARE SECURITY				9
		are Security, Computer Memory and storage, Bus and Interconnection: Side channel Analysis: Power Analysis Attack, Timing Att				

Interface, CPU; Side channel Analysis: Power Analysis Attack, Timing Attack, Fault attack. Countermeasures of Side Channel Attack, Secure Hardware Intellectual Properties, Physically Unclonable Functions(PUFs), Secure PUF.

UNIT	III		EMBLY AND OPERATING SY URITY	STEMS	9
-	Drivers	and O	ddressing Modes, Stack and Buffer Ove S Security; Secure Design Principles, T		
UNIT	IV	ADV	ANCED COMPUTER ARCHIT	ECTURE	9
	-		ltiprocessors, parallel processing, Ubiqu Internet computing, Virtualization	itous computing, Grid,	Distributed
UNIT	V	NET	WORK AND WEBSECURITY		9
Schrodi	nger Eq lecular	uation Dynan	and Quantum Mechanics, Molecular and Wave function Theory, Density F nics, Electromagnetic Fields and their c	Functional Theory, Nat	nostructures
				TOTAL: 45 I	PERIODS
OUTC 1.			Upon completion the course , the stude ecurity aspects	nts will have the abilit	y to
2.			reciate security in hardware, OS and it for	uture need	
3.	Learr	secur	ity issues in various types of computing	networks	
4.			ts have firm understanding on basic t d system level security.	erminology and conce	epts related to
5.			e requirements for a given organization networking architecture and technologies		elect the mos
REFE	RENC	ES:			
1.			Pfleeger, Shari Lawrence Pfleeger, ''Sec arson Education, 2007	rurity in Computing", I	Fourth
2.	Debd	eep M	ukhopadhyay, Rajat Subhra Chakrabort I Safeguards", CRC Press, 2015	y, "Hardware Security	- Design
З.	Mich	ael Wh	nitman, Herbert J. Mattord, "Manageme urse Technology, 2010	nt of Information Secu	rity", Third
1			Wang, Robert S.Ledley, Computer Arch	itecture and Security, V	Wiley, 2013
4.					

6.	Charles B. Pfleeger, Shari Lawrence Pfleeger, "Security in Computing", Fourth
	Edition, Pearson Education, 2007
7.	Debdeep Mukhopadhyay, Rajat Subhra Chakraborty, "Hardware Security - Design
	Threats and Safeguards", CRC Press, 2015

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	2	3	-	-	1	2	-	-	-	-	1	-	2	-
CO2	2	2	2	-	1	2	-	-	2	-	2	-	2	-
CO3	3	1	1	-	3	3	-	-	1	-	2	-	2	-
CO4	3	2	-	-	2	2	-	-	2	-	3	-	2	-
CO5	2	-	2	-	2	3	-	2	2	-	2	-	2	-
18AEPE19	2	2	2	-	2	2	-	-	2	-	2	-	2	-

1-LOW 2-MODERATE (MEDIUM) 3-HIGH

18AEI	PE20	SIGNAL INTEGRITY FOR HIGH SPEED DESIGN	L	T	Р	С
			3	0	0	3
OBJE	CTIV	ES:				
•	To id	entify sources affecting the speed of digital circuits.				
•	To in	troduce methods to improve the signal transmission characteris	tics			
•	To le	arn non-ideal effects of transmission lines.				
UNIT	Ι	SIGNAL PROPAGATION ON TRANSMISSION LINES				9
Characto terminat paramet Td equa	eristic tions – ers, PC utions f	line equations, wave solution, wave vs. circuits, initial impedance, wave propagation, reflection, and bounce of L, C, static field maps of micro strip and strip line cross-section and layer stackups and layer/Cu thicknesses, cross-sectional and for microstrip and stripline Reflection and terminations for log, input impedance into a transmission-line section, reflection on	diagr ons, alysis ogic	eams per to s toc gate	Rea unit l ols, Z s, fa	active length Co and n-out,

UNIT II MULTI-CONDUCTOR TRANSMISSION LINES AND CROSS-TALK

Multi-conductor transmission-lines, coupling physics, per unit length parameters ,Near and far-end cross-talk, minimizing cross-talk (stripline and microstrip) Differential signalling, termination, balanced circuits ,S-parameters, Lossy and Lossles models.

UNIT III NON-IDEAL EFFECTS

Non-ideal signal return paths – gaps, BGA fields, via transitions , Parasitic inductance and capacitance , Transmission line losses – Rs, $tan\delta$, routing parasitic, Common-mode current, differential-mode current , Connectors

UNIT IV POV

POWER CONSIDERATIONS AND SYSTEM DESIGN

9

9

9

SSN/SSO, DC power bus design, layer stack up, SMT decoupling ,, Logic families, power consumption, and system power delivery, Logic families and speed Package types and parasitic ,SPICE, IBIS models, Bit streams, PRBS and filtering functions of link-path components, Eye diagrams, jitter, inter-symbol interference Bit-error rate, Timing analysis

UNIT V

CLOCK DISTRIBUTION AND CLOCK OSCILLATORS

9

Timing margin, Clock slew, low impedance drivers, terminations, Delay Adjustments, canceling parasitic capacitance, Clock jitter.matrix layout- 1D compaction- 2D compaction.

		TOTAL : 45 PERIODS
OUTC	OMES:	Upon completion the course , the students will have the ability to
1.	Understand	signal transmission characteristics.
2.	Analyze diff	ferent signaling methods.
3.	Discuss abo	ut various parasitics in transmission lines.
4.	Analyze the	power consideration in digital circuits.
5.	Understand	clock distribution and clock oscillators.
REFE	RENCES:	
1.	Douglas Br Hall PTR, 2	ooks, Signal Integrity Issues and Printed Circuit Board Design, Prentice 2003
2.	Eric Bogati	n, Signal Integrity – Simplified, Prentice Hall PTR, 2003.
3.		son and M. Graham, High-Speed Digital Design: A Handbook of Black ntice Hall, 1993.
4.		Hall, and J. McCall, High-Speed Digital System Design: A Handbook of ct Theory and Design Practices, Wiley-Interscience, 2000.
5.	Stephen H.	Hall and Howard L.Heck , Advanced Signal Integrity for High-Speed signs, Wiley-IEEE Press, 2009.

