GOVERNMENT COLLEGE OF ENGINEERING, BARGUR Regulation – 2017 AUTONOMOUS

Curriculum for Full Time – B.E. -EEE

From the Academic Year 2017-2018 onwards

SEMESTER I

SL. No.	COURSE CODE	COURSE TITLE	CATEGORY	L	Т	Р	C
TH	EORY			•			
1.	17ZHS101	Communicative English I	HS	4	0	0	4
2.	17ZBS102	Engineering Mathematics I	BS	3	2	0	4
3.	17ZBS103	Engineering Physics I	BS	3	0	0	3
4.	17ZBS104	Engineering Chemistry	BS	3	0	0	3
5.	17ZES105	Programming in C	ES	3	0	0	3
6.	17ZES106	Engineering Graphics	ES	2	0	4	4
PRA	ACTICALS						
7.	17ZES107	Programming in C Laboratory	ES	0	0	4	2
8.	17ZBS108	Physics Laboratory	BS	0	0	4	2
9.	17ZBS109	Chemistry Laboratory	BS	0	0	4	2
			TOTAL	18	2	16	27

SEMESTER II

SL. No.	COURSE CODE	COURSE TITLE	CATEGORY	L	Т	Р	С
THE	EORY						
1.	17ZHS201	Communicative English II	HS	4	0	0	4
2.	17ZBS202	Engineering Mathematics II	BS	3	2	0	4
3.	17ZBS203	Engineering Physics II	BS	3	0	0	3
4.	17EES204	Basic Civil and Mechanical Engineering	ES	3	0	0	3

5.	17ZBS205	Environmental Science and Engineering	BS	3	0	0	3
6.	17EPC206	Electric Circuit Analysis	PC	3	2	0	4
PRA	CTICALS						
7.	17ZES207	Engineering Practices Laboratory	ES	0	0	4	2
8.	17EPC208	Electric Circuits Laboratory	PC	0	0	4	2
			TOTAL	19	4	8	25

SEMESTER III

		I								
SL. No.	COURSE CODE	COURSE TITLE	CATEGORY	L	Т	Р	С			
THI	EORY									
1.	17ZBS301	Transforms and Partial Differential Equations	BS	3	2	0	4			
2.	17EPC302	Power Plant Engineering	PC	3	0	0	3			
3.	17EES303	Object Oriented Programming	ES	3	0	0	3			
4.	17EPC304	Electromagnetic Theory	PC	2	2	0	3			
5.	17EPC305	Analog Electronics	PC	3	0	0	3			
6.	17EPC306	Digital Logic Circuits	PC	2	2	0	3			
PRA	CTICALS									
7.	17EES307	Object Oriented Programming Laboratory	ES	0	0	4	2			
8.	17EPC308	Analog Electronics Laboratory	РС	0	0	4	2			
			TOTAL	16	6	8	23			

SEMESTER IV

				r			
SL. No.	COURSE CODE	COURSE TITLE	CATEGORY	L	Т	Р	C
THE	EORY						
1.	17EBS401	Numerical methods	BS	3	2	0	4
2.	17EPC402	DC Machines and Transformers	PC	2	2	0	3
3.	17EPC403	Linear Integrated Circuits and Applications	PC	3	0	0	3
4.	17EPC404	Transmissionand Distribution	PC	3	0	0	3
5.	17ZES405	Signals and Systems	ES	3	2	0	4
6.	17EPC406	Measurements and Instrumentation	PC	3	0	0	3
PRA	ACTICALS						
7.	17EPC407	DC Machines and Transformers Laboratory	PC	0	0	4	2
8.	17EPC408	Linear and Digital Integrated Circuits Laboratory	PC	0	0	4	2
			TOTAL	17	6	8	24

SEMESTER V

SL. No.	COURSE CODE	COURSE TITLE	CATEGORY	L	Т	Р	С		
THE	EORY			1	1		1		
1.	17EPC501	PowerSystem Analysis	PC	2	2	0	3		
2.	17EPC502	Control Systems	PC	2	2	0	3		
3.	17EPC503	Synchronous and Asynchronous Machines	РС	2	2	0	3		
4.	17EPC504	Professional Ethics	PC	3	0	0	3		
5.	17EPC505	Communication Engineering	PC	3	0	0	3		
6.		Professional Elective I	PE	3	0	0	3		
PRA	PRACTICALS								

7.	17EPC507	Synchronous and Asynchronous MachinesLaboratory	PC	0	0	4	2
8.	17EPC508	Control and Instrumentation Laboratory	PC	0	0	4	2
9.	17ZEE509	Communication and Soft Skills-Laboratory Based	EEC	0	0	4	2
	•		TOTAL	15	6	12	24

SEMESTER VI

SL. No.	COURSE CODE	COURSE TITLE	CATEGORY	L	Т	Р	С
TH	EORY						
1.	17EPC601	Power Electronics	PC	3	0	0	3
2.	17EPC602	Microprocessors, Microcontrollers and Applications	PC	3	0	0	3
3.	17EPC603	Power System Operation and Control	PC	3	0	0	3
4.	17EPC604	Protection and Switchgear	PC	3	0	0	3
5.		Professional Elective II	PE	3	0	0	3
6.		Open Elective	OE	3	0	0	3
PRA	CTICALS						
7.	17EPC607	Power Electronics Laboratory	PC	0	0	4	2
8.	17EPC608	Microprocessors,	PC	0	0	4	2
		Microcontrollers and Applications Laboratory					
			TOTAL	18	0	8	22

SEMESTER VII

		,					
SL. No.	COURSE CODE	COURSE TITLE	CATEGORY	L	Т	Р	C
THE	EORY						
1.	17EPC701	Solid State Drives	PC	3	0	0	3
2.	17EPC702	Electrical Machine Design	PC	2	2	0	3
3.	17EPC703	Special Electrical Machines	PC	3	0	0	3
4.	17EPC704	Energy Utilization, Conservation and Auditing	РС	3	0	0	3
5.		Professional Elective III	PE	3	0	0	3
PRA	CTICALS						
6.	17EPC706	Power System Laboratory	PC	0	0	4	2
7.	17EEE707	Electrical System Design Laboratory	EEC	0	0	4	2
			TOTAL	14	2	8	19

SEMESTER VIII

SL. No.	COURSE CODE	COURSE TITLE	CATEGORY	L	Т	Р	С
THE	EORY						
1.		Professional Elective IV	PE	3	0	0	3
2.		Professional Elective V	PE	3	0	0	3
PRA	CTICALS						
3.	17EEE803	Project Work	EEC	0	0	12	6
			TOTAL	6	0	12	12

Total no of Credits: 176

LIST OF PROFESSIONAL ELECTIVES

SL. No.	COURSE CODE	COURSE TITLE	CATEGORY	L	Т	Р	C
THE	ORY					I	
1.	17EPE001	Applied Soft Computing	PE	3	0	0	3
2.	17EPE002	Principles of Management	PE	3	0	0	3
3.	17EPE003	Biomedical Instrumentation	PE	3	0	0	3
4.	17EPE004	Fundamentals of Nanoscience	PE	3	0	0	3
5.	17EPE005	High Voltage Engineering	PE	3	0	0	3
6.	17EPE006	Optimization Techniques	PE	3	0	0	3
7.	17EPE007	Micro Electro Mechanical Systems	PE	3	0	0	3
8.	17EPE008	Advanced Control System	PE	3	0	0	3
9.	17EPE009	Power Quality	PE	3	0	0	3
10.	17EPE010	System identification and Adaptive Control	PE	3	0	0	3
11.	17EPE011	Microcontroller Based System Design	PE	3	0	0	3
12.	17EPE012	High Voltage Direct Current Transmission	PE	3	0	0	3
13.	17EPE013	Embedded Systems	PE	3	0	0	3
14.	17EPE014	Power Electronics for Renewable Energy Systems	PE	3	0	0	3
15.	17EPE015	Flexible AC Transmission Systems	PE	3	0	0	3
16.	17EPE016	Power System Dynamics	PE	3	0	0	3
17.	17EPE017	Principles of Robotics	PE	3	0	0	3
18.	17EPE018	Total Quality Management	PE	3	0	0	3
19.	17EPE019	Computer Aided Design of	PE	3	0	0	3

		Electrical Apparatus					
20.	17EPE020	VLSI Design	PE	3	0	0	3
21.	17EPE021	Power System Transients	PE	3	0	0	3
22.	17EPE022	Internet of Things	PE	3	0	0	3

LIST OF OPEN ELECTIVES

Students has to take open electives offered from other Departments

Depa	artment :Ele	ectrical and Electronics En	gineering							
SL. No.	COURSE CODE	COURSE TITLE	CATEGORY	L	Т	Р	C			
THEORY										
1.	17EOE001	Matlab Programming	OE	3	0	0	3			
2.	17EOE002	Renewable Energy Sources	OE	3	0	0	3			
3.	17EOE003	Energy Management and Auditing	OE	3	0	0	3			
4.	17EOE004	Smart Grid	OE	3	0	0	3			
Department :Electronics and Communication Engineering										
5.	17LOE001	Real Time Systems	OE	3	0	0	3			
6.	17LOE002	Wireless Sensor Networks	OE	3	0	0	3			
7.	17LOE003	Industrial Automation and Robotics	OE	3	0	0	3			
8.	17LOE004	Principles of VLSI design	OE	3	0	0	3			
9.	17LOE005	Applied Electronics	OE	3	0	0	3			
10.	17LOE006	Wireless Networks	OE	3	0	0	3			
Depa	artment :Co	mputer Science and Engin	eering							
11.	17SOE001	Programming in C++	OE	3	0	0	3			
12.	17SOE002	Java Programming	OE	3	0	0	3			
13.	17SOE003	Python Programming	OE	3	0	0	3			
14.	17SOE004	Web Designing	OE	3	0	0	3			

15.	17SOE005	Android Application Development	OE	3	0	0	3				
Depa	Department :Mechanical Engineering										
16.	17MOE001	Disaster Management and Mitigation	OE	3	0	0	3				
17.	17MOE002	Environmental Management	OE	3	0	0	3				
18.	17MOE003	Composite Materials	OE	3	0	0	3				
19.	17MOE004	Renewable Energy Sources and Technology	OE	3	0	0	3				
20.	17MOE005	Intellectual Property Rights	OE	3	0	0	3				
21.	17MOE006	Engineering Economics and Financial Accounting	OE	3	0	0	3				
22.	17MOE007	Industrial Safety Acts and Standards	OE	3	0	0	3				
23.	17MOE008	Global Warming and Climate Change	OE	3	0	0	3				

LIST OF ONE CREDIT COURSES

SL. No.	COURSE CODE	COURSE TITLE	CATEGORY	L	Т	Р	С			
THEORY										
1.	17EOC001	Spice Simulation for circuits	OC	0	0	2	1			
2.	17EOC002	Yoga and meditation	OC	1	0	0	1			
3.	17EOC003	Stress Management	OC	1	0	0	1			
4.	17EOC004	PCB design and Fabrication	OC	1	0	0	1			
5.	17EOC005	Personality Development	OC	1	0	0	1			
6.	17EOC006	Entrepreneurship Development	OC	1	0	0	1			
7.	17EOC007	Solar PV System Design	OC	1	0	0	1			

CREDIT SUMMARY

Sl. No	Subject Area	Credits per Semester								Credits Total	% of Total Credits	Total no. of Subjects		mended of % of
		Ι	II	III	IV	V	VI	VII	VIII				MIN	MAX
1	HS	4	4							8	5	2	5	10
2	BS	14	10	4	4					32	18	10	15	20
3	ES	9	5	5	3					22	13	8	15	20
4	PC		6	14	17	19	16	14		86	48	31	30	40
5	PE					3	3	3	6	15	8	5	10	15
6	OE						3			3	2	1	5	10
7	EEC					2		2	6	10	6	3	10	15
	Total	27	25	23	24	24	22	19	12	176	100	60		

SEMESTER I

17ZHS	101 C	CON	IMUNICATIVE ENGLISH I	L	Т	Р	С			
(Common to MECH, EEE, ECE & CSE) 4 0 0 4										
OBJECTIVES:										
•	To develop the active skills as well as the passive skills of the first year Engineering and Technology students.									
•	-	To help learners develop their speaking skills and speak flawlessly in real life situations.								

•	To help learners acquire vocabulary by the way of reading skills.
•	To help learners enhance their listening skills which will enable them to listen to lectures and comprehend them by asking questions, seeking clarifications.
•	To help learners improve their writing skills by practicing dialogue writing, and writing short essays.

UNIT I

Listening - Short texts- Short formal and informal conversations- listening to TV and Telephonic interviews. **Speaking-** Introducing one self- exchanging personal information. **Reading** -Skimming and Scanning. **Writing** -Letter writing - E-mail writing. **Grammar**-introducing Tenses (Simple Present, Present Continuous, Present Perfect) Articles, **Vocabulary:** Prefix & Suffix and Compounds.

UNIT II

12

12

12

12

Listening- Listening to announcements- listening to news. **Speaking** – Greetings and congratulating and taking leave. **Reading** –Finding key information in a given text. **Writing-** Short narrative descriptions- dialogue writing. **Grammar**- Tenses (Present Perfect Continuous, Simple Past) - WH questions, Yes-No questions, Prepositions **Vocabulary**: Word-formation, Synonym & Antonym.

UNIT III

Listening - Listening to dialogue **Speaking** – describing a person, experience, expressing opinions. **Reading-** Reading longer text, reading science articles. **Writing-** Paragraph Writing-informal letter writing. **Grammar-** Tenses (Past continuous, Past Perfect), degrees of comparison, direct-indirect speech**Vocabulary**: One- word substitution.

UNIT IV

Listening- Listening to product descriptions. **Speaking-** describing an object- process. **Reading -** Reading comprehension. **Writing-** completing sentences- writing about scientific

Vocabu	l lary : Phras	al verbs.						
UNIT	V		12					
respond Writing	ing. Read . Grammar	ng to talks& conversations. Speaking- participating in conversation ling- Reading longer text & close reading. Writing –Creater - Tenses (Future Continuous, Future Perfect, Future Perfect Continue bulary - collocations, idioms.	ative					
		TOTAL : 60 PERIC	DDS					
OUTC	COMES:	After successful completion of the course students able to						
•	Read artic	les of a general kind in magazines and newspapers.						
•	-	e effectively in informal conversations; introduce themselves and and express opinions in English.	their					
•	Comprehe	end conversations and short talks delivered in English.						
•	Write sho	rt essays of a general kind and personal letters and emails in English.						
TEXT	BOOKS	:						
1.		Editors. Using English A Course book for undergraduate Engineers gists. Orient Black Swan Limited, Hyderabad:2015	and					
2.	A Handbo	ook of English For Professionals , BS Publications, Hyderabad:2008						
3.	English fo	or engineering students, Sankar Printers ,Chennai:2001						
REFE	RENCES	:						
1.	Richards,	C.Jack.Interchange Students' Book-2 New Delhi:CUP,2015.						
2.		Bailey, Stephen. Academic Writing: A Practical guide for students. New York: Rutledge, 2011.						
3.	Seely, Joh	n. The Oxford guide to writing & Speaking. New York.1998.						
4.	Bhatia M Edition	P, A Handbook of Applied Grammar, M.I Publications, AGRA, S	Sixth					

objects and inventions. Grammar- Tenses (Past Perfect Continuous, Simple Future)

17ZBS1	02	EN	GINEERING MATHEMATICS I	L	Т	P	C
(Common	to M	EC	H, EEE, ECE & CSE)	3	2	0	4
OBJECT	IVES	5:		J	11		
•	Matrix	x Al	gebra And Techniques And Using Them In Engineerin	ng Aj	ppli	cat	ions
•	Famil	iar V	cept Of Infinite Series And Their Convergence So Th With Limitations Of Using Infinite Series Approximation Mathematical Modelling		-		
•	Differ Appli		al And Integral Calculus And Their Applications In Va	rious	En	gin	eering
UNIT I	Μ	[A]	TRICES				9+6
eigenvalues Diagonaliza	and ention of	eigei f ma	envectors of a real matrix – Characteristic equation nvectors – Statement and applications of Cayley-Ham atrices – Reduction of a quadratic form to canonical for re of quadratic forms.	niltoi	n T	hec	orem –
UNIT II SEQUENCES AND SERIES					9+6		
terms – Tes	ts of co series	onve – L	and examples – Series: Types and Convergence – Ser ergence: Comparison test, Integral test and D'Alember eibnitz's test – Series of positive and negative terms – ace.	t's ra	tio	tes	t —
UNIT II	I A	PP	LICATIONS OF DIFFERENTIAL CALCU	LUS	5		9+6
			n co-ordinates – Centre and radius of curvature – Circ - Evolute as envelope of normals.	cle o	f cu	irva	ature –
UNIT IV	7 F	UN	CTIONS OF SEVERAL VARIABLES				9+6
functions -	Jacobi	ian a	y – Partial derivatives – Total derivative – Different and properties – Taylor's series for functions of two va ons of two variables – Lagrange's method of undetermi	riabl	es -	- M	laxima
UNIT V	M	IUI	TIPLE INTEGRALS				9+6
enclosed by	plane	cur	artesian and polar coordinates – Change of order of it ves – Change of variables in double integrals – Area o blume of Solids.	-			
			TOTAL : 75(45+	30)	PE	R	[ODS
			After successful completion of the course students able				

OUTCOMES: After successful completion of the course students able to

•	Solve problems on matrices and to apply concepts of matrix theory whenever applicable in the field of engineering.
•	Solve problems using convergence tests on sequences and series and to apply them in engineering field appropriately.
•	Write short essays of a general kind and personal letters and emails in English.
TEXT B	OOKS:
1.	Bali N. P and Manish Goyal, "A Text book of Engineering Mathematics", Eighth Edition, Laxmi Publications Pvt Ltd., 2011.
2.	Grewal. B.S, "Higher Engineering Mathematics", 41 st Edition, Khanna Publications, Delhi, 2011.
REFER	ENCES:
1.	Dass, H.K., and Er. Rajnish Verma, "Higher Engineering Mathematics", S. Chand Private Ltd., 2011
2.	<i>Glyn James, "Advanced Modern Engineering Mathematics", 3rd Edition, Pearson Education, 2012.</i>
3.	Peter V. O'Neil, "Advanced Engineering Mathematics", 7th Edition, Cengage learning, 2012
4.	Ramana B.V, "Higher Engineering Mathematics", Tata McGraw Hill Publishing Company, New Delhi, 2008.
5.	Sivarama Krishna Das P. and Rukmangadachari E., "Engineering Mathematics", Volume I, Second Edition, Pearson Publishing, 2011.

