GOVERNMENT COLLEGE OF ENGINEERING, BARGUR Regulation – 2017

AUTONOMOUS

Curriculum for Part Time – B.E. -EEE

From the Academic Year 2017-2018 onwards

SEMESTER I

SL.	COURSE	COURSE TITLE	CATEGORY	L	Т	P	С
No.	CODE						
THE	DRY						
1.	17PTEBS101	Mathematics	BS	3	0	0	3
2.	17PTEBS102	Physics	BS	3	0	0	3
3.	17PTEBS103	Chemistry	BS	3	0	0	3
4.	17PTEPC104	Electric Circuit Analysis	PC	3	0	0	3
PRAC	CTICALS						
5.	17PTEES105	Computer Programming	ES	0	0	3	1
		Laboratory					
			TOTAL	12	0	3	13

SEMESTER – II

SL.	COURSE	COURSE TITLE	CATEGORY	L	Т	P	С
No.	CODE						
THE	ORY						
1.	17PTEPC201	Measurements and	PC	3	0	0	3
		Instrumentation					
2.	17PTEPC202	Electromagnetic Theory	PC	3	0	0	3
3.	17PTEBS203	Environmental Science	BS	3	0	0	3
		and Engineering					
4.	17PTEPC204	Analog Electronics	PC	3	0	0	3
5.	17PTEPC205	Power Plant Engineering	PC	3	0	0	3
			TOTAL	15	0	0	15

SEMESTER – III

SL.	COURSE	COURSE TITLE	CATEGORY	L	Т	P	С
No.	CODE						
THE	ORY						
1.	17PTEPC301	DC Machines and	PC	3	0	0	3
		Transformers					
2.	17PTEPC302	Control Systems	PC	3	0	0	3
3.	17PTEPC303	Linear Integrated Circuits	PC	3	0	0	3
		and Applications					
4.	17PTEPC304	Digital Logic Circuits	PC	3	0	0	3
PRAC	CTICALS						
5.	17PTEPC305	Control and	PC	0	0	3	1
		Instrumentation					
		Laboratory					
			TOTAL	12	0	3	13

SEMESTER – IV

SL.	COURSE	COURSE TITLE	CATEGORY	L	Т	Р	С
No.	CODE						
THE	ORY						
1.	17PTEPC401	Microprocessors,	PC	3	0	0	3
		Microcontrollers and					
		Applications					
2.	17PTEPC402	Power Electronics	PC	3	0	0	3
3.	17PTEPC403	Synchronous and	PC	3	0	0	3
		Asynchronous Machines					
4.	17PTEPC404	Transmission and	PC	3	0	0	3
		Distribution					
PRAC	CTICALS						
5.	17PTEPC405	Electrical Machines	PC	0	0	3	1
		Laboratory					
			TOTAL	12	0	3	13

SEMESTER – V

SL.	COURSE	COURSE TITLE	CATEGORY	L	Τ	Р	С
No.	CODE						
THE	ORY						
1.	17PTEPC501	Power System Analysis	PC	3	0	0	3
2.	17PTEPC502	High Voltage Engineering	PC	3	0	0	3
3.	17PTEPC503	Electrical Machine	PC	3	0	0	3
		Design					
4.		Professional Elective I	PE	3	0	0	3
PRAC	CTICALS						
5.	17PTEPC505	Microprocessors,	PC	0	0	3	1
		Microcontrollers and					
		Applications Laboratory					
			TOTAL	12	0	3	13

SEMESTER – VI

SL.	COURSE	COURSE TITLE	CATEGORY	L	Т	P	C
No.	CODE						
THE	ORY						
1.	17PTEPC601	Power System Operation	PC	3	0	0	3
		and Control					
2.	17PTEPC602	Protection and	PC	3	0	0	3
		Switchgear					
3.	17PTEPC603	Professional Ethics	PC	3	0	0	3
4.		Professional Elective II	PE	3	0	0	3
PRAC	CTICALS						
5.	17PTEPC605	Power Electronics	PC	0	0	3	1
		Laboratory					
			TOTAL	12	0	3	13

SEMESTER – VII

SL.	COURSE	COURSE TITLE	CATEGORY	L	Т	P	С
No.	CODE						
THE	ORY						
1.	17PTEPC701	Energy Utilization,	PC	3	0	0	3
		Conservation and					
		Auditing					
2.		Professional Elective III	PE	3	0	0	3
3.		Professional Elective IV	PE	3	0	0	3
PRAC	CTICALS						
4.	17PTEEE704	Project Work	EEC	0	0	18	6
			TOTAL	9	0	6	15

Grand Total Credits: 95

LIST OF PROFESSIONAL ELECTIVES

SL.	COURSE	COURSE TITLE	CATEGORY	L	Т	P	C
No.	CODE						
THEOF	RY	·	•			•	
1.	17PTEPE001	Solid State drives	PE	3	0	0	3
2.	17PTEPE002	Advanced Control System	PE	3	0	0	3
3.	17PTEPE003	Fibre Optics and Laser	PE	3	0	0	3
		Instruments					
4.	17PTEPE004	Biomedical Instrumentation	PE	3	0	0	3
5.	17PTEPE005	Fundamentals of	PE	3	0	0	3
		Nanoscience					
6.	17PTEPE006	Power Quality	PE	3	0	0	3
7.	17PTEPE007	Special Electrical Machines	PE	3	0	0	3
8.	17PTEPE008	Total Quality Management	PE	3	0	0	3
9.	17PTEPE009	Power System Dynamics	PE	3	0	0	3
10.	17PTEPE010	System Identification and	PE	3	0	0	3
		Adaptive Control					
11.	17PTEPE011	Principles of Management	PE	3	0	0	3
12.	17PTEPE012	High Voltage Direct Current	PE	3	0	0	3
		Transmission					
13.	17PTEPE013	Power System Transients	PE	3	0	0	3
14.	17PTEPE014	Micro Electro Mechanical	PE	3	0	0	3
		Systems					
15.	17PTEPE015	Power Electronics for	PE	3	0	0	3
		Renewable Energy Systems					
16.	17PTEPE016	Flexible AC Transmission	PE	3	0	0	3
		Systems					

CREDIT SUMMARY

Sl. No	Subject Area		Cr	edits	per	Semo	ester		Credits Total	% of Total Credits	Total no. of Subjects
		Ι	Π	III	IV	V	VI	VII	-		
1	BS	9	3						12	13	3
2	ES	1							1	01	1
3	PC	3	12	13	13	10	10	3	64	67	25
4	PE					3	3	6	12	13	4
5	EEC							6	6	06	1
	Total	13	15	13	13	13	13	15	95	100	34

Semester-I

17PTE	BS101	MATHEMATICS	L	Т	Р	С			
			3	0	0	3			
OBJEC	CTIVES:		<u> </u>						
•	Matri Appl	x Algebra And Techniques And Using Them In cations.	ı Eı	ngin	eerin	ıg			
•	The G Be F Solut	Concept Of Infinite Series And Their Convergence So T amiliar With Limitations Of Using Infinite Series Appro ions Arising In Mathematical Modelling.	'hat ' xim	The ation	y Wi ns Fo	ll or			
•	Diffe Engii	rential And Integral Calculus And Their Application neering Applications.	ns In	n V	ariou	15			
UNIT	I MA	TRICES				9			
Characteri values an Reduction	Characteristic equation – Eigen values and Eigenvectors of a real matrix – Properties of eigen values and eigenvectors – Cayley-Hamilton Theorem – Diagonalization of matrices - Reduction of a quadratic form to canonical form by orthogonal transformation.								
UNIT IIFUNCTIONS OF SEVERAL VARIABLES9									
Partial de Differentia differentia and minin	rivatives ation of tion of im na of funct	 Homogeneous functions and Euler's theorem – Tot implicit functions – Change of variables – Jacob plicit functions – Taylor's series for functions of two vari ions of two variables. 	al d ians able	leriv – s - N	ative Part Maxin	ial ma			
UNIT I	II AN	ALYTIC FUNCTION				9			
Analytic Harmonic by functio	functions conjugate ns w = a +	 Necessary and sufficient conditions for analyticity s – Construction of analytic function – Conformal Mapp z, az, 1/z - Bilinear transformation. 	– P oing	rope – M	erties Iappi	ng			
UNIT I	V CO	MPLEX INTEGRATION				9			
Line Integ Singularity of real inte	gral – Cau ies– Resid egrals – U	chy's theorem and integral formula – Taylor's and Lau ues – Residue theorem – Application of Residue theorem se of circular contour and semicircular contour with no po	irent n foi le oi	t's S r eva n rea	Series Iuati 1 axi	s – ion s.			
UNIT	V LA	PLACE TRANSFORM				9			
Existence conditions – Transforms of elementary functions – Basic properties – Transforms of derivatives and integrals –Inverse transforms – Convolution theorem – Transform of periodic functions– Application to solution of linear ordinary differential equations with constant coefficients.									
		TOTAL : 4	45 P	PER	IOI)S			

 Use matrix algebra techniques for practical applications and understand theimper of functions of several variables and their applications in engineering. Understand the standard techniques of complex variable theory and apply the 	ortance m with flow of								
 of functions of several variables and their applications in engineering. Understand the standard techniques of complex variable theory and apply the 	m with flow of								
2. Understand the standard techniques of complex variable theory and apply the	m with flow of								
confidence in areas such as heat conduction, elasticity, fluid dynamics and the flow of									
confidence in areas such as heat conduction, elasticity, fluid dynamics and the									
electric current.	Solve problems on Laplace transforms and use the transform techniques to find								
3. Solve problems on Laplace transforms and use the transform techniques to find									
solutions to differential equations.									
TEXT BOOKS:									
1. Grewal. B.S, "Higher Engineering Mathematics", 42 nd Edition, H	Khanna								
Publications, Delhi, 2012.									
2. Ramana, B.V., "Higher Engineering Mathematics" Tata McGraw Hill Pub	olishing								
Company, 2008									
REFERENCES:									
1. Dass, H.K., and Er. Rajnish Verma," Higher Engineering Mathematics",									
S.Chand Private Ltd., 2011.									
2. Glyn James, "Advanced Modern Engineering Mathematics", 3rd Edition, F	<i>earson</i>								
Education, 2012									
3. Peter V. O'Neil," Advanced Engineering Mathematics", 7th Edition, C	engage								
learning, 2012.									
4. Sivarama Krishna Das P. and Rukmangadachari E., "Engineering Mathem	<i>atics"</i> ,								
Volume I, Second Edition, PEARSON Publishing, 2011.									
5. Veerarajan, T., "Engineering Mathematics(For first year)", Tata McGraw-H	lill								
Pub. Pvt. Ltd., New Delhi, 2007.									

COURSE ARTICULATION MATRIX

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1										
CO2										
CO3										
CO3										
CO4										
CO5										

L-Low, M-Moderate (Medium), H-High

17PTEBS1	02	PHYSICS	L	Т	Р	C						
	I		3	0	0	3						
OBJECT	IVES:					<u> </u>						
•	To d	evelop knowledge on properties of solids.										
•	To u	To use the principles of lasers, its types and its application.										
•	To make students to understand about fiber optics and its applications.											
•	To d	evelop knowledge on thermal properties of materials										
•	To a	pply principles of quantum physics in engineering fie	eld.									
UNIT I	ELECT	FRICAL PROPERTIES OF MATERIALS				9						
- Relation between current density, drift velocity and mobility – Classical free electron theory of metals – Expression for electrical conductivity of a metal – Thermal conductivity – Expression for thermal conductivity of a metal – Wiedemann – Franz law – success and failures of classical free electron theory –Fermi distribution function – Effect of temperature on Fermi Function – Density of energy states.												
UNIT II	SEMIC	CONDUCTOR PHYSICS				9						
Introduction semiconductor semiconductor Determination	 Intrinsions Carriers Carriers Carriers Carriers Carriers 	c semiconductor – Energy band diagram – Dire er concentration in intrinsic semiconductors (derivat er concentration in n-type & p-type semiconductors oefficient (Theory) – Application of Hall effect.	ct a ion) s –H	nd 1 – E all e	ndiro xtrina effect	ect sic t –						
UNIT III	MAGN	ETIC PROPERTIES OF MATERIALS				9						
Magnetization Magnetic field and induction materials – Fe soft magnetic	n – Magn 1 intensity n – Types erromagne materials	etic flux – Magnetic flux density – Intensity of M – magnetic permeability – magnetic susceptibility – of magnetic materials – Microscopic classification etism : origin and exchange interaction – Domain the – Magnetic storage devices – Hard disk.	Magr - Ma on o leory	netis gnet of m 7- Ha	ation ic fie agne ard a	eld tic nd						
UNIT IV	DIELE	CTRIC PROPERTIES OF MATERIALS				9						
General properties of Dielectric materials – Electrical susceptibility – Dielectric constant – Electronic, ionic, orientational and space-charge polarization – Frequency and Temperature dependence of Polarisation– Internal field – Claussius – Mosotti relation (derivation) – Dielectric breakdown – Dielectric loses – Use of dielectric materials (capacitor and transformer) - Ferro electricity and its applications.												
UNIT V	MODE	RN ENGINEERING MATERIALS				9						
Metallic glass Preparation, p Shape memor and disadvant	ses – Pro roperties a y alloys – ages of sl	operties of metallic glasses – Shape memory al and applications of Shape memory alloys (SMA) – C - Characteristics, properties of Ni-Ti alloy, applicat hape memory alloys (SMA) – Nanomaterials – Dif	lloys hara ion, fere	(S) cteri adva nt fo	MA) stics antagorms	of ges of						

nano	materials – Preparations –Pulsed Laser Deposition, Chemical Vapour Deposition and
Appl	ications.
	TOTAL : 45 PERIODS
OU	ΓCOMES
1.	To explore knowledge about free electron theory and density of states of conducting materials with related laws
2.	Students are able to compare intrinsic and extrinsic semiconductor, density of electrons and holes calculation, Hall effect with applications and basic semiconductor devices
3.	To learnt comparatively about different type of magnetic materials, superconducting materials and apply in their engineering field.
4.	To attain the functional knowledge of different types of dielectric materials, polarization mechanism and their qualitative engineering applications.
5.	To know more about preparation of modern engineering materials and materials suitability for their own engineering field
TEX	AT BOOKS:
1	. P. Mani, "Engineering physics", Dhanam Publications, 2011.
2	. G. Senthilkumar, "Engineering physics", VRB Publishers.
3	A.Marikani, "Engineering Physics" PHI Learning Pvt., India 2009.
4	. Wahen M. A. "Solid state physics: Structure and properties of materials"Narosa publishing house, 2009
REI	FERENCES
1.	<i>R.K. Gaur and S.C. Gupta, "Engineering physics", Dhanpat Rai publications, New Delhi 2003.</i>
2.	M.N.Avadhanulu and P. G. Kshirsagar, "A text book of engineering physics" S.Chand and Company, Ltd, New Delhi 2005.
3.	K. Rajagopal, "Engineering Physics", PHI, New Delhi, 201.
4.	M. Arumugam, "Engineering physics", Anuradha publishers

17PTEI	BS103	CHEMISTRY	L	Τ	Р	C					
			3	0	0	3					
OBJEC	TIVES:					1					
•	To mak treatme	te students conversant with water parameters, boilers, nt and its merits and demerits.	neec	l foi	r wa	ter					
•	Students ought to be aware of fundamental principles behind different electrochemical reactions, corrosion of materials and methods to prevent corrosion.										
•	To learn the chemistry behind polymers, synthesis, merits, demerits and its applications in various field.										
•	To acquire basic knowledge in renewable, non renewable and alternate energy resources and the chemical reactions involved in cell, batteries and its applications.										
•	To learn the working principle of various spectroscopy and its applications.										
•	To acqu	ire basic knowledge in Nano materials, synthesis, properti	es a	nd u	ses.						
UNIT I	WA	TER TECHNOLOGY				9					
treatment water trea process –	– specifica – boiler fo atment – In desalinatio	eed water - requirements – disadvantages of using hard w ternal treatment – external treatment – zeolite method - D on – reverse osmosis.	ater emi	in b nera	oiler lizati	s – ion					
UNIT I	I EL	ECTROCHEMISTRY AND CORROSION				9					
Electrocl measurem electrode glass elec Corrosio and its r corrosion method –	Electrochemistry: Electrochemical cells – reversible and irreversible cells – EMF – measurement of EMF – single electrode potential – Nernst equation (Problems) – reference electrode – standard hydrogen electrode and calomel electrode – ion selective electrode – glass electrode and measurement of pH – electrochemical series and its applications. Corrosion: Corrosion – Pilling Bedworth rule - dry corrosion - electrochemical corrosion and its mechanism – types (galvanic, pitting, differential aeration) – factors influencing corrosion – corrosion control methods - sacrificial anode method – impressed current										
UNIT I	II PO	LYMERS AND COMPOSITES				9					
Polymers polymeriz radical) – uses of i rubber - v Composi applicatio	s: Definiti zation – 1 - plastics – individual rulcanization tes: definitions – advons.	on – classification – functionality – polymerization types (addition, condensation, copolymerization) – m thermoplastics and thermosetting plastics – preparation polymers (PVC, TEFLON, Nylon-6,6, Nylon-6, PET, on of rubber – applications tion – types polymer matrix composites – Fibre Reinfor vanced composite materials – physical and chemica	ı – echa , pro epoz ced l pi	deg nisn opert xy r Poly rope	gree n (f ies æ esin) mers rties	of ree and) - s - -					
I UNIT T	V LENI	KGY SOURCES AND STORAGE DEVICES				9					

Renewable and non-renewable energy resources -Nuclear energy - fission fusion re	actions –
light water nuclear reactor for power generation - breeder reactor - solar energy con	version –
solar cells - wind energy - batteries: alkaline batteries - lead -acid, Ni- Cd ,ar	nd Li-ion
batteries – fuel cells – principles and applications – advantages and disadvantages.	
UNIT V NANOCHEMISTRY	9
Nanomaterials: Introduction to nanotechnology in electronics – nano materials – fu	allerernes
carbon nano tubes - nano wires - special properties - synthesis of nano materials -	top down
and bottom up approach - applications of nano materials in electrical and e	electronic
appliances (Semiconductors, LED & OLED) – electrical appliances – medicines.	
TOTAL : 45 P	ERIODS
COURSE OUTCOMES	
At the end of the course students should be able to	
1. Analyze water borne problems faced in boilers, need for water treatment and w	arious
methods and techniques for treating hard water.	
2. Understand advance polymer materials and its applications in engineering field.	
3. Understand the mechanism behind various types of electrochemical reactions	which in
turn helps in understanding the causes for corrosion and prevention methods.	
4 Acquire Knowledge about energy conversion and chemical reaction taking place in n	uclear,
solar, wind energy, Batteries, fuel cells and its applications, merits and demerits.	
5. Acquire in-depth knowledge on various nano materials and its applications in	
electrical devices. Students get basic knowledge on advanced analytical techn	iques.
TEXT BOOKS:	
1. Vairam S, Kalyani P and SubaRamesh.,"Engineering	
Chemistry".,WileIndiaPvtLtd.,New Delhi., 2011	
2. Dara S.S,Umare"Engineering Chemistry", S. Chand & Company Ltd.,	
New Delhi , 2010	
REFERENCES:	
1. Pahari A and Chauhan B., "Engineering Chemistry"., Firewall Media., Ne	w Delhi.,
2010.	
2. Rao, C. N. R.; Govindaraj, A. "Nanotubes and Nanowires" United Kingdom: Roy	al Society
of Chemistry, 2005	
3. Advanced Polymeric Materials: From Macro- to Nano-Length Scales edited by Saba	ı Thomas,
Nandakumar Kalarikkal, MaciejJaroszewski, Josmine P. Jose; Apple Acaden	iic press,
Canada, 2010	$\overline{C_{\alpha}}$
4. Juin ana juin, 10 eauin, Engineering Chemistry Dhanpaikqai Publishing	C <i>0</i> .