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PSO 1	PSO 2	PSO 3
CO1	3	2	2	2	-	-	2	-	2	2	2	1	1	2
CO2	3	3	3	3	-	-	2	-	2	1	2	2	2	2
CO3	3	2	2	2	-	-	1	-	2	1	2	1	1	2
CO4	3	3	3	3	-	-	2	-	2	1	2	2	2	2
CO5	3	2	2	2	-	-	2	-	1	2	2	1	1	2
18AEPE2 0	3	2	2	2	-	-	2	-	2	1	2	1	1	2

1-Low 2-Moderate (Medium) 3-High

18AEP	PE21	WIRELESS ADHOC AND SENSOR NETWORKS	L	T	Р	С
			3	0	0	3
OBJEC	CTIV	ES:		1		
•	To st	udy the ADHOC networks and its protocols				
•	To in	plement the designing of multicast routing and security				
•	To st	udy the Challenges in QOS and power management schemes				
UNIT	I	MAC & TCP IN AD HOC NETWORKS				9
configur Network	ation-l as – Co	of WLANs – IEEE 802.11 Architecture - Self config Issues in Ad-Hoc Wireless Networks – MAC Protocols for Intention Based Protocols - TCP over Ad-Hoc networks-TCP p IETs – Solutions for TCP over Ad-Hoc Networks.	Ad-	Ho	e Wi	reless
UNIT	Π	ROUTING IN AD HOC NETWORKS				9
Proactiv DREAM	e, Rea 1 – Qu ng – 1	-Hoc Networks- Introduction-Topology based versus Position active, Hybrid Routing Approach-Principles and issues – L norums based location service – Grid – Forwarding strategie Restricted directional flooding- Hierarchical Routing- Issues	ocat s — (ion Gree	serv edy p	ices - backet

UNIT III MAC, ROUTING & QOS IN WIRELESS SENSOR NETWORKS

Introduction – Architecture - Single node architecture – Sensor network design considerations – Energy Efficient Design principles for WSNs – Protocols for WSN – Physical Layer : Transceiver Design considerations – MAC Layer Protocols – IEEE 802.15.4 Zigbee – Link Layer and Error Control issues - Routing Protocols – Mobile Nodes and Mobile Robots - Data Centric & Contention Based Networking – Transport Protocols & QOS – Congestion Control issues – Application Layer support.

UNIT IV SENSOR MANAGEMENT

Sensor Management - Topology Control Protocols and Sensing Mode Selection Protocols -Time synchronization - Localization and positioning – Operating systems and Sensor Network programming – Sensor Network Simulators.

UNIT V SECURITY IN AD HOC AND SENSOR NETWORKS

Security in Ad-Hoc and Sensor networks – Key Distribution and Management – Software based Anti-tamper techniques – water marking techniques – Defence against routing attacks - Secure Adhoc routing protocols – Broadcast authentication WSN protocols – TESLA – Biba – Sensor Network Security Protocols – SPINS.

AF DEDIODO

		TOTAL : 45 PERIODS							
OUT	COMES:	Upon completion the course, the students will have the ability to							
1.	1. Understand the basic concepts of WIRELESS networks and challenges of Ad-hoc and sensor networks.								
2.	Classify the de	sign issues and different categories of MAC protocols							
3.	Explain the var	rious Ad-hoc routing protocols and transport layer mechanisms							
4.	Discuss the ser	nsor characteristics and WSN layer protocols							
5.	Illustrate the is	sues of routing in WSN and QOS related performance measurements							
REFE	ERENCES:								
1.	Theory and Ap	rais Cordeiro, Dharma Prakash Agrawal "Ad Hoc and Sensor Networks: plications (2nd Edition), World Scientific Publishing, 2011							
2.									

9

9

-

9

5.	Holger Karl, Andreas willig, Protocols and Architectures for Wireless Sensor Networks, John
	Wiley & Sons, Inc .2005.
6.	Subir Kumar Sarkar, T G Basavaraju, C Puttamadappa, "Ad Hoc Mobile Wireless Networks",
	Auerbach Publications, 2008.
7.	WaltenegusDargie, Christian Poellabauer, "Fundamentals of Wireless Sensor Networks Theory
	and Practice", John Wiley and Sons, 2010.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	2	-	-	-	-	-	-	-	-	-	3	1	-
CO2	3	3	2	1	-	-	-	-	-	-	-	3	2	-
CO3	3	3	2	1	-	-	-	-	-	-	-	3	2	-
CO4	3	2	-	-	-	-	-	-	-	-	-	3	1	-
CO5	3	3	2	1	1	3	1	-	-	-	-	3	2	2
18AEPE21	3	3	2	1	-	-	-	-	-	-	-	3	2	-

1-LOW 2-MODERATE (MEDIUM) 3-HIGH

18AEPE22	HARDWARE - SOFTWARE CO-DESIGN	L	Т	Р	C				
		3	0	0	3				
OBJECTIV	ES:								
•	To acquire the knowledge about system specification and mo	To acquire the knowledge about system specification and modeling.							
•	To learn the formulation of partitioning								
•	To study the different technical aspects about prototyping and	d em	ılati	on.					
UNIT I	SYSTEM SPECIFICATION AND MODELLING	r J			9				
Modeling , Co with one ASIC	tems, Hardware/Software Co-Design, Co-Design for System o-Design for Heterogeneous Implementation - Single-Proces C and many ASICs, Multi-Processor Architectures, Comparis Iodels of Computation, Requirements for Embedded System Sp	ssor	Arcl f Co	nitec)- De	tures				

	II	HARDWARE / SOFTWARE PART	TIONING	9
of the l	Partition V Partit	Software Partitioning Problem, Hardware-Soft ing Graph, Formulation of the HW/SW Par oning based on Heuristic Scheduling, HW/S	titioning Problem, Op	otimization,
UNIT	III	HARDWARE / SOFTWARE CO-SY	NTHESIS	9
	-	sis Problem, State-Transition Graph, Refiner lgorithm for Distributed System- Case Studies		
UNIT	IV	PROTOTYPING AND EMULATIO	N	
Archite Archite	cture S ctures a	Future Developments in Emulation and Prepetialization Techniques, System Commund Application System Classes, Architectures r Data-Dominated Systems, Mixed Systems and	nication Infrastructu for Control-Dominate	re, Target ed Systems,
UNIT	V	DESIGN SPECIFICATION AND VI	ERIFICATION	
Concurr	rency, (oordinating Concurrent Computations, Inter-	facing Components, V	Verification
,Langua Represe	ages for entation	System-Level Specification and Design Sys for System Level Synthesis, System I Specification and Multi-Language Co- simulat	tem-Level Specificati	on ,Design Languages,
,Langua Represe	ages for entation geneous	System-Level Specification and Design System Level Synthesis, System I Specification and Multi-Language Co- simulat TOT.	tem-Level Specificati Level Specification ion. AL: 45 PERIOD	on ,Design Languages, S
,Langua Represe Heterog	ages for entation geneous	System-Level Specification and Design System Level Synthesis, System I Specification and Multi-Language Co- simulat TOT.	tem-Level Specificati Level Specification ion. AL: 45 PERIOD	on ,Design Languages, S
,Langua Represe Heterog OUTC	ages for entation geneous COME To u	System-Level Specification and Design System Level Synthesis, System I Specification and Multi-Language Co- simulat TOT.	tem-Level Specificati Level Specification ion. AL: 45 PERIOD	on ,Design Languages, S
,Langua Represe Heterog OUTC 1.	ages for entation geneous COME To u To c To a desig	System-Level Specification and Design System Level Synthesis, System I Specification and Multi-Language Co- simulat TOT S: Upon completion the course, the stuck iderstand and to apply design methodologies.	tem-Level Specification evel Specification ion. AL: 45 PERIOD lents will have the abil	on ,Design Languages, 9S lity software co-
,Langua Represe Heterog OUTC 1. 2.	ages for entation geneous COME To u To c To a desig inter	System-Level Specification and Design System Level Synthesis, System I Specification and Multi-Language Co-simulat TOT. S: Upon completion the course, the stuck iderstand and to apply design methodologies. mpare hardware / software co-synthesis. preciate the fundamental building blocks of the n and related implementation and testing envir	tem-Level Specification evel Specification ion. AL: 45 PERIOD lents will have the abil e using hardware and onments and technique	on ,Design Languages, PS lity software co- es and their
,Langua Represe Heterog OUTC 1. 2. 3.	ages for entation geneous COME To u To c To a desig inter To b	System-Level Specification and Design System Level Synthesis, System I Specification and Multi-Language Co- simulat TOT. S: Upon completion the course , the stuce iderstand and to apply design methodologies. mpare hardware / software co-synthesis. preciate the fundamental building blocks of the n and related implementation and testing envir relationships	tem-Level Specification ion. AL: 45 PERIOD lents will have the abil e using hardware and conments and technique	on ,Design Languages, PS lity software co- es and their
,Langua Represe Heterog OUTC 1. 2. 3. 4.	ages for entation geneous COME To u To u To c To a desig inter To b To d	System-Level Specification and Design System Level Synthesis, System I Specification and Multi-Language Co- simulat TOT. S: Upon completion the course , the stuce iderstand and to apply design methodologies. mpare hardware / software co-synthesis. preciate the fundamental building blocks of the n and related implementation and testing envir relationships familiar with modern hardware/software tools monstrate practical competence in these areas	tem-Level Specification ion. AL: 45 PERIOD lents will have the abil e using hardware and conments and technique	on ,Design Languages, PS lity software co- es and their