17ZBS	103ENGINEERING PHYSICS ILTP									
(Comn	(Common to MECH, EEE, ECE & CSE)									
OBJE	CTIV	ES:			•					
•	To develop knowledge on properties of solids									
•	To us	se the p	rinciples of lasers, its types and its application							
•	To m	ake stu	dents to understand about fibre optics and its application	s.						
•	To develop knowledge on thermal properties of materials									
•	To apply principles of quantum physics in engineering field.									

UNIT I PROPERTIES OF MATTER

Elasticity – Hooke's law – Stress – Types of Stresses – Strain- Types of Strain - Young's Modulus – Rigidity Modulus – Bulk Modulus –Poisson's ratio – Relationship between three elastic constants and Poisson's ration – Torsional Pendulum – Factors affecting elasticity of materials - Bending moment of a Beam – Depression of cantilever (Theory and Experiment) – Determination of Young's modulus – Uniform and non-uniform bending (Theory and Experiment).

9

9

9

9

UNIT II LASERS

Introduction to LASER – Interaction of light radiation with materials – Stimulated absorption – Spontaneous emission – Stimulated emission –Einstein's A and B co-efficient derivation – Concept of LASER – Population inversion – Pumping action – Methods for pumping action – Characteristics of LASER - Types of Lasers (Nd-YAG, He-Ne) – Industrial and medical applications of lasers.

UNIT III FIBRE OPTICS

Introduction – Structure of Optical Fibre – Guiding mechanism – Total internal reflection – Critical Angle – Conditions for total internal reflection – Principle and Propagation of light in Optical Fibres – Numerical aperture and acceptance angle – Types of optical fibres (Material, refractive index and mode) – their characteristics and applications – Losses associated in optical fibres.

UNIT IV THERMAL PHYSICS

Introduction to Heat flow – Modes of heat transfer (Conduction, Convection and Radiation) – Thermal conductivity – Expression for thermal conductivity – Newton's law of cooling – Linear heat flow – Heat conduction through a compound media(Series and parallel) – Lee's disk method for determination of thermal conductivity of bad conductors – Application: Heat exchangers, refrigerators.

UNIT V QUANTUM PHYSICS

Concept of Blackbody radiation – Wien's displacement law – Rayleigh-Jean's law - Planck's theory (derivation) – Deduction of Wien's displacement law and Rayleigh-Jean's law from Planck's law – Matter waves – De-Broglie's Hypothesis – Properties of matter waves - Wave-particle duality – Wave function – Physical Significance – Schrodinger wave equation – Time dependent and time independent – Application of Schrodinger wave equation – Particle in a 1 D box.

TOTAL : 45 PERIODS

9

OUTCO	MES:	After successful completion of the course students able to					
•	To lear	n about, three types of elastic modulus and related laws					
•		n basics of thermal conductivity of different solid materials with relevant a's law of cooling					
•	Apply t applicat	he functional knowledge of different types of lasers in their engineering tions					
•		in the basic knowledge of fiber optics and apply in their engineering & applications					
•	To appl	To apply the fundamental principles of quantum physics in engineering field					
TEXT B	OOKS:						
1.	P. Mani	, "Engineering physics", Dhanam Publications, 2017.					
2.	G. Sent	hi kumar, "Engineering physics", VRB Publishers					
3.	A.Maril	kani, "Engineering Physics", PHI Learning Pvt., India 2009.					
REFERI	ENCES	:					
1.		Gaur and S.C. Gupta, "Engineering physics", Dhanpat Rai publications, elhi 2003.					
2.		vadhanulu and P. G. Kshirsagar, "A text book of engineering physics", S. and Company Ltd, New Delhi, 2005.					
3.	K. Raja	gopal, "Engineering Physics", PHI, New Delhi, 2011.					
4.	P. K. P.	alanisamy, "Engineering Physics", SCITECH Publication, 2011					
5.	M. Arui	nugam, "Engineering physics", Anuradha publishers					

17ZBS10	4	ENG	L	T	Р	C				
(Commor	(Common to ECE, EEE &CSE)									
OBJECT										
•		o make students conversant with water parameters, boilers, need for water eatment and its merits and demerits.								
•	elec	Students ought to be aware of fundamental principles behind different electrochemical reactions, corrosion of materials and methods to prevent corrosion.								
•			the chemistry behind polymers, synthesis, merits, d	eme	rits	and	its			
•		-	e basic knowledge in renewable, non renewable and a and the chemical reactions involved in cell, batteries and							
•	То	learn th	e working principle of various spectroscopy and its app	olica	tion	s.				
•	То	To acquire basic knowledge in Nano materials, synthesis, properties and uses.								
UNIT I				9						

Characteristics – alkalinity and its significance – hardness (problems) - types and estimation by EDTA method – specifications of drinking water (BIS and WHO standards) – potable water treatment – boiler feed water - requirements – disadvantages of using hard water in boilers (Scales & Sludge, Boiler corrosion, Priming & Foaming, Caustic embrittlement) – water treatment – Internal treatment – external treatment – zeolite method - Demineralization process – desalination – reverse osmosis.

UNIT II ELECTROCHEMISTRY AND CORROSION

Electrochemistry: Electrochemical cells – reversible and irreversible cells – EMF – measurement of EMF – single electrode potential – Nernst equation (Problems) – reference electrode – standard hydrogen electrode and calomel electrode – ion selective electrode – glass electrode and measurement of pH – electrochemical series and its applications.

9

9

Corrosion: Corrosion – Pilling Bedworth rule - dry corrosion and its mechanism - electrochemical corrosion and its mechanism – types (galvanic, pitting, differential aeration) – factors influencing corrosion – corrosion control methods – sacrificial anode method – impressed current method – corrosion inhibitors – protective coatings – paints – constituents – functions – metallic coatings – electroplating (Cu) and electro less plating (Ni).

UNIT III POLYMERS AND COMPOSITES

Polymers: Definition – classification – functionality – polymerization – degree of polymerization – types (addition, condensation, copolymerization) – mechanism (free radical)

– plastics – thermoplastics and thermosetting plastics – preparation, properties and uses of individual polymers (PVC, TEFLON, Nylon-6,6, Nylon-6, PET, epoxy resin) – rubber - vulcanization of rubber – applications - Advanced polymeric materials and electronic devices – conducting and semiconducting polymers – liquid crystal properties – dendrimers and their difference from polymers.

Composites: definition – types polymer matrix composites – Fibre Reinforced Polymers – applications – advanced composite materials – physical and chemical properties – applications.

9

UNIT IV ENERGY SOURCES AND STORAGE DEVICES

Nuclear energy – fission fusion reactions – light water nuclear reactor for power generation – breeder reactor – solar energy conversion – solar cells – wind energy – batteries: alkaline batteries – lead –acid, Ni-Cd, and Li-ion batteries – fuel cells – principles and applications – advantages and disadvantages.

UNIT V ANALYTICAL TECHNIQUES AND NANOMATERIALS 9

Spectroscopy: Electromagnetic spectrum - Fundamentals of spectroscopy – Instrumentation, working principle and applications of UV-Visible spectrophotometer, Atomic Absorbance Spectrophotometer, Flame photometer.

Nanomaterials: Introduction to nanotechnology in electronics - nanomaterials – fullerernes carbon nanotubes – nanowires – Electronics and mechanical properties -synthesis of nanomaterials – topdown and bottomup approach – applications of nanomaterials in electronic devices (Semiconductors, LED & OLED) – electronics and telecommunication – medicines.

			TOTAL : 45 PERIODS				
OU'	TCOMES:	After successful completion	of the course students able to				
•	•	vater borne problems faced in b nd techniques for treating hard	oilers, need for water treatment and various l water.				
•	Understan	d polymerization reactions and	d its applications in engineering field.				
•			as types of electrochemical reactions which s for corrosion and prevention methods.				
•	1	Acquire knowledge about energy conversion and chemical reaction taking place is renewable energy resources, batteries and fuel cells.					
•	Acquire i electronic	1 0	us nanomaterials and its applications in				
TEX	T BOOKS:						
1.	Vairam S, K	alyani P and Suba Ramesh	.,"Engineering Chemistry"., Wiley India				

PvtLtd.,New Delhi., 2011

2. Dara S.S,Umare "Engineering Chemistry", S. Chand & Company Ltd., New Delhi, 2010

REFERENCES:

1.	Pahari A and Chauhan B., "Engineering Chemistry"., Firewall Media., New Delhi., 2010.
2.	Rao, C. N. R.; Govindaraj, A. "Nanotubes and Nanowires" United Kingdom: Royal Society of Chemistry, 2005
3.	Advanced Polymeric Materials: From Macro- to Nano-Length Scalesedited by Sabu Thomas, Nandakumar Kalarikkal, Maciej Jaroszewski, Josmine P. Jose; Apple Academic press, Canada, 2016
4.	Jain and jain, 16 th editin, "Engineering Chemistry" Dhanpat Rqai Publishing Co.

17ZES1	05	PROG	MMING IN C	~				T	P	C
							3	0	0	3
OBJEC	TIV	ES:								
•	Lea	rn the or	ization of a digital c	compute	r					
•	Be	exposed	ne number systems.	•						
•	Lea	arn to thi	ogically and write p	pseudo c	code or dra	aw flow cha	rts for	prob	lems	•
•	Be	exposed	ne syntax of C.							
•	Be	familiar v	programming in C	2.						
•	Lea	rn to use	ays, strings, functio	ons, poin	ters, struct	tures and ur	ions ii	n C		
UNIT I		INTR	UCTION							9
	Bina	ry – Deci	ion of Computers- - Conversion – Pro Elow Chart		-		-			
										_
– structure	formu e of a	ılation – a "C" pro	RAMMING BA	roductio nd linki	ng process	ses – Const	ants, V	/aria	enta bles	_
Problem f – structure Data Type	Formu e of a es – H Mak	llation – a "C" pro Expressio ing and	RAMMING BA	roductio nd linki 'C" – Ma	ng process anaging Ir	ses – Const put and Ou	ants, V tput oj	/aria perat	enta bles ions	ls
Problem f – structure Data Type Decision	formu e of a es – E Mak prob	ilation – a "C" pro Expressio ing and lems.	RAMMING BA blem Solving - Intr m – compilation as using operators in "	roductio nd linki 'C" – Ma g statem	ng process anaging Ir	ses – Const put and Ou	ants, V tput oj	/aria perat	lenta bles ions c an	ls
Problem f – structure Data Type Decision statistical UNIT II Arrays – 1	Formu e of a es – E Mak prob II	ilation – a "C" pro Expressio ing and lems. ARRA lization -	RAMMING BA blem Solving - Intr m – compilation an using operators in " anching – Looping	roductio ind linki: 'C" – Ma g statem GS imension	ng process anaging In ents – so nal and Ty	ses – Const put and Ou lving simp wo dimensi	ants, V tput oj le scie	/aria perat entifi	ental bles ions c an . Str	d 9
Problem f – structure Data Type Decision statistical UNIT II Arrays – 1	Formu e of a es – F Mak prob II Initia eratio	Ilation – a "C" pro Expressio ing and lems. ARRA lization - ons – Strip	RAMMING BA blem Solving - Intr im – compilation at using operators in " inching – Looping S AND STRING eclaration – One di	roductio ind linki: 'C" – Ma g statem GS imension grams- s	ng process anaging In ents – so nal and Ty orting- sea	ses – Const put and Ou lving simp wo dimensi	ants, V tput oj le scie	/aria perat entifi	ental bles ions c an . Str tions	d 9
Problem f – structure Data Type Decision statistical UNIT II Arrays – I String ope UNIT IV Function –	Formu e of a es – F Mak prob II Initia Pratio	a "C" pro Expression ing and lems. ARRA lization - ons – Strint FUNC inition of Pointers -	RAMMING BA blem Solving - Intr im – compilation an using operators in " inching – Looping S AND STRING eclaration – One di Arrays. Simple prog	roductio ind linki: 'C" – Mi g statem GS imension grams- s NTER	ng process anaging Ir ents – so nal and Tv orting- sea S ion – Pass	ses – Const put and Ou living simp wo dimensi arching – m	ants, V tput oj le scie onal a atrix o Pass by	/aria perat entifi rrays pera	enta bles ions c an . Str tions	d 9 9
Problem f – structure Data Type Decision statistical UNIT II Arrays – 1 String ope UNIT IV Function – –Recursio Example 1	Formu e of a es – F Mak prob II Initia eratio V – defi on – P Probl	a "C" pro Expression ing and lems. ARRA lization - ons – Strint FUNC inition of Pointers - lems.	RAMMING BA blem Solving - Intr im – compilation an using operators in " inching – Looping S AND STRING eclaration – One di Arrays. Simple prog ONS AND POI ction – Declaration	roductio ind linki 'C" – Ma g statem GS imension grams- s NTER of funct ion – Po	ng process anaging In ents – so nal and Ty orting- sea S ion – Pass inters arith	ses – Const put and Ou living simp wo dimensi arching – m	ants, V tput oj le scie onal a atrix o Pass by	/aria perat entifi rrays pera	enta bles ions c an . Str tions	d 9 9
Problem f – structure Data Type Decision statistical UNIT II Arrays – 1 String ope UNIT IV Function – –Recursio Example 1 UNIT V Introduction	Formule of a e of a es – F Mak prob II Initia eratio V – defi on – P Probl	a "C" pro Expressio ing and lems. ARRA lization - ons – Strin FUNC inition of cointers - lems. STRU need for n a struct	RAMMING BA blem Solving - Intr m – compilation an using operators in " unching – Looping S AND STRING eclaration – One di Arrays. Simple prog ONS AND POI ction – Declaration finition – Initializati	roductio ind linki 'C" – Ma g statem GS imension grams- s NTER of funct ion – Po NIONS	ng process anaging In ents – so nal and Ty orting- sea S inters arith	ses – Const put and Ou- living simp wo dimensi arching – m by value – hmetic – Po	ants, V tput oj le scie onal at atrix o Pass by inters a ure dec	/aria perat entifi rrays pera y refe and a clara	ental bles ions c an . Stritions erence rrays	d d 9

OUT	COMES:	After successful completion of the course students able to
•	Develop sim	ple applications in C using basic constructs.
•	Design and i	mplement applications using arrays and strings.
•	Develop and	implement applications in C using functions and pointers.
•	Develop app	lications in C using structures.
TEXT	Г BOOKS:	
1.		and Ajay Mittal, "Computer Fundamentals and Programming in C", lersley (India) Pvt. Ltd., Pearson Education in South Asia, 2011.
2.	1	Manas Ghosh, "Fundamentals of Computing and Programming in C", , Oxford University Press, 2009.
3.	Yashavant P	Kanetkar. "Let Us C", BPB Publications, 2011.
4.	E.Balagurusa Company, 20	amy, "Computing fundamentals and C Programming", TMH publishing 008.
REFI	ERENCES:	
1.	Byron S Gott McGraw-Hil	fried, "Programming with C", Schaum"s Outlines, Second Edition, Tata 1, 2006.
2.	Dromey R.G. 2007.	, "How to Solve it by Computer", Pearson Education, Fourth Reprint,
3.	Kernighan,B PearsonEdue	.W and Ritchie,D.M, "The C Programming language", Second Edition, cation, 2006.