17PTEP	C 104	ELECTRIC CIRCUIT ANALYSIS	L	Τ	P	С				
			3	0	0	3				
OBJECT	IVES:									
•	To intr	oduce electric circuits and its analysis								
•	To imp	part knowledge on solving circuits using network theorem	ıs							
•	To intr	roduce the phenomenon of resonance in coupled circuits								
•	To edu	cate on obtaining the transient response of circuits								
•	To Phasor diagrams and analysis of three phase circuits									
UNIT I	IT I BASICCIRCUITSANALYSIS 9									
Ohm's La current and Factor and	w–Kirchł ł Node v Energy.	off'slaws–DCandACCircuits–Resistorsinseriesandparalloltage analysis for D.C and A.C.circuits–Phasor Diagr	elcir am	cuits – Po	s – ower	Mesh Power				
		THEOREMS FOR DC AND AC CIRCUITS	OK 5	N		9				
Network re	eduction:	voltage and current division, source transformation- sta	ar d	elta	conv	version.				
Thevenin a	nd Norton	n Theorem – Superposition Theorem – Maximum power	r tra	nsfe	r the	orem –				
Reciprocity	7 Theorem					0				
	11 1	RESONANCEANDCOUPLEDCIRCUITS	1	• 1	1 0	9				
Circuits-Se circuits–Sir	elf and mu	itual inductance–Coefficient of coupling–Analysis of cou louble tuned circuits.	and ipleo	d cir	un–C cuits	-Tuned				
UNIT IV	0	CIRCUIT TRANSIENTS				9				
Laplace Tr	ansforma	tions-Advantages-Laplace transformation of some fund	ctior	s-Rl	L tra	insient-				
Decay of c Over-damp Natural Fre	urrent in ed, Critic quency an	RL Circuits-RC Transient: Decay of Current in RC Circ ally Damped and Under damped-AC Transients-RL, RC nd Damping Ratio.	uits- Cano	RLC d RI	C Tra .C C	insient: ircuits-				
UNIT V		THREEPHASECIRCUITS				9				
Comparison sources- an balanced an factor meas	n between nalysis of nd unbala surements	n single phase and polyphase systems-Three phase b T three phase 3-wire and 4-wire circuits with star an anced loads— phasor diagram of voltages and current in three phase circuits.	oalaı d d s–pc	nced elta ower	unba conn and	alanced alection- power				
		TO	ΓAL	:45	PEF	RIODS				
OUTCO	MES:		1	.1						
I. Exp	olain circu	it behaviour using ohm's law and Kirchhoff laws, hence mesh and nodal analysis	solv	e th	e					
2. Stat	te various	circuit laws and theorems and perform the circuit and	nalv	sis t	0					
pro	ve the the	orems.	5							
3. Exp	plain the b	ehaviour of resonance and magnetically coupled circuits.								
4. Exp con Circ	olain AC ditions fo cuits.	circuits using phasor techniques under steady state and or any first order and second order systems using R,	traı L, a	nsier nd (nt C					

TEX	Г BOOKS:
1.	Arumugam M and Prem Kumar, "Electric Circuit Theory", Khanna Publishers, New
	Delhi,2006
2.	Sudhakar A and Shyam Mohan SP, ``Circuits and Network Analysis and Synthesis'', Tata McGraw Mohan SP, ``Circuits and Network Analysis and Synthesis'', Tata McGraw Mohan SP, ``Circuits and Network Analysis and Synthesis'', Tata McGraw Mohan SP, ``Circuits and Network Analysis and Synthesis'', Tata McGraw Mohan SP, ``Circuits and Network Analysis and Synthesis'', Tata McGraw Mohan SP, ``Circuits and Network Analysis and Synthesis'', Tata McGraw Mohan SP, ``Circuits and Network Analysis and Synthesis'', Tata McGraw Mohan SP, ``Circuits and Network Analysis and Synthesis'', Tata McGraw Mohan SP, ``Circuits and Network Analysis and Synthesis'', Tata McGraw Mohan SP, ``Circuits and Network Analysis and Synthesis'', Tata McGraw Mohan SP, ``Circuits and Network Analysis and Synthesis'', Tata McGraw Mohan SP, ``Circuits and Network Analysis and Synthesis'', Tata McGraw Mohan SP, ``Circuits and Network Analysis and Synthesis'', Tata McGraw Mohan SP, ``Circuits and Network Analysis and Synthesis'', Tata McGraw Mohan SP, ``Circuits and Network Analysis and Synthesis'', Tata McGraw Mohan SP, ``Circuits and Network Analysis and Synthesis'', Tata McGraw Mohan SP, ``Circuits and Network Analysis and Synthesis'', Tata McGraw Mohan SP, ``Circuits and Network Analysis and Synthesis'', Tata McGraw Mohan SP, ``Circuits and Network Analysis and Synthesis'', Tata McGraw Mohan SP, ``Circuits and Network Analysis and Synthesis'', Tata McGraw Mohan SP, ``Circuits and Network Analysis and Synthesis'', Tata McGraw Mohan SP, ``Circuits and Network Analysis and Synthesis'', Tata McGraw Mohan SP, ``Circuits and Network Analysis and Synthesis'', Tata McGraw Mohan SP, ``Circuits and Network Analysis and Synthesis'', Tata McGraw Mohan SP, ``Circuits and Network Analysis and Synthesis'', Tata McGraw Mohan SP, ``Circuits and Network Analysis and Synthes'', Tata McGraw Mohan SP, ``Circuits and Network Analysis and Synthes'', Tata McGraw Mohan SP, ``Circuits and Network Analysis and Synthes'', Tata McGraw Mohan SP, ``Circuits and Network Analysis
	Hill,2015.
3.	CharlesK.Alexander, MathewN.O.Sadiku, "FundamentalsofElectricCircuits", Second
	Edition, McGrawHill,2013.
REFI	ERENCES:
1.	Joseph A. Edminister, Mahmood Nahri, "Electric circuits", Schaum'sseries,
	TataMcGraw-Hill,NewDelhi,2014.
2.	Paranjothi SR, "Electric Circuits Analysis," New Age International Ltd., New Delhi,
	1996.
3.	Ashfaq Husain and Harroon Ashfaq, "Fundamentals of Electrical Engineering",
	Dhanpath Rai & Sons, New Delhi, 2016
4.	William H. Hayt Jr, Jack E. Kemmerly and Steven M. Durbin, "Engineering Circuits
	Analysis", Tata McGraw Hill publishers, 6 edition, New Delhi, 2003.

17PTEE	S105	CC	MPUTE	R PROG	RAMMIN	G	L	Τ	P	C
			LAB	BORATO	DRY					
							0	0	3	1
OBJEC	TIVES:									
·	Be famil	iar with the	use of Unix	OS.						
•	Be expos	sed to prese	ntation and	visualizati	on tools.					
•	Be expos	ed to probl	em solving t	echniques	and flow cha	rts				
•	De expos	ior with pro	arommina i	n C		113.				
•					1	•				
•	Learn to	use Arrays,	strings, fun	ctions, stru	uctures and ur	nions.				
LISTOFE	XPERIM	IENTS:								
	UNIX C	<u>ommands</u>								
1. Sti	idy of UN	IX OS.								
2. Ba	sic UNIX	commands								
2 D:			1 D N	f						
5. DI	rectory co	mmanus an	d Process IV.	lanagemer	n commands.					
4. Stu	ıdy of vi E	Editor								
	Shell Pro	ogramming	J							
	Simple S	hell Progr	amming							
5. a)	Program	for getting	and displayi	ng the aca	demic and pe	rsonal detai	ils.			
b)	Program	to demonst	ate the Arit	hmetic Op	erations.		10.			
•)	Conditio	nal statem	ents							
6. a)	Program	to find wl	nether a num	nber is ode	d or even					
b)	Program	to find whe	ether a numb	per is Posi	tive (or) Neg	ative				
c)	Program	to find the	biggest num	ber amon	g three number	ers				
(b	Program	to perform	Arithmetic	Operation	s using Switc	h Case				
e)	Program	to find the	area of Circ	le Square	Rectangle 7	Friangle				
•)	Testing	and loons		ie, square	, itee tailigie ,	r mangre.				
7 a	Program	to print the	Fibonacci s	erious						
, u	Program	to find wh	ether a num	heris a Ar	mstrong num	her				
c)	Program	to find the	Sum of ever	n numbers	up to N	001				
() d)	Program 1	to print the	various Con	nhinations	of 123					
e)	Program	to find the	n th power of	f oiven nu	nber					
•)	C Progr	amming								
8. a)	Program	to check wl	hether a sting	g is a Paliı	ndrome					
b)	Program	to perform	the Concate	nation of t	wo strings					
9. Pr	ogram to	find the big	gest number	r among n	numbers usi	ng function	s.			
10. Pi	rogram to	swap of tw	o numbers u	using point	ers.	C				
11. Pi	rogram to	read conter	ts of a File	and to Prin	nt the same .					
2. Progra	m to dem	onstrate Dy	namic mem	ory alloca	tion.					
_		-			-1					
					TOTAL	45 PERIOI	DS			

 OUTCOMES:

 1.
 An ability todo simple shell and C programming.

Semester II

17PTEPC2	201	MEAS	SUI	REN	/IEN	NTS	5 A	ND	IN	NS]	ΓR	U	MI	EN	TA	AT	ION	N	L	Т	P	С
																			3	0	0	3
OBJEC	ΓIVE	ES:																				
•	To i	ntroduce t	the	basic	e fun	nction	nal	eler	nen	ts c	of ir	ıst	run	nen	tati	on						
•	To i	ntroduce t	the	fund	amei	ntals	s of	elec	ctric	cal	inst	tru	mer	nts								
•	To educate on the comparison between various measurement techniques																					
•	To i	To introduce the fundamentals of electronic instruments																				
•	To i	ntroduce v	vari	ious t	trans	sduce	ers	and	the	da	ta a	ıcq	uisi	tio	n s	yste	ems					
UNIT I		INTRO	DU	JCT	'IOI'	N															9	1
Types of m input output dynamic chan Standards and	easure confi racteri l calib	ements, ins guration d istics – Er pration.	nstru of Error	umen meas rs in	it cla surin mea	assifi ng in asure	icat nstru eme	ion, ume nt –	Ele ents - St	eme , so tatis	ents elec stica	of tic al	f ge on eva	ne of lua	rali an tio:	zed in n o	mea strun f me	asur nen easu	eme ts– iren	ent s Sta nent	syst tic dat	em, and a –
UNIT II		ELECT	FRI	ICA	LI	NST	TR	UN	1E]	NT	S										9	
Principle and and three ph Determination construction of their minimiz	work ase w n of B of cur ation	ang of Mo vattmeters- B-H curve a rent and p - measurer	ovir S-Sir and pote	ng co ngle l mea ential nt of	oil, n and asure tran	movi d thr emen nsfor	ing ree nts c rme cy a	iror pha of ir rs, t and j	n an ase on l crans phas	nd ene loss sfoi se.	dyr ergy s – I rma	nar y r Ins atic	non nete trui on r	net ers ner atio	er 1 – nt t o ai	typ Ma ran nd j	e Ins ignet sfori phas	strui tic 1 mers e ar	men mea s – [ngle	ts.– sure Γheo erro	ory ors	igle nts: and and
UNIT III		POTEN	ITI	IOM	IET	ER	RS A	AN	DI	BR	ID	G	ES								9	1
D.C potention of low and m inductance- M bridge-Low a Sources of en charge metho	meter- nedium Maxwo and hi rror in d and	Laborator n resistanc ell's bridge gh voltage n AC bridg Mega ohn	ry t ice- ges a ge S lges m b	ype, Kelv and H cheri and oridge	A.C vin's Hay's ing b thei e met	pote Dou s bridg bridg ir mi ethod	tenti uble idge ges- ninir 1.	iom e bri e. M - tra niza	eter dge leas insfo ation	rs-P e, V ure orn n. I	Pola Whe men ner Mea	r a ats nt rat asu	ind ston of 1 tio	co- e t nu brio nen	-oro orid tua dge it o	dina lge. l in es, s f h	Me Me duct self-l igh	ype, asur canc bala resis	, Mo remo e - incii stan	easu ent And ng b ce-	of s lerso pridg loss	ent elf- on's ges. s of
UNIT IV		ELECT	FR	ONI	CI	NST	TR	UN	AE	NT	ΓS										9	1
Digital voltm Signal Gener analyzer- digi and Digital st	Digital voltmeters, ammeters, multimeters, DMM with auto ranging and self-diagnostic features- Signal Generators- Distortion meter- Q-meters-Digital R-L-C meters-Spectrum analyzer-Wave analyzer- digital plotters and printers, CRT display, digital CRO, LED and LCD display, Sampling and Digital storage oscilloscope.								æs- ave ling													
UNIT V		TRANS	SDI	UCE	ERS	5 AN	ND	SI	GN	IA	L (CC)N	DI	ΤI	0	NIN	G			9)
Transducers - Thermometer in distance be ultrasonic tr	Transducers – selection criteria ,Resistive Transducers-Potentiometers, strain gauges, Resistance Thermometer, Thermistors, inductive transducers- LVDT, capacitive transducers-based on change in distance between plates– Piezoelectric, thermocouple, Hall effect, optical and digital transducers, ultrasonic transducers – Instrumentation amplifiers, A/D and D/A conversion, S/H and																					

multiple	xers-Smart sensors.
	TOTAL : 45PERIODS
OUTC	OMES:
1.	Analyse the characteristics of generalized electrical measurements and its errors.
2.	Determine various parameters using various type of analog instruments
3.	Determine unknown Resistance, inductance and capacitance values using bridge
4.	Explain the measurements of various parameters using various type of digital
5	Analyse the performance of various type of transducers and signal conversion systems
TEXT	BOOKS:
1.	A.K.Sawhney, 'ACourse in Electrical & Electronic Measurements & Instrumentation'.
	Dhanpat Rai and Co,2004.
2.	J.B.Gupta, 'A Coursein Electronic and Electrical Measurements', S.K.Kataria & Sons,
	Delhi,2003.
3.	Doebelin E.O.and Manik D.N., Measurement Systems-Applications and Design,
	Special Indian Edition, Tata McGraw Hill Education Pvt.Ltd.,2007.
REFE	RNCES:
1	H.S.Kalsi, 'Electronic Instrumentation', TataMcGrawHill, IIEdition2004
2	D.V.S.Moorthy, 'Transducers and Instrumentation', Prentice Hall of India PvtLtd,
	2007.
3	A.J.Bouwens, 'Digital Instrumentation', TataMcGrawHill, 1997.
4	Martin Reissland, 'Electrical Measurements', New Age International (P) Ltd., Delhi,
	2001.
5.	Alan.S.Morris, Principles of Measurements and Instrumentation, 2 nd Edition, Prentice
	Hall of India,2003.

17PTEPO	C 202	ELECTRO MAGNETIC THEORY	L	TI		С					
			3	0 0)	3					
OBJECT	IVES	:									
•	To field	introduce the basic mathematical concepts related to electroma ds	gne	tic v	ecto	or					
•	To den	impart knowledge on the concepts of electrostatics, electrical pote sity and their applications.	entia	al, en	erg	зу					
•	To scal	impart knowledge on the concepts of magneto statics, magnetic lar and vector potential and its applications.	flu	x der	isit	y,					
•	To : equ	To impart knowledge on the concepts of Faraday's law, induced emf and Maxwell's equations									
•	To Poir	impart knowledge on the concepts of Concepts of electromagnet nting vector.	ic v	vaves	ar	ıd					
UNIT I		INTRODUCTION			9						
Sources an vector calc	d effec ulus – (ets of electromagnetic fields – Vector fields – Different co-ordi Gradient, Divergence and Curl - Divergence theorem – Stoke's the	inate orer	e sys n.	ten	ns-					
UNIT II		ELECTROSTATICS			9						
Coulomb's law and ap free space, multiple di Energy der	Law – plicatio conduc ielectric isity.	Electric field intensity – Field due to point and continuous char on – Electric potential – Electric field and equi potential plots – E ctors, dielectric - Dielectric polarization – Dielectric strength - El cs – Boundary conditions, Poisson's and Laplace's equations –	ges lecti lecti Ca	– Ga ric fie ric fie pacit	use eld eld anc	s's in in ce-					
UNIT III		MAGNETOSTATICS			9						
Lorentz La field due to – B in free media –Bo Inductance	aw of fo straight space oundary – Ener	orce, magnetic field intensity – Biot – Savarts Law - Ampere's La ht conductors, circular loop, infinite sheet of current – Magnetic fle c, conductor, magnetic materials – Magnetization – Magnetic fie y conditions – Scalar and vector potential – Magnetic force gydensity – Magnetic circuits.	ux c ld i	- Mag lensit n mu Torq	,ne y (ltip ue	tic (B) ple					
UNIT IV		ELECTRODYNAMIC FIELDS			9						
Faraday's stationary Displaceme	laws – Electro ent curr	induced emf – Transformer and motional EMF – Forces and Enomagnetic Fields - Maxwell's equations (differential and integrent – Relation between field theory and circuit theory.	1erg gral	y in forn	qua 1s)	asi —					
UNIT V		ELECTROMAGNETIC WAVES			9						
Electromag constant- V vector - Tr	netic v Waves ansmis	vave equations – Wave parameters; velocity, intrinsic impedance in free space, lossy and lossless dielectrics, conductors – skin de sion lines – Line equations– Input impedances – Standing wave rat	e, pi epth tio a	ropag , Poy ind po	ati; nti	on ng er.					

	TOTAL : 45 PERIODS										
OUTCO	MES:										
1.	Describe the coordinate systems, vector calculus and theorems to electric and magnetic										
	fields.										
2.	Compare the nature, characteristics, properties and applications of Electric and Magnetic										
	fields with the help of fundamental laws of fields.										
3.	Explain voltage, and current using electric fields and Develop resistance, capacitance										
	nd inductance of a given electrical component.										
4.	Relate electric and magnetic fields with help of Faraday's Law and Maxwell's										
	Equation, and, their applications to electrical machines										
5.	Explain Electromagnetic Wave propagation, Poynting Vector and Poynting Theorem										
	and Appreciate the significance of electric and magnetic fields in electrical engineering										
TEXT E	BOOKS:										
1.	Mathew N. O. Sadiku, "Elements of Electromagnetics", Oxford University press Inc.										
	India Edition, 2014.										
2.	Joseph. A. Edminister, "Theory and Problems of Electromagnetics", 2nd Edition,										
	Schaum Series, Tata McGraw Hill, 1993.										
3.	K.A.Gangadhar, P.M.Ramanthan, 'Electromagnetic Field Theory (including Antennas										
	and wave propagation)', 16 th Edition, Khanna Publications, 2008.										
4.	S.P.Seth, "Elements of Electromagnetic Fields", Dhanpath Rai & Sons, New Delhi,										
	2001.										
REFER	NCES:										
1.	Ashutosh Pramanik, "Electromagnetism – Theory and Applications", Prentice-Hall of										
	India Private Limited, New Delhi, 2008.										
2.	William. H. Hayt, "Engineering Electromagnetics", Tata McGraw Hill, 2011										
3.	Kraus and Fleish, "Electromagnetics with Applications", McGraw Hill International										
	Editions, 5 th Edition, 1999.										
4.	Bhag Singh Guru and Hüseyin R.Hiziroglu "Electromagnetic field theory										
	Fundamentals", CambridgeUniversityPress;Second Revised Edition,2009.										

17PTEB	S203	EN	VIRONMENTAL SCIENCE AND	L	Τ	Р	C						
			ENGINEERING			L							
				3	0	0	1						
OBJEC	TIVES	:											
•	To f solu	To finding and implementing scientific, technological, economic and political solutions to environmental problems.											
•	To study the interrelationship between living organism and environment.												
•	To a hum valu	To appreciate the importance of environment by assessing its impact on the human world; envision the surrounding environment, its functions and its value.											
•	To s inter	To study the dynamic processes and understand the features of the earth's interior and surface.											
•	To s cont	study rol a	the integrated themes and biodiversity, natural resound waste management.	rces	, pol	lutio	m						
UNIT I	EN BIC	VIR DDI	RONMENT, ECOSYSTEMS VERSITY	P	ANI) 1	2						
Definition Biological an ecosyst energy flo characteris ecosystem estuaries) biogeo gra use, social levels – In habitat los of India – study of co Field stud Definition	, scope ar hazards em – pro ow in th stic featu (c) deser – Introdu phical cl l, ethical, dia as a s, poach conserva ommon p y of sim EN – causes	nd in in th oduce in e eco irt eco iction lassif , aes ing co ition lants ple e VII s. eff	aportance of Risk and hazards; Chemical hazards, Physice environment – concept of an ecosystem – structure ers, consumers and decomposers-Oxygen cycle and N cosystem – ecological succession processes – Intro- structure and function of the (a) forest ecosystem osystem (d) aquatic ecosystems (ponds, streams, lakes in to biodiversity definition: genetic, species and ecosystication of India – value of biodiversity: consumptive thetic and option values – Biodiversity: consumptive thetic and option values – Biodiversity at global, nat a-diversity nation – hot-spots of biodiversity – threats of wildlife, man-wildlife conflicts – endangered and e of biodiversity: In-situ and ex-situ conservation of biodiversity. Cosystems – pond, river, hill slopes, etc. RONMENTAL POLLUTION & HEALTH fects and control measures of: (a) Air Pollution: Cau	sical and litro oduction (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	haz fund gen tion,) gr ers, a div , pro al an piodi mic ersit	ards, tion cycle typ assla ocea: ersity ducti id low versi spec y. Fie	of e = - es, and ns, $y = -$ ive cal ty: ies eld						
prevention Thermal p of municip	- causes (b) W ollution oal solid y	s, en ater poll waste	pollution: Causes, effects and prevention (d) Marin ution - soil waste management: causes, effects and co es – case studies	ses, ne p ontro	ollu ol m	tion easu	nd (f) res						
Field stud	y of loca	l pol	lluted site – Urban / Rural / Industrial / Agricultura	ıl.									

UNIT IIINATURAL RESOURCES12								
Forest resources: Use and over-exploitation, deforestation, case studies- timber extraction,								
mining, dams and their effects on forests and tribal people - Water resources: Use and								
overutilization of surface and ground water, dams-benefits and problems – Mineral resources:								
Use and exploitation, environmental effects of extracting and using mineral resources, case								
studies - Food resources: World food problems, changes caused by agriculture and								
overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging,								
salinity, case studies - Energy resources: Growing energy needs, renewable and non-								
renewable energy sources, use of alternate energy sources. Energy Conversion processes -								
Land resources: Land as a resource, land degradation, man induced landslides, soil erosion								
and desertification – role of an individual in conservation of natural resources – Equitable use								
of resources for sustainable lifestyles. Field study of local area to document environmental								
assets – river / forest / grassland / hill								
UNIT IVSOCIAL ISSUES AND THE ENVIRONMENT7								
From unsustainable to sustainable development – urban problems related to energy – water								
conservation, rain water harvesting, watershed management – resettlement and rehabilitation								
of people; its problems and concerns, case studies – role of non-governmental organization								
environmental ethics: Issues and possible solutions - 12 Principles of green chemistry-								
wasteland reclamation - consumerism and waste products - environment production act -								
Air act – Water act – Wildlife protection act – Forest conservation act – The Biomedical								
Waste (Management and Handling) Rules; 1998 and amendments- scheme of labelling of								
environmentally friendly products (Ecomark) Central and state pollution control boards-								
disaster management: floods, earthquake, cyclone and landslides. Public awareness.								
UNIT V HUMAN POPULATION AND THE ENVIRONMENT 6								
Population growth, variation among nations – population explosion – family welfare								
programme – environment and human health – human rights – value education – HIV / AIDS								
- women and child welfare –Environmental impact analysis (EIA)GIS-remote sensing-role								
of information technology in environment and human health – Case studies.								
IOTAL: 45 PERIODS								
COURSE OUTCOMES								
At the end of the course students should be able to								
1. Apply the knowledge of environmental science in identifying, to formulate and to								
solve the environmental problems.								
2. Create awareness about structure and function of various ecosystems and natural resources.								
3. Understand the ignorance and incomplete knowledge will lead to misconceptions.								
4. Analyse the reason behind serious environmental disasters.								
5. Acquire knowledge about important environmental laws.								
6. Acquire in-depth knowledge on population explosion and role of 11 in environmental								
management.								
TEXT BOOKS:								
1. Gilbert M.Masters, 'Introduction to Environmental Engineering and Science', 2nd								
edition, Pearson Education, 2004.								
2. Benny Joseph, 'Environmental Science and Engineering', Tata McGraw-Hill, New								
Delhi, 2006.								

1	R.K. Trivedi, 'Handbook of Environmental Laws, Rules, Guidelines, Compliances and
	Standards', Vol. I and II, Enviro Media.
2	Cunningham, W.P. Cooper, T.H. Gorhani, 'Environmental Encyclopedia', Jaico Publ.,
	House, Mumbai, 2001.
3	Dharmendra S. Sengar, 'Environmental law', Prentice hall of India PVT LTD, New
	Delhi,2007.
4	Rajagopalan, R, 'Environmental Studies-From Crisis to Cure', Oxford University
	Press 2005.