2.	Jorgen Staunstrup, Wayne Wolf, "Hardware/Software Co-Design: Principles and
	Practice", Kluwer Academic Pub,1997.
3.	Ralf Niemann, "Hardware/Software Co-Design for Data Flow Dominated Embedded
	Systems", Kluwer Academic Pub, 1998.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	2	3	3	2	-	-	-	-	-	-	-	3	2	1
CO2	1	3	2	2	-	-	-	-	-	-	-	3	2	1
CO3	1	2	2	-	-	-	-	-	-	-	1	2	2	1
CO4	3	2	-	-	-	2	-	1	-	-	-	2	2	1
CO5	3	2	3	3	-	2	-	1	-	-	-	3	2	1
18AEPE22	2	2	2	2	-	1	-	1	-	-	-	3	2	1

1-LOW 2-MODERATE (MEDIUM)

3-HIGH

OPEN ELECTIVES

18AEOE0	INTRODUCTION TO NANOELECTRONICS	L	T	Р	С				
		3	0	0	3				
OBJECTI	VES:		1		•				
• То	study semiconductor devices and nano electronics device	ces							
• To	study photonic molecular materials and thermal sensors								
• To	study gas sensor materials and bio sensors								
UNIT I SEMICONDUCTOR NANO DEVICES									
Electron T Nanodevices	on Devices; Nano scale MOSFET – Resonant Tunneling Tra ansistors; Nanorobotics and Nanomanipulation; Mechan Nanocomputers: Optical Fibers for Nanodevices; Photocher A-Based Nanodevices; Gas-Based Nanodevices.	nical	N	lole	cular				
UNIT II	ELECTRONIC AND PHOTONIC MOLECULA MATERIALS	R		9					
Quantum cas Quantum win	Electroluminescent Organic materials - Laser Diodes - Quant cade lasers- Cascade surface-emitting photonic crystal laser- Qua e lasers:- White LEDs - LEDs based on nanowires - LEDs base on nanorods - High Efficiency Materials for OLEDs- High Effi-	antu ed or	m do n na	ot las notul	ers - bes -				
for OLEDs -	Quantum well infrared photo detectors.								
for OLEDs -	THERMAL SENSORS				9				
UNIT III Thermal energy electrical respower sensor		enso	ors,	elect	ors - rical				
UNIT III Thermal energy electrical respower sensor	THERMAL SENSORS rgy sensors -temperature sensors, heat sensors - Electromag stance sensors, electrical current sensors, electrical voltage se s, magnetism sensors - Mechanical sensors - pressure sensors, ga	enso	ors,	elect	ors - rical				
UNIT III Thermal energy electrical respower sensor sensors, position UNIT IV Criteria for the	THERMAL SENSORS rgy sensors -temperature sensors, heat sensors - Electromages stance sensors, electrical current sensors, electrical voltage sets stance sensors - Mechanical sensors - pressure sensors, gation sensors - Chemical sensors - Optical and radiation sensors. GAS SENSOR MATERIALS e choice of materials - Experimental aspects – materials, properting property, sensitivity; Discussion of sensors for various gases, Optical se	enso is an	ors, id lid mea	elect quid	prs - rical flow 9 ment				

Principles - DNA based biosensors – Protein based biosensors – materials for biosensor applications - fabrication of biosensors - future potential.

		TOTAL : 45 PERIODS							
OUTC	OMES:	Upon completion the course, the students will have the ability to							
1.	1. To be able to understand semiconductor and nano electronic devices								
2.	To be able to understand electronic and photonic molecular materials								
3.	Ability to un	Ability to understand basic of thermal sensors							
4.	Ability to understand gas sensor materials								
5.	Ability to un	derstand basic of Bio sensors							
REFE	RENCES:								
1.	1. K.E. Drexler, "Nano systems", Wiley, 1992.								
2.	2.M.C. Petty, "Introduction to Molecular Electronics", 1995.								
3.	W. Ranier, "	Nano Electronics and Information Technology", Wiley, 2003.							

COURSE ARTICULATION MATRIX:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	3	3	3	1	2	2	-	-	3	2	2	2	3	2
CO2	-	3	3	3	1	2	2	-	-	3	2	2	2	3	2
CO3	-	3	3	3	1	2	2	-	-	3	2	2	2	3	2
CO4	-	3	3	3	1	2	2	-	-	3	2	2	2	3	2
CO5	-	3	3	3	1	2	2	-	-	3	2	2	2	3	2

1-LOW

2-MODERATE (MEDIUM)

M) 3-HIGH

18AEOE02	E02 GENETIC ALGORITHMS L T I										
	I				3	0	0	3			
UNIT I	INTRO	DUCTIO	ON			1		9			
Introduction, G	A Technol	ogy-Steady	State Algorithm	Fitness Scaling-Inversion	ion						
UNIT II	GENE'	TIC ALG	GORITHM FC	OR VLSI				9			
	ogy, Mapp	oing for FP		n-partitioning- automa test generation-Partitio	-						
UNIT III	UNIT III HYBRID GENETIC							9			
Hybrid genetic cell placement-	U	U	1	-WDFR-Comparison o	f Cas	s-Sta	ndar	d			
UNIT IV	GLOB	AL ROU	TING					9			
Global routing- work-test gener			pping-circuit gen	eration-test generation	in a	GA	fram	e			
UNIT V	POWE	R ESTIN	ATION					9			
			-	cement-GA for ATG-pi	oble	m	1				
encoding- fitnes	s function	-GA vs Co	nventional algorit	.hm.							
				TOTAL : 45 PER	IOI	DS					
OUTCOME	S		Upon completion the course , the students will have the ability								
1. To ap	ply the basi	cs of Geneti	c algorithm.								
2. To de	sign genetio	e algorithm i	n VLSI.								
3. To de	scribe abou	t hybrid gen	etic.								
4. To ex	plain about	global routi	ng.								
5. To an	alyse the p	ower estimat	tion in genetic algo	rithm.							
TEXT BOO	KS:										