17ZES106	ENG	ΞI	NEE	RIN	IG (GRAI	PHI	CS					L	Т	P	C	1
(Common	to MEC	CH	I, EE	EE, E	ECE	& CS	SE)						2	0	4	4	
OBJECTI	VES:																
	This cou rawing s							-		~ .						-	
• 1	o expos	se 1	them	to ex	sisting	g natic	onal s	standa	rds re	lated	to te	chnio	cal dra	wing	s.		
• 1	o draw	the	e proj	ectio	on of	simple	le soli	ids like	e prisi	ms, p	yram	ids,	cylind	er etc	•		
	o draw repare s			-				es to e	estima	te the	e shee	et me	etal re	luire	ment	an	d to
	To develor raw isor										<u> </u>	ginee	ring co	mpo	nents	s an	id to
CONCEP	FS AN	D	CO	NVI	ENT	ION	IS (N	Not fo	or Ex	ami	natio	on)					
Importance of				-	-		cation				-						ion
and specifica	tions – s	siz	e, lay	out a	and fo	olding		lrawing	g shee	15 - 1	etteri	ing a		ensi	Jiiii	3.	
UNIT I Basic geome parabola and curves. Visua	PLA etrical control hyperb	N con pola n co	E CU struct a by oncep	U RV tions, eccer ots an	/ES , cur ntrici nd fre	AND rves us ity me ee hanc	g of dr D FR used in ethod d sket	REE-I in eng l – dra etching	HAN gineeri wing g: visu	DS ing. of ta aliza	KET Conic ingen tion p	FCE cs – ts ar	Constr constr d nor iples –	uctic nal t repre	on of o the	6 felli e ab atio	pse pov
UNIT I Basic geome parabola and curves. Visua three dimens views of obje	PLA etrical cu hyperb alization ional ob ects.	N con pola n co bje	E CU struct a by oncep cts –	URV tions, eccer ots an layou	/ES , cur ntrici nd fre ut of	AND rves us ity me e hanc views	g of dr D FR used in ethod d sket s- free	REE-J in eng – dra etching eehand	HAN gineeri wing g: visu sketc	D S ing. of ta aliza hing	KET Conic ingen tion p of m	FCE cs – ts ar princ ultip	Constr constr d nor iples – le vie	uctic nal t repre	on of o the	6 fellige ab ation	pse povo on o oria
UNIT I Basic geome parabola and curves. Visua three dimens	PLA etrical cu hyperb alization ional ob ects.	N con oola bje	E CU struct a by oncep cts –	URV tions, eccer ots an layou	/ES , cur ntrici nd fre ut of	AND rves us ity me e hanc views	g of dr D FR used in ethod d sket s- free	REE-I in eng l – dra etching	HAN gineeri wing g: visu sketc	D S ing. of ta aliza hing	KET Conic ingen tion p of m	FCE cs – ts ar princ ultip	Constr constr d nor iples – le vie	uctic nal t repre	on of o the	6 fellige ab ation	pse pove
UNIT I Basic geome parabola and curves. Visua three dimens views of obje	PLA etrical con- hyperbalization ional ob- ects. PRO SUR project straight ons by	N con bje bje DJ XF tion t li ro	E CU struct a by o oncep cts – ECT ACE n – pr nes ir tating	URV tions, eccer layou layou loss fincip cline	VES , cur ntrici ad fre ut of NOI oles-p ed to e met	AND ves us ity me ee hance views F PO princip both t thod -	g of dr D FR used i ethod d sket s- free DINT pal pla the pr - trace	REE-I in eng – dra etching eehand TS, LI lanes-f rincipa ces. Pro	HAN gineeri wing g: visu l sketc INES first ar al plar rojectio	D S ing. of ta aliza hing A N ngle p nes - on of	KET Conic ingen tion p of m D P	FCE cs – ts ar princ nultip LAI	LING constr d nor iples – le vie NE -projection of	ructic nal t repre ws fre ction	on of o the senta om p of po	6 fellij e ab atio picto 6	
UNIT I Basic geome parabola and curves. Visua three dimens views of obje UNIT II Orthographic Projection of true inclinati	PLA etrical con- hyperb alization ional ob- ects. PRO SUR project straight ons by lined to	N con bje bje DJ C D J C D J C C D J C C D J C C D D D D D D D D D D	E CU struct a by oncep cts – ECT ACE n – pr nes ir tating th the	URV tions, eccer ts an layou ION S incip cline princip	VES , cur ntrici nd fre ut of NOI oles-p ed to e met ncipal	AND ves us ity me ee hance views F PO princip both t thod -	g of dr D FR used it ethod d sket s- free DINT pal pla the pr - trace es by	REE-I in eng – dra etching eehand TS, LI lanes-f rincipa ces. Pro- rotatin	HAN gineeri wing g: visu l sketc INES first ar al plar rojectio	D S ing. of ta aliza hing A N ngle p nes - on of	KET Conic ingen tion p of m D P	FCE cs – ts ar princ nultip LAI	LING constr d nor iples – le vie NE -projection of	ructic nal t repre ws fre ction	on of o the senta om p of po	6 fellij e ab atio picto foint gths circ	$\frac{1}{1}$
UNIT I Basic geome parabola and curves. Visua three dimens views of obje UNIT II Orthographic Projection of true inclinati surfaces) inc	PLA etrical cd hyperb alization ional ob ects. PRO SUR project straight ons by lined to PRO	N con bje bje JJ C C C C C C C C C C C C C C C C C C	E CU struct a by o oncep cts – ECT ACE n – pr nes ir tating th the ECT	URV tions, eccer layou ION S incip cline g line prin ION	VES , cur ntrici nd fre ut of NOI oles-p ed to e met ncipal NOI prism	AND ves us ity me ee hance views F PO princip both t thod - 1 plane F SO ns, pyr	g of dr D FR used it ethod d sket s- free DINT pal pla the pr - trace es by LIDS	REE-I in eng – dra etching ehand TS, LI lanes-f rincipa ces. Pro v rotatin DS ds, cyl	HAN gineeri wing g: visu sketc INES first ar al plar rojection ng ob	D S ing. of ta aliza hing A N ngle p nes - on o ject r	KET Conic ingen tion p of m D P Drojec detern f plan netho e and	FCE cs – ts ar princ pultip LAI ction mina nes (pd.	LING construid norm iples – le view NE -projection of polyge	ructic nal t repre ws fro etion	on of o the senta om p of po leng	6 fellij jicto jicto jicto jicto jicto foint scirc	+9 pse pov on o pria 5+9 s. and cula +9
UNIT I Basic geome parabola and curves. Visua three dimens views of obje UNIT II Orthographic Projection of true inclinati surfaces) inc UNIT III Projection of	PLA etrical cd hyperb alization ional ob ects. PRO SUR project straight ons by lined to PRO straight ons by lined to PRO SUR	N con bje bje DJ C D J C C C D J C C C C C C C C C C	E CU struct a by ϕ oncep cts – ECT ACE n – pr nes ir tating th the ECT blids I the pr	URV tions, eccer layou ION S incip cline g line princip like princip rincip	VES , cur ntrici nd fre ut of NOI oles-p ed to e met ncipal NOI prism pal pl	AND ves us ity me ee hance views F PO princip both t thod - l plane F SO ns, pyr lanes t F SE(g of dr D FR used i ethod d sket s- free DINT pal pla the pr - trace es by LIDS tramid by rot	REE-I in eng – dra etching ehand TS, LI lanes-f rincipa ces. Pro v rotatin DS ds, cyl	HAN gineeri wing g: visu sketc INES first ar al plan rojection ng objec Under, objec	D S ing. of ta aliza hing A N ngle p nes - on of ject r	KET Conic ingen tion p of m D P orojec detern f plan netho e and hod.	FCF cs – ts ar princ ultip LAI ction mina nes (od.	LING construction iples – le view NE -projection or polyge incated	ructic nal t repre ws fre etion	on of o the senta om p of po leng	6 fellij picto jicto oint ths circ 6 hen	+9 pse pov on o pria 5+9 s. and cula

shape of section. Development of lateral surfaces of simple and sectioned solids – prisms, pyramids cylinders and cones.

UNIT V ISOMETRIC AND PERSPECTIVE PROJECTIONS

6+9

Principles of isometric projection – isometric scale –isometric projections of simple solids and truncated solids - prisms, pyramids, cylinders, cones- combination of two solid objects in simple vertical positions - perspective projection of simple solids- prisms, pyramids and cylinders by visual ray method .

LECTURE: 30 TUTORIAL: 45 TOTAL : 75 PERIODS

OUTCOMES: After successful completion of the course students able to

- Familiarize with the fundamentals and standards of Engineering graphics
- Perform freehand sketching of basic geometrical constructions and multiple views of objects.
- Draw orthographic projections of lines and plane surfaces.
- Draw projections of solids and development of surfaces.
- Visualize and draw isometric and perspective views of simple solids.

TEXT BOOKS:

- 1. Natrajan K.V., "A text book of Engineering Graphics", Dhanalakshmi Publishers, Chennai, 2012.
- 2. Venugopal K. and Prabhu Raja V., "Engineering Graphics", New Age International (P) Limited, 2016.
- 3. Bhatt N.D. and Panchal V.M., "Engineering Drawing", Charotar Publishing House, 53rd Edition, 2014.

REFERENCES:

 N S Parthasarathy and Vela Murali, "Engineering Graphics", Oxford University, Press, New Delhi, 2015.
 Gopalakrishna K.R., "Engineering Drawing" (Vol. I&II combined), Subhas Stores, Bangalore, 2013.
 Basant Agarwal and Agarwal C.M., "Engineering Drawing", Tata McGraw Hill Publishing Company Limited, New Delhi, 2013.
 Luzzader, Warren.J. and Duff John M., "Fundamentals of Engineering Drawing with an introduction to Interactive Computer Graphics for Design and Production", Eastern Economy Edition, Prentice Hall of India Pvt. Ltd, New Delhi, 2005
 Shah M.B., and Rana B.C., "Engineering Drawing", Pearson, 2nd Edition, 2009.

17ZE	ZES107PROGRAMMING IN C LABORATORYLT								Р	C							
														0	0	4	2
OBJI	ECTIV	'ES:											·		•	•	
•	Be fa	amiliar	with	the use of	f Off	fice	e sof	ftwa	re.								
•	Bee	xposed	to pr	esentation	n and	d vi	isual	lizat	tion	tools.							
•	Be e	xposed	to pr	oblem sol	lving	g teo	chn	ique	es an	d flov	v ch	arts.					
•	Be fa	amiliar	with	programm	ning	g in	C.										
•	Lear	n to use	e Arra	ays, string	gs, fu	unct	tion	ns, st	ructu	ires a	nd u	nions.					
LIST	OF E	XPER	RIM	ENTS:													
1. Sear	ch, gen	erate, a	nd m	anipulate	data	a us	sing	MS	5 offi	ce / ()pen	Office.					
2. Pres	entatior	and V	isual	zation –	grap	ohs,	cha	arts,	2D,	3D.							
3. Proł	olem for	mulatio	on, Pi	oblem So	olvin	ng a	and l	Flov	wcha	rts.							
4. C Pı	rogramn	ning usi	ing S	imple sta	teme	ents	s and	d ex	pres	sions							
5. Scie	entific pr	oblem	solvi	ng using	deci	sior	n m	akin	ng an	d loo	ping						
6. Sim	ple prog	rammii	ng fo	r one dim	nensi	iona	al ar	nd tv	wo d	imen	sion	al arrays.					
7. Solv	ving pro	blems u	ısing	String fu	nctio	ons.	•										
8. Prog	grams w	ith user	r defi	ned funct	ions	s - I	Inclu	udes	s Par	amete	er Pa	ussing.					
9. Prog	gram usi	ng Rec	ursiv	e Functio	on an	nd c	conv	versi	ion f	rom g	iver	n program	n to flo	W	char	t.	
10. Pro	ogram u	sing str	uctur	es and un	nions	s.											
												TOTA	AL: 6	0]	HO	URS	5
OUT	COMI	ES:	After	successf	ful c	omp	plet	tion	of th	e cou	rse	students a	able to)			
•	Devel string		rogra	ms for sir	mple	e ap	plic	catio	ons n	nakin	g use	e of basic	const	ruc	ets, a	irray	s,
•	Deve	lop C p	rogra			C							1.				

17ZBS1	08 PHY	YSICS LABORATORY	L	Т	Р	С
(Commo	on to ME	CH, EEE, ECE & CSE)	0	0	4	2
OBJEC	TIVES:					
•		luce different experiments to test basic understanding of p n optics, thermal physics, properties of matter and liquids	ohysi	CS C	once	pts
	F EXPE IMENT	RIMENTS : PHYSICS LABORATORY (ANY S)	5			
1.	Determin	nation of rigidity modulus : Torsion Pendulum				
2.	Determin	nation of Young's modulus by non-uniform bending meth	od			
3.		rmination of wave length and particle size using LASER rmination of acceptance angle in an optical fibre				
4.	Determin	nation of thermal conductivity of a bad conductor – Lee's	Disc	met	hod	
5.	Determin interfero	nation of velocity of sound and compressibility of fluid – meter	Ultra	soni	с	
6.	Determin	nation of wavelength of mercury spectrum – Spectrometer	grat	ing		
7.	Determin	nation of band gap of a semiconductor				
OUTCO	OMES:	After the course, the student will be able to apply princip optical and thermal properties for engineering application		of ela	astici	ty,

17	7ZBS109 CHEMISTRY LABORATORY										P	C								
(Co	Common to ECE, EEE, CSE&MECH)										0	4	2							
OF	BJECTIVES:																			
	• To make students conversant with hands on water parameter analysis.																			
	•]	To make	the s	studen	t to ac	cquire	e pra	racti	tical	l ski	ills i	in th	ne co	orros	ion i	n me	etals	s.		
		To acqua				with	the	e de	eteri	min	natio	n of	f mo	olecu	lar v	veigl	ht o	faı	poly	mer
	•]	To make	the s	studen	t acqu	uire p	oract	tica	al sk	kills	s in a	anal	ytic	al in	strur	nent	s.			
 4. 5. 6. 7. 8. 9. 10. 	Determi Conduc Determi Estimat Corrosi Estimat Estimat method	tometric nation of ion of sc ion of Zi ion of Zi ion of ir ion of ir	e titra of stro odiun In pre rimer	ation u rength m prese resent in ent – we content	sing n of in g ent in n efflu eight l of the	nixtur given water lent u loss n e give	ure of n hyd er usi using meth en so	of a dro sing ng A hod olut	acid ochl g fla Ator d utior	ls an loric ame mic n us	nd st c aci e pho Abs	rong d us otor sorp pote	g ba sing nete otion	pH pH r. Spe omet	mete ectros er m	er. scop eter.	y(A	AS))	
JO	JTCON	MES:	Aft	fter suc	cessfu	ıl con	mple	etio	on c	of th	ne co	ours	e st	uden	ts ab	le to)			
		fitted wi ysis of v																		ls,
RF	EFERE	NCES	5:																	
1.	Furniss B.S. Hannaford A.J, Smith P.W.G and Tatchel A.R., "Vogel's Textbook of practical organic chemistry", LBS Singapore 1994.																			
2.	2. Jeffery G.H., Bassett J., Mendham J.and Denny vogel's R.C, "Text book of quantitative analysis chemical analysis", ELBS 5th Edn. Longman, Singapore publishers, Singapore, 1996.																			
3.	Koltho 1980.	ff I.M., S	Sand	dell E.E	3. et a	l. "Q	Juan	ntita	tativ	ve ch	hemi	ical	anc	alysis	s", M	(cmi	llan	n, Ma	adra	S
4.																				

(Note: A minimum of SIX experiments shall be offered)

List of Equipments for a batch of 30 students

- 1. Flame photometer 3 Nos
- 2. Spectrophotometer 3 Nos
- 3. Weighing balance 5 Nos
- 4. Conductivity meter 9 Nos
- 5. Potentiometer 9 Nos
- 6. pH meter- 9 Nos
- 7. Ostwald viscometer 30 Nos
- 8. Atomic Absorption Spectrophotometer 1 no.
- **Common apparatus:** Pipette, Burette, Burette stand, Standard volumetric flask, funnel, Conical flask, porcelain tiles, dropper, reagent bottles, glass rod, beaker, wash bottle, test tube (30 nos each)

SEMESTER II

17ZHS20	01 COMMUNICATIVE ENGLISH II L T P (
(Commor	n to MECH, EEE, ECE & CSE) 4 0 0									
OBJECT	BJECTIVES:									
•	To make le contexts.	earners acquire listening and speaking skills in both for	rmal	anc	linfo	ormal				
•		tem develop their reading skills by familiarizing the eading strategies.	em w	vith	diff	ferent				
•	To equip contexts.	them with writing skills needed for academic as w	ell a	.s v	vork	place				
•		hem acquire language skills at their own pace by usin ab components.	g e-r	nat	erial	s and				
•	To help th debates.	em give a short extempore speech and also make th	em p	oart	icipa	ate in				
UNIT I						12				
announcem Turn takin Reading – writing ins	ents at railw g – Closing Extensive 1 tructions –	to different types of conversation and answering quest way station, airports, etc. Speaking – Comments on to g a conversation (excuses, general wish, positive co reading; Writing – purpose statements – extended de checklists-recommendations-; Grammar - imperson Vocabulary – Homonyms, Homophones.	pics omm efinit	like ent ion	e wea , tha s – i	ather. inks); ssue-				

UNIT II

Listening – Listening to situation based dialogues; **Speaking** – Conversation practice in real life situations, asking for directions, giving directions, Discussing various aspects of a film, or a book. Welcome address, Vote of Thanks, special address on special topics. **Reading** –reading a short story or an article from newspaper. **Writing** –writing a review/ summary of a story / article. **Grammar** –Concord, compound words.

12

12

UNIT III

Listening – Listening to the conversation – Understanding the structure of conversations. **Speaking** – Conversation skills with a sense of stress, intonation, pronunciation and meaning – seeking information – expressing feelings, **Reading** – speed reading – reading passages with time limit - skimming; **Writing** – Minutes of meeting – writing summary after reading articles from journals; **Grammar**- Cause and effect expressions; **Vocabulary** – Words used as nouns and verbs without any change in spelling.

UNIT IV

Listening – Viewing model interviews (face-to- face, telephonic and video conferencing); **Speaking** – role play practice in telephone skills – listening and responding, asking questions – note taking – passing on messages, Role play and mock interview for grasping interview skills; **Reading** – Reading the profile of the company concerned – scanning; **Writing** – Applying for a job – cover letter – resume preparation – vision, mission and goals of the candidate; **Grammar**- reported speech **Vocabulary** – Idioms and their meanings.

UNIT V

12

12

Listening – Viewing a model group discussion ; **Speaking** – Group discussion skills – initiating the discussion – exchanging suggestions and proposals – expressing dissent/ agreement – assertiveness in expressing opinions- mind mapping technique; **Reading** – Note making skills –making notes from books, or any form of written materials – Intensive reading; **Writing** – Types of reports / Project report – report format – recommendations/ suggestions -. **Grammar** – Use of Clauses; Vocabulary – Collocation; fixed and semi-fixed expressions.

TOTAL : 60 PERIODS

OUTCO	MES:	After successful completion of the course students able to				
•	Read te	chnical texts and write areaspecific texts effortlessly.				
•	• Listen and comprehend lectures and talks in their area of specialization successfully.					
•	• Speak appropriately and effectively in varied formal and informal contexts					
٠	Write re	eports and winning job applications.				
TEVT D	OOVC.					

TEXT BOOKS:

1.	Board of editors. Fluency in English A Course book for Engineering and Technology. Orient Blackswan, Hyderabad: 2016.
2.	Communication Skills for Engineers. scitech publication (india) pvt.ltd.chennai.2010
3.	Current english grammar and usage with composition, oxford university press, new delhi,2002.

REFERENCES:

1.	Comfort, Jeremy, et al. Speaking Effectively : Developing speaking skills for Business English. Cambridge University Press, Cambridge : Reprint 2011.
2.	Dutt P. Kiranmai and Rajeevan Geetha . Basic Communication Skills, Foundation Books: 2013.

3.	Means, L. Thomas and Elaine Langlois. English & Communication For Colleges. CengageLearning, USA : 2007.
4.	Redston, Chris & Gillies Cunningham Face2Face (Pre-intermediate student's Book & Workbook) Cambridge University Press, New Delhi: 2005.

17ZBS	5202	EN	GINEERING MATHEMATICS II	L	Т	Р	С
(Common to MECH, EEE, ECE & CSE) 3 2 0				4			
OBJE	CTIVI	ES:					
•	Vecto	or Calc	ulus And Their Uses In Various Field Theoretic Subje	cts			
•	-	er Orde Solutio	er And Special Type Of Linear Differential Equations	And	Me	etho	ods To
•	Lapla	ce Tra	nsforms And Properties And Their Applications In En	ginee	erin	g	
Construction Of Analytic Functions And Concepts Of Concepts Of Conformal Mapping, Complex Integration And Series Solutions							
UNIT	UNIT I VECTOR CALCULUS 9+6						
curl – Directional derivative – Irrotational and solenoidal vector fields – Vector integration – Green's theorem in a plane, Gauss divergence theorem and Stokes'theorem (excluding proofs) – Simple applications involving cubes and rectangular parallelopipeds.							
UNIT	II	ORD	INARY DIFFERENTIAL EQUATIONS				9+6
paramete	ers – C	Cauchy	fferential equations with constant coefficients – Meth 's and Legendre's linear equations – Simultaneous ht coefficients.				
UNIT	III	LAP	LACE TRANSFORMS				9+6
Laplace transform – Sufficient condition for existence – Transform of elementary functions –							

Basic properties – Transforms of derivatives and integrals of functions - Derivatives and integrals of transforms - Transforms of unit step function and impulse functions – Transform of periodic functions. Inverse Laplace transform -Statement of Convolution theorem – Initial and final value theorems – Solution of linear ODE of second order with constant coefficients using Laplace transformation techniques.

UNIT IV ANALYTIC FUNCTIONS

Functions of a complex variable – Analytic functions: Necessary conditions – Cauchy-Riemann equations and sufficient conditions (excluding proofs) – Harmonic and orthogonal properties of analytic function – Harmonic conjugate – Construction of analytic functions – Conformal mapping: w = z+k, kz, 1/z, z^2 , e^z and bilinear transformation.