17P	FEPC204	4			ANA	4LC	COR	E	ELI	E	CT	RO	NI	CS	5				L	T	P	C
																			3	0	0	3
0	BJECTI	VES:																	5	U	U	5
	•	To study	iy t	the P	PN dic	ode a	and	its	s ap	ppli	licat	tions	s									
	To study the operation and characteristics of BJT AND FETS																					
	•	To study	ly t	the bi	iasing	g of E	BJT	an	nd	l BJ'	JT b	asec	d an	npli	ifieı	S						
	•	To impa	art	t knov	wledg	ge on	ı fee	edb	bac	.ck a	amp	olifi	ers a	and	loso	cilla	tors					
	•	To imp generato	ipar tors	rt kr s	nowle	dge	on	n a	app	oplic	cati	ons	of	d	iode	e c	ircu	its	and	wa	vefo	rm
UNI	TI	PN D	DI	[OD]	E AN	ND I	ITS	S A	AP	PP]	LI	CA	TI	ON	IS						9)
PN ju curre Regu treatr	PN junction diode - VI characteristics – Resistance - temperature effects – Drift and diffusion currents – Rectifiers: HW, FW, Bridge Rectifiers, filters - Zener diode – Characteristics - LED – Regulators (series and shunt) - Introduction to Switched mode power supply (Quantitative treatment only)								sion D – ative													
UNI	T II	BJT	'A	ND	FET	Γ S															9)
Bipol confi Volta	ar junction gurations ge– small	n transisto – hybrid signal mo	tor ma ode	– Co odel el - N	onstru – An 10SF	ictioi nalyti ET -	n – tical - Ch	- In 1 ex hara	npu expi cact	out a pres presi	and ssioi istic	out ns - cs –	tput JF enh	ch ET	ara _ ` cem	cter VI (ent	istic char and	s – acte dep	CE, risti letic	CB cs, F on m	and Pinch ode.	CC off
UNI	Ť III	BIAS	SI	ING	ANI	D Al	MP	PL	JF	FII	ER	S									9)
Need Class and tr Amp	for biast ification o ransformer lifiers-Dar	ing - Dif f amplifies coupled lington co	iffe ers l po onn	erent -CE ower nectio	type CB a ampl on.	es of mpli ifiers	f bi ifier ːs - (oias r - f Cla	sinį fre lass	ng requ ss B	circ uenc 3 co	cuits cy re ompl	s – espo lem	B. onse enta	JT-] e - C ary-	FET Clas syı	S-Sn s A, mme	nall B, A etry,	sigı AB, pus	nal C an h-pu	analy nd D ill po	∕sis- -RC)wer
UNI	T IV	FEE	EDI	BAC	CK A	MI	PLI	IF	FIE	ER	RS A	AN	D (DS	CI	LL.	AT	OR	S		9)
Differ Volta oscill	rential am ige / curren ators.	plifiers: C nt, series /	Cor / sł	mmo shunt	n Mo feedb	ode a oack	and –co	Di ond	oiffe diti	fere	entia 1 foi	al M r os	fode cilla	e - atio	CM n -	IRR osci	illat	feedl ors -	back - LC	am , RC	plific C, cr	ers - ystal
UNI	ΤV	PUL	LSI	E C	IRCI	UIT	[S														9)
RC v	vave shapi	ng circuit	its	. – D	iode	clam	nper	rs a	and	nd c	clip	pers	5 —	Mo	onos	stab	le,	Asta	ble	and	Bist	able
Mult	vibrators -	- Schmitt	t trig	igger	s - U.	JT ba	asec	d sa	saw	w to	ooth			tors	s.				r			
	COME	<u> </u>										101	IAI		45 I	rE.	KI	JUS	•			
	Explain	5: the charge	acte	ericti	ce an	d an	nnlic	icat	tion	ne	of	مامر	otro	nic	der	vice	C C1	ich i	ac d	inde	6104	ecial
1.	1. Explain the characteristics and applications of electronic devices such as diode, special diodes, BJTs, and MOSFETs.									Julai												
2.	Compare	e various b	bia	asing	meth	ods a	and	l cir	ircu	uits	s foi	r the	e BJ	UT a	nd	MO	SFI	ET a	mpli	ifiers	5	

3.	Explain the characteristics and applications of feedback amplifiers, pulse circuits and
	oscillators.
TEX	AT BOOKS:
1.	Paynter, "Introductory electronic devices and circuits", PHI, 2006.
2.	David Bell, "Electronic Devices and Circuits", PHI, 2007.
3.	RobertL.Boylestad, "ElectronicDevicesandCircuittheory", 2002.
REF	TERNCES:
1.	Theodre F. Boghert, "Electronic Devices & Circuits" Pearson Education, 6 th Edition, 2003.
2.	Rashid, "Microelectronic circuits", Thomson Publication, 1999.
3.	Singh. B.P and Rekha Singh, "Electronic Devices and Integrated Circuits", Pearson
	Education, 2006.
4.	Salivahanan. S, Suresh Kumar. N and Vallavaraj. A, "Electronic Devices and circuits",
	Tata McGraw Hill, 2003.

17PTEPC	205	POWER PLANT ENGINEERING	L	T	P	C			
	I		3	0	0	3			
OBJEC	FIVES:			•					
•	To study t	he construction, operation and characteristics of therma	ıl powe	er pla	nts.				
•	• To study the construction, operation and characteristics of diesel, gas turbine an combined cycle power plants.								
•	• To study the construction, operation and characteristics of various nuclear reactor power plants.								
•	To study t based pow	he construction, operation and characteristics of varior ver plants and energy storage systems.	is rene	wabl	e ene	ergy			
•	To impart power pla	knowledge on various economical and environment nts.	al issu	es of	vari	ious			
UNIT I	COAL	BASED THERMAL POWER PLANTS			1()			
Rankine cyc	cle, Layout	of modern coal power plant, Boilers, Turbines, Conde	nsers,	Econ	omis	sers,			
Super heate	ers, Reheate	rs, Subsystems of thermal power plants - Coal and	ash ha	andli	ng, l	ESP			
Draught sy	vstem, Feed	water treatment, Deaerator. Efficiencies in a s	team j	powe	r pl	ant,			
Cogeneratio	on systems.								
UNIT II	DIESE POWI	CL, GAS TURBINE AND COMBINED (ER PLANTS	CYCL	E	8	ŀ			
Otto and Di	esel Cycle -	Analysis & Optimisation. Components of Diesel and	Gas T	urbin	e po	wer			
plants. Com	bined Cycle	Power Plants. Integrated Gasifier based Combined Cy	cle syst	tems.					
UNIT III	NUCL	EAR POWER PLANTS			7	į			
Basics of N	Juclear Eng	ineering, Layout and subsystems of Nuclear Power	Plants,	Wo	rking	g of			
Nuclear Rea	actors : Boi	ling Water Reactor (BWR), Pressurized Water React	or (PW	/R), (CAN	Jada			
Deuterium	Uranium rea	ctor (CANDU), Breeder, Gas Cooled and Liquid Met	al Coo	led F	React	ors.			
Safety meas	sures for Nu	clear Power plants.							
UNIT IV	POWI	CR FROM RENEWABLE ENERGY			10	Ð			
Hydro Elec	etric Power	Plants - Classification, Typical Layout and asso	ociated	con	npon	ents			
including T	urbines. Pr	nciple, Construction and working of Wind, Tidal,	<i>Solar</i> P	hoto	Vol	ltaic			
(SPV), Sola	r Thermal, (Geo Thermal, Biogas and Fuel Cell power systems.							
UNIT V	ENER	GY STORAGE, ECONOMICS AND			1(D			
	ENVI	RONMENTAL ISSUES OF POWER							
	PLAN	ΓS							
Energy Sto	rage: Pumn	ed Hydro, Compressed Air Energy Storage Flywh	eel en	erov	stor	age			
Supercondu	cting Magn	etic Energy Storage, Super Capacitor Energy Storage, Hywi	ze. The	ermal	Ene	ergv			
Storage. Hy	drogen Ene	rgy Storage - Comparison of site selection criteria.	Capital	& 0	pera	ting			
Cost of diff	erent power	plants. Pollution control technologies including Was	te Disr	osal	Opt	ions			
for Coal and	l Nuclear Po	ower Plants.	1		1				

		TOTAL : 45 PERIODS
OUT	FCOMES:	
1.	Explain the construction, operation and characters	eristics of various conventional power plants
2.	Explain the construction, operation and charac power plants and energy storage systems.	teristics of various renewable energy based
3.	Explain various economical and environmental	issues of various power plants.
TEX	XT BOOKS:	
1.	P.K. Nag, Power Plant Engineering, Tata McG Edition, 2008.	raw – Hill Publishing Company Ltd., Third
2.	M.M. El-Wakil, Power Plant Technology, Tat 2010.	ta McGraw-Hill Publishing Company Ltd.,
3.	Black & Veatch, Springer, Power Plant Enginee	ring, 1996.
REF	FERENCES:	
1.	Thomas C. Elliott, Kao Chen and Robert C. S. Plant Engineering, Second Edition, McGraw	Swanekamp, Standard Handbook of Power – Hill, 1998.
2.	Godfrey Boyle, Renewable energy, Open Univer with the Open University, 2004.	rsity, Oxford University Press in association

Semester-III

17PTEP	C 301	D	C MAC	HINES A	ND TR	ANSFORMERS	L	Г	Р	C
							3	0	0	3
OBJEC	TIVES	5:								
•	• To expose the students to the operation of various D.C. generators and give them experimental skill.									
•	To e expe	expose rimen	e the stud tal skill.	ents to the	operatio	n of various D.C. motor	s and	gi	ve tl	hem
•	To e skill	expose to fine	the stude d the effic	ents to the iency, loss	operation es and to	transformers and give th draw the equivalent circui	em e t	xpe	rime	ental
UNIT I		BAS	IC CON	CEPTS (OF ROT	FATING MACHINE	S			9
Magnetic (Circuits	- Prir	nciples of	electrome	chanical	energy conversion - Sir	ngle a	nd	mul	ltiple
excited sys	tems – co	oncep	t of co-ene	ergy– Gener	rated volt	age – Torque in DC mach	ine.			
UNIT II		DC (GENERA	ATORS						9
Constructio	onal deta	ails –	emf equa	ation – Me	ethods of	excitation - Self and s	separa	tely	ex ex	cited
generators	– Chara	cterist	tics of ser	ries, shunt	and comp	pound generators – Arma	ture 1	read	ction	and
commutatio	on – Para	allel og	peration of	f DC shunt	and comp	oound generators.				
UNIT III	-	DC N	MOTOR	S						9
Principle of compound shunt moto	of operat motors - rs.	ion – – Star	Back em ting of D0	nf and torq C motors –	ue equat Types of	ion – Characteristics of f starters – Speed control	series of D	s, si C s	hunt eries	and and
UNIT IV		TRA	NSFOR	MERS						9
Constructio	onal deta	ils of	core and	l shell type	e transfor	mers – Types of windin	gs –	Pri	ncipl	le of
operation – HV / LV w	- emf equ /indings e transfo	uation – Equ	– Transfo ivalent cii – Auto tr	rmation rat rcuit – Tran	io – Tran Isformer (- Three pl	sformer on no-load – Para on load – Regulation – Pa pase transformers – Vector	meter rallel	s re ope	eferro eratio	ed to on of
INIT V		TFS	$\frac{1 - Auto u}{\Gamma INC}$			MACHINES		p. n		0
UNIIV		TRA	NSFOR	MERS	DC	WACHINES	AIN	D		,
Losses and	l efficien	ncy in	DC mach	nines and t	ransforme	ers - Condition for maxim	mum	effi	icien	cy –
Testing of	DC mac	chines	– Brake	test, Swinb	urne's te	st, Retardation test and H	lopkir	isoi	n's te	est –
Testing of efficiency.	transfor	mers	– Polarity	v test, load	test, ope	en circuit and short circu	it test	S –	All	day
						TOTA	L:4	5 Pl	ERI	ODS
OUTCO	MES:									
1.	Explai	n the o	concept of	magnetic c	vircuits an	d electromechanical energ	gy the	ory		
2.	Explai	$\frac{1}{1}$ n the $\frac{1}{2}$	constructio	on, operatio	n and cha	tracteristics of Dc Generat	ors ar	nd N	/loto	rs
5.	Explai	n the c	construction	on, operatio	n and cha	macteristics of I ransforme	rs		بولي م	atin -
4.	variou	nne ti s tests	ne losses		ncy in de	machines and transform	ers by	' CO	nau	ung
TEVT D			•							

1.	Fitzgerald A.E. Kingsly C., Umans S.D., 'Electrical Machinery' 6th edition, McGraw
	Hill International Edition, New York, 2002.
2.	Kothari D.P. and Nagrath I.J, "ElectricMachines", Tata McGraw Hill, Fourth Ed.,
	2011.
3.	P. C. Krause, O. Wasynczuk and S. D. Sudhoff, "Analysis of electric machinery," IEEE
	Press, 1995.
REFERI	ENCES :
1.	D.P.Kothari, 'Electrical Machines.' 3 rd edition, TMH, New Delhi 2004.
2.	P.C.Sen, "Principles of Electrical Machines and Power Electronics", John-Wiley
	&Sons,Newyork.
3.	Cotton H 'Advanced Electrical Technology', CBS Publishers and Distributors, 1967.
4.	P.S.Bimbhra, 'Electrical Machinery', KhannaPublishers, 2003.
5.	<i>Fitzgerald A.E., Kingsly C. and Kusko.A., "Electric Machinery", Tata McGraw Hill, 2007.</i>

17PTF	EPC302		CC	ONTR	OL S	YSTI	EM	S			L	Т	P	С
		•									3	0	0	3
OBJE	CTIVES	•								•			•	
•	• To understand the use of transfer function models for analysis physical systems and introduce the control system components.													
•	• To provide adequate knowledge in the time response of systems and steady state error analysis.									ate				
•	• To accord basic knowledge in obtaining the open loop and closed-loop frequency responses of systems.								op					
•	To int	roduce	stability an	alysis a	nd des	ign of	com	npensa	ators.					
•	To int effect	roduce of state	state vari feedback	able rep	present	ation	of p	ohysic	al syst	tems	anc	l stu	ıdy 1	the
UNIT	I MA	ATHE	MATIC	AL MO	ODE	LING	i Ol	F SY	STEN	ЛS				9
Basic e mechan Block d	lements in ical and the liagram redu	control rmal sy action to	systems – /stems – Ti echniques -	- Open a ransfer f – Signal	and cl functio	osed lo on – Sy graphs	oop ynch	syste iros –	ms – E AC an	Electr d DC	ical Sei	ana rvon	alogy notoi	⁷ of rs –
UNIT	II TI	ME R	ESPONS	SE										9
Test in respons indices	put signals e – General – Root locu	– Time ized Er s const	domain s ror coeffic ruction.	pecifica ients –S	tions - teady	– Type state e	e an rror	d ord – PIE	er – I) Conti	and 1 collers	II o s —F	rder Perfo	syst orma	tem nce
UNIT	III FR	EQUI	ENCY R	ESPO	NSE								9	9
Frequer frequen open lo	ncy response cy response op response	e –Fre e – Bod	equency do le plot – P	omain s olar plo	specifi ot – Do	cations etermin	s – natio	Corro on of	elation closed	betv loop	veei res	n ti spon	me a se fr	and om
UNIT	IV ST	ABIL	ITY ANI	D CON	MPE N	ISAT	OF	R DE	SIGN	[9
Concep and lag lead and	t of Stability -lead netwo d lag-lead co	y – Rou orks – L ompens	th-Hurwitz Lag, lead an ator design	z stabilit nd lag-l n using F	ty crite ead co Root L	rion - mpens ocus.	Nyq satoı	luist s r desig	tability gn usir	v crite ng bo	rior de j	n –L plots	ag, 1 5 – L	ead .ag,
UNIT	V ST	ATE '	VARIAB	SLE AN	NALY	YSIS								9
Concep function	t of state v n – State trar	ariable sition 1	s for linea matrix - So	r time i olution o	invaria of state	int Sys equat	stem	ns – S – Con	State m cepts o	nodels of cor	s fr ntro	om llabi	trans ility :	sfer and
observa	observability.													
	OUTCOMES.													
1.	Determine flow grap	the tra h techr ystems	nsfer funct niques and	tion of c l also d	comple lraw t	ex syst he and	ems alog	using Jues e	g blog lectric	reduc al cii	tion rcui	n an ts f	d sig or n	gnal .on-
2.	Analyse t mathemati	he tin cal tech	ne and fr nniques	requency	y res _l	oonse	of	vario	ous or	der	sys	tems	s us	ing
3.	Analyse th	e stabil	ity of close	ed loop s	system	S								
4.	Design the	series	compensate	ors to ac	chieve	requir	ed s	pecifi	cations	5				

5.	Analyse the system performance using state variable model technique.
TEXT	BOOKS:
1.	Nagrath J. and Gopal M., Control Systems Engineering, Tata McGraw-Hill
	Education Private Limited, Reprint, 2010.
2.	Gopal M., "Control Systems, Principles and Design", 4th Edition, Tata McGraw
	Hill, New Delhi, 2012.
3.	S.K.Bhattacharya, Control SystemEngineering,3 rd Edition,Pearson,2013.
REFE	CRNCES:
1.	Arthur, G.O.Mutambara, Design and Analysis of Control; Systems, CRC Press, 2009.
2.	Richard C. Dorf and Robert H. Bishop, "Modern Control Systems", Pearson Prentice
	Hall, 2012.
3.	Benjamin C. Kuo, Automatic Control systems, 7th Edition, PHI, 2010.

17PTEI	7PTEPC303 LINEAR INTEGRATED CIRCUITS AND L T P								
			APPLICATIONS						
OBJE	CTIVES	5:							
•	• To study the IC fabrication procedure.								
•	To stu Op-an	ıdy cha np ICs.	racteristics; realize circuits; design for signal an	alysi	s us	sing			
•	To stu	dy the a	pplications of Op-amp.						
•	• To study internal functional blocks and the applications of special ICs like Timers, PLL, circuits, regulator Circuits, ADCs, Opto ICs.								
UNIT I		IC FA	ABRICATION				9		
IC classif	fication -	fundam	ental of monolithic IC technology, epitaxial grow	rth, r	nask	ing	and		
etching, o	liffusion o	f impur	ities - Realization of monolithic ICs and packaging	g - Fa	abric	atio	n of		
diodes, ca	apacitance	, resista	nce and FETs.						
		CHA	RACTERISTICS OF OP-AMP	<u> </u>	1.		9		
Ideal OP	-AMP cha	aracteris	stics, DC characteristics, AC characteristics - of	tset	volt	age	and		
$\Delta MP - si$	ummer Di	ifferenti	ator and integrator	mca	10115	. 01 0	Jr-		
			ICATIONS OF OP-AMP			(0		
Instrumer	ntation an	nlifier	- first and second order active filters - V/I &	I/V	ront	 Zerte	rs -		
comparat	ors. Multi	vibratoi	s - clippers, clampers, peak detector, S/H circuit.	D/A	cor	vert	er -		
R-2R la	dder and	weigh	ted resistor types - A/D converter -Dual sl	ope,	su	ccess	sive		
approxim	ation and	flash ty	pes.	-					
UNIT I	V	SPEC	CIAL ICs				9		
Timer: In Schmitt 7 using IC Descripti translatio	Timer: Introduction to 555 timers and its functional diagram, Monostable, Astable and Schmitt Trigger applications - Voltage Controlled Oscillator: Operation and Applications using IC 566 - Phase Locked Loops: Introduction, Principles, Block Schematic and Description of IC 565, Applications of PLL: Frequency multiplication and frequency translation						and ons and ncy		
UNIT V	UNIT V APPLICATION ICs								
IC voltag Amplifier ICs, Buff	e regulato r, ICL 803 er.	rs - LM 38 funct	317, 723 regulators, switching regulator, LM2575 tion generator IC, isolation amplifiers, opto couple	, LN r, op	1 38 to el	0 po ectro	wer onic		
			TOTAL :	45 I	PEF	SIO	DS		
OUTCO	DMES:								
1. Expla	in the diff	erent fa	brication methods of integrated circuits.						
2. Expla	in the cha ts	racteris	tics, frequency response and applications of OP-AM	ИР b	asec	Ĺ			
3. Expla	in the diff	erent sp	ecial ICs and Application ICs and its characteristic	s.					
TEXT I	BOOKS								

1.	Ramakant A. Gayakward, "Op-amps and Linear Integrated Circuits", 4 th Education, 2003.
2.	Roy Choudhary. D, SheilB.Jani, "Linear Integrated Circuits", 2 nd Edition, New Age, 2003.
3.	Fiore, "Op-amps&Linear IntegratedCircuitsConcepts&Applications", Cengage, 2010.

REFERENCES:

1 Jacob Millman, Christos C.Halkias, "Integrated Electronics - Analog and Digital . circuits system", Tata McGraw Hill, 2003.

2. *Robert F.Coughlin, Fredrick F.Driscoll, "Op-amp and Linear ICs", 4th Edition, Pearson*

3. David A.Bell, "Op-amp & Linear ICs", 2nd Edition, Prentice Hall of India, 1997.

4. Floyd, Buchla, "FundamentalsofAnalogCircuits", Pearson, 2013.

17PTEPC304 DIGITALLOGICCIRCUITS

 T
 P
 C

 0
 0
 3

9

9

 \mathbf{L}

3

OBJECTIVES:

•	To study various number systems , simplify the logical expressions using Boolean functions
•	To study implementation of combinational circuits
•	To design various synchronous and asynchronous circuits.
•	To introduce asynchronous sequential circuits and PLCs
•	To introduce digital simulation for development of application oriented logic circuits.

UNIT INUMBER SYSTEMS AND DIGITAL LOGIC9FAMILIESFAMILIES

Review of number systems, binary codes, error detection and correction codes (Parity and Hamming code) –Digital Logic Families, comparison of RTL, DTL, TTL, ECL and MOS families-operation, characteristics of digital logic family.

UNIT II COMBINATIONAL CIRCUITS

Combinational logic-representation of logic functions-SOP and POS forms, K-map representations- minimization using Kmaps-simplification and implementation of combinational logic-multiplexers, demultiplexers, encoders and decoders- code converters, adders and subtractors.