1.	Pinaki Mazumder, E. MRudnick, "Genetic Algorithm for VLSI Design, Layout and							
	test Automation", Prentice Hall, 1998.							
2.	Randy L. Haupt, Sue Ellen Haupt, "Practical Genetic Algorithms" Wiley –							
	Interscience, 1977.							
REFEI	RENCES:							
1.	Ricardo Sal Zebulum, Macro Aurelio Pacheco, Marley Maria B.R. Vellasco, Marley							
	Maria Bernard Vellasco "Evolution Electronics: Automatic Design of electronic							
	Circuits and Systems Genetic Algorithms", CRC press, 1st Edition Dec 2001.							
2.	John R.Koza, Forrest H.Bennett III, David Andre , Morgan Kufmann, "Genetic							
	Programming Automatic programming and Automatic Circuit Synthesis", 1st							
	Edition, May 1999.							

18AEOE03	NEURAL NETWORKS	L	Т	Р	С
		3	0	0	3
UNIT I INTRODUCTION TO NEURAL NETWORKS					
Neural processi	f artificial Neural Networks – Biological neurons and their art ng, learning and Adaptation, Neural Network Learning Rule a, widrow – hoff, correlation, winner – take – all, outstar learn	es –	He	obiar	
UNIT II	PERCEPTRON AND BACK PROPAGATION ALGORITHM				9
training algorith	rceptions – Multi player Feed forward Networks – Error bac m, problems with back propagation, Boltzmann training, Ca propagation / Cauchy training.	-	- •	-	
UNIT III	HOPFIELD MODELS				9
1	orks, Recurrent and Bi-directional Associative Memor work, Artificial Resonance Theory (ART)	ries,	С	ounte	r
UNIT IV APPLICATIONS OF NEURAL NETWORKS					9
	neural networks – Handwritten digit and character recognition, Neuro controller – inverted pendulum controller	ion,	Trav	velin	g
UNIT V	EXPERT SYSTEM FOR MEDICAL DIAGONO	DSI	S		9
Applications of	f neural networks - cerebellar model articulation cont	rolle	er, 1	Robo	ot

kinematics, Expert systems for Medical Diagnosis.							
		TOTAL : 45 PERIODS					
OUTC	OMES :	Upon completion the course , the students will have the ability					
1.	To obtain the theoretical knowledge about Neural Networks						
2.	To understand the concepts	To understand the concepts of perceptron networks					
3.	Acquire the knowledge ab diagnosis	out the applications of Neural Network in the field of Medical					

18AEOE04	MULTIMEDIA COMPRESSION L TECHNIQUES	Т	Р	С			
	3	0	0	3			
UNIT I	UNIT I MULTIMEDIA COMPONENTS						
	Iultimedia skills - Multimedia components and their characteristic graphics, animation, video, hardware.	s -	Tex	t,			
UNIT II	AUDIO AND VIDEO COMPRESSION			9			
-	sion–DPCM-Adaptive PCM –adaptive predictive coding-linear P cited LPC-perpetual coding Video compression –principles-H.26 4.						
UNIT III	TEXT AND IMAGE COMPRESSION			9			
Compression principles-source encoders and destination encoders-lossless and lo compression-entropy encoding –source encoding -text compression –static Huffman coo dynamic coding –arithmetic coding –Lempel ziv-welsh Compression-image compression							
UNIT IV VOIP TECHNOLOGY							
	nsport, VoIP challenges, H.323/ SIP –Network Architecture, Proto nd release, VoIP and SS7, Quality of Service- CODEC Method						

applicability.

UNIT V MULTIMEDIA NETWORKING

9

Multimedia networking -Applications-streamed stored and audio-making the best Effort service-protocols for real time interactive Applications-distributing multimedia-beyond best effort service-secluding and policing Mechanisms-integrated services-differentiated Services-RSVP.

		TOTAL : 45 PERIODS
OUTCOMES		Upon completion the course , the students will have the ability to
1. Describe various multir		ous multimedia components.
2.	Analyze aud	and video compression techniques.
3.	Describe the	ext and image compression techniques.
4.	Analyse the	OIP technology.
5.	Design multi	nedia networking.
TEXTI	BOOKS	
1.		, K. Nahrstedt, "Multimedia Computing, Communications and ", Pearson Education Ranjan Parekh, "Principles of Multimedia",
2.	Fred Halsha Standards", H	l "Multimedia communication - Applications, Networks, Protocols and earson Education, 2007.
З.	Tay Vaugha	n, "Multimedia: Making it work", 7th Edition, TMH 2008 98
REFEI	RENCES	
1.	Wolfegang	ffelsberg, "Video Compression Techniques", Elsevier.
2.	Marcus Gor	calves "Voice over IP Networks", Mc Graw hill 1999.
З.		Bojkovic, D A Milovanovic, "Multimedia Communication Systems: Standards, and Networks", Pearson Education 2007.
4.	-	W.Ross "Computer Networking "a Top Down Approach", Pearson