UNIT V C

COMPLEX INTEGRATION

9+6

9+6

Complex integration – Statement and applications of Cauchy's integral theorem and Cauchy's integral formula – Taylor's and Laurent's series expansions – Singular points – Residues –

		em – Evaluation of real definite integrals as contour integrals around ele (excluding poles on the real axis).			
		TOTAL : 75(45+30) PERIODS			
OUTC	COMES: A	fter successful completion of the course students able to			
٠	Solve probl related subj	ems on vector calculus and to apply them in any other field theory ects			
•		Solve differential equations and will be exposed to their applications in various fields of engineering			
•	in finding s	Solve problems on Laplace transforms and will be able to use Laplace transform in finding solutions of differential and integral equations and other engineering applications.			
٠	-	lex integration problems and will be exposed to various applications of ctions and conformal mapping in engineering.			
TEXT	BOOKS:				
1.		nd Manish Goyal, "A Text book of Engineering Mathematics", Eighth kmi Publications Pvt Ltd., 2011.			
2.		S, "Higher Engineering Mathematics", 41 st Edition, Khanna s, Delhi, 2011.			
REFEI	RENCES:				
1.		and Er. Rajnish Verma, "Higher Engineering Mathematics", S. ate Ltd., 2011.			
2.		, "Advanced Modern Engineering Mathematics", 3rd Edition, Jucation, 2012			
3.	Peter V. Oʻ learning, 20	Neil, "Advanced Engineering Mathematics", 7th Edition, Cengage 012.			
4.		V, "Higher Engineering Mathematics", Tata McGraw Hill Publishing New Delhi, 2008.			
5.		rishna Das P. and Rukmangadachari E., "Engineering s", Volume II, Second Edition, Pearson Publishing, 2011			

•	To describe the properties of conducting material.			
•	To understand the theory of semi-conducting materials and basic electron devices			
•	To get the knowledge about properties of magnetic materials.			
•	To understand the polarization process in dielectric materials and their temperature, frequency dependence and the causes of dielectric breakdown.			
•	To acquire some exciting prospects of modern engineering materials			

9

9

Conductors – Classification of conducting materials – Ohm's Law – Electrical conductivity – Relation between current density, drift velocity and mobility – Classical free electron theory of metals – Expression for electrical conductivity of a metal – Thermal conductivity – Expression for thermal conductivity of a metal – Wiedemann – Franz law – success and failures of classical free electron theory –Fermi distribution function – Effect of temperature on Fermi Function – Density of energy states.

UNIT II SEMICONDUCTOR PHYSICS

Introduction – Intrinsic semiconductor – Energy band diagram – Direct and indirect semiconductors – Carrier concentration in an intrinsic semiconductors (derivation) – Extrinsic semiconductors – Carier concentration in n-type & p-type semiconductors –Hall effect – Determination of Hall coefficient (Theory) – Application of Hall effect.

UNIT III MAGNETIC AND SUPER CONDUCTING MATERIALS 9

Magnetization – Magnetic flux – Magnetic flux density – Intensity of Magnetisation – Magnetic field intensity – magnetic permeability – magnetic susceptibility – Magnetic field and induction – Types of magnetic materials – Microscopic classification of magnetic materials – Ferromagnetism : origin and exchange interaction – Domain theory- Hard and soft magnetic materials – Magnetic storage devices – Hard disk.

Superconductivity: Properties – Type I and Type II Superconductors- BCS theory of Superconductivity – Application of Superconductors - SQUID

UNIT IV DIELECTRIC PROPERTIES OF MATERIALS

9

General properties of Dielectric materials – Electrical susceptibility – Dielectric constant – Electronic, ionic, orientational and space-charge polarization – Frequency and Temperature dependence of Polarisation– Internal field – Claussius – Mosotti relation (derivation) –

Dielectric breakdown – Dielectric loses – Use of dielectric materials (capacitor and transformer) - Ferroelectricity and its applications.

UNIT V MODERN ENGINEERING MATERIALS

9

Metallic glasses – Properties of metallic glasses – Shape memory alloys (SMA) – Preparation, properties and applications of Shape memory alloys (SMA) – Characteristics of Shape memory alloys – Characteristics, properties of Ni-Ti alloy, application, advantages and disadvantages of shape memory alloys (SMA) – Nanomaterials – Different forms of nanomaterials – Preparations –Pulsed Laser Deposition, Chemical Vapour Deposition and Applications.

TOTAL : 45 PERIODS

OUTCOMES:		After successful completion of the course students able to		
•	 To explore knowledge about free electron theory and density of states of conducting materials with related laws 			
•	• Students are able to compare intrinsic and extrinsic semiconductor, density of electrons and holes calculation, Hall effect with applications and basic semiconductor devices			
•	To learnt comparatively about different type of magnetic materials, superconducting materials and apply in their engineering field.			
•	• To attain the functional knowledge of different types of dielectric materials, polarization mechanism and their qualitative engineering applications.			
•	• To know more about preparation of modern engineering materials and materials suitability for their own engineering field			

TEXT BOOKS:

1.	P. Mani, "Engineering physics", Dhanam Publications, 2011.
2.	G. Senthil kumar, "Engineering physics", VRB Publishers.
3.	A.Marikani, "Engineering Physics" PHI Learning Pvt., India 2009.
4.	Wahen M. A. "Solid state physics: Structure and properties of materials"Narosa publishing house, 2009

REFERENCES:

1.	<i>R. K. Gaur and S. C. Gupta, "Engineering physics", Dhanpat Rai publications, New Delhi 2003.</i>
2.	<i>M. N. Avadhanulu and P. G. Kshirsagar, "A text book of engineering physics" S. Chand and Company, Ltd, New Delhi 2005.</i>
3.	K. Rajagopal, "Engineering Physics", PHI, New Delhi, 201.

4. <i>M. Arumugam, "Engineering physics", Anuradha publishers.</i>	
--	--

17EES204

BASIC CIVIL AND MECHANICAL ENGINEERING

OBJECTIVES:

•	To impar	t basic knowledge on civil and mechanical engineering among students.
•	To famili	arise the materials and measurements used in civil engineering.
•	To provi	le the exposure on fundamental elements of civil engineering structures.
•		e the students to distinguish the components and working principles of ants and IC Engines.
•	To under	stand the working principle Refrigeration and Air conditioning system.

A – CIVIL ENGINEERING

UNIT I SCOPE OF CIVIL ENGINEERING

Overview of Civil Engineering - Civil Engineering contributions to the welfare of Society – Specialized sub disciplines in Civil Engineering – Structural, Construction, Geotechnical, Environmental, Transportation and Water Resources Engineering.

UNIT II SURVEYING AND CIVIL ENGINEERING MATERIALS 9

Surveying: Objects – classification – principles – measurements of distances – angles – levelling –determination of areas– contours - examples.

Civil Engineering Materials: Bricks – stones – sand – cement – concrete – steel - timber – modernmaterials.

UNIT III BUILDING COMPONENTS AND STRUCTURES

9

4

Foundations: Types of foundations - Bearing capacity and settlement – Requirement of goodfoundations.

Civil Engineering Structures: Brick masonry – stonemasonry – beams – columns – lintels – roofing– flooring – plastering – floor area, carpet area and floor space index - Types of Bridges and Dams – water supply - sources and quality of water - Rain water harvesting - introduction to high way and rail way.

B – MECHANICAL ENGINEERING

UNIT IV SCOPE OF MECHANICAL ENGINEERING

5

Overview of Mechanical Engineering - Mechanical Engineering contributions to the welfare of Society –Specialized sub disciplines in Mechanical Engineering - Production, Automobile, and Energy Engineering - Interdisciplinary concepts in Civil and Mechanical Engineering.

UNIT V INTERNAL COMBUSTION ENGINES AND POWER PLANTS

Classification of Power Plants - Internal combustion engines as automobile power plant – Working principle of Petrol and Diesel Engines – Four stroke and two stroke cycles – Comparison of four stroke and two stroke engines – Working principle of steam, Gas, Diesel, Hydro - electric and Nuclear Power plants – working principle of Boilers, Turbines, Reciprocating Pumps (single acting and double acting) and Centrifugal Pumps.

UNIT VI REFRIGERATION AND AIRCONDITIONING SYSTEM 9

Terminology of Refrigeration and Air Conditioning. Principle of vapour compression and absorption system–Layout of typical domestic refrigerator–Window and Split type room Air conditioner.

TOTAL : 45 PERIODS

9

OUTCOMES:		After successful completion of the course students able to	
Appreciate the Civil and Mechanical Engineering components.			
•	• Explain the usage of construction material and proper selection of construction materials.		
•	Measure distances and area by surveying.		
•	Identify the components used in power plant cycles.		
•	Demonstrate working principles of petrol and diesel engines.		
• Elaborate the components of refrigeration and Air conditioning cycle.			

TEXT BOOKS:

1.	Shanmugam G and Palanichamy MS, "Basic Civil and Mechanical Engineering", Tata McGraw Hill Publishing Co., NewDelhi, 1996.
2.	Venugopal K. and Prahu Raja V., "Basic Mechanical Engineering", Anuradha Publishers, Kumbakonam, 2000.
3.	Ramamrutham S., "Basic Civil Engineering", Dhanpat Rai Publishing Co.(P) Ltd.1999.

REFERENCES:

1.	Palanikumar, K. "Basic Mechanical Engineering", ARS Publications, 2010
2.	ShanthaKumar SRJ., "Basic Mechanical Engineering", Hi-tech Publications, Mayiladuthurai, 2000.

17ZBS205	ENVIRONMENTAL SCIENCE AND
	ENGINEERING

L	Т	Р	С
3	0	0	3

OBJECTIVES:

•	• To finding and implementing scientific, technological, economic and political solutions to environmental problems.					
•	• To study the interrelationship between living organism and environment.					
•	11	e the importance of environment by assessing its impact on the human on the surrounding environment, its functions and its value.				
•	To study the and surface.	dynamic processes and understand the features of the earth's interior				
•	To study the i and waste ma	integrated themes and biodiversity, natural resources, pollution control anagement.				

UNIT I

ENVIRONMENT, ECOSYSTEMS AND BIO DIVERSITY

12

Definition, scope and importance of Risk and hazards; Chemical hazards, Physical hazards,

Biological hazards in the environment – concept of an ecosystem – structure and function of an ecosystem – producers, consumers and decomposers-Oxygen cycle and Nitrogen cycle – energy flow in the ecosystem – ecological succession processes – Introduction, types, characteristic features, structure and function of the (a) forest ecosystem (b) grassland ecosystem (c) desert ecosystem (d) aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries) – Introduction to biodiversity definition: genetic, species and ecosystem diversity – biogeographical classification of India – value of biodiversity: consumptive use, productive use, social, ethical, aesthetic and option values – Biodiversity at global, national and local levels – India as a mega-diversity nation – hot-spots of biodiversity – threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts – endangered and endemic species of India – conservation of biodiversity: In-situ and ex-situ conservation of biodiversity. Field study of common plants, insects, birds.

Field study of simple ecosystems – pond, river, hill slopes, etc.

UNIT II ENVIRONMENTAL POLLUTION & HEALTH RISK

10

Definition – causes, effects and control measures of: (a) Air pollution: Causes, effects and prevention (b) Water pollution: Causes, effects and prevention (c) Soil pollution: Causes, effects and prevention - (d) Marine pollution (e) Noise pollution (f) Thermal pollution (g) Nuclear hazards–role of an individual in prevention of pollution – soil waste management: causes, effects and control measures of municipal solid wastes – pollution case studies

Field study of local polluted site – Urban / Rural / Industrial / Agricultural.

UNIT III NATURAL RESOURCES

Forest resources: Use and over-exploitation, deforestation, case studies- timber extraction, mining, dams and their effects on forests and tribal people – Water resources: Use and overutilization of surface and ground water, dams-benefits and problems – Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies – Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies – Energy resources: Growing energy needs, renewable and non-renewable energy sources, use of alternate energy sources. Energy Conversion processes – Land resources: Land as a resource, land degradation, man induced landslides, soil erosion and desertification – role of an individual in conservation of natural resources – Equitable use of resources for sustainable lifestyles.

Field study of local area to document environmental assets – river / forest / grassland / hill

UNIT IV SOCIAL ISSUES AND THE ENVIRONMENT

From unsustainable to sustainable development - urban problems related to energy - water

conservation, rain water harvesting, watershed management – resettlement and rehabilitation of people; its problems and concerns, case studies – role of non-governmental organization environmental ethics: Issues and possible solutions – 12 Principles of green chemistry- nuclear accidents and holocaust, case studies. – wasteland reclamation – consumerism and waste products – environment production act – Air act – Water act – Wildlife protection act – Forest conservation act – The Biomedical Waste (Management and Handling) Rules; 1998 and amendments- scheme of labeling of environmentally friendly products (Ecomark) - central and state pollution control boards- disaster management: floods, earthquake, cyclone and landslides. Public awareness.

UNIT V HUMAN POPULATION AND THE ENVIRONMENT

Population growth, variation among nations – population explosion – family welfare programme – environment and human health – human rights – value education – HIV / AIDS – women and child welfare –Environmental impact analysis (EIA)- -GIS-remote sensing-role of information technology in environment and human health – Case studies.

TOTAL : 45 PERIODS

OUTCOMES: After successful completion of the course students able to					
•	Apply the knowledge of environmental science in identifying, to formulate and to solve the environmental problems.				
•	Create awareness about structure and function of various ecosystems and natural resources.				
•	Understand	the ignorance and incomplete knowledge will lead to misconceptions.			

10

7

6

•	Analyse the reason behind serious environmental disasters.
•	Acquire Knowledge about important environmental laws.
•	Acquire in-depth knowledge on population explosion and role of IT in environmental management.
TEXT	F BOOKS:
1.	Gilbert M.Masters, 'Introduction to Environmental Engineering and Science', 2nd edition, Pearson Education, 2004.
2.	Benny Joseph, 'Environmental Science and Engineering', Tata McGraw-Hill, New Delhi, 2006.
REFE	CRENCES:
1.	R.K. Trivedi, 'Handbook of Environmental Laws, Rules, Guidelines, Compliances and Standards', Vol. I and II, Enviro Media.
2.	Cunningham, W.P. Cooper, T.H. Gorhani, 'Environmental Encyclopedia', Jaico Publ., House, Mumbai, 2001.
3.	Dharmendra S. Sengar, 'Environmental law', Prentice hall of India PVT LTD, New Delhi,2007.
4.	Rajagopalan, R, 'Environmental Studies-From Crisis to Cure', Oxford University Press 2005.

17EPC206	6 ELF	CTRIC (CIRCU	JIT A	NA	LYS	SIS			L	Τ	P	C
										3	2	0	4
OBJECTI	VES:											1	
•	Го introd	ce electric	circuits	s and it	ts ana	alysis							
•	Го impar	knowledge	e on solv	ving ci	ircuit	ts usir	ng net	work	theoren	ıs			
•	Го introd	ce the phe	nomeno	on of re	esona	ance i	n cou	pled c	rcuits				
•	Го educa	on obtain	ing the t	transie	ent re	espons	se of a	circuit	S				
•	Го Phaso	diagrams a	and anal	lysis o	of thre	ee pha	ase ci	cuits					
UNIT I	BAS	C CIRC	UITS A	ANA	LYS	SIS						9	9+6
current and N and Energy. U NIT II		WORK I								100			0+6
		OREMS											
Network rec Thevenin an Reciprocity	d Norton												
UNIT III	RES	DNANCI	E AND) COI	UPL	LED	CIR	CUL	ГS			9	9+6
Series and p Circuits- Se circuits–Sing	lfand mu	al inducta	ince–Co	oefficie	-		-	•					-
UNIT IV	CIR	CUIT TI	RANSI	IENT	S							9	9+6
Laplace Tra Decay of cu Over-dampe Natural Freq	rrent in I d, Critic	L Circuits ly Dampe	-RC Tra d and U	ansient	t: De	cay o	f Cur	rent i	n RC C	ircuits	-RLO	C Tra	ansien
UNIT V	TH	EE PHA	SE CI	RCU	ITS)						9	9+6
Comparison sources– ana and unbala measuremen	lysis of t	ree phase 3 s— phasor	3-wire a r diagi	ind 4-w	vire c	circuit	ts with	ı star	and del	ta con	necti	on-b	alance

TOTAL :75(45+30) PERIODS

OUTC	OMES: After successful	al completion of the course students able to				
٠	Explain circuit behaviour using mesh and nodal and	using ohm's law and Kirchhoff laws, hence solve the circuits alysis				
•	State various circuit laws theorems.	and theorems and perform the circuit analysis to prove the				
•	Explain the behaviour of	resonance and magnetically coupled circuits.				
•	-	g phasor techniques under steady stateand transient conditions cond ordersystems using R, L, and C Circuits.				
TEXT	BOOKS:					
1.	Arumugam M and Prer Delhi,2006	n Kumar, "Electric Circuit Theory", Khanna Publishers, New				
2.	Sudhakar A and Sh Synthesis",TataMcGrav	nyam Mohan SP,"Circuits and Network Analysis and w Hill,2015.				
3.		CharlesK.Alexander,Mathew N.O.Sadiku,"Fundamentals of Electric Circuits",Second Edition, McGrawHill, 2013.				
REFE	RENCES:					
1.	Joseph A. Edminister TataMcGraw-Hill,New	r, Mahmood Nahri, "Electric circuits", Schaum'sseries, Delhi,2014.				
2.	Paranjothi SR, "Electri 1996.	c Circuits Analysis," New Age International Ltd., New Delhi,				
3.	Ashfaq Husain and Ha Dhanpath Rai & Sons, N	urroon Ashfaq, "Fundamentals of Electrical Engineering", New Delhi, 2016				
4.	2	k E. Kemmerly and Steven M. Durbin, "Engineering Circuits w Hill publishers, 6 edition, New Delhi, 2003.				

17ZES207	ENGINEERING PRACTICES LABORATORY	L	Т	Р	(
----------	----------------------------------	---	---	---	---

0	0	4	2

15

С

OBJECTIVES:

•	To train the students in safety handling of tools, equipment and machineries,
	plumbing operation and basic carpentry exercises.

- To impart skill in fabricating simple components using basic machining processes, sheet metal and metal joining process like welding, soldering, etc.
 - To expose them in house wiring, basic electrical circuits and Electronic components and equipments.

GROUP A (CIVIL & MECHANICAL)

CIVIL ENGINEERING PRACTICES

A) PLUMBING WORKS:

- 1. Study of pipeline joints, its location and functions: valves, taps, couplings, unions, reducers and elbows in household fittings.
- 2. Study of pipe connections requirements for pumps and turbines.
- 3. Preparation of plumbing line sketches for water supply and sewage works.
- 4. Hands-on-exercise: Basic pipe connections Mixed pipe material connection Pipe connections with different joining components.
- 5. Demonstration of plumbing requirements of high-rise buildings.