UNIT III SYNCHRONOUS SEQUENTIAL CIRCUITS

Sequential logic - SR, JK, D and T flipflops –level triggering and edge triggering -countersa synchronous and synchronous type - Modulo counters- Shift registers – design of synchronous sequential circuits –Moore and Melay models-Counters, state diagram; state reduction; state assignment

UNIT IV ASYNCHRONOUS SEQUENTIAL CIRCUITS 9 AND PROGRAMMABLE LOGIC DEVICES

Asynch	Asynchronous sequential logic circuits - Transition table, flow table-race conditions, hazards				
& erro	& errorsin digital circuits; analysis of asynchronous sequential logic circuits-introduction to				
Progra	Programmable Logic Devices: PROM–PLA–PAL.				
UNIT V		VHDL		9	
RTL D	esign-comb	inational logic -Sequential circuit-	-Operators -Introduction to Pack	kages –	
Subpro	ograms–Test	bench.(Simulation/Tutorial Example)	ples: adders, counters, flip-flops	, FSM,	
Multip	lexers /Demu	ultiplexers).			
			TOTAL : 45 PEI	RIODS	
OUTC	COMES:				
1.	Explain the on binary 1	e different number systems and coon numbers.	ding schemes and arithmetic oper	rations	
2.	Explain the	e IC fabrication technique, operation	on of logic gates and their family.		
3.	Explain th	e basic theorems and properties o	f Boolean algebra, Utilize K- M	lap for	
	gate level	minimization of the given Boolear	n function and Construct combination	ational	
	logic circu	its for the given requirement and d	etermine their performance.		
4.	Construct s	synchronous and asynchronous seq	uential logic circuits for		
	the given r	equirement and determine their per	rformance.		
5.	Explain the programmable logic devices such as PROM, PLA, and PAL, and VHDL Programming.				
TEXT BOOKS:					
1.	Raj Kamal,	'Digital systems-Principles and De	sign',PearsonEducation2 nd edition	n, 2007	
2.	M.Morris Education,	Mano, 'Digital Design with an 2013.	introduction to the VHDL',I	Pearson	
3.	Floyd and J	lain, 'Digital Fundamentals',8thedi	tion,PearsonEducation,2003.		
4.	Anil K.Maini, "Digital Electronics: Principles, Devices and Applications", Wiley				
	Publication	s, 2007.			
REFE	ERENCES				
1.	Mandal "D	vigital Electronics Principles & App	plication, McGrawHill Edu,2013		
2.	William Ke	eitz, "Digital Electronics-A Pract	tical Approach with VHDL", P	earson,	
2	2013.		" <u>0</u> (1 2012		
3.	Comer Di	giiai Logic & State Machine Desig	n , Oxfora, 2012.		
4.	Anand Kun	<i>iar, "Fundamentals of Digital Circ</i>	euits", PHI, 2013.		

17PTEPC305		CC	DNTROL AND INSTRUMENTATION	L	Τ	P	С
			LABORATORY				
	OTIVES			0	0	3	1
UBJE		•					1
•	lo p stabi	To provide knowledge on design and analysis of frequency response and stability of various order system using Simulation tool					
•	To p	rovide	knowledge on design and analysis of various compo	ensat	tors		
•	To s Posit	To study the Characteristics of Synchro-Transmitter- Receiver and Position Control Systems					
•	To c circu	To conduct experiment on DC and AC Bridges to find unknown values of circuits elements				of	
•	To p	rovide	knowledge characteristics of signal conditioning de	vice	s.		
LISTO	FEXPER	RIME	ENTS:				
 P, PI Stabi Mode Desig Posit Posit Posit Posit Posit Posit Bridg Dyna a. Te Signa 	 P, PI and PID controllers Stability Analysis Modelling of Systems-Machines, Sensors and Transducers Design of Lag, Lead and Lag-Lead Compensators Position Control Systems Synchro -Transmitter- Receiver and Characteristics INSTRUMENTATION: Bridge Networks-AC and DC Bridges Dynamics of Sensors/Transducers Temperature b. Pressure, c. Displacement, d. Optical, e. Strain f. Flow Signal Conditioning Instrumentation Amplifier Analog-Digital and Digital-Analog converters (ADC and DACs), Active Filters 						
	TOTAL · 45 PERIODS						
OUTCO	DMES:						
1.	Analyse system us	the ti sing S	me response, frequency response and stability o imulation tool	f va	riou	s or	der
2.	Design th	ne seri	es compensators,				
3.	Analyse t	the cha	aracteristics of various control and instrument eleme	nts.			
4.	Analyse t	Analyse the characteristics of signal conditioning devices.					

Semester IV

17PTEPC401		MICROPROCESSORS, MICRO			L	T	P	C
		TROLLERS AND	APPLICATIONS	2	0	0	2	
		G			3	U	U	3
OBJEC	LIVE	S :						
•	• To provide training on programming of microprocessors and microcontrollers to perform basic binary and mathematical operations like Addition, Subtraction, Multiplication, Division					to >n,		
•	To usi	To provide training on programming of microprocessors and microcontrollers using fundamental features and operations					ers	
•	To sol	impart lutions t	owledge to Develop As eal world control proble	sembly Language Program ems like Speed control, trafi	that y fic lig	will j ght co	provi ontro	de 1.
•	To impart knowledge to Choose appropriate peripheral interfacing devices with 8085& 8051 for specific applications.				ith			
•	T o study the Measurement of frequency of the given waveform using microcontroller							
UNIT I]	NTRC	UCTION TO MIC	ROPROCESSORS			9	
Hardware Architecture pin outs - Signals – Memory interfacing – I/O ports and data transfer concepts– Timing Diagram – Interrupt structure. Introduction to 8086 processor (Architecture and modes of operation only)								
UNIT II	PROGRAMMING OF 8085 PROCESSOR 9							
Instruction	Instruction format and addressing modes - Assembly language format - Data transfer, data				data			
manipulatio	n& co e - Sul	ntrol ins broutine	ctions – Programming structions - stack	: Loop structure with count	ting a	& In	dexii	1g –
UNIT III	<u> </u>	3051 M	CRO CONTROLL	ER			9	
Functional block diagram - Instruction format and addressing modes - Timing Diagram Interrupt								
structure – Timer –I/O ports – Serial communication.								
UNIT IV	UNIT IV PERIPHERAL INTERFACING-8051 9							
Study of Architecture and programming of ICs: 8255 PPI, 8259 PIC, 8251 USART, 8279 Key board display controller and 8253 Timer/ Counter-A/D and D/A converter interfacing, interfacing with LCD, digital IOs, keypad and memory.								
UNIT V	NIT V MICRO CONTROLLER PROGRAMMING AND		9					
Data Transf board and c Stepper mot	er, Ma lisplay	APPLI anipulat interfac trol - W	ATIONS , Control & I/O instru – Design of PID contr ning Machine Control.	ctions – Simple programm oller - Closed loop control	ing of s	exero servo	cises mot	key or -
	TOTAL : 45 PERIODS							
OUTCON	AES:							

1.	Explain the architecture of Microprocessors and its blocks.
2.	Write the program for various functions using 8085 processor.
3.	Explain the architecture, Program structure, and peripheral interfacing of 8051
	Microcontrollers.
4.	Apply the 8051 microcontroller into various applications.
TEXT]	BOOKS:
1.	Senthilkumar N. and Saravanan M. "Microprocessor and Microcontrollers", Oxford
	University Press, 2011
2.	Krishna Kant "Microprocessor and Microcontrollers" Eastern Company Edition,
	Prentice – Hall of India, New Delhi, 2007
3.	Ramesh Gaonkar, 'Microprocessor Architecture Programming and Application', CBS
	Publishers 2011.
REFEF	RENCES:
1.	Ankaj Gupta "Microcontroller and Embedded System"S.K.Kataria and Sons
	Publishers 2013
2.	Muhammad Ali Mazidi & Janice Gilli Mazidi, R.D.Kinely"The 8051 Micro Controller
	and Embedded Systems" (Using Assembly Language and C), PHI Pearson Education,
	2011
3.	The 8088 & 8086 Microprocessors, Walter A Tribal & Avtar Singh, Pearson, 200
4.	Singh B.P., Renu Singh "Advanced Microprocessors and Microcontrollers", New Age
	International Private Limited, 2009.

17PTEPC	2402	POWER ELECTRONICS	L	T	P	С
	3				0	3
OBJEC	TIVES :			I		
•	To got or	avantion of different types of normal comission due	tan	1		
	their swit	ching characteristics.		levi	jes a	na
•	To under controlled	stand the operation, characteristics and performance d rectifiers.	e pai	rame	eters	of
•	To study DC swite	the operation, switching techniques and basics top hing regulators.	olog	gies	of D	C-
•	To study	the operation of AC voltage controller and various co	onfig	gurat	tions.	
•	To learn inverters	the different modulation techniques of pulse wi and to understand harmonic reduction methods.	dth	mo	dulat	ed
UNIT I	POWE	R SEMI-CONDUCTOR DEVICES			9	
Basic struct	ure-VI and sv	vitching characteristics of SCR, TRIAC, DIAC, Pov	ver]	BJT	, Pov	ver
MOSFET a	nd IGBT –Dr	iver and Snubber circuit-Commutation circuit for SC	R.			
UNIT II	PHASE	-CONTROLLED CONVERTERS			9	
2-pulse, 3-	pulse and 6-	pulse converters – Effect of source inductance	– P	erfo	ormar	ice
parameters	-Power factor	control – Dual converters.				
UNIT III	DC TO	DC CONVERTER			9	
Step-down	Step-down and step-up chopper - Time ratio control and current limit control - Switching				ing	
mode regu switching.	lators -Buck,	Boost, Buck-Boost and Cuk regulator - Conce	pt o	of r	eson	ant
UNIT IV	AC TO	AC CONVERTERS			9	
Introduction to phase control and Integral cycle control -Single phase and three AC voltage				age		
controllers -	- Multistage	sequence control - Single and three phase cyclo conv	erte	rs.		C
UNIT V	INVER	TERS			9	
Single phase and three phase (both 120° mode and 180° mode) inverters – PWM techniques: Single PWM- Multiple PWM - Sinusoidal PWM, modified sinusoidal PWM — Voltage and harmonic control – Series resonant inverter – Current source inverter- Uninterrupted power supply topologies.						
	TOTAL : 45 PERIODS					
OUTCOM	ES:					
1.Explain the characteristics of various power semiconductor devices						
2.Design an	2.Design and analyse the performance of Phase controlled, AC-AC, and DC-DC converters.				5.	
3.Design an	d analyse the	performance of various Inverters.				
TEXT BO	DOKS:					
1.	Kashid M.H Education. P	., "Power Electronics: Circuits, Devices and Applica 'HI, New Delhi, 3 rd Edition, 2004.	ition	s", .	Pears	son
2.	Bimbra P.S.	Bimbra P.S., "Power Electronics", Khanna Publishers 3rd Edition 2003				
3.	Singh M. D.	and Khanchandani K. B., "Power Electronics" Tat	a M	cGr	aw-F	Hill

	Publishing Company Limited, New Delhi, 3 rd Edition, 2008.																			
REFERI	ENCES:																			
1.	Ashfaq Ahmed, "Power Electronics for Technology", Pearson Education, Indian																			
	<i>reprint</i> , 2003.																			
2.	Philip T. Krein, "Elements of Power Electronics", Oxford University Press,																			
	2004.																			
3.	Ned Mohan, Tore M. Undeland, William P. Robbins, "Power Electronics:																			
	Converters, Applications and Design", John Wiley and sons, 3rd Edition, 2003.																			
4.	Bimal K. Bose, "Modern Power Electronics and AC Drives", Pearson																			
	Education, 2003.																			
17PTEPC	403	SYN	'N(CH	RO)N(JU	J S A	AN	D	ASY	ZNC	CHF	RON	OU	S	L	T	P	С
---	------------	--	------------	------------	------------	------------	------------	--------------	-----------	------------	-----------	------------	--------	--------	--------	-------	------	-------	--------	------
							N	MA	CF	HI	NES	•								
			-1														3	0	0	3
OBJECT	IVES	:																		
•	To per	To impart knowledge on Construction, principle of operation and performance of three phase induction motor																		
•	To ind	To impart knowledge on Starting and speed control of three-phase induction motors.																		
•	To per	To impart knowledge on Construction, principle of operation and performance of single phase induction motors and special machines.																		
•	To — sa	To impart knowledge on Construction and performance of salient and non – salient type synchronous generators.																		
•	To syn	To impart knowledge on Principle of operation and performance of synchronous motor.																		
UNIT I	TH	RE	EE	PH	IAS	E I	INI	DU	CT	OI	N N	401	ΓOF	2					9	
Construction	al deta	ils–T	-Typ	pes	of r	otor	rs—-!	-Prir	ncip	ole o	of op	verati	ion–	Slip-	cogg	ging	; an	d cr	awli	ng-
Equivalent of	circuit -	- To	orqu	ue-S	Slip	char	ract	teri	stics	s - (Con	ditior	n for	max	imun	n to	orqu	ie –	Los	ses
and efficien	cy–Loa	dtest	st-N	Nolo	ada	ndbl	lock	ked	lroto	ortes	sts-C	ircle	diagr	am–S	Separ	ratio	ono	f	loss	es–
Doublecagei	nductio	nmo	oto	ors–I	ndu	ction	nge	ener	ator	:s-S	yncl	ironc	ousin	ducti	onmo	otoi				
UNIT II	STA PH	ART ASI	TI SE]	ING INI	G A DUQ	ND CT) S IO	SPE N 1	EEI MO) ()T(CON DR	VTR	OL	OF	TH	IR	EE		9	
Need for sta	rting_T	Types	es c	of st	tarte	rs–I	DOJ	L, J	Roto	or r	esist	ance.	, Au	totran	sforr	ner	an	d St	ar-de	elta
starters-Spe	ed cont	trol–	–Vc	oltag	ge c	ontr	rol,	Fr	eque	enc	y co	ntrol	l and	l pol	e cha	ang	ing	-C	ascad	ded
connection-V	V/f cont	trol-S	–Sli	lip p	owe	r re	cov	very	v sch	nem	e-Br	aking	g of t	three	phase	e ir	Idu	ction	mot	ior:
Plugging, dy	namic ł	braki	king	g and	d reg	gene	erati	tive	bra	king	g.									
UNIT III	SIN	IGL	LE	E P	PHA	ASE	E	IN	DU	JCT	ΓΙΟ	N	MO	TO	RS	A	ND		9	
	SPI	ECI	IA	LN	MA	СН	IIN	JES	5											
Construction	al deta	ils o	of	sing	gle p	ohas	se in	ndu	ictio	n n	noto	r–Do	ouble	field	l rev	olv	ing	the	ory a	and
operation – Equivalent circuit–No load and blocked rotor test–Performance analysis–Starting																				
methods of single-phase induction motors-Capacitor-start capacitor run Induction motor-																				
Shaded pole induction motor - Linear induction motor – Repulsion motor- Hysteresis motor-																				
AC series m	otor- Se	ervor	omo	otors	s- St	eppe	er n	note	ors-	intı	rodu	ction	to m	nagne	tic le	vita	atio	n sys	stem	s.
UNIT IV	SY	NCI	CHI	RO	NO	US	G	EN	NEF	RA'	TO	R							9	
Constructional details-Types of rotors-winding factors - emf equation-Synchronous																				
reactance – Armature reaction–Phasor diagrams of non-salient pole synchronous generator																				
connected to infinite busSynchronizing and parallel operation – Synchronizing torque -																				
Change of e	xcitatio	n and	nd r	mec	hani	ical	inp	out-	Vol	ltag	e reg	gulati	ion–I	EMF,	MM	F, 2	ZPF	7 and	1 A.S	5.A
methods-ste	ady stat	te po	ow	ver- a	angl	e ch	iara	acte	risti	cs-	Two	reac	tion	theor	y–sli	ip te	est-	shor	t circ	cuit
transients- C	apabilit	ty Cu	Curv	ves.																
UNIT V	SY	NCI	CHI	RO	NO	US	<u>} M</u>	10	TO	R									9	

Principle of operation-Torque equation-Operation of	n infinite bus bars- V and Inverted V
curves- Power input and power developed equations	- Starting methods - Current loci for
constant power input, constant excitation and const	ant power developed-Hunting-natural
frequency of oscillations- damper windings- synchron	ous condenser.
	TOTAL AS DEDIODO
	IUIAL: 45 PERIODS
OUTCOMES:	IUIAL : 45 PERIODS

		TOTAL : 45 PERIODS				
OUTCO	OMES:					
1.	Explain the construction, operation and characteristics of Induction Motors and					
	Special electrical machines.					
2.	Describe various starters and speed control	methods of induction motors.				
3.	Explain the construction, operation as	nd characteristics of Synchronous				
	machines.					
4.	Determine the losses and efficiency in ac n	nachines.				
TEXT	BOOKS:					
1.	A.E.Fitzgerald, Charles Kingsley, Stephen.	D.Umans, 'Electric Machinery', Tata				
	McGraw Hill publishing Company Ltd, 2003	3.				
2.	D.P.Kothari and I.J.Nagrath, 'Electric Mac	hines', Tata McGraw Hill Publishing				
	Company Ltd, 2002.					
3.	P.S.Bhimbhra, 'Electrical Machinery', Khan	naPublishers, 2003.				
REFER	RNCES:					
1.	M.N.Bandyopadhyay, Electrical Machines T	heory and Practice, PHI Learning				
	PVTLTD., NewDelhi,2009.					
2.	Charless A. Gross, "Electric /Machines, "CR	CPress,2010.				
3.	K.Murugesh Kumar, 'Electric Machines', Vi	kas Publishing HousePvt.Ltd,2002.				
4.	Alexander S.Langsdorf, Theory of Alternatin	g – Current Machinery, Tata McGraw				
	Hill Publications, 2001.					

17PTEPC	Z404TRANSMISSION AND DISTRIBUTION	L	Τ	Р	C			
		3	0	0	3			
OBJEC	CTIVES :							
•	To impart knowledge on Construction, principle of performance of three phase induction motor	To impart knowledge on Construction, principle of operation and performance of three phase induction motor						
•	To impart knowledge on Starting and speed control of three-p motors.	ohase	e ind	lucti	on			
•	To impart knowledge on Construction, principle of operation and performance of single phase induction motors and special machines.							
•	To impart knowledge on Construction and performance of salient and non – salient type synchronous generators.							
•	• To impart knowledge on Principle of operation and performance of synchronous motor.							
UNIT I	POWER SYSTEM TOPOLOGY			9)			
HVDC syst transmission UPFC (qual sag and tens and wind.	HVDC system – structure – Types - Comparison of AC and DC system - EHV AC transmission- need and environmental aspects – FACTS- TCSC – SVC – STATCOM – UPFC (qualitative treatment only) –Mechanical design of transmission line between towers – sag and tension- calculations using approximate equations taking into account the effect of ice							
UNIT II	TRANSMISSION LINE PARAMETERS			9)			
Transmissio phase trans unsymmetri bundled con	In line Resistance - Inductance and Capacitance calculations for - statistic smission lines with single and double circuits lines - Sy cal spacing -Transposition - Application of self and mutual GME aductors - Skin and proximity effects.	sing mm) -Si	le ai etric trane	nd th cal a ded a	and and			
UNIT III	MODELLING AND PERFORMANCE TRANSMISSION LINES	(OF	Ş)			
Classification of lines – Short, medium and long transmission lines – Equivalent circuits Transmission efficiency and voltage regulation – Generalized constants of the transmission line- Surge impedance – Surge impedance loading- Real and reactive power flow in the line- Power angle diagram - Power circle diagrams – Ferranti effect -corona formation and loss.								
Insulators –	Types – Voltage distribution in string insulator and grading – I	mpr	ove	ment	t of			
string efficiency – Underground cables – Constructional features of LT and HT cables – Capacitance single core and three core cables – Dielectric stress and grading – Thermal characteristics.								
UNIT V	SUBSTATION AND DISTRIBUTION SYSTEM	M		9)			
Types of substations- substation equipment – Bus-bar arrangements – Substation bus schemes –Single bus scheme – Double bus with double breaker – Double bus with single breaker – Main and transfer bus – Ring bus – Breaker-and-a-half with two main buses – Double bus-bar with bypass isolators. Neutral grounding- System and equipment grounding- grounded and								

ungrounde	ed transmission system- Solid, Resistance, reactive, Peterson coil grounding systems
–Distribut	ion systems- types -Radial and ring main (qualitative treatment only).
	TOTAL : 45 PERIODS
OUTCO	MES:
1.	Explain the basic structure of electric power systems, FACTS devices,
	and Calculate the sag of transmission lines.
2.	Calculate the line parameters for various type of lines.
3.	Explain the characteristics and performance of short, medium and
	long transmission lines.
4.	Explain the construction and performance of insulators and cables
5.	Explain the basic structure of substations and distribution systems.
TEXT B	OOKS:
1.	Wadhwa C.L., "Electric Power Systems", New Age International (P) Ltd., 2000.
2.	Gupta B.R., "Power System Analysis and Design", S. Chand Company & Ltd,
	New Delhi, 2003.
3.	D.P.Kothari, I.J.Nagarath, 'Power System Engineering', Tata McGraw - Hill
	Publishing Company limited, New Delhi, Second Edition, 2008.
REFER	ENCES:
1.	Singh S.N., "Electric Power Generation, Transmission and Distribution",
	Prentice Hall of India, New Delhi, 2002.
2.	Mehta V. K. and Rohit Mehta, "Principles of Power System", S.Chand Company
	& Ltd, New Delhi, 2006.
3.	J.Brian, Hardy and ColinR.Bayliss, 'Transmission and Distribution in Electrical
	Engineering', Newnes; Fourth Edition, 2012.
4.	Luces M.Fualkenberry, Walter Coffer, 'Electrical Power Distribution and
	Transmission', Pearson Education, 2007.
5.	Wiiliam D. Stevenson Jr, "Elements of Power system Analysis", TataMcGraw-Hill
	Publishing Company limited, NewDelhi.

17PTEPC405		ELECTRICAL MACHINES	L	T	P	C		
		LABORATORY						
			0	0	3	1		
OBJECTIVE	S :							
• To extreme them	xpose the experiment	students to the operation of various D.C. generation skill.	erato	rs ar	nd gi	ive		
• To experience	• To expose the students to the operation of various D.C. motors and give them experimental skill.							
• To o exper circu	• To expose the students to the operation transformers and give them experimental skill to find the efficiency, losses and to draw the equivalent circuit							
• To stu	To study the various methods of regulation calculation of alternator.							
• To es load t	timate the est method	various losses takes place in Induction Motor s to arrive at their performance.	and t	to st	udy	the		
LISTOFEXPER	MENTS:							
 Study of DC and AC Starters. Open circuit and load characteristics of D.C shunt generator. Load test on D.C shunt and Series Motor. Load test on Alternator. Swinburne's test and speed control of D.C shunt motor Hopkinson's test on D.C. Motor generation set. Load test on single phase and three phase transformer. 								
8.Open circuit and 9. Load test on sin 10.Noloadandbloc 11. Load test on T	l short circ gle phase i kedrotorte hree phase	uit tests on single phase transformer. nduction motor. stsonthreephaseinductionmotor. induction motor.						
12. V-Curve and in	nverted V-	Curve of synchronous Motor.						
LISTOFEOUIPN	1ENTSFC	PRABATCHOF30STUDENTS:						
1.DCShuntMotor 2.SinglePhaseTran 3. DC Series Moto 4.Three Phase Ind 5. Single Phase Ind 6. DC Shunt Moto 7.Tachometer -Dig 8.Single Phase Au 9. Three Phase Au 10.Single Phase R 11. Three Phase R 12.SPST switch-2	withLoadin sformer – or with Loa action Mot duction Mot duction Mo r Coupled sital/Analo to Transfo to Transfo esistive Lo esistive Lo Nos	ngArrangement–3Nos HNos ding Arrangement–1 No or with Loading Arrangement–2 Nos otor with Loading Arrangement–1 No. With DC Shunt Generator–1 No g–8Nos rmer – 2 Nos rmer–1 No ading Bank –2 Nos adingBank.–2 Nos						
13. Single Phase T 14. Three Phase T	Transformer ransformer	r -1No · -1 No						

15.Three Phase Alternator -1 No						
		TOTAL : 45 PERIODS				
OUTCOMES:						
1.	Able to draw the characteristics of DC (Generators and Motors and				
	determine the losses and efficiency.					
2.	Able to draw the equivalent circuit and ch	aracteristics of transformers				
	and determine the losses and efficiency.					
3.	Able to draw the characteristics of Induc	tion Motors and determine				
	the losses and efficiency.					
4.	Able to draw the characteristics of	Synchronous Motors and				
	Alternators and determine the Voltage regu	lation and efficiency.				