AUDIT COURSES

18ZAC001	DISASTER MANAGEMENT	L	Т	Р	С
		2	0	0	0
COURSE OBJ	ECTIVES:				
Upon completi	on of this course, the students will be familiar with:				
➢ Learn to	o demonstrate a critical understanding of key concepts in disaster r	risk 1	educ	tion	and
humani	multiple perspectives tarian response.				
Criticall	y evaluate disaster risk reduction and humanitarian response policy	and	pract	ice f	rom
multiple	perspectives.				
Develop	o an understanding of standards of humanitarian response and prac	ctical	rele	vanc	e in
specific	types of disasters and conflict situations.				
UNIT I	INTRODUCTION				5
	ition, Factors And Significance; Difference Between Hazard And	Disa	aster;	Nat	ural
And Manmade	Disasters: Difference, Nature, Types And Magnitude.				
UNIT II	REPERCUSSIONS OF DISASTERS AND HAZARD		rol [Disast	5
UNIT II Economic Dam Earthquakes, V Avalanches, M		Natu , La	ndsli	des 4	ers: And
UNIT II Economic Dam Earthquakes, V Avalanches, M	REPERCUSSIONS OF DISASTERS AND HAZARD age, Loss Of Human And Animal Life, Destruction Of Ecosystem. olcanisms, Cyclones, Tsunamis, Floods, Droughts And Famines an-made disaster: Nuclear Reactor Meltdown, Industrial Accident	Natu , La	ndsli	des 4	ers: And
UNIT II Economic Dam Earthquakes, V Avalanches, Ma Spills, Outbreak UNIT III Study Of Seism	REPERCUSSIONS OF DISASTERS AND HAZARDS age, Loss Of Human And Animal Life, Destruction Of Ecosystem. Volcanisms, Cyclones, Tsunamis, Floods, Droughts And Famines an-made disaster: Nuclear Reactor Meltdown, Industrial Accidents to S Of Disease And Epidemics, War And Conflicts. DISASTER PRONE AREAS IN INDIA nic Zones; Areas Prone To Floods And Droughts, Landslides And A onic And Coastal Hazards With Special Reference To Tsunami; Post-	Natu , La s, Oi	ndsli il Sli	des A	ers: And And 5 reas
UNIT II Economic Dam Earthquakes, V Avalanches, M Spills, Outbreak UNIT III Study Of Seism Prone To Cyclo	REPERCUSSIONS OF DISASTERS AND HAZARDS age, Loss Of Human And Animal Life, Destruction Of Ecosystem. Volcanisms, Cyclones, Tsunamis, Floods, Droughts And Famines an-made disaster: Nuclear Reactor Meltdown, Industrial Accidents to S Of Disease And Epidemics, War And Conflicts. DISASTER PRONE AREAS IN INDIA nic Zones; Areas Prone To Floods And Droughts, Landslides And A onic And Coastal Hazards With Special Reference To Tsunami; Post-	Natu , Lai s, Oi Avala -Disa	ndsli il Sli	des A	ers: And And 5 reas
UNIT II Economic Dam Earthquakes, V Avalanches, Ma Spills, Outbreak UNIT III Study Of Seism Prone To Cyclo And Epidemics UNIT IV Preparedness: M Application Of	REPERCUSSIONS OF DISASTERS AND HAZARDS age, Loss Of Human And Animal Life, Destruction Of Ecosystem. Volcanisms, Cyclones, Tsunamis, Floods, Droughts And Famines, an-made disaster: Nuclear Reactor Meltdown, Industrial Accidents of Disease And Epidemics, War And Conflicts. DISASTER PRONE AREAS IN INDIA nic Zones; Areas Prone To Floods And Droughts, Landslides And A onic And Coastal Hazards With Special Reference To Tsunami; Post-	Natu , Lai s, Oi Avala -Disa T aluat	ndslid il Sli unche aster ion (des A cks A es; A Dise	ers: And And 5 reas ases 5 isk:
UNIT II Economic Dam Earthquakes, V Avalanches, Ma Spills, Outbreak UNIT III Study Of Seism Prone To Cyclo And Epidemics UNIT IV Preparedness: M Application Of	REPERCUSSIONS OF DISASTERS AND HAZARDS age, Loss Of Human And Animal Life, Destruction Of Ecosystem. Volcanisms, Cyclones, Tsunamis, Floods, Droughts And Famines, an-made disaster: Nuclear Reactor Meltdown, Industrial Accidents of Disease And Epidemics, War And Conflicts. DISASTER PRONE AREAS IN INDIA nic Zones; Areas Prone To Floods And Droughts, Landslides And A onic And Coastal Hazards With Special Reference To Tsunami; Post- domic And Coastal Hazards With Special Reference To Tsunami; Post- domic Of Phenomena Triggering A Disaster Or Hazard; Eva Remote Sensing, Data From Meteorological And Other Agencies	Natu , Lai s, Oi Avala -Disa T aluat	ndslid il Sli unche aster ion (des A cks A es; A Dise	ers: And And 5 reas ases 5 isk:
UNIT II Economic Dam Earthquakes, V Avalanches, Ma Spills, Outbreak UNIT III Study Of Seism Prone To Cyclo And Epidemics UNIT IV Preparedness: M Application Of Governmental A UNIT V Disaster Risk: C	REPERCUSSIONS OF DISASTERS AND HAZARDS age, Loss Of Human And Animal Life, Destruction Of Ecosystem. Tolcanisms, Cyclones, Tsunamis, Floods, Droughts And Famines an-made disaster: Nuclear Reactor Meltdown, Industrial Accidents of Disease And Epidemics, War And Conflicts. DISASTER PRONE AREAS IN INDIA nic Zones; Areas Prone To Floods And Droughts, Landslides And A onic And Coastal Hazards With Special Reference To Tsunami; Post- domic And Coastal Hazards With Special Reference To Tsunami; Post- domitoring Of Phenomena Triggering A Disaster Or Hazard; Eva Remote Sensing, Data From Meteorological And Other Agencies And Community Preparedness.	Natu , Lat s, Oi Avala -Disa T aluat s, Mo	ndslid il Sli anche aster ion (edia	des A cks A es; A Dises Of R Repo	ers: And And 5 reas ases 5 isk: orts: 5 Risk

Meaning, Concept And Strategies Of Disaster Mitigation, Emerging Trends In Mitigation. Structural Mitigation And Non-Structural Mitigation, Programs Of Disaster Mitigation In India.

TOTAL: 30 PERIODS

OUTCOMES:		Upon completion of this course, the students will be able to:		
1.	Application of Disaster Concepts to Management.			
2.	Analyze Relat	ionship between Development and Disasters.		
3.	Ability to Cate	egories Disasters and Preparedness plans for disaster response.		
4.	Monitoring and evaluation plan for disaster response and Setting up of early warning systems for risk reductions			
5.		vith Disaster Response command system in respective states and Application ces from Case scenario Studies in India		
REFERE	NCES:			
I.R. Nishith, Singh AK, "Disastrategies "'New Royal boo		Singh AK, "Disaster Management in India: Perspectives, issues and New Royal book Company.		
2.	Sahni PardeenEt Al (Eds.) "Disaster Mitigation Experiences And Reflections"			
3.		Disaster Administration And Management Text And Case Studies", Deep lication Pvt. Ltd., New Delhi.		

18ZAC002	ENGLISH FOR RESEARCH PAPER WRITING	L	Т	Р	С	
		2	0	0	0	
COURSE OBJ	ECTIVES:					
Upon completion	on of this course, the students will be familiar with:					
Understa	and that how to improve your writing skills and level of readabi	ility				
Learn ab	out what to write in each section					
Understa	Understand the skills needed when writing a Title					
UNIT I				5		
Planning and Pr	Planning and Preparation, Word Order, Breaking up long sentences, Structuring Paragraphs and					
Sentences, Bein	g Concise and Removing Redundancy, Avoiding Ambiguity ar	nd Va	iguen	ess		

UNIT II		5				
Clarifying Who Did What, Highlighting Your Findings, Hedging and Criticising, Paraphrasing and						
Plagiarisr	n, Sections of a Paper, Abstracts. Introduction					
UNIT III	UNIT III 5					
Review o	f the Literature, Methods, Results, Discussion, Conc	clusions, The Final Check.				
UNIT IV		5				
•	are needed when writing a Title, key skills are needed when writing an Introduction, skills needed when					
UNIT V		5				
	needed when writing the Methods, skills needed wl					
	ting the Discussion, skills are needed when writing t					
UNIT VI		5				
	ases, how to ensure paper is as good as it could post	sibly be the first- time submission				
userur pin	uses, now to ensure puper is as good as it could post	story be the first time submission				
		TOTAL: 30 PERIODS				
OUTCO	MES: Upon completion of this course, the stud	lents will be able to:				
1.	Write technical papers on their own.					
2.	Planning preparation of content for papers.					
3.	Knowledge of what to be highlighted.					
4.	Review of a literatures					
5.	Key skills needed for writing papers.					
REFERF						
1.	Goldbort R (2006) Writing for Science, Yale	University Press (available on Google				
	Books)					
2.	Day R (2006) How to Write and Publish a Scier					
2	Highman N (1998), Handbook of Writing f					
3.	Adrian Wallwork , English for Writing Research Heidelberg London, 2011	Papers, Springer New York Dordrecht				
	neweiverg London, 2011					