B) CARPENTRY USING POWER TOOLS ONLY:

- 1. Study of the joints in roofs, doors, windows and furniture.
- 2. Hands-on-exercise: To make basic carpentry joints by sawing, planning and cutting.

MECHANICAL ENGINEERING PRACTICES

15

A) WELDING:

- 1. Preparation of arc welding of butt joints, lap joints and tee joints.
- 2. Gas welding practice

B) BASIC MACHINING:

- 1. Simple Turning and Facing
- 2. Drilling Practice

C) SHEET METAL WORK:

- 1. Forming & Bending:
- 2. Model making Trays, funnels, etc.

3. Different type of joints. **D) MACHINE ASSEMBLY PRACTICE:** 1. Study of centrifugal pump 2. (b) Study of air conditioner **GROUPB (ELECTRICAL&ELECTRONICS)** 15 **ELECTRICAL ENGINEERING PRACTICES** 1. Residential housewiringusingMCB, ELCB, Contactors, switches, fuse, indicator, lamp and energy meter. 2. Fluorescent lamp wiring. 3. Stair case wiring 4. 4. Measurement of electrical quantities – voltage, current, power & power factor in RLC circuit. 5. Measurement of energy using single phase energy meter. 6. Measurement of resistance to earth of electrical equipment. 15 **ELECTRONICS ENGINEERING PRACTICES** 1. Study of Electronic components and equipments – Resistor, colour coding measurement of AC signal parameter (Peak-Peak, RMS, Time period, Frequency) using CRO. 2. Study of logic gates AND, OR, EOR and NOT. 3. Generation of Clock Signal. 4. Soldering practice – Components, Devices and Circuits – Using general purpose PCB. 5. Measurement of ripple factor of Half-wave and Full wave rectifiers. **TOTAL : 60 PERIODS** After successful completion of the course students able to **OUTCOMES:** • Fabricate components by carpentry and pipe connections including plumbing works. • Use welding equipment to fabricate permanent joints by welding and also can perform basic machining operations.

Fabricate electrical and electronics circuits.

•

17EPC2	08 EL	ECTRIC C	IRCUITS L	ABORA	TORY		L	Τ	P	C
							0	0	4	2
OBJECT	TIVES:									
•	To solve theorems		ectric circuits	using mes	sh analysis, nod	al analysi	s, an	ıd ne	twor	k
•	To condu response	-	on DC and A	C electric	circuits to know	ow the tin	ne a	nd fi	reque	ncy
•	To Desig	gn and simulate	e resonance cir	cuits, filte	r circuits, and t	hree phase	e cir	cuits	3	
•	To fabric	cate electrical a	and electronics	s circuits.						
LIST OF	EXPERI	MENTS								
1. Experim	ental veri	fication of Ki	chhoffs voltag	ge and cur	rentl aws					
2. Experim PowerTran			work theorem	s (Theveni	ins, Norton, Sup	per position	n an	d Ma	iximu	Im
3. Experim	ental dete	ermination of t	ime constant c	of series R	-C circuits.					
4. Experim	ental dete	ermination of f	requency resp	onse of R	LC circuits.					
5. Design a	and Simul	lation of series	resonance cir	cuit.						
6. Design a	and Simul	lation of parall	el resonant cir	cuits.						
7. Simulati	ion of low	pass and high	pass passive fi	lters.						
8. Simulati	ion of thre	ee phases balar	nced and unbal	lanced star	r, delta network	ts circuits.				
9. Experim	nental det	ermination of	power in three	ephase circ	cuits by two-wa	attmeter m	netho	od.		
10. Determ	nination of	f two port netv	vork parameter	rs.						
11. Transie	ent analys	is of second or	der under dan	nped syste	m.					
LIST OF	F EQUI	PMENT FO	R A BATC	H OF 3() STUDENT	'S:				
1. Regula	atedPower	r Supply:0–15	VD.C-10 Nos/	/Distribute	ed Power Sourc	e.				
2. FunctionGenerator (1MHz) - 10Nos.										
3. Oscilloscope (20MHz) - 10Nos.										
4. Digital StorageOscilloscope (20MHz) –1 No.										
5.Circuit SimulationSoftware(5Users) (Pspice/Matlab/other Equivalentsoftware										
Pa	ckage) wi	ithPC (5Nos.)	andPrinter		(1 No.)					

6.AC/DC- Volt	neters(10Nos.),Ammeters(10Nos.) ar	ndMulti-meters(10Nos.)				
7. SinglePhaseV	Vattmeter-3 Nos.					
8.Double- elem	ent wattmeter	- 2 Nos				
9. DecadeResist	anceBox, DecadeInductanceBox, Deca	ade CapacitanceBoxEach-6Nos.				
10. CircuitConr	ectionBoards- 10Nos.					
12.PSpice or its	equivalent software	- 10 users				
		TOTAL:60 PERIODS				
OUTCOMES	After successful completion of the	he course students able to				
	• Solve DC and AC electric circuits using mesh analysis, nodal analysis, and network theorems.					
Analyse	• Analyse the time and frequency response of DC and AC electric circuits.					
• Design	Design and simulate resonance circuits, filter circuits, and three phase circuits					
• Fabricat	e electrical and electronics circuits.					

SEMESTER-III

Т Р С L 17ZBS301 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS 3 2 0 4 **OBJECTIVES:** To introduce Fourier series analysis which is central to many applications in engineering apart from its use in solving boundary value problems. To acquaint the student with Fourier transform techniques used in wide variety of . situations. To introduce the effective mathematical tools for the solutions of partial differential equations that model several physical processes and to develop Z transform techniques for discrete time systems. **9+6** PARTIAL DIFFERENTIAL EQUATIONS UNIT I Formation of partial differential equations – Singular integrals -- Solutions of standard types of first order partial differential equations - Lagrange's linear equation -- Linear partial differential equations of second and higher order with constant coefficients of both homogeneous and nonhomogeneous types. 9+6 **UNIT II FOURIER SERIES** Dirichlet's conditions - General Fourier series - Odd and even functions - Half range sine series -Half range cosine series - Complex form of Fourier series - Parseval's identity - Harmonic analysis. 9+6 **UNIT III APPLICATIONS OF PARTIAL DIFFERENTIAL**

Classification of PDE – Method of separation of variables - Solutions of one dimensional wave equation – One dimensional equation of heat conduction – Steady state solution of two dimensional equation of heat conduction (excluding insulated edges).

UNIT IV FOURIER TRANSFORMS

EQUATIONS

9+6

Statement of Fourier integral theorem – Fourier transform pair – Fourier sine and cosine transforms – Properties – Transforms of simple functions – Convolution theorem – Parseval's identity.

UNIT V	Z - TRANSFORMS AND DIFFERENCE EQUATIONS	9+6
	s - Elementary properties – Inverse Z - transform (using partial fraction and theorem - Formation of difference equations – Solution of difference equat	,

			TOTAL : 75(45+30)PERIODS
OUTC	COMES:	After successful completion of th	ne course students able to
•	equations	0 1	nciples on transforms and partial differential to formulate and solve some of the physical
TEXT	BOOKS:		
1.		jan T., "Transforms and Partial on Pvt. Ltd., New Delhi, 3 rd Editi	Differential Equations", Tata McGraw Hill on, 2016.
2.	Grewal Delhi, 2	B.S., "Higher Engineering Mathe 2017.	ematics", 44 th Edition, Khanna Publishers,
3.			K and Ramanaiah.G "Advanced Mathematics Viswanathan Publishers Pvt Ltd., 1998.
REFE	RNCES:		
1.		P. and Manish Goyal, "A Text tions Pvt Ltd, 9 th Edition 2016.	book of Engineering Mathematics", Laxmi
2.		a. B.V., "Higher Engineering Ma 1y Limited, New Delhi, 2018.	athematics", Tata McGraw Hill Publishing
3.		nmes, "Advanced Modern Engine on, 2016.	eering Mathematics", 4 th Edition, Pearson
4.	Erwin K	Kreyszig, "Advanced Engineering N	<i>Mathematics", 10th Edition, Wiley India, 2011.</i>
5.		lie C and Barrett .L.C, "Advanced v Hill Education Pvt Ltd, New De	Engineering Mathematics", 6 th Edition, Tata Ihi, 2012.
6.		K.B., "Mathematical Methods of So vt Ltd, Delhi, 2013.	cience and Engineering", Cengage Learning

17EPC302		POWER PLA	NT ENGINEERI	ING	L	Τ	P	C
					3	0	0	3
OBJE (CTIVE							
•	To stu	the construction	, operation and charac	eteristics of thermal po	wer p	lants		
•		y the construction of the	_	aracteristics of diese	l, gas	turł	oine	an
•	To stuplants	⁷ the construction	operation and charact	teristics of various nuc	lear re	eacto	rs po	we
•			n, operation and chan hergy storage systems	racteristics of various	rene	wable	e ene	rg
٠	To implants.	rt knowledge on	various economical an	nd environmental issue	es of v	vario	ıs po	we
UNIT I	C C)AL BASED 7	THERMAL POW	ER PLANTS			1()
Super he	aters, Re	aters, Subsystem	s of thermal power pla	ers, Turbines, Conden nts – Coal and ash han steam power plant, Cog	dling,	ESP	Drau	ıgł
UNIT I		ESEL, GAS T WER PLAN		OMBINED CYCI	LE		8	
		-		onents of Diesel and one based Combined Cyc			-	we
UNIT I		UCLEAR POWER PLANTS					7	
Nuclear Deuteriu	Reactors mUraniu	Boiling Water I	Reactor (BWR), Press U), Breeder, Gas Coo	of Nuclear Power I surized Water Reacto bled and Liquid Meta	r (PW	′R),	CAN	ad
UNIT I	IV P	WER FROM	RENEWABLE F	ENERGY			1()
Turbines	. Princip	e, Construction an		out and associated con Tidal, SolarPhoto Ve ms.	-			
	VF	ERGY STOF	AGE, ECONOM				1()
UNIT		IVIRONMEN	TAL ISSUES OF	POWER PLANT	'S			
UNIT Supercon	E Storage: nducting	Pumped Hydro, Magnetic Energy	Compressed Air Ene Storage, Super Capa	rgy Storage, Flywhe acitor Energy Storage lection criteria, Capita	el en e, The	ermal	Ene	erg

of different power plants. Pollution control technologies including Waste Disposal Options for Coal and Nuclear Power Plants.

	TOTAL : 45 PERIODS					
OMES:	After successful completion of the course students able to					
-	he construction, operation and characteristics of various conventional power th as thermal, diesel, gas and nuclear power plants.					
Explain the construction, operation and characteristics of various renewable energy based power plants and energy storage systems.						
Explain v	arious economical and environmental issues of various power plants.					
BOOKS:						
	g, Power Plant Engineering, Tata McGraw – Hill Publishing Company Ltd., Edition, 2008.					
M.M. El-Wakil, Power Plant Technology, Tata McGraw – Hill Publishing Company Ltd., 2010.						
Black &	Veatch, Springer, Power Plant Engineering, 1996.					
NCES:						
	C. Elliott, Kao Chen and Robert C. Swanekamp, Standard Handbook of Power Engineering, Second Edition, McGraw – Hill, 1998.					
	Boyle, Renewable energy, Open University, Oxford University Press in on with the Open University, 2004.					
	Explain t plants suc Explain th power pla Explain v BOOKS: P.K. Nag Third E M.M. El- Ltd., 201 Black & NCES: Thomas O Plant E Godfrey					

17EES3	03	OBJE	ECT	ORIE	ENTE	D PRO	OGR	AMM	ING		L	Т	Р	C
											3	0	0	3
OBJEC	TIV	ES:												
•	Tol	oe famil	iar wit	h the o	bject o	priented j	progra	amming	concepts					
•	Точ	understa	nd the	basic	charac	teristics	of OC	OPS						
•	To understand the concepts of inheritance, polymorphism and overloading													
•	Tol	be famil	iar wit	h the b	oasics o	of Java								
•	Точ	understa	nd con	cepts	of Inte	rfacing,	Exce	ption ha	ndling in	java				
UNIT I		OVE	RVII	EW									9)
Why Obje Implemen			-		-		ive T	ypes and	d Stateme	nts–Functio	ons a	nd F	oint	ers-
UNIT II	[BAS	ICCH	[ARA	CTE	RISTI	CSO	FOOI	2				9)
Data Hidi abstractio	-				•	ect Creat	tion a	nd Dest	ruction- P	olymorphis	m da	ita		
UNIT II	I	ADV	ANC	EDP	ROG	RAMN	1IN(Ţ					9)
Templates	s, Ge	enericPr	ogram	ming,	and S7	L-Inher	ritance	e-Excep	tions-OO	P Using C+	+.	-		
UNIT I	V	OVE	RVI	EW O	FJA	VA						9)
Data type	s, va	riables a	and arr	ays, oj	perator	rs, contro	ol stat	ements,	classes, o	bjects, met	hods	– Ir	nheri	tanc
UNIT V	,	EXC	EPTI	ION I	HANI	DLING	r F						9)
Packages	and	Interfac	es,Exc	eption	handl	ing,Mult	i thre	aded pr	ogrammin	g,Strings,Ir	put/	outp	out	
								TOT	AL:45	PERIOD	S			
OUTCO)MI	ES:	After	succes	ssful co	ompletio	on of t	he cour	se student	s able to				
•	Gain the basic knowledge on Object Oriented concepts.													
•	Ability to develop application susing Object Oriented Programming Concepts.													
•	Abi	lity to in	nplem	ent fea	tures o	of object	orien	ted prog	gramming	to solve rea	al wo	orld	prob	lem
TEXT E	800)KS:												

2.	H.M.Deitel,P.J.Deitel,"Java:how to program",Fifth edition,Prentice Hall of India private limited, 2003.				
REFER	NCES:				
1.	Herbert Schildt, "The Java2: Complete Reference", Fourth edition, TMH, 2002				
2.	Bjarne Stroustrup, "TheC++ Programming Language", Pearson Education, 2004.				
3.	Stanley B.Lippman and Josee Lajoie, "C++ Primer", Pearson Education, 2003				
4.	K.R.Venugopal, Rajkumar Buyya, T.Ravishankar, "Mastering C++", TMH, 2003.				

17EPC304	ELECTRO MAGNETIC THEORY	L	Τ	Р	С
		2	2	0	3
OBJECTIV	ES:				

•	To introduce the basic mathematical concepts related to electromagnetic vector fields
•	To impart knowledge on the concepts of electrostatics, electrical potential, energy density andtheir applications.
•	To impart knowledge on the concepts of magnetostatics, magnetic flux density, scalar and vector potential and its applications.
•	To impart knowledge on the concepts of Faraday's law, induced emf and Maxwell's equations
•	To impart knowledge on the concepts of Concepts of electromagnetic waves and Pointing

UNIT I INTRODUCTION

vector.

Sources and effects of electromagnetic fields – Vector fields – Different co-ordinate systems-

UNIT II ELECTRO STATICS

Coulomb's Law – Electric field intensity – Field due to point and continuous charges – Gauss's lawand application – Electric potential – Electric field and equipotential plots – Electric field in free space, conductors, dielectric - Dielectric polarization – Dielectric strength - Electric field in multipledielectrics – Boundary conditions, Poisson's and Laplace's equations – Capacitance-Energy density.

vectorcalculus - Gradient, Divergence and Curl - Divergence theorem - Stoke's theorem.

UNIT III MAGNETO STATICS

Lorentz Law of force, magnetic field intensity – Biot–Savart Law - Ampere's Law – Magnetic fielddue to straight conductors, circular loop, infinite sheet of current – Magnetic flux density (B) – B infree space, conductor, magnetic materials – Magnetization – Magnetic field in multiple media –Boundary conditions – Scalar and vector potential – Magnetic force – Torque – Inductance – Energydensity – Magnetic circuits.

UNIT IV ELECTRO DYNAMIC FIELDS

Faraday's laws --induced emf -- Transformer and motional EMF -- Forces and Energy in

Quasi stationary Electromagnetic Fields - Maxwell's equations (differential and integral forms) – Displacement current – Relation between field theory and circuit theory.

UNIT V ELECTRO MAGNETIC WAVES

6+6

6+6

Electromagnetic wave equations – Wave parameters; velocity, intrinsic impedance, propagation constant– Waves in free space,lossy and lossless dielectrics, conductors – skin depth, Poynting

6+6

6+6

6+6

vector – T	ransmissio	nlines – Line equations– Input impedances – Standing wave ratio and power.
		TOTAL : 60(30+30) PERIODS
OUTCO	MES:	After successful completion of the course students able to
	Describe t fields.	he coordinate systems, vector calculus and theorems to electricand magnetic
	-	he nature, characteristics, properties and applications of Electric and Magnetic the help offundamental laws of fields.
	-	oltage, and current using electric fields and Develop resistance, capacitance and e of a given electrical component.
		ctric and magnetic fields with help of Faraday's Lawand Maxwell's Equation, applications to electricalmachines.
	-	ectromagnetic Wave propagation, Poynting Vectorand Poynting Theorem and the significance of electric and magnetic fields inelectrical engineering
TEXT B	OOKS:	
1.		N. O. Sadiku, "Elements of Electromagnetics", Oxford University press Inc. ition, 2014.
2.	-	A. Edminister, "Theory and Problems of Electromagnetics", 2nd Edition, Series, Tata McGraw Hill, 1993.
3.		gadhar,P.M.Ramanthan' Electromagnetic FieldTheory(includingAntennaes e propagation)', 16 th Edition,KhannaPublications,2008.
4.	S.P.Seth 2001.	, "Elements of Electromagnetic Fields", Dhanpath Rai & Sons, New Delhi,
REFERN	CES:	
1.		n Pramanik, "Electromagnetism – Theory and Applications", Prentice-Hall of ivate Limited, New Delhi, 2008.
2.	William.	H. Hayt, "Engineering Electromagnetics", Tata McGraw Hill, 2011
3.		nd Fleish, "Electromagnetics with Applications", McGraw Hill International 5 th Edition, 1999.
4.	0	ngh Guruand Hüseyin R.Hiziroglu ''Electromagnetic field Fundamentals'', Cambridge University Press;Second Revised Edition,2009.