<u>Semester V</u>

17PTEPC501		POWER SYSTEM ANALYSIS	L	Т	P	C		
			3	0	0	3		
OBJE	CTIVES :			•				
•	To model the power system under steady state operating condition.							
•	To study numerical methods and matrices							
•	To apply numerical methods to solve the power flow problem.							
•	To model and	o model and analyze the system under faulted conditions.						
•	To model and analyze the transient behaviour of power system when it is subjected to a fault.							
UNIT	I P	POWER SYSTEM MODELING9						
power sy networks Impedan	Basic components of a power system– Per phase and per unit analysis– Modeling of power system components in per unit analysis - Symmetrical Components and sequence networks – Modeling of components in positive, negative and zero sequences. – Impedance and Reactance Diagram.							
UNIT	II N	ETWORK MATRICES			9			
methods large sc methods	ale power sy Repeat soluti	ilding algorithm of Zbus matrix - Sparse Matrix stems: Factorization by Bifactorization and Ga	tec uss ces.	hnic elin	ques ninat	for tion		
UNIT	III P	OWER FLOW ANALYSIS			9			
Classific forms– method, Optimal	cation of Buse Solution of I and Fast deco Power Flow	es – Power flow problem formulation in rectang Power flow problem: Gauss Seidel method, Ne upled power flow method. Comparison of methods	gular ewto S – S	an on R State	d po laphs ment	lar son : of		
UNIT	IV F	AULT ANALYSIS			9			
Need for fault analysis in power systems – Symmetrical Fault analysis using Zbus – Computation of fault current, short circuit capacity and post fault voltages – Unsymmetrical faults in transmission lines– Sequence network interconnection for various faults – Unsymmetrical fault analysis using symmetrical components.						ıs – s – for		
UNIT	V P	OWER SYSTEM STABILITY			9			
Need for stability – Classification of power system stability-angle and voltage stability– Small signal stability analysis of single machine infinite bus system –Solution of swing equation by modified Euler method and Runge-Kutta fourth order method – Implicit integration methods – Multi machine Infinite bus system – Introduction to Transient stability.								
TOTAL : 45 PERIODS								
OUTC	OUTCOMES: After successful completion of the course students able to							
1.	Calculate pu	a quantity for the given components.						
2.	Compute Y-	-Bus and Z-Bus.						
3.	Analyze the various faults in power transmission line.							

4.	Analyze the stability of single machine and Multi machine infinite							
	bus system.							
TEXT F	TEXT BOOKS :							
1	Nagrath I.J.and Kothari D.P., 'Modern Power System Analysis', TataMcGraw-							
	Hill,Fourth Edition, 2011.							
2	C.L.Wadhwa, 'Electrical Power Systems 'New Academic Science							
	Limited, 2017.							
3	Ashfaq Husain,'Electrical Power System' 5 th edition, CBS							
	Publishers, 2017.							
4	P.Venkatesh, B.V.Manikandan, S.CharlesRaja,							
	A.Srinivasan, 'Electrical Power Systems Analysis, Security and							
	Deregulation', PHI Learning Private Limited, New Delhi, 2012.							
REFERNCES:								
1	Hadi Saadat, 'Power System Analysis', Tata McGraw Hill Education							
	Pvt.Ltd.,New Delhi,21st reprint, 2010.							
2	Kundur P., 'Power System Stability and Control, Tata McGraw Hill							
	Education Pvt.Ltd., NewDelhi 10 th reprint, 2010							
3	J.Duncan Glover, Mulukutla S.Sarma, Thomas J.Overbye, 'Power System							
	Analysis & Design', Cengage Learning, Fifth Edition, 2012.							
4	John J.Grainger and W.D.Stevenson Jr., 'Power System Analysis', Tata							
	McGraw-Hill, Sixth reprint, 2010.							

17PTEPC502		HIGH VOLTAGE ENGINEERING	L	Τ	P	C	
			3	0	0	3	
OBJEC	OBJECTIVES:						
•	• To understand the various types of over voltages in power system and protection methods.						
•	Generati	on of over voltages in laboratories.					
•	Measure	ment of over voltages.					
•	Nature o	f Breakdown mechanism in solid, liquid and gaseous dielectr	ics.				
•	Testing of	f power apparatus and insulation coordination.					
UNIT I	OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS						
Causes of temporar Protectio	Causes of over voltages and its effects on power system–Lightning, switching surges and temporary over voltages, Corona and its effects–Reflection and Refraction of Travelling waves-Protection against over voltages.						
UNIT I	UNIT II DIELECTRIC BREAKDOWN						
Gaseous Conduct Breakdov	breakdow on and b wn mecha	n in uniform and non-uniform fields–Corona discharges–Va reakdown in pure and commercial liquids, Maintenance nisms in solid and composite dielectrics.	cuur of	n bro oil	eakd Qual	own– ity –	
UNIT I	II GEI CUI	NERATION OF HIGH VOLTAGES AND HIGH RRENTS			9)	
Generation of High DC: Voltage doubler, Voltage multiplier circuits and Van de Graff generate Generation of High AC: Cascade Transformer and Resonant transformer, Circuits for impul voltages and currents generation- Tripping and control of impulse generator.					rator, pulse		
UNIT I	V ME CUI	ASUREMENT OF HIGH VOLTAGES AND HIC RRENTS	GΗ		9)	
High Resistance with series ammeter–Dividers, Resistance, Capacitance and Mixed dividers- Peak Voltmeter, Generating Voltmeters-Capacitance Voltage Transformers, Electrostatic Voltmeters– Sphere Gaps- High current shunts- Digital techniques in high voltage measurement.						iders- static ent.	
UNIT	UNIT V HIGH VOLTAGE TESTING & INSULATION COORDINATION				9		
High voltage testing of electrical power apparatus as per International and Indian standards– Power frequency, impulse voltage and DC testing of Insulators, circuit breakers, bushing, isolators and transformers- Insulation Coordination.							
		TOTAL : 45 PER	ΙΟΙ	DS			

OUT	COMES:	After successful completion of the course students able to						
1.	1. Explain the causes and effects of over voltages and transients							
2.	Know the e	lectrical breakdown on various medium						
3.	Design the	generation circuit of overvoltage, impulse voltage and Current.						
4.	Measure the	e overvoltage and current using various components.						
5.	Test the ele	ctrical apparatus against over voltages and impulse current.						
TEX	TEXT BOOKS:							
1.	M.S.Naidu andV.Kamaraju, 'High Voltage Engineering', Tata McGraw Hill, Fifth Edition, 2013.							
2.	E.Kuffel and W.S.Zaengl, J.Kuffel, 'High voltage Engineering fundamentals ',Newnes Second Edition Elsevier ,New Delhi,2005.							
3.	Subir Ray,'An Introduction to High Voltage Engineering'PHI Learning Private Limited, New Delhi, Second Edition, 2013.							
REFERENCES:								
1.	L.L.Alston, 'High Voltage Technology', Oxford University Press, First Indian Edition, 2011.							
2.	C.L.Wadhwa, 'High voltage Engineering', NewAge International Publishers, Third Edition, 2010							

17PTEPC503	ELECTRICAL MACHINE DESIGN

L	Т	Р	C
3	0	0	3

9

9

9

9

OBJECTIVES:

1.	To study n	nmf calcula	tion and	thermal r	ating of	various typ	es of	electric	cal ma	chines
2.	To design	armature ar	nd field s	ystems fo	or D.C. n	nachines				
3.	To design	core, yoke,	windings	s and coc	ling syst	ems of tran	sforn	ners.		
4.	To design	stator and r	otor of in	duction	machine	s.				
5.	To design behaviour.	stator an	d rotor	of sync	hronous	machines	and	study	their	thermal

UNIT I INTRODUCTION

Major considerations in Electrical Machine Design - Electrical Engineering Materials - Space factor – Choice of Specific Electrical and Magnetic loadings – Thermal consideration - Heat Dissipation - Temperature gradient in cores slots and windings - Rating of machines – Standard specifications. Introduction to Computer aided Design in Electrical Machines (Simple Treatment).

UNIT II DC MACHINES

Output Equations – Main Dimensions - Magnetic circuit calculations - Carter's Coefficient -Netlength of Iron –Real & Apparent flux densities – Selection of number of poles – Design of Armature – Design of commutator and brushes – Design of field winding.

UNIT III TRANSFORMERS

Output Equations – Main Dimensions - KVA output for single and three phase transformers – Window space factor – Design of core and windings - Overall dimensions – No load current–

Temperature rise in Transformers – Design of Tank with cooling tubes - Methods of cooling of Transformers.

UNIT IV INDUCTION MOTORS

Output equation of Induction motor – Main dimensions – Length of air gap- Rules for selecting rotor slots of squirrel cage machines – Design of rotor bars & slots – Design of end rings – Design of wound rotor – Magnetic leakage calculations – Leakage reactance of polyphase machines - Magnetizing current - Short circuit current .

Output equations – choice of loadings – Design of salient pole machines – Short circuit ratio – shape of pole face – Armature design – Armature parameters – Estimation of air gap length – Design of rotor –Design of damper winding – Design of field winding – Design of turbo alternators – Rotor design.

			TOTAL : 45 PERIODS				
OUTC	OMES:	After successful completion of the	After successful completion of the course students able to				
1.	Formulate AC machi	Specific Electrical and Magnetic Ines.	loadings for various electrical DC and				
2.	Devise ma	in dimensions (D, L) of armature ar	nd field systems for D.C. machines.				
3.	Design ov cooling sy	Design overall Dimensions of single and three phase transformers core, windings and cooling systems for transformers					
4.	Design main dimensions of squirrel cage and Slip ring induction machines.						
5.	Design main dimensions of Synchronous machines.						
TEXT	RUUKS						
	books.						
1.	Sawhney New Delh	A.K., "A Course in Electrical Ma i, 2006.	chine Design", Dhanpat Rai & Sons,				
1. 2.	Sawhney New Delh Sen S.K., Oxford an	A.K., "A Course in Electrical Ma i, 2006. "Principles of Electrical Machine d IBH Publishing Co. Pvt. Ltd., New	chine Design", Dhanpat Rai & Sons, Designs with Computer Programmes", v Delhi, 2009.				
1. 2. 3.	Sawhney New Delh Sen S.K., Oxford an Shanmuga Data Boo	A.K., "A Course in Electrical Ma i, 2006. "Principles of Electrical Machine d IBH Publishing Co. Pvt. Ltd., Nev sundaram A., Gangadharan G. and k", New Age International Pvt. Ltd.,	chine Design", Dhanpat Rai & Sons, Designs with Computer Programmes", v Delhi, 2009. Palani R., "Electrical Machine Design , Reprint 2007.				

REFERENCES:

 Say.M.G, "The Performance and Design of Alternating current Machines", Isaac Pitman & sons Limited, 1995.

17PTEPC505	MICROPROCESSORS, MICROCONTROLLERS AND APPLICATIONS LABORATORY	L	Т	Р	C
		0	0	3	1
OBJECTIVES :					

1.	To provide training on programming of microprocessors and microcontrollers to perform basic binary and mathematical operations like Addition, Subtraction, Multiplication, Division
2.	To provide training on programming of microprocessors and microcontrollers using fundamental features and operations
3.	To impart knowledge to Develop Assembly Language Program that will provide solutions to real world control problems like Speed control, traffic light control.
4.	To impart knowledge to Choose appropriate peripheral interfacing devices with 8085& 8051 for specific applications.
5.	To study the Measurement of frequency of the given waveform using microcontroller

1. Programming for 8/16 bit Arithmetic operations using 8085: Addition / Subtraction / Multiplication / Division.

2. Programming with control instructions using 8085: Increment / Decrement, Ascending /Descending order, Maximum / Minimum of numbers, Rotate instructions, Hex / ASCII / BCD code conversions.

3. Interface Experiments using 8085: A/D Interfacing, D/A Interfacing, Traffic light controller, Simple experiments using 8251, 8253,8255, 8279

4. Interfacing of DC Motor Speed control using 8085

5. Interfacing of Stepper Motor control using 8085

6. Programming for 8/16 bit Arithmetic operations using 8051: Addition / Subtraction / Multiplication / Division.

7. Demonstration of basic instructions with 8051 Microcontroller execution, including: Conditional jumps, looping, calling subroutines.

8. Interface Experiments using 8051: A/D Interfacing, D/A Interfacing.

9. Interfacing of DC Motor Speed control using 8051.

10. Interfacing of Stepper Motor control using 8051.

11. Measurement of frequency of the given waveform using microcontroller.

	TOTAL: 45 PERIODS
OUTCOMES:	After successful completion of the course students able to
1	Develop basic binary and mathematical operations like Addition, Subtraction, Multiplication, Division using microprocessor and microcontroller.
2	Describe the fundamental features and operations of contemporary microcontroller and microprocessor.
3	Develop Assembly Language Program that will provide solutions to real world control problems like Speed control, traffic light control.
4	Choose appropriate peripheral interfacing devices with 8085& 8051 for specific applications.

Semester-VI

17PTEPC601	POWER SYSTEM OPERATION AND CONTROL	L	Τ	Р	С
		3	0	0	3

OBJECTIVES :

1.	To have an o	overview of power system operation and control.
2.	To study the	economic operation of power system
3.	To model po	wer-frequency dynamics and to design power-frequency controller.
4.	To model re for maintain	active power-voltage interaction and the control actions to be implemented ing the voltage profile against varying system load.
5.	To teach abo systems	out SCADA and its application for real time operation and control of power

UNIT I CHARACTERISTICS OF LOADS

Basics of Power system control and operation – Real and Reactive power of Loads - System load variation – Load characteristics – Load curves and Load Duration curve – load factor and diversity factor - Reserve requirements: Installed reserves, spinning reserves, cold reserves, hot reserves –Overview of system operation: Load forecasting, techniques of forecasting, Importance of load forecasting.

UNIT II POWER SYSTEM OPERATION

9

9

Statement of Unit Commitment problem - Constraints - Solution methods: Priority-list methods, forward dynamic programming approach – Formulation of economic dispatch problem with and without losses - Solution by direct method and λ -iteration method. - Base point and participation factors – Hydrothermal scheduling problem – Short term and long term model and algorithm – Dynamic Programming solution methods for hydrothermal scheduling (Qualitative treatment only).

UNIT III ACTIVE POWER FREQUENCY CONTROL

9

9

Basics of speed governing mechanism and modeling- speed-load characteristics–Parallel operation of Alternators- LFC control of a single-area system–Static and Dynamic characteristics – PI controller in LFC– LFC in Two area system – Static analysis with uncontrolled case- tie line with frequency bias control- State model– LFC with Economic dispatch controller. Software simulation of LFC (Single Area and Two area system).

UNIT IV REACTIVE POWER VOLTAGE CONTROL

Generation, Absorption and control of reactive power– Modeling of excitation systems – Static and dynamic characteristics-Stability compensation- Secondary voltage control – Tap changing transformers for voltage control – FACTS applications to reactive power control: STATCOM,

SVC, TCS and TSC.

UNIT V SMART POWER CONTROL

9

Need for smart control of power systems-concept of energy control centre- functions-system monitoring -dataacquisition and control-system hardware configuration–SCADA and EMS functions-network topology-state estimation–WLSE-Contingency Analysis-state transition diagram showing various state transitions and control strategies. Recent trends in power system control.

		TOTAL : 45 PERIODS						
OUTC	OMES:	After successful completion of the course students able to						
1.	Analyse th	e loads and apply forecasting methods for power system restructuring.						
2.	Operate th	e generating units in an efficient way to reduce fuel cost.						
3.	Design loa	ad frequency controller to regulate the frequency and speed.						
4.	Design the and compe	e excitation systems with appropriate voltage controllers to regulate voltage ensate reactive power.						
5.	Apply sma	pply smart techniques in power system security.						
TEXT	BOOKS:							
1.	Olle.I.Elg Education	Olle.I.Elgerd, 'Electric Energy Systems theory- An introduction', TataMcGrawHill EducationPvt.Ltd., NewDelhi, 34threprint, 2010.						
2.	Allen.J.V Control',	Allen.J.Wood and Bruce F.Wollenberg, 'Power Generation, Operation and Control', JohnWiley & Sons, Inc., 2003.						
3.	Abhijit Control',	Chakrabarti, Sunita Halder, 'Power System Analysis Operation and PHI learning Pvt.Ltd., NewDelhi, Third Edition, 2010.						
4.	Badri Ra McGraw	Badri Ram, D. N. Vishwakarma ,'Power System Protection and Switchgear' Tata McGraw-Hill Education, 2001.						
REFER	RENCES:							
1.	Nagra Hill,Fo	th I.J.and Kothari D.P., 'Modern Power System Analysis', TataMcGraw- ourth Edition, 2011.						
2.	2. Kundur P., 'Power System Stability and Control, Tata McGraw'Hill Educ Pvt.Ltd., New Delhi, 10threprint, 2010.							
3.	Hadi Saadat, 'Power System Analysis', Tata McGraw Hill Education Pvt.Ltd., New Delhi, 21st reprint, 2010.							
4.	N.V.Ra	V.Ramana, "Power System Operation and Control," Pearson, 2011.						

5.	C.A.Gross, "PowerSystem Analysis, "Wiley India, 2011.
6.	
	Sunil S Rao, 'Switchgear Protection And Power Systems (Theory, Practice & Solved Problems), Khanna Publishers, 2008
7.	M. L. Soni, P. V. Gupta, U. S. Bhatnagar, 'A Course in Electrical Power' Dhanpat Rai, 1987.

17PTEPC602		P	ROTECTION AND SWITCHGEAR	L	Τ	Р	C
	ľ	1		3	0	0	3
OBJECT	TIVES :						
• To educat surges) of			the causes of abnormal operating conditions (faults, lightning the apparatus and system.	g an	d sw	vitch	ing
To introd			ice the characteristics and functions of relays and protection sc	cher	nes.		
•	To imp	art	knowledge on apparatus protection				
•	• To introduce static and numerical relays						
•	To imp	art	knowledge on functioning of circuit breakers				
UNIT I		P	ROTECTION SCHEMES			9	
Principles a calculation essential qu	and need using syr ualities of	for mm f pr	protective schemes-nature and causes of faults-types of fault netrical components-Methods of Neutral grounding-Zones of potection-Protection schemes	s– f prot	àult ectio	curr on ai	ent nd
UNIT II		E	ELECTROMAGNETIC RELAYS			9	
Operating Electromag Under freq	principle gnetic Re uency rela	es o elay ays	of relays - the Universal relay – Torque equation – R rs–Overcurrent, Directional, Distance, Differential, Negative s.	-X se	diag quen	gram	ı – and
UNIT III	[A	PPARATUS PROTECTION			9	
Current tra - Protection	ansformer 1 of transf	rs a fori	and Potential transformers and their applications in prote mer, generator, motor, busbars and transmission line.	ectio	on s	cher	nes
UNIT IV	<i>,</i>	S' P	TATIC RELAYS AND NUMERICAL ROTECTION			9	
Static relay Block diag distant prot	vs–Phase, gram of 1 tection of	Ar Nui `tra	nplitude Comparators–Synthesis of various relays using Static merical relays–Over current protection, transformer differen insmission lines.	c con ntial	mpa l pro	ratoi)tect	rs – tion
UNIT V C			CIRCUIT BREAKERS			9	
Physics of	arcing ph	enc	omenon and arc interruption- DC and AC circuit breaking-				
re-striking current cho oil,SF6 and of Circuit b	re-striking voltage and recovery voltage-rate of rise of recovery voltage-resistance s current chopping- interruption of capacitive current-Types of circuit breakers-air blast, oil,SF6 and vacuum circuit breakers-comparison of different circuit breakers- Rating and of Circuit breakers				swi t, air nd se	tchi bre elect	ng- eak, tion
			TOTAL : 45 PERIODS	•			
L							

OUTCOMES:		After successful completion of the course students able to					
1.	Analyze th	e faults and apply protection schemes for lines.					
2.	Apply the electromagnetic relays for various protection systems.						
3.	Design proper protection scheme for generators, transformers, and other power system equipments.						
4.	Apply the	Apply the static relays into numerical protection schemes.					
5.	Analyze the various circuit breakers and apply them into proper protection system.						
TEXT B	TEXT BOOKS:						
1.	Sunil S.Rao, 'Switchgear and Protection', Khanna Publishers, NewDelhi, 2008.						
2.	B.Rabindranath and N.Chander, 'Power System Protection and Switchgear', New Age International						
3.	M.L.Soni, P.V.Gupta, U.S.Bhatnagar, A.Chakrabarti, 'A Text Book on Power System Engineering', Dhanpat Rai & Co., 1998.						
REFERENCES:							
1.	Badri Ram ,B.H.Vishwakarma, 'PowerSystem Protection and Switchgear', New Age International						
2.	Y.G.Paithankar and S.R.Bhide, 'Fundamentals of power system protection', Second Edition, Prentice Hall of India Pvt.Ltd., New Delhi, 2010.						
3.	C.L.Wadhy	va, 'Electrical Power Systems', 6 th Edition,New Age International (P) Ltd.,					

17PTI	EPC603	PROFESSIONAL ETHICS	L	T	P	C	
			3	0	0	3	
OBJE	CTIVES :						
•	To enable th	e students to create an awareness on Engineering Ethics					
•	To study the	engineering as social experimentation					
•	To impart kr	nowledge on engineer's responsibility for safety					
•	To impart kr	nowledge on engineer's responsibility and rights					
•	To study the	global issues on business					
UNIT	Ι	ENGINEERING ETHICS			9)	
Senses Moral Profess	Senses of 'Engineering Ethics'– Variety of moral issues–Types of inquiry–Moral dilemmas– Moral Autonomy–Kohlberg's theory–Gilligan's theory–Consensus and Controversy– Professional and Professionalism–Professional Ideals and Virtues–Uses of Ethical Theories.						
UNIT	UNIT II ENGINEERING ASSOCIAL EXPERIMENTATION				9)	
Enginee Codes o CaseStu	ering as Expen of Ethics–Indu udy.	rimentation–Engineers as responsible Experimenters–Resea Istrial Standards- A Balanced Outlook on Law–The Challer	arch nger	Ethio	cs –		
UNIT	III	ENGINEER'S RESPONSIBILITY FOR SAFETY					
Safety a Govern	and Risk– As ment Regulat	sessment of Safety and Risk– Risk Benefit Analysis–Red or's Approach to Risk- Chernobyl Case Studies and Bhopa	ucin l.	g Ri	sk–T	The	
UNIT	IV	RESPONSIBILITIES AND RIGHTS					
Collegi Conflic Propert	ality and L ts of Interest- y Rights (IPR	oyalty–Respect for Authority–Collective Bargaining– - Occupational Crime–Professional Rights–Employee Right)–Discrimination.	Cont hts-	fiden Inte	tialit llect	ty– ual	
UNIT	V	GLOBAL ISSUES					
Multina Techno Engined Code C	Multinational Corporations– Business Ethics-Environmental Ethics –Computer Ethics-Rolein Technological Development– Weapons Development– Engineers as Managers–Consulting Engineers–Engineers as Expert Witnesses and Advisors–Honesty–Moral Leadership–Sample Code Conduct.						
		TOTAL : 45 PER	101	DS			
OUTCOMES:		After successful completion of the course students able to					
1. Apply the		e ethical theories in engineering environment.					
2. Analyze the risks and improve their responsibility for safety.							
3.	Uutilize t	heir rights and improve responsibilities.					
4.	Propose r	emedies for global issues.					
ТЕХТ	BOOKS:						

1.	Mike Martin and Roland Schinzinger, "Ethics in Engineering", McGraw Hill, NewYork (2005).							
2.	Charles E Harris, Michael S Pritchardand Michael J Rabins, "Engineering Ethics- Concepts and Cases", Thompson Learning, (2000).							
3.	David Ermannand Michele S Shauf, "Computers, Ethics and Society", Oxford University Press, (2003)							
REFERI	ENCES:							
1.	Charles D Fleddermann, "Engineering Ethics", Prentice Hall, New Mexico, 1999.							
2.	John R Boatright, "Ethics and the Conduct of Business", Pearson Education, 2003.							
3.	Edmund G Seebauer and Robert L Barry, "Fundamentals of Ethics for Scientists and Engineers", Oxford University Press, 2001.							
4.	Prof. (Col) PS Bajaj and Dr.Raj Agrawal, "Business Ethics–An Indian Perspective",Biztantra, NewDelhi,2004.							
5.	David Ermannand Michele S Shauf, "Computers, Ethics and Society", Oxford University Press, 2003.							