18ZAC003	R	ESEARCH METHODOLOGY AND IPR	L	Т	Р	С
			2	0	0	0
COURSE OBJECTIVES: Upon completion of this course, the students will be familiar with: > Definition and objectives of Research > Quantitative methods for problem solving > Data description and report writing UNIT I RESEARCH METHODOLOGY AND DATA COLLECTION Research methodology - definition, mathematical tools for analysis. Types of research exploratory research, conclusive research, modelling research, algorithmic research, Research process - steps. Data collection methods - primary data - observation method personal interview, telephonic interview, mail survey, questionnaire design. Secondary data - internal sources of data, external sources of data. UNIT II SCALES AND SAMPLING Scales - Measurement, Types of scale - Turnstone's Case V scale model, Osgood's Semantic						
Differential s – simple random	urement, ' scale, Like n sampling	CS AND SAMPLING Types of scale - Turnstone's Case V scale model, Os ert scale. Q-sort scale. Sampling methods - Probability g with replacement, simple random sampling without repla	good' sampli cemer	s Se ng m nt, Str	mant ethoc ratifie	6 ic ls ed
Scales - Measu Differential s – simple random sampling, clusto sampling quota	urement, ' scale, Like n sampling er sampling sampling.	CS AND SAMPLING Types of scale - Turnstone's Case V scale model, Osert scale. Q-sort scale. Sampling methods - Probability g with replacement, simple random sampling without replang. Non-probability sampling method - convenience sampling method	good' sampli cemer	s Se ng m nt, Str	mant ethoc ratifie	6 ic ls ed nt
Scales - Measu Differential s – simple random sampling, cluste sampling quota UNIT III Hypotheses test	urement, ' scale, Like n sampling er sampling sampling. HYPO T	CS AND SAMPLING Types of scale - Turnstone's Case V scale model, Osert scale. Q-sort scale. Sampling methods - Probability so g with replacement, simple random sampling without replang. Non-probability sampling method - convenience sampling met	good' sampli cemer npling ence b	s Se ng m nt, Str g, juc	mant ethoc ratifie lgme	6 ic ls ed nt 6
Scales - Measu Differential s – simple random sampling, cluste sampling quota UNIT III Hypotheses test	urement, ' scale, Like n sampling er sampling. HYPO ing- Testified and two	CS AND SAMPLING Types of scale - Turnstone's Case V scale model, Osert scale. Q-sort scale. Sampling methods - Probability g with replacement, simple random sampling without replating. Non-probability sampling method - convenience sate THESES ng of hypotheses concerning means (one mean and differ	good' sampli cemer npling ence b	s Se ng m nt, Str g, juc	mant ethoc ratifie lgme	6 ic ls ed nt 6
Scales - Measu Differential s – simple random sampling, cluste sampling quota UNIT III Hypotheses test means- one taile UNIT IV Nonparametric Smirnov test, ru	urement, ' scale, Like n sampling er sampling sampling. HYPOT ing- Testined and two NONPA tests- One in test for	CS AND SAMPLING Types of scale - Turnstone's Case V scale model, Osert scale. Q-sort scale. Sampling methods - Probability is g with replacement, simple random sampling without replang. Non-probability sampling method - convenience sampling. Non-probability sampling method - convenience sampling of hypotheses concerning means (one mean and differ to tailed tests), Concerning variance one tailed Chi-square to tailed tests).	good' sampli cemer npling ence b est.	s Se ng m nt, Str g, juc etwe	mant ethoc ratifie Igmer en tw	6 ic ds ic d is ic d int 6 70 6
Scales - Measu Differential s – simple random sampling, cluste sampling quota UNIT III Hypotheses test means- one taile UNIT IV Nonparametric Smirnov test, ru	arement, ' scale, Like n sampling er sampling. HYPOT ing- Testined and two NONPA tests- One in test for est - Krus	CS AND SAMPLING Types of scale - Turnstone's Case V scale model, Osert scale. Q-sort scale. Sampling methods - Probability is g with replacement, simple random sampling without replang. Non-probability sampling method - convenience sate THESES Ing of hypotheses concerning means (one mean and difference tailed tests), Concerning variance one tailed Chi-square tailed tests), Concerning variance one tailed Chi-square tailed tests - one sample tests - on sample sign test, Norther States, Two sample tests - Two sample sign test, Norther States, Two sample tests, Norther States, Two sample tests, Norther States, Norther States, Norther States, Norther States, Two sample tests, Norther States, Norther	good' sampli cemer npling ence b est.	s Se ng m nt, Str g, juc etwe	mant ethoc ratifie Igmer en tw	6 ic ds ic d is ic d int 6 70 6
Scales - Measu Differential s - simple random sampling, cluste sampling quota UNIT III Hypotheses test means- one taile UNIT IV Nonparametric Smirnov test, ru test, K-sample te UNIT V Introduction to	arement, ' scale, Like n sampling er sampling HYPOT ing- Testined and two NONP tests- One in test for est - Krusl DISCR	CS AND SAMPLING Types of scale - Turnstone's Case V scale model, Osert scale. Q-sort scale. Sampling methods - Probability is g with replacement, simple random sampling without replating. Non-probability sampling method - convenience sates THESES Ing of hypotheses concerning means (one mean and differ to tailed tests), Concerning variance one tailed Chi-square to ARAMETRIC TESTS Re sample tests - one sample tests- on sample sign test, Neal Wallis test (H-Test)	ence best.	s Se ng m nt, Str g, juc etwe olmo Whit	mant ethoc ratifie Igmer en tw ogorov tney	6 ic ls ed nt 6 70 6 v- U U
Scales - Measu Differential s - simple random sampling, cluste sampling quota UNIT III Hypotheses test means- one taile UNIT IV Nonparametric Smirnov test, ru test, K-sample to UNIT V Introduction to conjoint analysi	arement, ' scale, Like n sampling er sampling HYPOT ing- Testined and two NONP tests- One in test for est - Krusl DISCR	CS AND SAMPLING Types of scale - Turnstone's Case V scale model, Osert scale. Q-sort scale. Sampling methods - Probability is g with replacement, simple random sampling without replating. Non-probability sampling method - convenience sates THESES Ing of hypotheses concerning means (one mean and differ to tailed tests), Concerning variance one tailed Chi-square to ARAMETRIC TESTS Is a sample tests - one sample tests- on sample sign test, Neal Wallis test (H-Test) IMINANT ANALYSIS mant analysis, Factor analysis, cluster analysis, multi-dimeted tests is a sample test of the sample test of test of the sample test of the sample test of the sample test of tes	ence best. est, K fann-	s Se ng m nt, Str g, juc etwe olmo Whit	mant ethoc ratifie Igmen en tw egorov tney	6 ic ls ic d nt 6 v- U U g, al

1.	Aware of basic research process, research methodology.				
2.	Apply Knowledge of hypotheses, Non-parametric Tests				
3.	Develop research question				
4.	Perform exhaustive literature survey				
5.	Apply right problem solving methods				
REFERE	NCES:				
1.	Kothari. C.R., "Research Methodology - Methods and techniques", New Age Publications, New Delhi, 2009				
2.	Panneerselvam, R., "Research Methodology", Prentice-Hall of India. New Delhi, 2004.				