17EPC305		ANA	LOG ELECTRONICS	L	T	P	C		
				3	0	0	3		
OBJEC	TIVE	ES:							
•	To st	tudy tl	e PN diode and its applications						
•	To st	tudy th	e operation and characteristics of BJT AND FETS						
•	• To study the biasing of BJT and BJT based amplifiers								
•	• To impart knowlrdge on feedback amplifiers and oscillators								
•	To in	mpart l	nowlrdge on applications of diode circuits and wave	eform gene	rator	s			
UNIT I		PN D	ODE AND ITS APPLICATIONS				9		
Rectifiers	: HW,	FW, E	haracteristics – Resistance - temperature effects – I ridge Rectifiers, filters - Zener diode – Characteristi on to Switched mode power supply (Quantitative tre	cs - LED –	Reg				
UNIT II	[BJT A	AND FETS			9			
CCconfig	uratio	ns – h	sistor – Construction – Input and output char brid model – Analytical expressions - JFET – T nodel - MOSFET - Characteristics – enhancement a	VI charact	eristi	cs, F			
UNIT II	I	BIAS	ING AND AMPLIFIERS			9			
amplifiers	-CE C nplifie	CB amp	Ferent types of biasing circuits –BJT-FET-Small sig lifier - frequency response - Class A, B, AB, C and D	O-RC andtr	ansfo	orme	coupled		
connection		ers - (Class B complementary- symmetry, push-pull p	ower Am	_		armgton		
							9		
connection UNIT I Differenti	V al amp	FEEI	Class B complementary- symmetry, push-pull p	O RS feedback ar	nplif		9 • Voltage		
connection UNIT I Differenti	V al amp series	FEEI olifiers / shunt	Class B complementary- symmetry, push-pull p BACK AMPLIFIERS AND OSCILLAT Common Mode and Differential Mode - CMRR – 1	O RS feedback ar	nplif		9 • Voltage		
Connection UNIT IV Differenti / current, s UNIT V RC wave	V al amp series shapin	FEEI olifiers / shunt PULS	Class B complementary- symmetry, push-pull p BACK AMPLIFIERS AND OSCILLAT Common Mode and Differential Mode - CMRR – t feedback –condition for oscillation - oscillators – L	O RS feedback an C, RC, crys	nplif stalos	scilla	9 Voltage tors.		
Connection UNIT IV Differenti / current, s UNIT V RC wave	V al amp series shapin	FEEI olifiers / shunt PULS	Class B complementary- symmetry, push-pull p DBACK AMPLIFIERS AND OSCILLAT Common Mode and Differential Mode - CMRR – the feedback –condition for oscillation - oscillators – L E CIRCUITS its – Diode clampers and clippers – Monostable, As	ORS feedback ar C, RC, crys stable and E	nplif stalos	scilla	9 Voltage tors.		

•	Explain the characteristics and applications of electronic vices such as diode, special diodes, BJTs, and MOSFETs.						
•	Compare various biasing methods and circuits for the BJT and MOSFET amplifiers						
•	Explain the characteristics and applications of feedback amplifiers, pulse circuits and oscillators.						
ТЕХТ	BOOKS:						
1.	Paynter, "Introductory electronic devices and circuits", PHI, 2006.						
2.	David Bell, "Electronic Devices and Circuits", PHI, 2007.						
3.	RobertL.Boylestad,"Electronic Device sand Circui",2002.						
REFE	RNCES:						
1.	Theodre F. Boghert, "Electronic Devices & Circuits" Pearson Education, 6 th Edition, 2003.						
2.	Rashid, "Microelectronic circuits", Thomson Publication, 1999.						
3.	Singh. B.P and Rekha Singh, "Electronic Devices and Integrated Circuits", Pearson Education, 2006.						

17EPC306		DIGI	TAL LOGIC CIRCUITS	L	Т	Р	С			
				2	2	0	3			
OBJE	CTIV	'ES:								
•	• To study various number systems, simplify the logical expressions using Boolean functions									
•	To st	udy im	plementation of combinational circuits							
•	To d	esign va	rious synchronous and asynchronous circuits.							
•	To ir	troduce	e asynchronous sequential circuits and PLCs							
•	To ir	troduce	digital simulation for development of application orien	ted 1	ogic	circ	uits.			
UNIT	[BER SYSTEMS AND DIGITAL LOGIC ILIES				6+6			
code) –I	Review of number systems, binary codes, error detection and correction codes (Parity and Hamming code) –Digital Logic Families, comparison of RTL, DTL, TTL, ECL and MOS families-operation, characteristics of digital logic family.									
UNIT	I	COM	BINATIONAL CIRCUITS			6+6				
minimiz	ation	using k	representation of logic functions- SOP and POS form framaps- simplification and implementation of combinations and decoders- codeconverters, adders, and subtractors	ation		-				
UNIT	II	SYN	CHRONOUS SEQUENTIAL CIRCUITS				6+6			
and sync	hrono	us type	K, D and T flip flops-level triggering and edge triggeri Modulo counters-Shift registers-design of synchronous unters, statediagram; state reduction; state assignment							
UNIT]	IV		NCHRONOUS SEQUENTIAL CIRCUITS A GRAMMABLE LOGIC DEVICES	ND			6+6			
digital c	Asynchronous sequential logic circuits-Transition table, flow table-raceconditions, hazards & errorsin digital circuits; analysis of asynchronous sequential logic circuits- introduction to Programmable Logic Devices:PROM–PLA–PAL.									
UNIT	V	VHD	L			6+	6			
Subprog	rams–	Testber	national logic –Sequential circuit–Operators –Int ich. (Simulation / Tutorial Examples: adders, co plexers).				-			
			ΤΟΤΑ	AL:	60(30+3	0) PERIODS			

OUTC	OMES:	After successful completion of the course students able to
•	-	ne different number systems, coding schemes, IC fabrication technique andarithmetic s on binary numbers.
•	minimizat	he basic theorems and properties of Boolean algebra, Utilize K- Map for gate level tion of the given Boolean function and Construct combinational logic circuits for the uirement anddetermine their performance
•	Construct	synchronous and asynchronous sequential logic circuits for
	the given	requirement and determine their performance
•	Explain t Programn	the programmable logic devices such as PROM, PLA, and PAL, and VHDL ning.
TEXT	BOOKS:	
1.	Raj Kama	al, 'Digitalsystems-Principlesand Design', PearsonEducation2ndedition, 2007
2.	M.Morris	Mano, 'Digital Design with an introduction to the VHDL', Pearson Education, 2013.
3.	Floydand.	Jain, 'Digital Fundamentals',8 th edition,PearsonEducation,2003.
4.	Anil K.M 2007.	aini, "Digital Electronics: Principles, Devices and Applications", Wiley Publications,
REFE	RENCES	
1.	Mandal "	Digital Electronics Principles & Application, McGraw Hill Edu,2013
2.	William K	Keitz, "Digital Electronics- A Practical Approach with VHDL", Pearson, 2013.
3.	Comer "I	Digital Logic & State Machine Design", Oxford, 2012.
4.	AnandKu	mar, "Fundamentals of Digital Circuits",PHI, 2013.

OBJECT ORIENTED PROGRAMMING LABORATORY

OBJECTIVES:

L						
	٠	Get Introduced to the object oriented programming using C++				
	٠	Learn to cr	eate simple C++ programs using I/O statements.			
	٠	Be familiar with concepts of overloading, Inheritance, templates, virtual functions in C				
	٠	Learn the b	pasic programming techniques in java			
	٠	Be familiar	with concepts of Interfacing, Threading and Exception handling in Java			

LIST OF EXPERIMENTS:

C++:

1.Program using functions

a) Functions with default arguments

b) Implementation of call by value, address, reference

2.Simple classes for understanding objects, member functions&constructors

a)Classes with primitive data members,

b)Classes with arrays as data members

c)Classes with pointers as datamembers

d)Classes with constant data members

e)Classes with static member functions

3.Compile time polymorphism

a)Operator overloading

b)Function overloading

- c)Run time polymorphism
- d)Inheritance
- e)Virtual functions
- f)Virtual base classes
- g)Templates
- 4.File handling

a)Sequential access b)Random access

JAVA:

5.Simple java applications-a)for understanding references to an instant of aclassb)Handling strings in JAVA

6.Simple package creation-developing user defined packages in java

7.Interfaces-developing user defined interfaces

8.Threading

a)Creation of threading in java applications

b)Multi-threading

9.Exception handling mechanism in java

a) Handling predefined exceptions.

b) Handling user defined exceptions.

TOTAL : 60 PERIODS

OUTCOMES: After successful completion of the course students able to

- Gain the basic knowledge on Object Oriented concepts.
- Ability to develop applications using Object Oriented Programming Concepts.
- Ability to implement features of objectoriented programming to solvereal world problems.

LIST OF EQUIPMENTS FOR A BATCH OF 30 STUDENTS:

Stand alone desktops with C++complier 30Nos. (or) Server with C++ compiler supporting 30 terminals or more

17EPC	C308	ANA	LOG ELECTRONICS LABORATORY	L	T	P	C	
				0	0	4	2	
OBJE	CTIVI	ES:	To enable the students to understand the behavior of semi- based on experimentation	condu	ctor	dev	vice	
•	To understand the behaviour of PN and Zener diode							
•	Lear	n to cr	eate simple applications of PN and Zener diode					
•		unders gurati	tand the characteristics of BJT, UJT, JFET and MOSF	ĩΕΤ i	n d	iffe	rent	
•	To ir	npart k	knowledge on frequency response of various amplifies					
٠	To in	npart k	knowledge on RC phase shift and wein bridge oscillators					
 Diode Singl Chara Chara Chara Chara Chara Chara Chara Frequ Frequ Frequ Frequ 	e Clippe e phase acteristic acteristic acteristic acteristic ency re uency r uency r	rs and half w cs of V cs of T cs of F cs of M cs of U sponse esponse	10SFET.					
		~	TOTAL : 60PERIODS After successful completion of the course students able to					
OUTC			-	t		CLT	2772	
•		Obtain accurately the characteristics of electronic devices (Diodes, BJT, and MOSFET) oscillators and voltage regulators independently.						
•	Constr	uct acc	curately wave shaping circuits for the givenspecifications ind	epend	lentl	y.		
•			ately the frequency response of various amplifiers with differe and FET independently.	nt coi	nfigu	ırati	ons	

SEMESTER-IV

17EBS401	NUME	RICAL METHODS	Τ	P	C
		3	2	0	4
OBJECTI	VSES:				
ar	nd give pro	ims at providing the necessary basic concepts of a few number cedures for solving numerically different kinds of problem and technology			
UNIT I	SOLU PROB	TION OF EQUATIONS AND EIGENVALUE LEMS		9	+6
method- Solu method – Ite	ution of line erative meth	transcendental equations - Fixed point iteration method – Near system of equations - Gauss elimination method – Pivoting ods of Gauss Jacobi and Gauss Seidel - Matrix Inversion by f a matrix by Power method.	- Gau	iss Jo	ordan
UNIT II	UNIT II INTERPOLATION AND APPROXIMATION				+6
	– Cubic Sp	ual intervals - Lagrange's interpolation – Newton's divid lines - Interpolation with equal intervals - Newton's forward		back	ward
UNIT III		RICAL DIFFERENTIATION AND RATION		9	+6
Trapezoidal,	Simpson's	vatives using interpolation polynomials - Numerical interpolation polynomials - Numerical interpolation of and three provaluation of double integrals by Trapezoidal and Simpson's 1	oint	Gau	
UNIT IV		AL VALUE PROBLEMS FOR ORDINARY RENTIAL EQUATIONS		9	+6
order Runge	-Kutta metl	aylor's series method - Euler's method - Modified Euler's m nod for solving first order equations - Multi step methods ctor corrector methods for solving first order equations.			
UNIT V		DARY VALUE PROBLEMS IN ORDINARY AN TAL DIFFERENTIAL EQUATIONS	1D	9	+6
techniques f domain – Or	or the solut ie dimension	s for solving two-point linear boundary value problems - Fi ion of two dimensional Laplace's and Poisson's equations hal heat flow equation by explicit and implicit (Crank Nichols quation by explicit method.	on re	ectan	gulaı

			TOTAL : 75(45+30) PERIODS			
OUTCO	MES:	After successful completion of the course students able to				
• The students will have a clear perception of the power of numerical techniques, idea and would be able to demonstrate the applications of these techniques to problems drawn from industry, management and other engineering fields						
TEXT B	OOKS:					
1.	Grewal. B.S., and Grewal. J.S., "Numerical methods in Engineering and Science", 9th Edition, Khanna Publishers, New Delhi, 2007.					
2.	Gerald. C. F., and Wheatley. P. O., "Applied Numerical Analysis", 7 th Edition, Pearson Education, Asia, New Delhi, 2007.					
REFER	ENCES :					
1.	-	C., and Canale.R.P., "Numerico Iill, New Delhi, 2016.	al Methods for Engineers", 7 th Edition, Tata			
2.	Brian Bradie. "A friendly introduction to Numerical analysis", Pearson Education, Asia, New Delhi, 2007.					
3.		ao. K., "Numerical methods all of India Private Ltd., New I	for Scientists and Engineers", 3rd Edition, Delhi, 2007			

17EPC	402	DC N	MACHINES AND TRANSFORMERS	L	Т	P	C
				2	2	0	3
OBJEC	CTIV	ES:					
•	elect	tromec	the working principles of electrical machines using hanical energy conversion principles and derive expressi d torque developed in DCl Machines.			-	
•			e working principles of DC machines as Generator types, det ad characteristics, starting and methods of speed control of r			on of	thei
•			e the various losses taking place in D.C. Motor and to study the arrive at their performance.	ne di	ffere	ent te	sting
•			arize the constructional details, the principle of operation ce and three phase transformer connections.	on,	pred	ictio	n o
		4 d 41	ne various methods of testing of DC machines and transform	ore			
٠	To s	study tr	ic various methods of testing of DC machines and transform	ICI S			

Magnetic Circuits - Principles of electromechanical energy conversion – Single and multiple excited systems – concept of co-energy– Generated voltage – Torque in DC machine.

UNIT II DC GENERATORS

Constructional details – emf equation – Methods of excitation – Self and separately excited generators – Characteristics of series, shunt and compound generators – Armature reaction and commutation – Parallel operation of DC shunt and compound generators.

UNIT III DC MOTORS

Principle of operation – Back emf and torque equation – Characteristics of series, shunt and compound motors – Starting of DC motors – Types of starters – Speed control of DC series and shunt motors.

UNIT IV TRANSFORMERS

Constructional details of core and shell type transformers – Types of windings – Principle of operation – emf equation – Transformation ratio – Transformer on no-load – Parameters referred to HV / LV windings – Equivalent circuit – Transformer on load – Regulation – Parallel operation of single phase transformers – Auto transformer – Three phase transformers – Vector group.

UNIT V TESTING OF DC MACHINES AND TRANSFORMERS

6+6

6+6

6+6

6+6

Losses and efficiency in DC machines and transformers – Condition for maximum efficiency – Testing of DC machines – Brake test, Swinburne's test, Retardation test and Hopkinson's test – Testing of transformers – Polarity test, load test, open circuit and short circuit tests – All day efficiency.

		TOTAL : 60(30+30)PERIODS
OUTCOMES:		After successful completion of the course students able to
٠	Explain the	concept of magnetic circuits and electromechanical energy theory.
٠	Explain the	construction, operation and characteristics of Dc Generators and Motors
٠	Explain the	construction, operation and characteristics of Transformers
•	Determine t various test	he losses and efficiency in dc machines and transformers by conducting s.
TEXT	BOOKS:	
1.		A.E. Kingsly C., Umans S.D., ' <i>Electrical Machinery</i> ' 6 th edition, McGraw ational Edition, New York, 2002.
2.	Kothari D. 2011.	P. and Nagrath I.J , "Electric Machines", Tata McGraw Hill, Fourth Ed.,
3.	P. C. Kraus Press, 1995	se, O. Wasynczuk and S. D. Sudhoff, "Analysis of electric machinery," IEEE
REFEI	RENCES:	
1.	D.P.Kotha	ri, 'Electrical Machines.' 3 rd edition, TMH, New Delhi 2004.
2.	P.C.Sen, " Sons, Newy	Principles of Electrical Machines and Power Electronics", John-Wiley & vork.
3.	Cotton H '	Advanced Electrical Technology', CBS Publishers and Distributors, 1967.
4.	P.S.Bimbh	ra, 'Electrical Machinery', Khanna Publishers,2003.
5.	Fitzgerald 2007.	A.E., Kingsly C. and Kusko.A., "Electric Machinery", Tata McGraw Hill,

17EPC403	EAR INTEGRATED CIRCUITS AND PLICATIONS	L	Τ	Р	С
		3	0	0	3

OBJECTIVES:

•	To study th	the IC fabrication procedure.	
•	To study c ICs.	characteristics; realize circuits; design for signal analysis using Op-ar	mp
•	To study th	the applications of Op-amp.	
•	-	internal functional blocks and the applications of special ICs like Timuits, regulator Circuits, ADCs, Opto ICs.	iers,
1			

UNIT I IC FABRICATION

IC classification - fundamental of monolithic IC technology, epitaxial growth, masking and etching, diffusion of impurities - Realization of monolithic ICs and packaging - Fabrication of diodes, capacitance, resistance and FETs.

UNIT II CHARACTERISTICS OF OP-AMP

Ideal OP-AMP characteristics, DC characteristics, AC characteristics - offset voltage and current -differential amplifier - frequency response of OP-AMP - Basic applications of OP-AMP - summer, Differentiator and integrator.

UNIT III APPLICATIONS OF OP-AMP

Instrumentation amplifier - first and second order active filters - V/I & I/V converters - comparators, Multivibrators - clippers, clampers, peak detector, S/H circuit, D/A converter - R-2R ladder and weighted resistor types - A/D converter -Dual slope, successive approximation and flash types.

UNIT IV SPECIAL ICs

Timer: Introduction to 555 timers and its functional diagram, Monostable, Astable and Schmitt Trigger applications - Voltage Controlled Oscillator: Operation and Applications using IC 566 - Phase Locked Loops: Introduction, Principles, Block Schematic and Description of IC 565, Applications of PLL: Frequency multiplication and frequency translation.

UNIT V APPLICATION ICs

IC voltage regulators - LM317, 723 regulators, switching regulator, LM2575, LM 380 power Amplifier, ICL 8038 function generator IC, isolation amplifiers, opto coupler, opto electronic ICs, Buffer.