17PTEP	C 605	POWER ELECTRONICS LABORATORY	L	T	P	С
			0	0	3	1
OBJECT	TIVES :					
• To provide Experiment test bench to learn the characteristics of power devices				emic	condu	ictor
•	To provide hands on experience with power electronic AC to DC converter and dc to DC converter to determine the control characteristics					DC
•	To provide hands on experience with various power electronic inverters design and testing				g	
•	• To study the characteristics of AC voltage controller and SMPS					
•	• To know the performances of resonant and quasi resonant converter.					

LIST OF EXPERIMENTS

1. Characteristics of SCR, TRIAC and DIAC.

2. Characteristics of MOSFET and IGBT.

3. Determination of Control Characteristics of AC to DC fully controlled converter (1-phase and 3-phase).

4. Determination of Control Characteristics of AC to DC half controlled converter (1-phase and 3-phase).

5. Determination of Control Characteristics of Step down and Step up chopper.

6. IGBT based PWM inverter.

7. Series and Parallel inverter.

8. AC Voltage Controller.

9. Switched Mode Power Supply (Fly back, Forward and half Bridge Methods).

10. Performances of Resonant and Quasi Resonant Converter.

		TOTAL: 45 PERIODS			
OUTCOMES:		After successful completion of the course students able to			
1.	Design con	Design conduct experiment on various converter			
2.	Compare th	Compare the characteristics of various power semiconductor devices.			
3.	Demonstrate the operation of phase controlled rectifiers based DC drives.				
4.	Analyze the basic topologies of DC-DC converters.				
5.	Employ the different modulation techniques of pulse width modulated inverters.				
6.	Compute the performance of AC voltage controller.				

Semester-VII

17PTEPC701			ENERGY UTILIZATION, CONSERVATION AND AUDITING	L	T	P	С
				3	0	0	3
OBJECT	TVE	S:					
•	To ir	npart	knowledge on electric drives and traction systems				
•	To ir	ntrodu	ice the energy saving concept by different ways of illumination	on.			
•	To u	nders	tand the different methods of electric heating and electric we	ding	g.		
•	To st	tudy v	various energy conservation principles				
• To study various energy audit Methodology and its benefits							
UNIT I		ELI	ECTRIC DRIVES AND TRACTION			9)
services- electrificati track equip	services- traction motors – characteristic features of traction motor-systems of railway electrification- electric braking- train movement and energy consumption- traction motor control-track equipment and collection gear.					way rol-	
UNIT II		ILL	LUMINATION			9	
Introductio light source lamps- des lighting sch	n-defi ces-inc sign c nemes	nitior cande of illu -flood	n and meaning of terms used in illumination engineering- scent lamps, sodium vapour lamps, mercury vapour lan imination systems-indoor lighting schemes- factory lightin d lighting- street lighting- energy saving lamps, LED	class nps, ng h	sifica fluo alls-	ation oreso outc	ı of cent loor
UNIT III	[HE	ATING AND WELDING				
Introductio resistance resistance	Introduction- advantages of electric heating –modes of heat transfer – methods of electric heating- resistance heating-arc furnaces-induction heating-dielectric heating-electric welding–types- resistance welding-arc welding- power supply for arc welding- radiation welding.						
UNIT IV EN		EN	NERGY CONSERVATION			9	
General en Energy con improveme ovens- ligh	General energy problem-demand supply gap, Scope for energy conservation and its benefits- Energy conservation Principle –energy saving opportunities in electric motors by Power factor improvement-Energy conservations in air conditioners, compressors, fans, electric furnaces, ovens- lighting techniques – Natural, CFL, LED lighting.						
UNIT V		EN	ERGY AUDITING			9)
Energy au Methodolo	dit an gy of	nd its 7 – Pre	s benefits- Energy flow diagram- Preliminary, Detailed e audit, audit and post audit- Energy audit report- Elect	l en rical	ergy Me	au asu	dit- ring

Instruments: Power Analyser- Combustion analyser, fuel efficiency monitor, thermometercontact, infrared, pitot tube and manometer, water flowmeter, leak detector, tachometer and luxmeter-IE rules and regulations for energy audit Electricity act.

OUTCOMES:		After successful completion of the course students able to				
1.	Design tra	ction system				
2.	Design indoor and outdoor lightening system					
3.	Design dif	Design different heating and welding Machines.				
4.	Apply Ene	ergy conservation methods in various loads.				
5.	Perform er	nergy audit and prepare the report.				
TEXTE	BOOKS:					
1.	N.V.Suryanarayana, "Utilisation of Electric Power", Wiley Eastern Limited, New Age International Limited, 1993.					
2.	J.B.Gupta,	"Utilisation Electric power and Electric Traction", S.K.Kataria and Sons, 2000.				
3.	Paul O Callaghan,' Energy management' Mcgraw Hill, New Delhi.					
REFER	RENCES:					
1.	R.K.Rajpu	t, Utilisation of Electric Power, Laxmi publications Private Limited., 2007.				
2.	H.Partab, New Delhi	Art and Science of Utilisation of Electrical Energy", Dhanpat Rai and Co., ,2004.				
3.	C.L.Wadhwa, "Generation, Distribution and Utilisation of Electrical Energy", New Age InternationalPvt.Ltd., 2003.					
4.	S.Sivanagaraju, M.Balasubba Reddy, D.Srilatha, ' Generation and Utilization of Electrical Energy', Pearson Education, 2010.					
5.	'Fundame	ntals of electrical system', Bureau of Energy Efficiency.				
6.	www.bee-i	india.com				

17PTE	CEE704	PROJECT WORK	L	Τ	Р	С			
0 0 1									
OBJE	OBJECTIVES								
•	• To provide opportunity to explore a problem or issue of particular personal or professional interest.								
•	To address the problem or issue through focused study and applied research under the direction of a faculty member.								
•	• To synthesize and apply the knowledge and skills acquired in his/her academic program to real-world issues and problems.								
•	• To improve ability to think critically and creatively, to solve practical problems,								
•	To make	To make reasoned and ethical decisions, and to communicate effectively.							

It is intended to start the project work early in the seventh semester and carry out both design and fabrication of an Electrical and Electronic device whose working can be demonstrated. The design is expected to be completed in the seventh semester and the fabrication and demonstration will be carried out in the eighth semester.

The students in a group of 3 to 4 works on a topic approved by the head of the department under the guidance of a faculty member and prepare a comprehensive project report after completing the work to the satisfaction of the supervisor. The progress of the project is evaluated based on a minimum of three reviews in that any one review will be conducted with external examiner.

The review committee may be constituted by the Head of the Department. A project report is required at the end of the semester. The project work is evaluated based on oral presentation and the project report jointly by external and internal examiners constituted by the Head of the Department.

					TOTA	L:275 PH	RIODS
OUTCOMES:		On completion	On completion of this course, students will be able to				
1	1 Identify the real time Engineering problems in their day to day life.						
2	Apply the knowledge and skills acquired in their courses to a specific problem or issue						
3	Think critically and creatively to address and help solve these professional or social issues and to further development.						
4	Refine research skills and demonstrate their proficiency in written and oral communication skills.						
5	Take on the challenges of teamwork, prepare a presentation in a professional manner, and document all aspects of design work.						

LIST OF PROFESSIONAL ELECTIVES

17PTEPE	2001	S	OLID STATE DRIVES		L	T	Р	C	
		1			3	0	0	3	
OBJECT	IVES :								
•	To unde	erst	d steady state operation and transient dyn	namics of a mo	tor le	oad	systei	n.	
•	To stud qualitati	ly ve	and analyze the operation of the convert and quantitatively.	ter/chopper fe	ed do	c dı	ive, 1	ooth	
•	To study	y ai	understand the operation and performance	ce of AC moto	r dri	ves.			
•	To analy DC mot	yze ors	and design the current and speed controll rive.	ers for a close	ed lo	op s	solid s	state	
UNIT I	DF	RI	E CHARACTERISTICS				9		
Electric dri Dynamics: Selection of	ve–Equat accelerat motor	ion	governing motor load dynamics-steady deceleration, starting & stopping- typic	state stability al load torque	√ −m e cha	ulti ract	quad eristi	rant cs –	
UNIT II	CO	CONVERTER/CHOPPER FED DC MOTOR DRIVE					9		
Steady state drive–contin operations c	e analysis nuous and of convert	s o d d ter	the single and three phase converter fe continuous conduction–Time ratio and cu chopper fed drive.	d separately e arrent limit con	excite ntrol	ed I - 4	DC m quad	otor rant	
UNIT III	IN	INDUCTION MOTOR DRIVES					9		
Stator volta mod –voltag	ge contro ge/ currer	ol-e nt fe	ergy efficient drive-v/f control-constant inverter –closed loop control.	air gap flux -	- fiel	d w	/eake	ning	
UNIT IV	SY	SYNCHRONOUS MOTOR DRIVES					9		
V/f control a permanent r	V/f control and self- control of synchronous motor: Margin angle control and power factor control– permanent magnet synchronous motor.								
UNIT V DI		Γ V DESIGN OF CONTROLLERS FOR DRIVES					9		
Transfer fu speed feedt current con	nction fo back – an troller ar	or 1 rma nd s	C motor / load and converter – closed are voltage control and field weakenin eed controller-converter selection and cl	loop control g mode–Desig haracteristics.	with gn o	Cu f co	rrent ntroll	and lers;	
			ΤΟΤΑΙ	. : 45 PERIO	ODS	5			

OUTC	OMES:	After successful completion of the course students able to					
1.	1. Design converter/chopper fed dc motor drive						
2.	Design induction motor drive						
3.	Design s	ynchronous motor drive					
4.	Design c	ontrollers for drive					
TEXT	BOOKS	:					
1.	GopalK.	Dubey, Fundamentals of Electrical Drives, Narosa Publishing House, 1992					
2.	Bimal K.	Bose.Modern Power Electronics and AC Drives,Pearson Education, 2002					
3.	Vedam S	ubramanyam, "Thyristor Control of Electric Drives", Tata McGraw Hill, 2007					
4.	S.K.Pillai	, A First course on Electrical Drives, Wiley Eastern Limited, 1993.					
REFE	REFERENCES:						
1.	John Hind marshand A lasdain Renfrew, "Electrical Machines and Drives System, "Elsevier 2012						
2.	Shaahin Felizadeh, "Electric Machines and Drives", CRC Press (Taylor and Francis Group), 2013.						
3.	R.Krishn India, 20	an, Electric Motor & Drives: Modelling, Analysis and Control, Prentice Hall of 01					

17PTE	PE00	2 ADVANCED CONTROL SYSTEM	L	Τ	Р	C
		3	3	0	0	3
OBJE	CTIV	ES:				
•	То р	rovide knowledge on design in state variable form				
•	То р	rovide knowledge in phase plane analysis				
•	To g	ive basic knowledge in describing function analysis				
•	To st	udy the design of optimal controller				
•	To st	udy the design of optimal estimator including Kalman Filter				
UNIT	[STATE VARIABLE CONTROLLER DESIGN			9	1
Introduc Arbitrary principle	tion to y Pole :- serve	state Model- effect of state Feedback- Necessary and Sufficient -placement- pole placement Design- design of state Observer o design: -State Feedback with integral control.	Co rs-	ndi sep	tion arati	for on
UNIT 1	Π	PHASE PLANE ANALYSIS			9	ł
Features lineariza phase po	of lin tion C ortraits	ear and non-linear systems - Common physical non-linearities oncept of phase portraits – Singular points – Limit cycles – Co – Phase plane analysis of linear and non-linear systems – Isocline	– N ons e m	Metl struc	nods ction od.	of of
UNIT	III	DESCRIBING FUNCTION ANALYSIS			9	1
Basic co function	oncepts analys	s, derivation of describing functions for common non-linearities sis of non-linear systems – limit cycles – Stability of oscillations.	8 —	Des	cribi	ng
UNIT	IV	OPTIMAL CONTROL			9	
Introduc Regulato	tion – or – So	Continuous Time Linear State Regulator – Discrete Time lution of Ricatti's equation.	Li	nea	r St	ate
UNIT	V	OPTIMAL ESTIMATION			9	i
Optimal Kalman	estim Filter.	ation – Kalman- Bucy Filter-Solution by duality principle-Disc	cret	e sy	ysten	ns-
		TOTAL : 45 PERIC	DD	S		
OUTC	OMF	2S:				
After suc	ccessfi	al completion of the course students able to				
1.	I. Design in state variable form.					
2.		erstand the phase plane analysis.				
<u> </u>		on of optimal controller				
5	Desi	gn of optimal estimator including Kalman Filter				
	2001					

TEXT	BOOKS:							
1.	M.Gopal, "Digital Control & State Variable Methods", Tata McGraw Hill, 4th							
	EDITION, 2012							
2.	I.J. Nagrath and M.Gopal, "Control Systems Engineering", New Age International							
	Publishers, 5 th Edition, 2010.							
3.	Richard C. Dorf, "Modern control systems",8th Edition, Addison Wesley, 2012.							
REFEI	RNCES:							
1.	K.Ogatta, "Discrete time control system", PHI, 2010.							
2.	B.C.Kuo," Digital Control Systems", SRL Publication, 1997.							
3.	M. Gopal, "Control Systems Principles and Design", TATA Mcgraw hill, 3							
	Edition, 2010							
4.	M.Gopal," Modern control system theory", New Age International Publishers,							
	2002							

17PTEPE003		3	FIBRE OPTICS AND LASER INSTRUMENTS	L	T	Р	C
		1		3	0	0	3
OBJEC	CTIV	ES:					
•	То ех	kpose tl	he students to the basic concepts of optical fibres and the	eir p	rope	rties	
•	То рі	rovide	adequate knowledge about the Industrial applications of	opti	cal f	ibres	•
•	То ех	kpose tl	he students to the Laser fundame.				
•	То рі	ovide	adequate knowledge about Industrial application of laser	s.			
•	To appl	provi ication	de adequate knowledge about holography and is of Lasers.		M	ledic	al
UNIT I OPTICAL FIBRES AND THEIR PROPERTIES					9		
Principle fibre cha splicers -	s of lig racteri - Fibre	ght pro stics – termin	pagation through a fibre - Different types of fibres and - Absorption losses – Scattering losses – Dispersion – nation – Optical sources – Optical detectors.	theiı Con	r pro nect	perti ors a	es, ind
UNIT II INDUSTRIAL APPLICATION OF OPTICAL FIBRES						9	
Fibre op – Interf pressure	otic ser erome e, temp	nsors – tric me perature	Fibre optic instrumentation system – Different types of ethod of measurement of length – Moire fringes – M e, current, voltage, liquid level and strain.	f mo leasi	dula irem	itors ient	of
UNIT I	Π	LAS	ER FUNDAMENTALS			9)
Fundam laser – damping lasers.	ental Laser g – T	charact modes Sypes	teristics of lasers – Three level and four level lasers – – Resonator configuration – Q-switching and mode lo of lasers – Gas lasers, solid lasers, liquid lasers,	- Pr ckin sem	oper g – icon	ties Cavi duct	of ty or
UNIT I	V	INDU	USTRIAL APPLICATION OF LASERS			9)
Laser fo Atmosph material	Laser for measurement of distance, length, velocity, acceleration, current, voltage and Atmospheric effect – Material processing – Laser heating, welding, melting and trimming of material – Removal and vaporization.						
UNIT V HOLOGRAM AND MEDICAL APPLICATIONS					9)	
Hologra Hologra of lasers vocal ca	Holography – Basic principle - Methods – Holographic interferometry and application, Holography for non-destructive testing – Holographic components – Medical applications of lasers, laser and tissue interactive – Laser instruments for surgery, removal of tumors of vocal cards, brain surgery, plastic surgery, gynaecology and oncology.						
			TOTAL : 45 PER	ΙΟΙ	DS		

OUTC	OMES:						
After suc	ccessful completion of the course students able to						
1.	Understand the properties of optical fibre.						
2.	Measure Electrical quantities in industrial environment						
3.	Understand the fundamentals of Laser.						
4.	Use Laser for heating and welding in industry						
5.	Apply the knowledge of holograms for medical applications for treatment of disease.						
TEXT	BOOKS:						
1.	J.M. Senior, 'Optical Fibre Communication – Principles and Practice', Prentice Hall of India, 1985						
2.	J. Wilson and J.F.B. Hawkes, 'Introduction to Opto Electronics', Prentice Hall of India, 2001						
REFE	RNCES:						
1.	G. Keiser, 'Optical Fibre Communication', McGraw Hill, 1995.						
2.	M. Arumugam, 'Optical Fibre Communication and Sensors', Anuradha Agencies,2002						
3.	John F. Read, 'Industrial Applications of Lasers', Academic Press, 1978						
4	Monte Ross, 'Laser Applications', McGraw Hill, 1968						

17PTEPE004		4	BIO MEDICAL INSTRUMENTATION	L	T	P	C
				3	0	0	3
OBJEC	CTIV	ES:					
•	To In	troduce	e Fundamentals of Biomedical Engineering				
•	To In	troduce	e various bio potential electrodes used in Biomedical Eng	inee	ring		
•	To stu	udy the	heart system and its measurements				
•	To stu	udy the	e measurement of electrical activity in neuromuscular syste	m aı	nd b	rain	
•	To ha	ive a ba	asic knowledge in life assisting and therapeutic devices				
UNIT I	[FUN ENC	DAMENTALS OF BIOMEDICAL GINEERING			9	
Brief de respirato potential of bone	escripti ory sys ls. Basi - Biom	on of tems; ic com echani	musculoskeletal, endocrine, gastrointestinal, nervous, the nature of bioelectricity, action events of nerve; th ponents of a biomedical system-Kidney and blood flow cs of soft tissues - Basic mechanics of spinal column and	circ e or - Bi liml	ulato rigin ome os.	ory a of chan	and bio nics
UNIT I	Ι	BIO	POTENTIAL ELECTRODES			9)
Signal a preparati Internal polarizat	Signal acquisition; electrodes for biophysical sensing; electrode-electrolyte interface; preparation, electrode-skin interface and motion artifact; surface electrodes; microelectro Internal electrodes; electrode arrays; electrodes for electric stimulation of tissues; electrode polarization, electrical interference problems in biopotential measurement; electrical safety					ce; s ctrod lectro fety.	kin les; ode
UNIT I	III	THE	E HEART SYSTEM AND ITS MEASUREMEN	NTS	5	9)
The hea system; common spiromet measure	rt; elec the E -mode ter – ment o	ctro co CG pr and o Phot f blooc	onduction system of the heart; the ECG waveform; th reamplifier; ECG machines; Cardiac monitors; Trans other interference-reduction circuits, Measurement of to Plethysmography, Body Plethysmography, finge 1 pCO2, pO2	e sta ient bloc er-tip	anda pro od p o ox	urd le otecti ressu tyme	ead on; 1re, ter,
UNIT I	UNIT IV MEASUREMENT OF ELECTRICAL ACTIVITY IN NEUROMUSCULAR SYSTEM AND BRAIN				9)	
Neuron p EEG ele simplific and sleep	Neuron potential; muscle potential; electromyography (EMG); electroencephalography (E EEG electrodes and the 10-20 system; EEG amplitude and frequency bands; the EEG syst simplified block diagram; preamplifiers and EEG system specifications; EEG diagnostic and sleep patterns; visual and auditory evoked potential recordings; EEG system artifacts.					(EE) yster tic u ts.	G); n – Ises
UNIT	V	IMA ROF	GING, LIFE ASSISTING, THERAPEUTIC A BOTIC DEVICES	ND		9)
Compute Ventilate	Computer tomography – MRI – Ultrasonography – Endoscopy ,Pacemakers – Defibrillato Ventilators – Nerve and muscle stimulators – Diathermy – Heart – Lung machine – Au						rs – dio

	D' 1	I'd d' IOOU d' d'				
meters – Dialysers – Lithotripsy - ICCU patient monitoring system - Nano Robots - Robotic surgery – Advanced 3D surgical techniques- Orthopedic prostheses fixation.						
			TOTAL : 45 PERIODS			
OUTC	OMES:	After successful completion of the	course students able to			
1.	Know elec	trical signal production and its con	duction in human body.			
2.	Select prop	per electrode for signal pick up fror	n human body			
3.	Trace card	iac waveform and characterise its c	condition			
4.	Trace brain	n waveform and characterise its con	ndition			
5.	5. Know the different life saving, therapeutic and imaging bio medical systems its importance to patients					
TEXT	BOOKS:					
1.	Leslie Cro India, New	mwell, Biomedical Instrumentation v Delhi,2007.	and Measurement, Prentice hall of			
2.	Joseph J.c. Technolog	arr and John M. Brown, Introductio y, John Wiley and sons, New York	on to Biomedical Equipment , 4th Edition, 2012.			
3.	Khandpur Delhi, 2nd	R.S, Handbook of Biomedical Instr Edition, 2003	rumentation,, Tata McGraw-Hill, New			
REFEI	RENCES:					
1.	John G. W sons, New	ebster, Medical Instrumentation Ap York, 1998	oplication and Design, John Wiley and			
2.	Duane Kn	udson, Fundamentals of Biomechar	nics, Springer, 2nd Edition, 2007.			
3.	<i>Ed. Joseph D. Bronzino, The Biomedical Engineering Hand Book, Third Edition, Boca Raton, CRC Press LLC, 2006.</i>					
4.	M.Arumug	am, 'Bio-Medical Instrumentation	', Anuradha Agencies, 2003.			