18ZAC004	SANSKRIT FOR TECHNICAL KNOWLEDGE	L	Т	Р	С		
		2	0	0	0		
COURSE OBJECTIVES:							
Upon completion	on of this course, the students will be familiar with:						
To get a	working knowledge in illustrious Sanskrit, the scientific language in	n the	worl	d			
Learning	g of Sanskrit to improve brain functioning						
Learning	g of Sanskrit to develop the logic in mathematics, science & other su	bjec	ts				
UNIT I					10		
Alphabets in Sar	nskrit, Past/Present/Future Tense, Simple Sentences						
UNIT II					10		
Order, Introduction of roots, Technical information about Sanskrit Literature							
UNIT III					10		
Technical conce	pts of Engineering-Electrical, Mechanical, Architecture, Mathematics						

			TOTAL: 30 PERIODS			
OUTCON	MES:	Upon completion of this course,	, the students will be able to:			
1.	Understanding	g basic Sanskrit language				
2.	Ancient Sansl	Ancient Sanskrit literature about science & technology can be understood				
3.	Being a logica	al language will help to develop	logic in students			
REFERE	NCES:					
1.	"Abhyaspust	akam" – Dr.Vishwas, Samskrita-	Bharti Publication, New Delhi			
2.	2. "Teach Yourself Sanskrit" Prathama Deeksha-VempatiKutumbshastri, Rashtriya Sanskrit Sansthanam, New Delhi Publication					
3.	"India's Glo	rious Scientific Tradition" Suresl	h Soni, Ocean books (P) Ltd., New Delhi.			

18ZAC005	VALUE EDUCATION	L	Т	Р	С	
		2	0	0	0	
COURSE OBJ	ECTIVES:				L	
Upon completion	on of this course, the students will be familiar with:					
Understa	and value of education and self- development					
Imbibe g	good values in students					
\blacktriangleright Let the s	hould know about the importance of character					
UNIT I					6	
Values and self-	development -Social values and individual attitudes. Work ethics,	India	n vis	ion o	of	
humanism. Mora	al and non- moral valuation. Standards and principles. Value judgmen	ts				
UNIT II					8	
Importance of cultivation of values. Sense of duty. Devotion, Self-reliance. Confidence, Concentration. Truthfulness, Cleanliness. Honesty, Humanity. Power of faith, National Unity. Patriotism. Love for nature, Discipline						

UNIT III				8
discipline. Universal	Punctuality, L brotherhood a	Development - Soul and Scientific ove and Kindness. Avoid fault Thin ad religious tolerance. True frien active habits. Association and Coo	nking. Free from anger, Dignity ndship. Happiness Vs suffering	y of labour. g, love for
UNIT IV				8
of reincar	nation. Equality	e –Holy books vs Blind faith. Se Nonviolence, Humility, Role of trol. Honesty, Studying effectively	Women. All religions and same	
			TOTAL: 30	PERIODS
OUTCOM	MES:	Upon completion of this course,	, the students will be able to:	
1.	Knowledge o	f self-development		
2.	Learn the imp	oortance of Human values		
3.	Developing th	e overall personality		
REFERE	INCES:			
1.	-	S.K. "Values and Ethics for or ress, New Delhi	ganizations Theory and pract	ice", Oxford

18ZAC006	PEDAGOGY STUDIES	L	Т	Р	С		
		2	0	0	0		
COURSE OI	JECTIVES:				<u> </u>		
Upon comple	tion of this course, the students will be familiar with:						
> Review	v existing evidence on the review topic to inform programme design	and p	olicy	mak	ting		
undert	undertaken by the DfID, other agencies and researchers.						
> Identif	 Identify critical evidence gaps to guide the development. 						
> Identif	y critical evidence gaps to guide the development.						

UNIT I				6
Conceptu	ual frai	nework a	ND METHODOLOGY: Aims and rationale, Polic and terminology Theories of learning, Curriculum, Tea Research questions. Overview of methodology and Searching	cher education.
UNIT II				6
			lagogical practices are being used by teachers in forma countries. Curriculum, Teacher education.	al and informal
UNIT II	Ι			6
assessme school cu Strength	ent of i urriculu and nat	ncluded s im and g ure of the	eness of pedagogical practices Methodology for the in depusitudies. How can teacher education (curriculum and prac guidance materials best support effective pedagogy? The body of evidence for effective pedagogical practices. Pedag Teachers' attitudes and beliefs and Pedagogic strategies.	cticum) and the eory of change.
UNIT IV	V			6
Professio	nal dar	alonmon	t: alignment with classroom practices and follow-up suppo	ort Peer support
Support f	from th	e head tea	acher and the community. Curriculum and assessment Barrige class sizes	
Support f	from th esource	e head tea	acher and the community. Curriculum and assessment Barr	riers to learning:
Support f limited re UNIT V RESEAF	from th esource	e head tea s and larg	acher and the community. Curriculum and assessment Barr	riers to learning:
Support f limited re UNIT V RESEAF	from th esource	e head tea s and larg	acher and the community. Curriculum and assessment Barr ge class sizes ND FUTURE DIRECTIONS : Research design Con- culum and assessment Dissemination and research impact.	riers to learning:
Support f limited re UNIT V RESEAF	from thesource	e head tea s and larg	acher and the community. Curriculum and assessment Barr ge class sizes ND FUTURE DIRECTIONS : Research design Con- culum and assessment Dissemination and research impact.	riers to learning: 6 ntexts Pedagogy 2 : 30 PERIODS
Support f limited re UNIT V RESEAF Teacher e	From the esource RCH (education of the education of the e	e head tea s and larg GAPS A on Curric	Acher and the community. Curriculum and assessment Barringe class sizes ND FUTURE DIRECTIONS : Research design Conculum and assessment Dissemination and research impact. TOTAI	riers to learning: 6 ntexts Pedagogy 2 : 30 PERIODS to:
Support f limited re UNIT V RESEAF Teacher e OUTCO	RCH (education oMES: What class What	e head tea s and larg GAPS A on Curric t pedago rooms in t is the e	Acher and the community. Curriculum and assessment Barry ge class sizes ND FUTURE DIRECTIONS : Research design Control culum and assessment Dissemination and research impact. TOTAI Upon completion of this course, the students will be able gical practices are being used by teachers in formal and in	riers to learning: 6 ntexts Pedagogy 2 : 30 PERIODS to: formal
Support f limited re UNIT V RESEAF Teacher e OUTCO 1.	RCH (education oMES: What class What cond How	e head tea s and larg GAPS A on Curric t pedago rooms in t is the e itions, an can teac	Acher and the community. Curriculum and assessment Barry acher and the community. Curriculum and assessment Barry ND FUTURE DIRECTIONS : Research design Con- culum and assessment Dissemination and research impact. TOTAI Upon completion of this course, the students will be able gical practices are being used by teachers in formal and in a developing countries? vidence on the effectiveness of these pedagogical practice	riers to learning: 6 ntexts Pedagogy 2 : 30 PERIODS to: formal s, in what
Support f limited re UNIT V RESEAH Teacher e OUTCO 1. 2.	RCH (education oMES: What class What cond How guid	e head tea s and larg GAPS A on Curric t pedago rooms in t is the e itions, an can teac ance mat	Acher and the community. Curriculum and assessment Barry acher and the community. Curriculum and assessment Barry ND FUTURE DIRECTIONS : Research design Con- culum and assessment Dissemination and research impact. TOTAI Upon completion of this course, the students will be able gical practices are being used by teachers in formal and in a developing countries? vidence on the effectiveness of these pedagogical practice and with what population of learners?	riers to learning: 6 ntexts Pedagogy 2 : 30 PERIODS to: formal s, in what
Support f limited re UNIT V RESEAH Teacher e OUTCO 1. 2. 3.	From the esource RCH (education of the	APS A and larg GAPS A on Curric t pedago rooms in t is the e itions, an can teac ance mat S: ers J, F mpare, 31	Acher and the community. Curriculum and assessment Barry acher and the community. Curriculum and assessment Barry ND FUTURE DIRECTIONS : Research design Con- culum and assessment Dissemination and research impact. TOTAI Upon completion of this course, the students will be able gical practices are being used by teachers in formal and in a developing countries? vidence on the effectiveness of these pedagogical practice and with what population of learners?	riers to learning: 6 ntexts Pedagogy 2 : 30 PERIODS to: formal s, in what curriculum and primary schools,