TOTAL : 45 PERIODS

9

9

9

9

9

OUTCO	DMES:	After successful completion of the course students able to				
•	Explain the	different fabrication methods of integrated circuits.				
•	Explain the circuits	characteristics, frequency response and applications of OP-AMP based				
•	Explain the	different special ICs and Application ICs and its characteristics.				
TEXT F	BOOKS:					
1.	Ramakant A Education, 2	A. Gayakward, "Op-amps and Linear Integrated Circuits", 4 th 2003				
2.	Roy Choudh 2003	udhary. D, Sheil B.Jani, "Linear Integrated Circuits", 2 nd Edition, New Age				
3.	Fiore,"Op-a 2010.	mps&Linear Integrated Circuits Concepts & Applications", Cengage,				
REFER	ENCES:					
1.		nan, Christos C.Halkias, "Integrated Electronics - Analog and Digital em", Tata McGraw Hill, 2003.				
2.	Robert F.Co Edition,Peo	nughlin, Fredrick F.Driscoll, "Op-amp and Linear ICs", 4 th Irson				
3.	David A.Bel	l, "Op-amp & Linear ICs", 2 nd Edition, Prentice Hall of India, 1997.				
4.	Floyd,Buchl	a, "Fundamentals of Analog Circuits", Pearson, 2013.				

17EPC404	TRANSMISSION AND DISTRIBUTION	L	Τ	Р	C
		3	0	0	3

OBJECTIVES:

•	To study the basic structure of electric power systems, FACTS devices, and Calculate the sag of transmission lines.
•	To develop expressions for the computation of transmission line parameters.
•	To obtain the equivalent circuits for the transmission lines based on distance and operating voltage for determining voltage regulation and efficiency. Also to improve the voltage profile of the transmission system.
•	To analyses the voltage distribution in insulator strings and cables and methods to improve thesame.
٠	To study the basic structure of substations and distribution systems.

UNIT I POWER SYSTEM TOPOLOGY

9

Structure of electric power system – Generation, Transmission and distribution voltages – HVDC system – structure – Types - Comparison of AC and DC system - EHV AC transmission- need and environmental aspects – FACTS- TCSC – SVC – STATCOM – UPFC (qualitative treatment only) –Mechanical design of transmission line between towers – sag and tension- calculations using approximate equations taking into account the effect of ice and wind.

UNIT II TRANSMISSION LINE PARAMETERS

9

Transmission line Resistance - Inductance and Capacitance calculations for - single and three phase transmission lines with single and double circuits lines - Symmetrical and unsymmetrical spacing -Transposition - Application of self and mutual GMD -Stranded and bundled conductors - Skin and proximity effects.

UNIT III MODELLING AND PERFORMANCE OF TRANSMISSION LINES

9

9

Classification of lines – Short, medium and long transmission lines – Equivalent circuits Transmission efficiency and voltage regulation – Generalized constants of the transmission line- Surge impedance – Surge impedance loading- Real and reactive power flow in the line-Power angle diagram - Power circle diagrams – Ferranti effect -corona formation and loss.

UNIT IV INSULATORS AND CABLES

Insulators – Types – Voltage distribution in string insulator and grading – Improvement of string efficiency – Underground cables – Constructional features of LT and HT cables –

Capacitance single core and three core cables – Dielectric stress and grading – Thermal characteristics.

UNIT V SUBSTATION AND DISTRIBUTION SYSTEM

9

Types of substations- substation equipment – Bus-bar arrangements – Substation bus schemes –Single bus scheme – Double bus with double breaker – Double bus with single breaker – Main and transfer bus – Ring bus – Breaker-and-a-half with two main buses – Double bus-bar with bypass isolators. Neutral grounding- System and equipment grounding - grounded and ungrounded transmission system- Solid, Resistance, reactive, Peterson coil grounding systems –Distribution systems- types -Radial and ring main (qualitative treatment only).

TOTAL : 45 PERIODS

OUTC	OMES: After successful completion of the course students able to				
•	Explain the basic structure of electric power systems, FACTS devices, and Calculate the sag of transmission lines.				
•	Calculate the line parameters for various type of lines.				
•	Explain the characteristics and performance of short, medium and lor transmission lines.				
•	Explain the construction and performance of insulators and cables				
•	Explain the basic structure of substations and distribution systems.				
TEXT	BOOKS:				
1.	Wadhwa C.L., "Electric Power Systems", New Age International (P) Ltd., 2000.				
2.	Gupta B.R., "Power System Analysis and Design", S. Chand Company & Ltd, New Delhi, 2003.				
3.	D.P.Kothari,I.J.Nagarath, 'Power System Engineering', TataMcGraw-Hi Publishing Company limited, New Delhi, Second Edition, 2008.				
REFEI	RENCES:				
1.	Singh S.N., "Electric Power Generation, Transmission and Distribution", Prentie Hall of India, New Delhi, 2002.				
2.	Mehta V. K. and Rohit Mehta, "Principles of Power System", S.Chand Compar & Ltd, New Delhi, 2006.				
3.	J.Brian, Hardy and Colin R.Bayliss 'Transmission and Distributionin Electrical Engineering', Newnes; Fourth Edition, 2012.				
4.	LucesM.Fualkenberry,Walter Coffer, 'Electrical Power Distribution an Transmission',Pearson Education,2007.				
5.	Wiiliam D. Stevenson Jr, "Elements of Power system Analysis", TataMcGraw-Hil				

Limited, Publishing NewDelhi.

17ZES4	05	SIG	NALS AND SYSTEMS	L	Τ	P	C
	3 2					0	4
OBJEC	TIVI	ES:		<u> </u>		<u></u>	<u> </u>
•		nderst ificati	and the basic properties of signal & systems and the va	rious	s me	thod	s of
•	To le	earn L	aplace Transform & Fourier transform and their propertie	es			
•	To k	now Z	transform & DTFT and their properties				
•	To c doma		terize LTI systems in Continuous Time domain and va	ıriou	s Tr	ansfo	orm
•	To c doma		terize LTI systems in Discrete Time domain and va	rious	s Tr	ansfo	orm
UNIT I		CLA	SSIFICATION OF SIGNALS AND SYSTEM	1S		9.	+6
Impulse, S signals, I systems-	Sinuso Determ Classif	idal, I inistic ficatio	als (CT signals) - Discrete time signals (DT signals) - St Exponential, Classification of CT and DT signals - Perio & Random signals, Energy & Power signals - CT n of systems – Static & Dynamic, Linear & Nonlinear, al & Non causal, Stable & Unstable.	odic syste	& A ems	and arian	odic DT nt &
UNIT I	[ANA	LYSIS OF CONTINUOUS TIME SIGNALS			9.	+6
		-	is-spectrum of Continuous Time (CT) signals- Four nal Analysis - Properties.	ier a	and	Lap	lace
UNIT I			EAR TIME INVARIANT- CONTINUOUS T ITEMS	[M]	£	9+	· 6
	-		-Block diagram representation-impulse response, conversion construction of CT systems.	olutio	on ii	ntegr	als-
UNIT I	V	ANA	LYSIS OF DISCRETE TIME SIGNALS			9-	+6
Baseband	Samp	ling -	DTFT – Properties of DTFT - Z Transform – Properties	of Z	Trai	nsfor	m.
UNIT V			EAR TIME INVARIANT-DISCRETE TIME FEMS			9.	+6
	-		-Block diagram representation-Impulse response - C Z Transform Analysis of Recursive & Non-Recursive sys			on si	um-

		TOTAL : 75 PERIODS				
OUTO	COMES:	After successful completion of the course students able to				
•	Analyze t	he properties of signals & systems				
•	Apply Laplace transform, Fourier transform, Z transform and DTFT in signalysis					
•	Analyze continuous time LTI systems using Fourier and Laplace Transforms					
•	Analyze d	liscrete time LTI systems using Z transform and DTFT				
ТЕХТ	BOOKS:					
1.	Allan V.Oppenheim, S.Wilsky and S.H.Nawab, "Signals and Systems", Pearson, 2007.					
2.	Simon Ha Pvt Ltd, 19	ykin, Barry Van Veen., "Signals & Systems". John Wiley &Sons (ASIA) 999.				
3.	B. P. Lathi, "Principles of Linear Systems and Signals", Second Edition, Oxford, 2009.					
REFE	ERENCES:					
1.		r, W.H.Tranter and R.D.Fannin, "Signals & Systems - Continuous and Pearson, 2007.				
2.	John Alan	Stuller, "An Introduction to Signals and Systems", Thomson, 2007.				
3.	H P HSU,	"Signals and Systems", 2 nd edition, Mc.Hill.education, 2017.				
4.		rts, "Signals & Systems Analysis using Transform Methods & MATLAB", raw Hill, 2007.				

17EPC4	06	MEAS	SUREMENTS AND INSTRUMENTATION	L 3		Р 0	C 3
OBJEC	TIV	ES:			U	U	<u> </u>
•	To	introduce	e the basic functional elements of instrumentation				
•	To	introduce	e the fundamentals of electrical instruments				
•	То	educate o	on the comparison between various measurement techniques	3			
•	To	introduce	e the fundamentals of electronic instruments				
•	To	introduce	e various transducers and the data acquisition systems				
UNIT I	1	INTR	ODUCTION			9	1
input outp	out co stics	nfigurati	nts, instrument classification, Elements of generalized meas on of measuring instruments, selection of an instruments– St in measurement – Statistical evaluation of measurement data	atic a	nd d	ynai	mic
UNIT II	[ELEC	TRICAL INSTRUMENTS			9	1
three pha Determina construction	ise v ation on of	vattmeter of B-H c current	of Moving coil, moving iron and dynamometer type Instrumers-Single and three phase energy meters – Magnetic curve and measurements of iron loss – Instrument transform and potential transformers, transformation ratio and phase easurement of frequency and phase.	ers – '	sure The	eme ory a	nts: and
UNIT II	Ι	РОТЕ	NTIOMETERS AND BRIDGES			9	1
DC notor	ntiom	otor I ab	oratory type. A C potentiometers-Polar and co-ordinate type	o M	2261	rom	

D.C potentiometer-Laboratory type, A.C potentiometers-Polar and co-ordinate type, Measurement of low and medium resistance- Kelvin's Double bridge, Wheatstone bridge. Measurement of self-inductance- Maxwell's bridges and Hay's bridge. Measurement of mutual inductance - Anderson's bridge-Low and high voltage Schering bridges- transformer ratio bridges, self-balancing bridges. Sources of error in AC bridges and their minimization. Measurement of high resistance- loss of charge method and Mega ohm bridge method.

UNIT IV ELECTRONIC INSTRUMENTS

Digital voltmeters, ammeters, multimeters, DMM with auto ranging and self-diagnostic features-Signal Generators- Distortion meter- Q-meters-Digital R-L-C meters-Spectrum analyzer-Wave analyzer- digital plotters and printers, CRT display, digital CRO, LED and LCD display, Sampling and Digital storage oscilloscope.

9

9

Transducers – selection criteria ,Resistive Transducers-Potentiometers, strain gauges, Resistance Thermometer, Thermistors, inductive transducers- LVDT, capacitive transducers-based on change in distance between plates – Piezoelectric, thermocouple, Hall effect, optical and digital transducers, ultrasonic transducers – Instrumentation amplifiers, A/D and D/A conversion, S/H and multiplexers-Smart sensors.

TOTAL : 45PERIODS

After successful completion of the course students able to
he characteristics of generalized electrical measurements and its errors.
e various parameters using various type of analog instruments
e unknown Resistance, inductance and capacitance values using bridge circuits.
he measurements of various parameters using various type of digital instruments
he performance of various type of transducers, and signal conversion systems.
:
awhney, 'A Course in Electrical & Electronic Measurements & Instrumentation', at Rai and Co, 2004.
pta, 'ACourse in Electronic and Electrical Measurements', S.K.Kataria & Sons, 2003.
lin E.O.and Manik D.N, Measurement Systems Applications and Design, Special Edition, Tata McGraw Hill Education Pvt .Ltd., 2007.
ulsi, 'Electronic Instrumentation', Tata McGraw Hill, IIEdition 2004
Moorthy, 'Transducers and Instrumentation', Prentice Hall ofIndiaPvtLtd, 2007.
uwens, 'Digital Instrumentation', Tata McGraw Hill, 1997.
Reissland, 'Electrical Measurements', New Age International (P) Ltd., Delhi,
<i>Morris, Principles of Measurements and Instrumentation, 2nd Edition, Prentice f India, 2003.</i>

17EPC407 DC MACHINES AND TRANSFORMERS L T P C LABORATORY 0 0 4 2

OBJECTIVES :

•	To expose the students to the operation of various D.C. generators and give them experimental skill.
•	To expose the students to the operation of various D.C. motors and give them experimental skill.
•	To expose the students to the operation transformers and give them experimental skill to find the efficiency, losses and to draw the equivalent circuit

LIST OF EXPERIMENTS:

1. Study of starters: 2-point, 3-point and 4-point starters.

- 2. Open circuit and load characteristics of DCshunt generator.
- 3 . Load characteristics of DC compound generator with differential and cumulative connections
- 4. Load Test on DC series generator.
- 5. Load test on DCshunt and compound motor.
- 6. Load test on DC series motor.
- 7. Swinburne's test and speed control of DC shunt motor.
- 8. Hopkinson'steston DCmotor –generator set.
- 9. Loadtest on single-phase transformer and three phase transformers.
- 10. Open circuit and short circuit tests on single phase transformer.
- 11. Sumpner's test on single phase transformers.
- 12. Separation of no-load losses in single phase transformer.
- 13. Scott connection and 3-phase transformers connections.

LIST OF EQUIPMENTS FOR A BATCH OF 30 STUDENTS

1.	DC Shunt Motor with Loading Arrangement–3Nos
2.	DC Shunt Motor Coupled With Threephase Alternator –1No.
3.	Single Phase Transformer –4Nos
4.	DC Series Motor with Loading Arrangement-1 No.

5.	DC compound Motor with Loading Arrangement-1No	Э.
6.	Three Phase Induction Motor with Loading Arrangem	ent–2Nos
7.	Single Phase Induction Motor with Loading Arrangen	nent–1No.
8.	DC Shunt Motor Coupled With DC Compound Gener	rator –2Nos
9.	DC Shunt Motor Coupled With DC Shunt Motor -1N	0.
10.	Tachometer -Digital/Analog-8Nos	
11.	Single Phase Auto Transformer–2Nos	
12.	Three Phase Auto Transformer–1No.	
13.	Single Phase Resistive Loading Bank–2Nos	
14.	Three Phase Resistive Loading Bank.–2Nos	
15.	SPST switch–2Nos	
		TOTAL : 60 PERIODS
OUTCO	DMES: After successful completion of the course stud	ents able to
•	Draw the characteristics of Dc Generators and Motor and efficiency.	s and determine the losses
•	Draw the equivalent circuit and characteristics of tran losses and efficiency.	nsformers and determine the

17EPC408	LINEAR AND DIGITAL INTEGRATED CIRCUITS LABORATORY	L	Τ	Р	C
		0	0	4	2

OBJECTIVES :

•	To provide Experiment test bench to learn logic gates, Boolean functions, adder, subractor and various code convertors
•	To provide Experiment test bench to learn shift registers , counters and Multiplexer/ De-multiplexer
•	To provide Experiment test bench to learn applications of Op-Amp in inverting and non-inverting mode
•	To provide Experiment test bench to learn TIMER IC applications
•	To provide Experiment test bench to learn Analog to Digital Converters and Digital to Analog Converters, VCO and PLL

LISTOFEXPERIMENTS:

1. Basic Digital IC's. (Verification of truth table for AND, OR, XOR, NOT, NOR, NAND, JK FF, RS FF, D FF).

2. Implementation of Boolean Functions, Adder/ Subtractor circuits.

3. Code converters, Parity generator and parity checking, Excess-3, 2'sComplement,Binary to Gray Code using suitable IC's.

4. Encoders and Decoders: Decimal and Implementation of 4-bit shift registers in SISO, SIPO, PISO, PIPO modes using suitable IC's.

5. Counters: Design and implementation of 4-bit modulo counters as synchronous and Asynchronous types using FF IC's and specific counter IC.

6. Shift Registers: Design and implementation of 4-bit shift registers in SISO, SIPO, PISO, PIPO modes using suitable IC's.

7.Multiplexer/ De-multiplexer: 4:1; 8:1 multiplexer and 1:4; 1:8 De-multiplexer

8. Timer IC application: Study of NE/SE 555 timer in Astable, Monostable operation.

9. Application of Op-Amp: inverting and non-inverting amplifier, Adder, Comparator, Differential Amplifier, Integrator and Differentiator.

10. Analog to Digital Converter and Digital to Analog Converter: Verification of A/D conversion using dedicated IC's.

11. VCO and PLL ICs(Voltage to frequency characteristics of NE/ SE 566 IC. And Frequency multiplication using NE/SE 565 PLL IC).

TOTAL : 60 PERIODS

OUTCOMES:	After successful completion of the course students able to
------------------	--

•	Analyse th	he characteristics of OP-Amp circuits, Special ICS and Application ICs.
•	Explain th	ne performance of digital IC Circuits
•	Able to ex	xplain the signal conversion circuits.

SEMESTER-V

17EPC	501	PO	WER SYSTEM ANALYSIS	L	Т	Р	C
				2	2	0	3
OBJEC	CTIV	ES :					
•	To mo	odel th	e power system under steady state operating condition.				
•	To stu	ıdy nu	merical methods and matrices				
•	To ap	ply nu	merical methods to solve the power flow problem.				
•	To mo	odel ar	nd analyze the system under faulted conditions.				
•	To me to a fa		nd analyze the transient behaviour of power system when	n it	is sı	ıbjec	ted
UNIT I	[]	POW	ER SYSTEM MODELING			6+0	6
system c Modeling Diagram	ompor g of co	ients in mpone	a power system– Per phase and per unit analysis– Moon of per unit analysis - Symmetrical Components and seque ents in positive, negative and zero sequences. – Impedance	ence	net	work	ts – nce
UNIT I		NET	WORK MATRICES			UTU	J
methods. power sy	– Dire ystems	ect Bui : Fact	 Construction of Ybus using inspection and singular lding algorithm of Zbus matrix - Sparse Matrix technique orization by Bifactorization and Gauss elimination m id Right factors and L and U matrices. 	es fo	r lar	ge sc	cale
UNIT I	II]	POW	ER FLOW ANALYSIS			6+0	6
Solution	of Po	wer flo	es – Power flow problem formulation in rectangular an ow problem: Gauss Seidel method, Newton Raphson m w method. Comparison of methods – Statement of Optima	etho	od, a	nd F	Fast
UNIT I		FAUI	LT ANALYSIS			6+0	6
Computa faults in	tion of trans	f fault smissio	ysis in power systems – Symmetrical Fault analysis t current, short circuit capacity and post fault voltages – on lines– Sequence network interconnection for va analysis using symmetrical components.	Uns	sym	metri	ical
UNIT	V]	POW	ER SYSTEM STABILITY			6+0	6
Need for	r stabi	litv –	Classification of power system stability-angle and vo	ltag	e st	ahili	tv-

Need for stability – Classification of power system stability-angle and voltage stability– Small signal stability analysis of single machine infinite bus system –Solution of swing

method	s - Multimad	chine Infinite bus system – Introduction to Transient stability.
		TOTAL : 60 PERIODS
OUTC	COMES:	After successful completion of the course students able to
٠	Calculate	e pu quantity for the given components.
٠	Compute	Y-Bus and Z-Bus.
٠	Analyze	the various faults in power transmission line.
٠	Analyze	the stability of single machine and Multimachine infinite bus system.
TEXT	BOOKS	:
1.	-	I.J.and Kothari D.P., 'Modern Power System Analysis', TataMcGraw- th Edition, 2011.
2.	C.L.Wad	hwa, 'Electrical Power Systems 'New Academic Science Limited, 2017.
3.	Ashfaq H	lusain,'Electrical Power System' 5 th edition, CBS Publishers, 2017.
4.		esh, B.V.Manikandan, S.CharlesRaja, A.Srinivasan, 'Electrical Power Analysis, Security and Deregulation', PHI Learning Private Limited, New 12.
REFE	RNCES:	
1.		udat, 'Power System Analysis', Tata McGraw Hill Education Pvt.Ltd., New st reprint, 2010.
2.		P., 'Power System Stability and Control, Tata McGraw Hill Education NewDelhi 10 th reprint, 2010
3.		a Glover, Mulukutla S.Sarma, Thomas J.Overbye, 'Power System Analysis', Cengage Learning, Fifth Edition, 2012.
4.		rainger and W.D.Stevenson Jr., 'Power System Analysis', Tata McGraw- a reprint, 2010.