17PTEPE005		FUNDAMENTALS OF NANOSCIENCE	L	T	P	C	
			3	0	0	3	
OBJEC	TIVES:						
•	To learn ab	out basis of nanomaterial science					
•	To learn ab	out nanomaterial preparation methods					
•	To learn ab	out basis of nanomaterial science, preparation method and type	es				
•	To learn ab	out nanomaterial characterization techniques					
•	To study va	arious application fields of nano materials					
UNITI		INTRODUCTION				9	
Nanosca Classific multi-lay Optical, (qualitat	le Science a cations of na vered materia Magnetic iveonly).	and Technology-Implications for Physics, Chemistry, Biolog no structured materials-nano particles-quantum dots,nano w uls.Length Scales in volved and effecton properties: Mecha and Thermal properties.Introduction to properties and	gy a vires anica mot	und 1 -ultra al, ivati	Engi a-thi Ele on fe	neering- n films- ectronic, or study	
UNITII		GENERAL METHODS OF PREPARATION				9	
Bottom- Colloida Molecula	up Synthesi 1 routes, Se ar Beam Epit	s-Top-down Approach: Co-Precipitation, Ultrasonication, Elf-assembly, Vapour phase deposition, MOCVD, Sputaxy, Atomic Layer Epitaxy, MOMBE.	Mec terir	hani 1g,	cal Evap	Milling, ooration,	
UNITII	I	NANO MATERIALS	NANO MATERIALS				
Nano fo Nanotub ablation, ZnO, Tiu applicati	orms of Car es(SWCNT) CVD route O2,MgO,ZrC ons-Quantun	bon-Buckminster fullerene-graphene and carbon nano tube and Multiwall carbon nanotubes(MWCNT)-methods of synthe s, Plasma CVD), structure-property Relationships application 02, NiO, nano alumina, CaO, AgTiO2, Ferrites, Nano clays- n wires, Quantum dots-preparation, properties and applications.	e,Sin esis(s-Na func	gle arc-g anon tiona	wall grow netal aliza	carbon th, laser oxides- tion and	
UNITIV	7	CHARACTERIZATION TECHNIQUES				9	
X-ray d Electron STM,SN	iffraction tec Microscopy IOM,ESCA,S	chnique, Scanning Electron Microscopy- environmental tech including high-resolution imaging ,Surface Analysis tech SIMS-Nano indentation.	nniqu nniqu	ues,] ues	Frans -AF	mission M,SPM,	
UNITV	UNITV APPLICATIONS			9			
NanoInf Nanobio drug del	NanoInfoTech: Information storage- nano computer,molecular switch,super chip,nanocrystal, Nanobiotechlogy:nano probes in medical diagnostics and biotechnology,Nano medicines, Targetted drug delivery,Bioimaging-Micro Electro Mechanical Systems (MEMS), Nano Electro Mechanical						

Syste: sunba	ms(NEMS)-N arrier products	lano sensors, nano crystalline silver for bacterial inhibition, Nano particles for - In Photostat, printing, solar cell, battery.					
		TOTAL:45PERIODS					
OUT	COMES:	After successful completion of the course students able to					
1.	Familiarize	about the science of nano material					
2.	Demonstrate	e the preparation of nano material					
3.	Develop knowledge in characteristic nano material						
4.	Apply Nano Science into the applications						
TEX	TBOOKS:						
1.	A.S.Edelstei Application	in and, R.C.Cammearata,eds.,"Nano materials: Synthesis,Properties and s",Institute of Physics Publishing,Bristol andPhiladelphia, 1996					
2.	NJohn Dina Cambridge	ardo,"Nano scale Charecterisation of surfaces &Interfaces",2 nd edition, Weinheim e,Wiley-VCH,2000.					
REF	ERENCES	S:					
1.	G Timp, "No	ano technology",AIP press/Springer,1999					
2.	Akhlesh Lak and Simulat	chtakia, "The Hand Bookof NanoTechnology,Nanometer Structure, Theory,Modeling ions".Prentice-Hall of India(P) Ltd,NewDelhi,2007.					

17PTEPE006			POWER QUALITY	L	Τ	P	С
				3	0	0	3
OBJEC	TIVES	:					
•	To intr	oduo	e the power quality problem				
•	To educate on production of voltages sags, over voltages and harmonics and methors of control.						
٠	To stud	ly o	vervoltage problems				
•	To stud	ly th	e sources and effect of harmonics in power system				
•	To imp	oart l	mowledge on various methods of power quality monitori	ing.			
UNITI	Ι	NTI	RODUCTIONTOPOWER QUALITY				9
Variation Manufac	turers As	ssoc	TAGE SAGS AND INTERRUPTIONS	susin	less	Equ	9
Sources source – starting. Static tra	of sags analysis Estimati ansfer sw	and and on o itcho	interruptions- estimating voltage sag performance. The calculation of various faulted condition. Voltage sag du of the sag severity- mitigation of voltage sags, active as and fast transfer switches.	heve le to serie	nin's indu s co	s equ iction mper	ivalent 1 motor 1 motors.
UNITII	I C	V E	RVOLTAGES				9
Sources swells -	of over v surge arr	volta ester	ges - Capacitor switching – lightning - ferro resonance. s - low pass filters - power conditioners. Lightning protec	Miti ction	gatio – sh	on of ieldi	`voltage ng - line
Arresters transients	- protec , PSCAE	tion and	of transformers and cables. An introduction to compu- EMTP.	ıter	anal	ysis	tools for
UNITIV	7 E	IAR	MONICS				9

Harmonic sources from commercial and industrial loads, locating harmonic sources. Power system response characteristics- Harmonics Vs transients. Effect of harmonics- harmonic distortion-voltage and current distortion - harmonic indices - inter harmonics – resonance. Harmonic distortion evaluation-devices for controlling harmonic distortion-passive and active filters.

UNITV POWER QUALITYMONITORING
Monitoring considerations - monitoring and diagnostic techniques for various power quality problems - modelling of power quality (harmonics and voltage sag) problems by mathematical simulation tools - power line disturbance analyzer – quality measurement equipment - harmonic / spectrum analyzer - flicker meters -Applications of expert systems for power quality monitoring.

TOTAL:45PERIODS

OUTCOMES:

After successful completion of the course students able to

 Classify the power quality issues. Explain IEEE and IEC standards of power quality. Analyze and mitigate the voltage sag, over voltages and interruptions. Analyze the harmonic distortion and design the components to reduce harmonics. Explain power quality monitoring devices. 		
 Explain IEEE and IEC standards of power quality. Analyze and mitigate the voltage sag, over voltages and interruptions. Analyze the harmonic distortion and design the components to reduce harmonics. Explain power quality monitoring devices. 	1.	Classify the power quality issues.
 Analyze and mitigate the voltage sag, over voltages and interruptions. Analyze the harmonic distortion and design the components to reduce harmonics. Explain power quality monitoring devices. 	2.	Explain IEEE and IEC standards of power quality.
 4. Analyze the harmonic distortion and design the components to reduce harmonics. 5. Explain power quality monitoring devices. 	3.	Analyze and mitigate the voltage sag, over voltages and interruptions.
5. Explain power quality monitoring devices.	4.	Analyze the harmonic distortion and design the components to reduce harmonics.
	5.	Explain power quality monitoring devices.

TEXTBOOKS:

1.	Roger.C.Dugan, Mark.F.Mc Granagham,Surya Santoso,H.Wayne Beaty,'Electrical Power Systems Quality' McGrawHill,2003.
2.	Edward.F.Fucksand M.A.S.Masoum,"Power Quality in Power System and Electrical Machines," Elsevier Academic Press, 2013.
3.	J.Arrillaga, N.R.Watson, S.Chen, 'Power System Quality Assessment', Wiley, 2011.

REFERENCES:

1.	G.T.Heydt, 'Electric Power Quality', 2 nd Edition. (West Lafayette, IN, Starsina Circle Publications, 1994).
2.	M.H.JBollen, 'Understanding Power Quality Problems: Voltage Sags and Interruptions', (New York: IEEEPress, 1999). (For Chapters 1, 2, 3 and 5)
3.	G.J.Wakileh, "Power Systems Harmonics–Fundamentals, Analysis and Filter Design, "Springer 2007.
4.	E.Aehaand M.Madrigal, "Power System Harmonics, Computer Modelling and Analysis, "Wiley India, 2012.
5.	R.S.Vedam, M.S.Sarma, "Power Quality–VAR Compensation in Power Systems," CRC Press 2013.
6.	C.Sankaran, 'Power Quality', CRC press, Taylor&Francis group, 2002.

17PTEPE007		SPECIAL ELECTRICAL MACHINES	L	Τ	Р	C
			3	0	0	3
OBJEC	CTIVES	:				
•	To imp perform	art knowledge on the Construction, principle of operationance of stepping motors.	n, o	cont	rol	and
•	To imp perform	art knowledge on the Construction, principle of operation ance of switched reluctance motors.	n, o	cont	rol	and
•	To imp perform	art knowledge on the Construction, principle of operation ance of permanent magnet brushless D.C. motors.	n, o	cont	rol	and
•	• To impart knowledge on the Construction, principle of operation and performa Permanent magnet synchronous motors.				ince	of
•	• To impart knowledge on the Construction, principle of operation and performan Universal, repulsion motors and linear induction motors.					
UNIT I	UNIT I STEPPER MOTORS				ļ)
Construc – Single linear an	ctional fea e and mu alysis – (atures – Principle of operation – Variable reluctance motor – lti-stack configurations – Theory of torque predictions – L Characteristics – Drive circuits	Hy Jine	brid ar a	l mo nd n	otor on-
UNIT I	Π	SWITCHED RELUCTANCE MOTORS			ļ)
Construc Non-line	ctional fe ear analys	atures – Principle of operation – Torque prediction – Powe is –Inductance Profile- Microprocessor based control – Cha	er c arac	ontr teris	olleı tics.	s –
UNIT	II	PERMANENT MAGNET BRUSHLESS D.C. MOTORS			ļ	•
Principle Power co	e of oper ontrollers	ation – Types – Magnetic circuit analysis – EMF and torq – Motor characteristics and control.	ue	equa	ation	s –
UNIT IV		PERMANENT MAGNET SYNCHRONOUS MOTORS			ļ	•
Principle of operation – EMF and torque equations – Reactance – Phasor diagram – F controllers - Converter - Volt-ampere requirements – Torque speed characterist Microprocessor based control.						wer s -
UNIT	V	COMMUTATOR MOTORS			ļ)
~				-		

Construction – Principle of operation- Characteristics – Applications – Universal, repulsion motors and linear induction motors.

			TOTAL : 45 PERIODS	
OUTCO	MES:	After successful completion of the	course students able to	
1.	Use step	per motor for various step angle		
2.	Control t	he speed of switched reluctance mo	otor using microprocessor	
3.	Control t	he speed of the BLDC motors using	g power converters	
4.	Control t	he speed of PM synchronous motor	r	
5.	Identify a	and characterise commutator motor	for applications	
TEXT B	OOKS:			
1.	K.Venkataratnam, 'Special Electrical Machines', Universities Press (India) Private Limited, 2008.			
2.	T.Kenjo, 'Stepping Motors and Their Microprocessor Controls', Clarendon Press London,1984.			
3.	E.G.Jana 2014.	rdanan, 'Special electrical machines	s', PHI learning Private Limited, Delhi,	
REFER	ENCES:			
1.	T.J.E.Mil Clarendo	ller, 'Brushless Permanent Mag on Press, Oxford, 1989.	net and Reluctance Motor Drives',	
2.	T.Kenjo, London,	<i>'Stepping Motors and Their Micro</i> 1984.	oprocessor Controls', Clarendon Press	
3.	P.P.Aear Perengri	nley, 'Stepping Motors–A Guide nus London, 1982.	to Motor Theory and Practice', Peter	
4.	T.Kenjoa Press, Lo	nd S.Nagamori, [·] Permanent Magne ondon, 1988.	t and Brushless DC Motors', Clarendon	

17PTEPE	008	TOTAL QUALITY MANAGEMENT	L	Т	Р	C	
		·	3	0	0	3	
OBJECTI	VES:						
•	To int	roduce quality definitions, quality statements and barriers to	o TÇ	M			
•	To fac	cilitate the understanding of Quality Management principles	and	pro	cess.		
• To impart knowledge on Total Quality Management tools							
To impart knowledge on Total Quality Management techniques							
•	To edu	ucate on various quality systems and its benefits					
UNIT I	INTI	RODUCTION			9		
Introduction product and Deming,Jur orientation,	n-Need d servio an and Custom	for quality- Evolution of quality-Definitions of qualit ce quality- Basic concepts of TQM-TQM Framework- Crosby-Barriersto TQM –Quality statements- Customer er satisfaction, Customer complaints, Customer retention- C	y-Di Cont foci osts	men ribu us-C of q	sions tions custor uality	of of mer y.	
UNIT II	TQM	I PRINCIPLES			9		
Leadership- Empowerm appraisal-C Partnering,	Strategi ent,Tea ontinuo Supplie	ic quality planning, Quality Councils-Employee involver m and Teamwork, Quality circles Recognition and Rewa us process improvement-PDCA cycle,5S,Kaizen-Suppl r selection, Supplier Rating.	nent Ird, 1 lier	-Mo Perfe part	tivat orma nersl	ion, nce 1ip-	
UNIT III	TQM	I TOOLS AND TECHNIQUES I			9		
The seven Methodolog Reason to b	traditio gy, app enchma	onal tools of quality-New management tools- Six si lications to manufacturing, service sector including IT- rk, Benchmarking process- FMEA-Stages, Types.	gma Beno	:C hr	once	pts, ng-	
UNIT IV	TQN	I TOOLS AND TECHNIQUES II			9		
Control Charts- Process Capability-Concepts of Six Sigma-Quality Function Development (QFD)- Taguchi quality loss function - TPM- Concepts, improvement needs-Performance measures.							
UNIT V	QUA	LITY SYSTEMS			9		
Need for ISO 9000-ISO9001-2008 Quality System-Elements, Documentation, Quality Auditing- QS 9000 - ISO 14000 - Concepts, Requirements and Benefits - TQM Implementation in manufacturing and service sectors.							

	TOTAL:45PERIODS					
OUTCON	MES:	After successful completion of the	e course students able to			
1.	Explain	about TQM Principles				
2.	Apply t	he tools of quality management to m	anufacturing and services processes			
3.	Apply processe	Apply the techniques of quality management to manufacturing and services processes				
4.	Underst	tand the concepts of Quality System	18			
ТЕХТВО	TEXTBOOKS:					
1.	Dale H Asia,Th	H.Besterfiled, etat.,"Total quality hird Edition, Indian Reprint,2006.	Management", Pearson Education			
REFERE	NCES:					
1.	James K Quality'	R.Evans and William M.Lindsay, ", 8 th Edition, First Indian Edition, C	"The Management and Control of Cengage Learning, 2012.			
2.	Suganth (India)	hi.L and Anand Samuel, "Total Q Pvt.Ltd.,2006.	Quality Management", Prentice Hall			
3.	Janakir Prentic	aman. B and Gopal .R.K., "Total Qa e Hall (India) Pvt. Ltd., 2006.	uality Management - Text and Cases",			

17PTEPE009		9	POWER SYSTEM DYNAMICS	L	T	P	C
				3	0	0	3
OBJE	CTIV	ES:					
•	To int	roduc	e the basics of dynamics and stability problems				
•	• To educate on modeling of synchronous machines						
•	• To educate on the excitation system and speed-governing controllers.						
•	To str excita	udy s tion s	small signal stability of a single-machine infinite buystem and power system stabilizer.	is s	ystei	m w	/ith
•	To edu	ucate	on the transient stability simulation of multi machine pov	ver s	yste	m.	
UNIT	Ι	INT	RODUCTION			9)
Concept between Need fo	t and in trans r reduce	mport sient a ed mo	cance of stability in power system operation and des and dynamic stability-complexity of stability problem i dels- stability of interconnected systems.	ign- n la	dis rge s	tinct syste	ion m-
UNIT	II	MA	CHINE MODELING			9)
Park's t normali models(transfor zing the one axi	matio e equ s and	n- flux linkage equations, current space model-per u ations- equivalent circuit- flux linkage state space mo constant flux linkage)- steady state equations and phaso	nit del- r dia	conv Sin agrar	/ersion nplif ns.	on- ied
UNIT	III	MA	CHINE CONTROLLERS			9)
Exciter and voltage regulators- function of excitation systems, types of excitation systems- typical excitation system configuration-block diagram and state space representation of IEEE type1 excitation system-saturation function- stabilizing circuit-Function of speed governing systems-block diagram and state space representation of IEEE mechanical hydraulic governor and electrical hydraulic governors for hydro turbines and steam turbines.							

UNIT IV TRANSIENT STABILITY

State equation for multi machine simulation with one axis model-transient stability simulation of multi machine power system with one axis machine model including excitation system and speed governing system using R-K method of fourth order (Gill's technique)-power system stabilizer.

UNIT V DYNAMIC STABILITY

System response to small disturbances- Linear model of the unregulated synchronous machine and its modes of oscillation-regulated synchronous machine- distribution of power

9

9

impact- linearization of the load equation for the one machine problem – Simplified linear model-effect of excitation on dynamic stability- approximate system representation-supplementary stabilizing signals- dynamic performance measure- small signal performance measures.

TOTAL : 45 PERIODS

OUTO	COMES:	After successful completion of the course students able to				
1.	Analyse vario	ous types of stability				
2.	Design synch	ronous machines based on flux in power system.				
3.	Design excita	tion systems and speed regulation systems				
4.	Analyse trans	ient stability and design power system stabilizer.				
5.	Analyse the d	lynamic stability.				
ТЕХТ	BOOKS:					
1.	Kundur.P, "F	Power System Stability and Control", McGraw Hill Inc., USA, 1994				
2.	Anderson.P.N Publications,	Anderson.P.M and Fouad.A.A, "Power System Control and Stability" Galgotia Publications, New Delhi, 2003				
3.	R.Ramanujan	n, "Power System Dynamics – Analysis and Simulation", PHI, 2009.				
REFE	CRENCES:					
1	Pai. M.A and Education As	Sauer.W, "Power System Dynamics and Stability", Pearson ia, India, 2002.				
2.	JamesA.Momo with Artificial	h, Mohamed.E.EI-Hawary. "Electric Systems, Dynamics and Stability Intelligence applications", Marcel Dekker, USA First Edition, 2000.				
3.	C.A. Gross, "Po	wer System Analysis, "WileyIndia,2011.				
4.	B.M.Weedy, B Systems", Wile	J.Lory, N.Jenkins, J.B.Ekanayake and G.Strbac," Electric Power y India, 2013.				
5.	K.Umarao, "Co	omputer Techniques and Models in Power System," I.K.International,				

^{5.} K.Umarc 2007.

17PTEPE010		SYSTEM IDENTIFICATION AND ADAPTIVE CONTROL	L	T	Р	С	
	I		3	0	0	3	
OBJECT	IVES:						
•	To introd	uce Non parametric methods					
•	To impart knowledge on parameter estimation method.						
•	To impar	knowledge on Recursive identification methods					
•	To impar	knowledge on Adaptive control schemes					
•	To introd	uce stability, Robustness and Applications of adaptive cont	rol n	neth	od		
UNIT I	NON P	ARAMETRIC METHODS				9	
Non parar analysis	netric me	thods: Transient analysis-frequency analysis-Correlation	on	anal	ysis-	-Spectral	
UNIT II	PARA	METER ESTIMATION METHODS				9	
Least squa parameter prediction identificati instrument	re estima estimates methods– on metho al variable	tion-best linear unbiased estimation under linear cons for linear regression models-prediction error methods optimal prediction – relation between prediction error ods-theoretical analysis- Instrumental variable methods methods-Input signal design for identification.	strain : r me ods:	nts– des ethoo De	upda scrip ds ai scrip	ting the tion of nd other otion of	
UNIT III	RECU	RSIVE IDENTIFICATION METHODS				9	
The recurs prediction Identifiabili	The recursive least square method –there cursive instrumental variable methods- there cursive prediction error methods–Maximum likelihood. Identification of systems operating in closed loop: Identifiability considerations–direct identification–indirect identification.						
UNIT IV ADAPTIVE CONTROL SCHEMES						9	
Introduction –Types of adaptive control–Gain scheduling controller–Model reference control schemes–Self tuning controller–MRAC and STC: Approaches–The Gradient a Lyapunov functions– Passivity theory– pole placement method–Minimum variance Predictive control.						adaptive proach– ontrol –	
UNIT V	ISSUES IN ADAPTIVE CONTROL AND APPLICATIONS					9	

Stability- Convergence-Robustness-Applications of adaptive control.