3.	Alexander RJ (2001) Culture and pedagogy: International comparisons in primary
	education. Oxford and Boston:Blackwell
4.	Chavan M (2003) Read India: A mass scale, rapid, 'learning to read' campaign

18ZAC00	07	STRESS MANAGEMENT BY YOGA	Т	Р	C		
		2	0	0	0		
COURSE (OBJECTIVE	ES:					
Upon comp	oletion of this	s course, the students will be familiar with:					
≻ To a	chieve overal	ll health of body and mind					
> To o	overcome stre	SS.					
UNIT I					10		
Definitions	of Eight parts	s of yog. (Ashtanga)					
UNIT II					10		
Yam and Ni	yam. Do`s an	d Don't's in life.	1				
i) Ahinsa, sa	atya, astheya,	bramhacharya and aparigraha					
ii) Shaucha,	santosh, tapa	, swadhyay, ishwarpranidhan					
UNIT III					10		
Asan and Pr	anayam		•				
i) Various y	og poses and	their benefits for mind & body					
ii)Regulariz	ation of breat	hing techniques and its effects-Types of pranayam					
		TOTAL :	30 P	ERIC	DDS		
OUTCOM	OUTCOMES: Upon completion of this course, the students will be able to:						
1. I	Develop heal	thy mind in a healthy body thus improving social health also					
2. I	Improve efficiency						

REFERE	NCES:
1.	Yogic Asanas for Group Tarining-Part-I" :Janardan Swami Yogabhyasi Mandal,
	Nagpur
2.	Rajayoga or conquering the interrnal Nature" by Swami Vivekananda, AdvaitaAshrama
	(Publication Department), Kolkata

18ZAC008	PERSONALITY DEVELOPMENT THROUGH LIFE ENLIGHTENMENT SKILLS	L	Т	Р	С
		2	0	0	0
COURSE OBJ	ECTIVES:				1
Upon completi	on of this course, the students will be familiar with:				
➤ To learn	to achieve the highest goal happily.				
> To beco	me a person with stable mind, pleasing personality and determinatio	n.			
≻ To awak	en wisdom in students.				
UNIT I					10
Neetisatakam-H	lolistic development of personality				
• Verses-	19,20,21,22 (wisdom)				
• Verses-	29,31,32 (pride & heroism)				
• Verses-	26,28,63,65 (virtue)				
• Verses-	52,53,59 (dont's)				
• Verses-	71,73,75,78 (do's)				
UNIT II					10
Approach to day	to day work and duties. Shrimad BhagwadGeeta :				
• Chapter	2-Verses 41, 47,48,				
1	3-Verses 13, 21, 27, 35,				
-	6-Verses 5,13,17, 23, 35,				
-	18-Verses 45, 46, 48.				

UNIT III				10
Statement	s of basic know	edge. Shrimad BhagwadGeeta:		
• Cł	napter2-Verses 5	56, 62, 68		
	1	s 13, 14, 15, 16,17, 18		
	-	. Shrimad BhagwadGeeta:		
·	hapter2-Verses 1	C		
	hapter 3-Verses			
	hapter 3 Verses			
	napter 18 – Verses			
			TOTAL: 3	0 PERIODS
OUTCOM	MES:	Upon completion of this course,	the students will be able to:	
1.	•	mad-Bhagwad-Geeta will help th ne highest goal in life	e student in developing his pe	ersonality
2.	The person w	ho studied Geeta will lead the na	ation and mankind to peace an	d prosperity
3.	Study of Neet	ishatakam will help in developin	g versatile personality of stu	dents.
REFERE	INCES:			
1.	"Srimad Bh	agavad Gita" by Swami Swa	arupanandaAdvaita Ashram	(Publication
	Department),	Kolkata		
2.		r Three Satakam (Niti-sringar-va	iragya) by P.Gopinath, Rasht	triya Sanskrit
	Sansthanam,	New Delhi.		

18ZAC	009 E	LECTRONIC WASTE MANAGEMENT	L	Т	Р	С	
			2	0	0	0	
COURSE	C OBJECTIVE	ES:	<u> </u>		1	1	
Upon con	npletion of this	s course, the students will be familiar with:					
≻ To	o understand the	e techniques used in E-waste management.					
UNIT I						10	
E-waste C)verview, E-wa	ste Management Overview					
UNIT II						10	
Environm	ental and Public	c health issues, E-waste health risk assessment					
UNIT III						10	
-	of material f	form E-waste, Material Recovery Process, electronics a	ind I	LCA,	LC.	A	
		ΤΟΤΑ	L:3	0 PI	ERIC)DS	
OUTCOM	MES:	Upon completion of this course, the students will be able	to:				
1.	Define E-was	te management techniques.					
2.	Define the pr	ocess of material recovery					
REFERE	NCES:						
1.	Electronic V website.	Vaste Management Rules 2016, Govt. of India, availabl	e onl	ine d	at Cl	°CB	
2.	MSW Mana	MSW Management Rules 2016, Govt. of India, available online at CPCB website.					
3.	Scientific lit	erature uploaded by TAs					