TOTAL:45PERIODS

OUTCOMES:		After successful completion of the course students able to					
1.	Apply non	Apply non parametric methods to control problems					
2.	Apply para	meter estimation methods to control problems					
3.	Apply recu	rsive identification methods to control problems					
4.	Apply adap	tive control schemes to control problems					
TEXT	BOOKS:						
1.	Soder Stor 1989.	rm T and Peter Stoica, "System Identification", Prentice Hall International,					
2.	Astrom,K.J. and Wittenmark,B.," Adaptive Control",Pearson Education,2 nd Edition,2001						
3.	Sastry,S. and Bodson,M.," Adaptive Control–Stability,Convergence and Robustness",Prentice Hall inc.,New Jersey,1989.						
REFE	RENCES:						
1.	LjungL,Sys	tem Identification: Theoryfor theuser, Prentice Hall, Engle wood Cliffs, 1987.					
2.	Bela.G.Lipt Handbook.,	ak., "Process Control and Optimization"., Instrument Engineers' volume 2, CRC press and ISA, 2005.					
3.	WilliamS.L 2011.	evine, "Control Systems Advanced Methods, the Control Handbook, CRC Press,					

17PTEPE011		PRINCIPLES OF MANAGEMENT	L	Τ	Р	C
			3	0	0	3
OBJEC	TIVES:					<u> </u>
•	To enable functions principle	le the students to study the evolution of Managements and principles of management and to learn the app s in an organization.	t, to lica	stu tion	idy 1 of 1	the the
•	To enabl	e the students to study planning process and planning type	s.			
•	To enabl	e the students to study the organization structure.				
•	To enable	e the students to study the leadership and process of comm	nuni	catic	on.	
•	To enabl	e the students to study the System and process of control	lling	.		
UNIT I		INTRODUCTION TO MANAGEMENT AND ORGANIZATIONS	D		9	
Definition managers relations, proprietor culture an	of Mana - manage system ar ship, par d Environ	agement – Science or Art – Manager Vs Entreprene rial roles and skills – Evolution of Management – Sci ad contingency approaches – Types of Business organ tnership, company-public and private sector enterprises ment – Current trends and issues in Management.	eur ienti nizat - O	- ty fic, tion rgar	/pes hum - So nizati	of nan ole ion
UNIT II		PLANNING		9		
Nature an setting ob and Techr	d purpose jectives – niques– De	of planning – planning process – types of planning policies – Planning premises – Strategic Management – ecision making steps and process.	– c Plar	bjec	ctives g To	s – ols
UNIT II	Ι	ORGANISING			9	
Natureandpurpose–Formalandinformalorganization–organizationchart–organizationst types – Line and staff authority– departmentalization–delegation of authority–central and decentralization – Job Design - Human Resource Management – HR Planning, Recruitment,selection,TrainingandDevelopment,PerformanceManagement,Careerplan dmanagement					uctur zatio ninga	re– n an
UNIT IV DIRECTING		DIRECTING			9	
Foundations of individual and group behavior motivational techniques – job satisfaction – theories of leadership – communication – communication – effective communication – co		lividual and group behaviour – motivation – motivat ques – job satisfaction – job enrichment – leadershi ship – communication – process of communication fective communication – communication and IT.	tion p –	the typ bar	ories bes a rier	ind in
UNIT V		CONTROLLING			9	
L		1		<u> </u>		

System and process of controlling – budgetary and non-budgetary control techniques – use of computers and IT in Management control – Productivity problems and management – control and performance – direct and preventive control – reporting.						
		TOTAL : 45 PERIODS				
OUT	COMES:	After successful completion of the course students able to				
1.	Know how to	b become manager and differentiate with entrepreneur.				
2.	Ability to bec	come a good planner and successively executing the scheme.				
3.	Motivate the	individuals (workers) to finish the task.				
4.	Control the p	rocess as leader.				
TEX	TEXT BOOKS:					
1.	Stephen P. Ro 10th Edition,	obbins & Mary Coulter, "Management", Prentice Hall (India) Pvt. Ltd., 2009.				
2.	JAF Stoner, I 6th Edition,2	Freeman R.E and Daniel R Gilbert "Management", Pearson Education, 004				
REF	ERENCES:					
1.	Stephen A. Ro Management	obbins & David A. Decenzo & Mary Coulter, "Fundamentals of "Pearson Education, 7th Edition, 2011.				
2.	Robert Kreitr	ner & Mamata Mohapatra, "Management", Biztantra, 2008.				
3.	Harold Koor Hill,1998	ntz & Heinz Weihrich "Essentials of Management" Tata McGraw				
4.	Tripathy PC	& Reddy PN, "Principles of Management", Tata Mcgraw Hill, 1999.				

17PTEPE012

HIGH VOLTAGE DIRECT CURRENT TRANSMISSION

L	Τ	Р	С
3	0	0	3

OBJECTIVES:

•	To understand the concept, planning of DC power transmission and comparison with AC					
	Power transmission.					
•	To analyze HVDC converters.					
•	To study about the HVDC system control.					
•	To analyze harmonics and design of filters.					
•	To model and analysis the DC system under study state.					
UNIT I	INTRODUCTION	9				

DC Power transmission technology–Comparison of AC and DC transmission–Application of DC transmission–Description of DC transmission system– Planning for HVDC transmission–Modern trends in HVDC technology–DC breakers–Operating problems–HVDC transmission based on VSC–Types and applications of MTDC systems.

UNIT II ANALYSIS OF HVDC CONVERTERS

Line commutated converter-Analysis of Graetz circuit with and without overlap-Pulse number – Choice of converter configuration–Converter bridge characteristics –Analysis of a 12 pulse converters–Analysis of VSC topologies and firing schemes.

UNIT III

CONVERTER AND HVDC SYSTEM CONTROL

9

9

Principles of DC link control–Converter control characteristics–System control hierarchy–Firing angle control–Current and extinction angle control–Starting and stopping of DC link–Power control– Higher level controllers–Control of VSC based HVDC link.

UNIT IV	REACTIVE POWER AND HARMONICS CONTROL	9

Reactive power requirements in steady state–Sources of reactive power–SVC and STATCOM – Generation of harmonics–Design of AC and DC filters–Active filters.

UNIT V	POWER FLOWANALYSIS IN AC/DC SYSTEMS	9
--------	-------------------------------------	---

Per unit system for DC quantities-DC system model-Inclusion of constraints-Power flow analysis Case study.

		TOTAL:45PERIODS
OUTO	COMES:	After successful completion of the course students able to
1.	Understan	d the concepts of DC transmission Technology
2.	Apply and	Analysis of HVDC Converters
3.	Explain ab	out HVDC system control
4.	Explain ab	out Reactive Power control
5.	Explain ab	out Harmonics control
TEXT	BOOKS:	
1.	Padiyar,K. Ltd.,NewD	R., "HVDC power transmission system", New Age International (P) belhi, Second Edition, 2010.
2.	Edward W London,Sy	ilson Kimbark,"Direct Current Transmission", Vol.I, Wiley interscience, NewYork, dney, 1971.
3.	Arrillaga,	J., "High Voltage Direct Current Transmission", Peter Pregrinus, London, 1983.
REFE	RENCES	
1.	KundurP	., "Power System Stability and Control", McGraw-Hill, 1993.
2.	Colin A Transmis,	damson and Hingorani NG, "High Voltage Direct Current Power sion", Garraway Limited, London, 1960
3.	Rakosh L Internatio	Das Begamudre, "Extra High Voltage AC Transmission Engineering", New Age onal (P)Ltd.,NewDelhi,1990.

17PTEPE013		POWER SYSTEM TRANSIENTS	L	Τ	P	C
			3	0	0	3
OBJECT	IVES:			1		
٠	To study	the importance, casues and effectys of transients				
•	To study the generation of switching transients and their control usin theoretical concept.					
•	To study	the mechanism of lighting strokes and the production of	light	ting	surge	es.
•	To study	the propagation, reflection and refraction of travelling w	aves			
•	To study rejection	the impact of voltage transients caused by faults, circu on integrated power system.	it bro	eake	r act	ion, load
UNIT I INTRODUCTION					9	
Review an sine wave Different study of tr	nd importa excitation types of p ansients in	nce of the study of transients-causes for transients. RL of -double frequency transients-basic transforms of the RI ower system transients- effect of transients on power system planning.	circu .C ci syste	it tra ircui ems-	insie t trai -role	nt with nsients. of the
UNIT II	SWITC	CHING TRANSIENTS				9
Over volta interruptin voltage ac suppressio source reg multiple re	ages due tr g the resis ross the l n - curren ulation - c striking tra	o switching transients - resistance switching and the tor current - load switching and equivalent circuit - wa oad and the switch - normal and abnormal switchin t chopping - effective equivalent circuit. Capacitance capacitance switching with a restrike, with multiple rest unsients - ferro resonance.	equi vefo g tra swita trike	valer rms ansie ching s. Ill	nt ci for t nts. g - e ustra	rcuit for transient Current effect of ation for
UNIT III	LIGHT	NING TRANSIENTS				9

Review of the theories in the formation of clouds and charge formation-rate of charging of thunder clouds-mechanism of lightning discharges and characteristics of lightning strokes-model for lightning stroke- factors contributing to good line design- protection using ground wires-tower footing resistance- Interaction between lightning and power system.

UNIT IV TRAVELING WAVES ON TRANSMISSION LINES	UNIT IV	9
--	---------	---

Computation of transients-transient response of systems with series and shunt lumped parameters and distributed lines. Traveling wave concept- step response- Bewely's lattice diagram-standing waves and natural frequencies- reflection and refraction of travelling waves.

UNIT V TRANSIENTS IN INTEGRATED POWER SYSTEM

9

The short line and kilometric fault- distribution of voltages in a power system-Line dropping and load rejection- voltage transients on closing and reclosinglines- over voltage induced by faults-switching surges on integrated system Qualitative application of EMTP for transient computation.

TOTAL:45PERIODS

OUTCOMES:		After successful completion of the course students able to				
1.	Explain	the causes and analyse the switching transients				
2.	Explain	the lightning transients and protection methods.				
3.	Explain	the effect of travelling waves on transmission lines.				
4.	Explain	the effect of transient in integrated power system.				
ТЕХТВС	OOKS:					
1.	Allan Scienc	Greenwood, Electrical Transients in Power Systems', Wiley Inter e, New York, 2 Edition, 1991.				
2.	Pritindra Chowdhari, "Electromagnetic transients in Power System", John Wileyand SonsInc., Second Edition, 2009					
3.	C.S.Indulkar, D.P.Kothari, K.Ramalingam, 'Power System Transients–A statistical approach', PHI Learning Private Limited, Second Edition, 2010					
4.	R.D. Begamudre, "Extra High Voltage AC Transmission Engineering", NewAge International.					
REFERF	ENCES :					
1.	M.S.Na Edition,	iduandV.Kamaraju, 'High Voltage Engineering', Tata McGraw Hill,Fifth 2013.				
2.	R.D.Begamudre, 'Extra High Voltage AC Transmission Engineering', WileyEastern Limited, 1986.					
3.	Y.Hase	e,Handbook of Power System Engineering, "Wiley India,2012.				
4.	J.L.Kirtley, "Electric Power Principles, Sources, Conversion, Distribution and use," Wiley, 2012.					

17PTEPE014	MICRO ELECTRO MECHANICAL SYSTEMS	L	Τ	Р	C
		3	0	0	3
OBJECTIVES:					

- To provide knowledge of semiconductors and solid mechanics to fabricate MEMS devices.
- To educate on the rudiments of Micro fabrication technique
- To introduce various sensors and actuators
- To introduce different materials used for MEMS
- To educate on the applications of MEMS to disciplines beyond Electrical and Mechanical engineering.

UNIT I INTRODUCTION:

9

Intrinsic Characteristics of MEMS–Energy Domains and Transducers-Sensors and Actuators – Introduction to Micro fabrication-Silicon based MEMS processes–New Materials–Review of Electrical and Mechanical concepts in MEMS–Semiconductor devices–Stress and strain analysis– Flexural beam bending- Torsional deflection.

UNIT II SENSORS AND ACTUATORS I

9

9

9

9

Electrostatic sensors–Parallel plate capacitors–Applications–Interdigitated Finger capacitor– Comb drive devices–Micro Grippers–Micro Motors- Thermal Sensing and Actuation– Thermal expansion–Thermal couples–Thermal resistors–Thermal Bimorph- Applications– Magnetic Actuators–Micromagnetic components–Case studies of MEMS in magnetic actuators- Actuation using Shape Memory Alloys

UNIT III SENSORS AND ACTUATORS II

Piezoresistive sensors–Piezoresistive sensor materials- Stress analysis of mechanical elements– Applications to Inertia, Pressure, Tactile and Flow sensors–Piezoelectric sensors and actuators– piezoelectric effects–piezoelectric materials– Applications toInertia, Acoustic, Tactile and Flow sensors.

UNIT IV MICROMACHINING

Basic surface micro machining processes – Structural and Sacrificial Materials – Acceleration of sacrificial Etch – Striction and Antistriction methods – LIGA Process -

Assembly of 3D MEMS – Foundry process.

UNIT V POLYMERAND OPTICALMEMS

Polymersin MEMS-Polimide-SU-8-Liquid Crystal Polymer (LCP) -PDMS-PMMA-Parylene- Fluoro carbon- Application to Acceleration, Pressure, Flow and Tactile sensors-

Optical	MEMS-Lei	enses and Mirrors-Actuators for Active Optical N	ÆMS.			
		TOTAL :	45 PERIODS			
OUTC	COMES:	After successful completion of the course stud	ents able to			
1.	Fabricate I	MEMS devices.				
2.	Design ser	nsors and actuators for MEMS.				
3.	Do micron	machining process.				
4.	Apply rece	ent MEMS into physical applications.				
TEXT	BOOKS :	:				
1.	Chang Liu, 'Foundations of MEMS', Pearson Education Inc., 2012.					
2.	Stephen DSenturia, 'Microsystem Design', Springer Publication, 2000.					
3.	Tai RanHsu,"MEMS& Micro systems Design and Manufacture" Tata McGraw Hill, NewDelhi,2002.					
REFER	RENCES:					
1.	Nadim Ma House,200	aluf, "An Introduction to Micro Electro Mechanic 00.	al System Design",Artech			
2.	Mohamed 2001.	l Gad-el-Hak, editor, " The MEMS Handbook",(CRC press BacoRaton,			
3.	Julian w.G	Gardner, VijayK.Varadan, OsamaO.Awadelkari	m,Micro Sensors MEMS.			
4.	JamesJ.All 2005.	llen,Micro Electro Mechanical System Design,C	RC Press Publisher,			
5.	Thomas M Applicatio	A.Adams and Richard A.Layton, "Introduction M.	EMS,Fabrication and			

17PTEPE015	POWER ELECTRONICS FOR RENEWABLE ENERGY SYSTEMS	L	Т	Р	C	
				.	i i	

OBJECTIVES:

•	To study importance of renewable energy systems in distributed generation			
•	To analyse and comprehend the various operating modes of solar energy systems and develop maximum power point tracking algorithm			
•	To analyse and comprehend the various operating modes of wind electrical generators and develop maximum power point tracking algorithm			
•	To impart knowledge on fuel cell systems			
•	To Provide knowledge about various hybrid renewable energy systems			
UNIT I	INTRODUCTION:	9		

3 0 0

3

Importance of renewable energy, renewable energy systems in distributed power system, Need for

Distributed generation, current scenario in Distributed Generation, Planning of DGs.

UNIT II PHOTOVOLTAIC SYSTEMS AND ITS GRID INTEGRATION

Basics of Photovoltaic, Maximum Power Point Tracking (MPPT) techniques, Sizing of stand- Alone PV systems, Inverters for grid-connected PV system: Line commutated, self-commutated with high frequency transformer, central-plant inverter, multiple string inverter, module integrated inverter.

UNIT III WIND POWER SYSTEMS

Basics of wind power, Fixed speed and variable speed wind turbines, storm strategies, MPPT techniques Induction generators, synchronous generators, half scale, full scale and PMSG for wind energy systems, Stand-alone systems, and grid connected wind power systems.

UNIT IV FUEL CELL SYSTEMS

Introduction to fuel cell systems, types of fuel cell systems, Power Electronic Interface of fuel cell systems, Fuel cell/Battery Hybrid systems.

UNIT V HYBRID RENEWABLE ENERGY SYSTEMS

9

9

9

Need for Hybrid Systems- Range and type of Hybrid systems, wind-diesel system, wind-PV system, micro hydro-PV system, biomass-PV-diesel system, PV-Fuel cell hybrid system.

Ŋ	TOTAL : 45 PERIODS
---	--------------------

OUTC	OMES:	After successful completion of the course students able to		
1.	Apply Distributed generation in existing power systems.			
2.	Design PV cell integrated solar power system			
3.	Design controllers for wind power systems.			
4.	Apply fuel cells in renewable energy integrated power systems.			
5.	Design the	e converter system for hybrid renewable energy sources.		
TEXT	BOOKS:			
1.	Volker Quaschning, James & James, "Understanding Renewable Energy Systems", Earth scan, 2005.			
2.	M.GodoySimoes, Felix A. Farret, "Renewable Energy Systems – Design and Analysis with Induction Generators", CRC press, 2nd edition 2007			
3.	Siegfried Heir, "Grid Integration of Wind Energy Systems", John Willey & Sons; 2nd Edition, 2006.			
REFE	RENCES	:		
1.	Mohamme	ed H. Rashid, "Power Electronics Handbook", Elsevier, 2011.		
2.	.Nick Jenkins, Ron Allan, Peter Crossley, David Kirchen and GoranStrbac, "Embedded Generation" IET Power and Energy series, London-2000.			
3.	M. P. Kazmierkowski, R. Krishnan, J.D. Irwin, "Control in Power Electronics: Selected Problems", Academic Press; 2002.			
4.	James Larminie and Andrew Dicks, "Fuel Cell Systems Explained", John Wiley & Sons; 2nd edition, 2003.			

17PTEPE016)16	FLEXIBLE AC TRANSMISSION SYSTEMS		T	P	C
				3	0	0	3
OBJE	CTI	VES:					
To introduce			ce the reactive power control techniques				
٠	To educate on static VAR compensators and their applications						
• To provide knowledge on Thyristor controlled series capacitors							
To educate on STATCOM devices							
٠	To provide knowledge on FACTS controllers						
UNIT	I	INTR	RODUCTION	ODUCTION			
Reactive line- se Controll	e pov ries ed S	ver con comper eries caj	trol in electrical power transmission lines-Uncompennsation–Basic concepts of Static Var Compensator pacitor (TCSC)–Unified power flow controller (UPFC)	sated t (SVC).	rans C)–T	miss hyri:	sion stor
						(
UNIT	Π	STAT APPI	TIC VAR COMPENSATOR (SVC) AND LICATIONS)
UNIT Voltage on syste fast tran transfer	cont m vo sient – En	STAT APPI rol by S bltage–E stabilit hancem	TIC VAR COMPENSATOR (SVC) AND LICATIONS SVC–Advantages of slope in dynamic characteristics- Design of SVC voltage regulator–Modelling of SVC for ty–Applications: Enhancement of transient stability–S ent of power system damping.	-Influe or pow Steady	nce er fl state	of S ow a	V C and wer
UNIT Voltage on syste fast tran transfer UNIT	Cont m vo sient – En	STAT APPI rol by S bltage–I stabilit hancem THY (TCS	TIC VAR COMPENSATOR (SVC) AND LICATIONS SVC–Advantages of slope in dynamic characteristics- Design of SVC voltage regulator–Modelling of SVC for ty–Applications: Enhancement of transient stability–S ent of power system damping. RISTOR CONTROLLED SERIES CAPAC C) AND APPLICATIONS	-Influe or pow Steady ITOR	nce ver fl state	of S ow a pov	VC and wer
UNIT Voltage on syste fast tran transfer UNIT	cont m vo sient – En III	STAT APPI rol by S bltage–I stabilit hancem THY (TCS f the stabilit	TIC VAR COMPENSATOR (SVC) AND LICATIONS SVC–Advantages of slope in dynamic characteristics- Design of SVC voltage regulator–Modelling of SVC for ty–Applications: Enhancement of transient stability–S ent of power system damping. RISTOR CONTROLLED SERIES CAPAC C) AND APPLICATIONS TCSC–Different modes of operation–Modelling of bodelling for Power Flow and stability studies. Application by limit–Enhancement of system damping.	-Influe for pow Steady ITOR f TCS tions: I	nce er fl state	of S ow : pov /aria	VC and wer
UNIT	II cont m vo sient – En III on o e mo e mo stem IV	STAT APPI rol by S bltage–I stabilit hancem THY (TCS f the stabilit VOL' CON	TIC VAR COMPENSATOR (SVC) AND LICATIONS SVC–Advantages of slope in dynamic characteristics- Design of SVC voltage regulator–Modelling of SVC for ty–Applications: Enhancement of transient stability–Sent of power system damping. RISTOR CONTROLLED SERIES CAPAC C) AND APPLICATIONS TCSC–Different modes of operation–Modelling of odelling for Power Flow and stability studies. Applicat by limit–Enhancement of system damping. TAGE SOURCE CONVERTER BASED FA TROLLERS	-Influe or pow Steady ITOR f TCS tions: I	nce ver fl state	of S ow : pov /aria	VC and wer
UNIT	II cont m vc sient – En III on o e mc stem IV	STAT APPI rol by S bltage–E stabilit hancem THY (TCS f the del–Mc stabilit VOL CON ronous : Steady bility. S	 FIC VAR COMPENSATOR (SVC) AND LICATIONS SVC-Advantages of slope in dynamic characteristics- Design of SVC voltage regulator-Modelling of SVC for ty-Applications: Enhancement of transient stability-Sent of power system damping. RISTOR CONTROLLED SERIES CAPACTOR ON APPLICATIONS TCSC-Different modes of operation-Modelling of delling for Power Flow and stability studies. Applicately limit-Enhancement of system damping. TAGE SOURCE CONVERTER BASED FA TROLLERS Compensator (STATCOM)-Principle of operation-Vy state power transfer-enhancement of transient stability studies. 	-Influe or pow Steady ITOR f TCS tions: I CTS /-I Cha lity- pi flow-n	nce ver fl state SC–V mpro	of S ow : pov /aria oven	VC and wer ble hent ics. of
UNIT	II cont m vc sient - En III on o e mo stem IV IV	STAT APPI rol by S bltage–I stabilit hancem THY (TCS f the del–Mc stabilit VOL CON ronous : Steady bility. S I flow an CO-C	 FIC VAR COMPENSATOR (SVC) AND LICATIONS SVC-Advantages of slope in dynamic characteristics- Design of SVC voltage regulator-Modelling of SVC for ty-Applications: Enhancement of transient stability-Sent of power system damping. RISTOR CONTROLLED SERIES CAPAC CONTROLLED SERIES CAPAC CONTROLLER BASED FA COMPENSATOR (STATCOM)-Principle of operation-Versite power transfer-enhancement of transient stability studies. DRDINATION OF FACTS CONTROLLER 	-Influe for pow Steady ITOR f TCS f TCS forms: I forms: I CTS V-I Cha lity- pi flow-n	nce ver fl state	of S ow : pov /aria ovem	VC and wer ble hble nent

			TOTAL : 45 PERIODS		
OUTC	OMES:	After successful completion of the	course students able to		
1.	Design st	atic VAR compensator			
2.	Design T	CSC and various Facts controllers			
3.	Explain Voltage Source Converter				
4.	Explain c	coordination of multiple controllers			
TEXT	TEXT BOOKS:				
1.	R.Mohan Mathur, RajivK.Varma, "Thyristor –Based Facts Controllers for Electrical Transmission Systems", IEEE press and John Wiley&Sons, Inc,2002.				
2.	Narain G.Hingorani, "Understanding FACTS-Concepts and Technology of Flexible AC Transmission Systems", Standard Publishers Distributors, Delhi 2011.				
3.	K.R.Padiyar," FACTS Controllers in Power Transmission and Distribution", New Age International (P) Limited, Publishers, NewDelhi, 2008.				
REFER	RENCES	:			
1.	A.T.John, Electroni	,"Flexible A.C. Transmission Sy c Engineers(IEEE), 1999.	estems", Institution of Electrical and		
2.	V.K.Sood, HVDC and FACTS controllers Applications of Static Converters in Power System, APRIL 2004, Kluwer AcademicPublishers, 2004.				
3.	Xiao Ping Zang, Christian Rehtanz and BikashPal, "Flexible AC Transmission System: Modelling and Control"Springer, 2012				