	502	CON	TRO	LSYS	STEM	IS						T	P	C
OBJEC	TIV	ES:									2	2	0	3
•					transfer em con		tion mo	odels f	for and	alysis	physio	cal s	yster	ns and
•	-	To provide adequate knowledge in the time response of systems and steady servor analysis.										y state		
•			oasic ki f systei		lge in o	obtaini	ing the	open	loop	and cl	osed–	loop	frec	luency
•	To i	ntroduc	e stabil	ity ana	lysis ar	nd des	sign of	compe	ensato	rs				
•		ntroduc feedba		variabl	e repres	sentati	ion of p	physic	al sys	ems a	nd stu	dy tl	he ef	fect of
UNIT I		MAT	THEM	ATI	CAL N	MOD	ELIN	IG O	F SY	STE	MS			6+6
mechanic Block dia	gramr	eductio	n techn	iques -	– Signa				: OS — .	AC an	d DC	serv		otors -
		T TTAT	E KE	SPON	ISE									
Test inpu response indices –	– Gen	als – T eralized	ime do l Error	main coeffic	specific									system
response -	– Gen Root l	als – T eralized ocus co	ime do l Error onstruct	main coeffic ion.	specific	-Steady	ly state						erfor	system
response - indices - i	– Gen Root l II y resp respo	als – T eralized ocus co FRE oonse -	ime do l Error onstruct QUEN -Freque	main coeffic ion. ICY I	specific cients – RESP lomain	-Steady ONS	ly state E ificatio	error ns –	– PID	Cont	betv	s –Pe	erfor tim	system mance 6+6 le and
response indices – UNIT I Frequency frequency	– Gen Root l II y respo onse.	als – T eralized ocus co FRE oonse – E	Time do d Error onstruct QUEN -Freque Bodeplo	main coeffici ion. ICY I ncy d t – Pol	specific cients – RESP lomain ar plot	-Steady ONS speci – Dete	ly state E ificatio	error ns – tion of	– PID Corre f close	Cont lation	betv betv	s –Pe	tim tim	system mance 6+6 le and
response indices – UNIT II Frequency loop respo	- Gen Root 1 II y resp v resp v resp onse. V of Stab	als – T eralized ocus co FRE oonse – F onse – F STA bility – works	Time do d Error onstruct QUEN -Freque Bodeplo BILLI Routh- - Lag, 1	main coefficion. ICY I ncy d t – Pol Y AN Hurwitt ead an	specific cients – RESP(lomain ar plot ND CC z stabil d lag-le	-Steady ONS speci – Dete OMP lity cri eadcon	y state E ificatio ermina ENSA iterion mpensa	error ns – tion of ATOI - Nyq	– PID Corre f close R DE uist st	Cont elation ed loop SIGN ability	betw betw resp v crite	s –Pe	tim fron	6+6 a and n oper 6+6 a g, lead
response indices – UNIT II Frequency loop respo UNIT I Concept of and lag-le	- Gen Root 1 II y resp v respo onse. V V of Stab ead net eadcon	als – T eralized ocus co FRE onse – E onse – E STA oility – works	Time do d Error onstruct QUEN -Freque Bodeplo BILLI Routh- - Lag, I or desig	main coefficion. ICY I ncy d t – Pol Y AN Hurwit ead an gn usin	specific cients – RESP(lomain ar plot ND CC ND CC z stabil d lag-le	-Steady ONS speci – Dete OMP lity cri eadcon t Locus	y state E ificatio ermina ENSA iterion mpensa	ns – tion of TOI - Nyq ttor de	– PID Corre f close R DE uist st	Cont elation ed loop SIGN ability	betw betw resp v crite	s –Pe	tim fron –Lag – Lag	6+6 a and n oper 6+6 g, lead
response indices – UNIT II Frequency frequency loop respo UNIT I Concept of and lag-le and lag-le	- Gen Root 1 II y resp respo onse. V of Stab ead net eadcon 7 of state ansitio	als – T eralized ocus co FRE oonse – onse – F STA pility – works pensat STA	Time do d Error onstruct QUEN -Freque Bodeplo BILLI Routh- - Lag, 1 or designed TE VA les for 1	main coefficion. ICY I ncy d t – Pol Y AN Hurwitt ead an gn usin RIA	specific cients – RESP(lomain ar plot VD CC z stabil d lag-le ag Root BLE 4 me inva	-Steady ONS speci – Dete DMP lity cri eadcont t Locus ANA ariant	y state E ificatio ermina ENSA iterion mpensa s. LYSI Systen	ns – tion of ATOI - Nyq ttor de S ns – St	– PID Corre f close R DE uist st sign u	Cont elation ed loop SIGI ability sing b	betw betw bresp v crite ode p	veen onse rion lots	tim fron -Lag - Lag	System mance 6 + 6 e and n oper 6 + 6 g, lead g, lead 6 + 6 nctior

OUT	COMES:	After successful completion of the course students able to				
•	Determine the transfer function of complex systems using block reduction and signation flow graph techniques and also draw the analogues electrical circuits for non-electric systems					
•	Analyse the techniques	time and frequency response of various order systems using mathematical				
•	Analyse the	stability of closed loop systems				
•	Design the c	compensators to achieve required specifications				
•	Analyse the	system performance using state variable model technique.				
TEXT	Г BOOKS:					
1.		nd Gopal M., "Control Systems Engineering", Tata McGraw-Hill Education ited, Reprint, 2010.				
2.	Gopal M., " New Delhi,	Control Systems, Principles and Design ", 4th Edition, Tata McGraw Hill, 2012.				
3.	S.K.Bhattac	harya, "Control SystemEngineering", 3 rd Edition, Pearson, 2013.				
REFE	ERNCES:					
1.	Arthur, G.O 2009.	D.Mutambara, "Design and Analysis of Control; Systems", CRC Press,				
2.	Richard C. Dorf and Robert H. Bishop, "Modern Control Systems", Pearson Prenti Hall, 2012.					
3.	Benjamin C.	Kuo, "Automatic Control systems", 7th Edition, PHI, 2010.				

17EPC50	3 SYNCHRONOUS AND ASYNCHRONOUS MACHINES		L	T	Р	C
			2	2	0	3
OBJECTIVES :						
•	• To impart knowledge on Construction, principle of operation and of three phase induction motor			erfo	rmai	ıce
•	To impart knowledge on Starting and speed control of three-phase induct motors.			ion		
•	• To impart knowledge on Construction, principle of operation and performation of single phase induction motors and special machines.			rmai	ıce	
•	To impart knowledge on Construction and performance of salient and non – salient type synchronous generators.			n –		
To impart knowledge on Principle of operation and p synchronous motor.			perfo	orma	nce	of

UNIT I THREE PHASE INDUCTION MOTOR

6+6

Constructional details–Types of rotors–-Principle of operation– Slip–cogging and crawling-Equivalent circuit – Torque-Slip characteristics - Condition for maximum torque – Losses and efficiency–Load test-No load and blocked rotor tests-Circle diagram–Separation of losses– Double cage induction motors–Induction generators–Synchronousinductionmotor.

UNIT II STARTING AND SPEED CONTROL OF THREE PHASE INDUCTION MOTOR

6+6

6+6

Need for starting–Types of starters–DOL, Rotor resistance,Auto transformer andStar-delta starters–Speed control–Voltage control,Frequency control and polechanging –Cascaded connection-V/fcontrol–Slip power recovery scheme-Braking of three phase induction motor:Plugging, dynamic braking and regenerative braking.

UNIT III SINGLE PHASE INDUCTION MOTORS AND SPECIAL MACHINES

Constructional details of single phase induction motor–Doublefield revolving theory and operation – Equivalent circuit–No load and blocked rotor test–Performance analysis–Starting methods of single-phase induction motors–Capacitor-startcapacitor run Induction motor-Shaded pole induction motor - Linear induction motor –Repulsion motor- Hysteresis motor-AC series motor- Servo motors- Stepper motors- introduction to magnetic levitation systems.

UNIT IV SYNCHRONOUS GENERATOR

6+6

Constructional details–Typesofrotors–windingfactors-emfequation–Synchronousreactance– Armaturereaction–Phasor diagramsofnon-salient polesynchronousgenerator connected to infinite bus-Synchronizing and parallel operation – Synchronizing torque -Change of excitation and mechanicalinput- Voltage regulation–EMF, MMF, ZPF and A.S.A methods–steady state power- angle characteristics–Two reaction theory–sliptest-shortcircuit transients- Capability Curves.

UNIT V

SYNCHRONOUS MOTOR

6+6

Principle of operation–Torque equation–Operation on infinite busbars- V and Inverted Vcurves–Power input and power developed equations–Starting methods–Current loci for constant power input, constant excitation and constant power developed-Hunting–natural frequency of oscillations– damper windings- synchronous condenser.

TOTAL : 60 PERIODS

OUT	COMES:	After successful completion of the course students able to				
•	-	construction, operation and characteristics of Induction Motors and trical machines.				
•	Describe various starters and speed control methods of induction motors.					
•	Explain the	construction, operation and characteristics of Synchronous machines.				
•	Determine t	he losses and efficiency in ac machines.				
TEX	Г BOOKS:					
1.		ndI.J.Nagrath, 'ElectricMachines', Tata McGraw Hill Publishing , 2 nd Edition 2002.				
2.	P.S.Bhimbhra, 'Electrical Machinery', Khanna Publishers, 2003.					
3.	A.E.Fitzgerald, Charles Kingsley, Stephen.D.Umans, 'Electric Machinery', Ta McGraw Hill publishing Company Ltd, 2003.					
REFI	ERNCES:					
1.	M.N.Bandyop LTD., NewDe	adhyay, Electrical Machines Theory and Practice, PHI Learning PVT lhi ,2009.				
2.	CharlessA.Gross, "Electric /Machines, "CRCPress,2010.					
3.	Alexander S.Langsdorf, Theory of Alternating –Current Machinery, Tata McGraw Hill Publications, 2001.					

17EPC	C504		PROFESSIONAL ETHICS	L	T	P	C
				3	0	0	3
OBJE	CTIVE	S :					
•	To enab	le the	e students to create an awareness on Engineering Ethics				
•	To study the engineering associal experimentation						
•	To impa	To impart knowledge on engineer's responsibility for safety					
٠	To impa	art kn	owledge on engineer's responsibility and rights				
•	To study	y the	global issues on business				
UNIT	Ι	EN	GINEERING ETHICS			ģ)
Moral A	utonomy	y–Ko	ng Ethics'– Variety of moral issues–Types of inquiry–M hlberg's theory–Gilligan'stheory–Consensus and Controve Professional Ideals and Virtues–Uses of Ethical Theories.				
UNIT	II I	ENC	GINEERING ASSOCIAL EXPERIMENTATIO	N		9)
	of Ethics-		imentation–Engineers as responsible Experimenters–Resea strial Standards- A Balanced Outlook on Law–The Challer			cs –	
UNIT	III	EN	GINEER'S RESPONSIBILITY FOR SAFETY	-		9)
•			sessment of Safety and Risk– Risk Benefit Analysis–Red or's Approach to Risk- Chernobyl Case Studies and Bhopa		g Ri	sk–7	The
UNIT	IV	RE	SPONSIBILITIES AND RIGHTS			9)
Conflict	ts of Inte	erest-	oyalty–Respect for Authority–Collective Bargaining– Occupational Crime–Professional Rights–Employee Rights) –Discrimination.				•
UNIT	V	GL	OBAL ISSUES			9)
Technol	logical I ers–Engir	Devel	ations– Business Ethics-Environmental Ethics –Compute lopment– Weapons Development– Engineers as Manag asExpert Witnesses and Advisors–Honesty–Moral Lea	gers- ders	–Coı hip–	nsult	ing
			TOTAL : 45 PER	ΙΟΙ	DS		
OUTC	COMES	5:	After successful completion of the course students able to				
•	Appl	y the	ethical theories in engineering environment.				
•	Anal	yze t	he risks and improve their responsibility for safety.				
•	Uutil	lize tł	neir rights and improve responsibilities.				
•	Prop	ose re	emedies for global issues.				
TEXT	BOOK	XS:					

1.	Mike Martin and Roland Schinzinger, "Ethics in Engineering", McGraw Hill, New York (2005).
2.	Charles E Harris, Michael S Pritchardand Michael J Rabins, "Engineering Ethics– Concepts and Cases", Thompson Learning, (2000).
3.	David Ermannand Michele S Shauf, "Computers, Ethics and Society", Oxford University Press, (2003)
REFER	ENCES:
1.	Charles D Fleddermann, "Engineering Ethics", Prentice Hall, New Mexico, 1999.
2.	John R Boatright, "Ethics and the Conduct of Business", Pearson Education, 2003.
3.	Edmund G Seebauer and Robert L Barry, "Fundamentals of Ethics for Scientists and Engineers", Oxford University Press, 2001.
4.	Prof. (Col) PS Bajaj and Dr.Raj Agrawal, "Business Ethics–An Indian Perspective", Biztantra, NewDelhi, 2004.
5.	David Ermannand Michele S Shauf, "Computers, Ethics and Society", Oxford University Press, 2003.

17EPC50	5	COMMUNICATION ENGINEERING	L	Т	Р	C
		3	3	0	0	3
OBJECT	IVES :					
•	To introd	ace different methods of analog communication and their si	sign	nific	ance	;
٠	To introd	ace Digital Communication methods for high bit rate transr	m			
•		ace the concepts of source and line coding techniques for en- sion of minimizing the errors in transmission.	enha	anci	ng r	ating of
•	To introd	ace MAC used in communication systems for enhancing th	ne n	num	ber (of users.
•	To introd	ce various media for digital communication				
UNIT I	ANALO	G COMMUNICATION				9
DSB/SC,SS	B, VSBAN	ctrum–vector representation–power relations–generation I Transmitter & Receiver;FM and PM–frequency spectru eration of FM and DM,Armstrong method & Reactance mo	um-	-po	wer	relation
UNIT II	DIGIT					9
	DIGIT	L COMMUNICATION				
Pulse mod quantization	lulations–c and codi	oncepts of sampling and sampling theorems,PAM g:DCM,DM,slope overload error.ADM,DPCM,OOKsys				
Pulse mod quantization	lulations–c and codin PSK,QAM	oncepts of sampling and sampling theorems, PAM	stei			
Pulse mod quantization PSK,BSK,Q UNIT III Primary co coding:noise MBnBcodes	ulations-c and codin PSK,QAM SOUR((Qualit ommunicat eless cod	oncepts of sampling and sampling theorems,PAM g:DCM,DM,slope overload error.ADM,DPCM,OOKsys ,MSK,GMSK,applicationsofDatacommunication. E CODES,LINE CODES&ERROR CONTROL	L aun	ms n,Fa MI,	–A	SK,FSK 9 Huffma 3P,ABQ
Pulse mod quantization PSK,BSK,Q UNIT III Primary co coding:noise MBnBcodes	Aulations-c and codin PSK,QAM SOUR((Qualit ommunicat eless cod s:Efficienc	oncepts of sampling and sampling theorems,PAM g:DCM,DM,slope overload error.ADM,DPCM,OOKsys ,MSK,GMSK,applicationsofDatacommunication. E CODES,LINE CODES&ERROR CONTROL ntiveonly) on–entropy, properties, BSC, BEC, source coding:Sha ng theorem,BW–SNR trade off codes:NRZ,RZ,	L aun	ms n,Fa MI,	–A	SK,FSK 9 Huffmar 3P,ABQ
Pulse mod quantization PSK,BSK,Q UNIT III Primary co coding:noise MBnBcodes codes. UNIT IV	Aulations-c and codin PSK,QAN SOUR((Qualit ommunicat eless cod s:Efficienc MULT echniques:	oncepts of sampling and sampling theorems,PAM g:DCM,DM,slope overload error.ADM,DPCM,OOKsys ,MSK,GMSK,applicationsofDatacommunication. E CODES,LINE CODES&ERROR CONTROL htiveonly) on–entropy, properties, BSC, BEC, source coding:Sha ng theorem,BW–SNR trade off codes:NRZ,RZ, of transmissions,error control codes and applications:co PLE ACCESS TECHNIQUES FDMA, TDMA, CDMA, SDMA application in v	L aun A Donv	ms n,Fa MI, rolu	–A ao, 1 HDI tions	SK,FSK 9 Huffmar 3P,ABQ & block
Pulse mod quantization PSK,BSK,Q UNIT III Primary co coding:noise MBnBcodes codes. UNIT IV SS&MA t	Aulations-c and codin PSK,QAM SOUR((Qualit ommunicat eless cod s:Efficienc MULT echniques: ion: Advan	oncepts of sampling and sampling theorems,PAM g:DCM,DM,slope overload error.ADM,DPCM,OOKsys ,MSK,GMSK,applicationsofDatacommunication. E CODES,LINE CODES&ERROR CONTROL htiveonly) on–entropy, properties, BSC, BEC, source coding:Sha ng theorem,BW–SNR trade off codes:NRZ,RZ, of transmissions,error control codes and applications:co PLE ACCESS TECHNIQUES FDMA, TDMA, CDMA, SDMA application in v	L aun A onv	ms n,Fa MI, rolu	–A ao, 1 HDI tions	SK,FSK 9 Huffmar 3P,ABQ & block
Pulse mod quantization PSK,BSK,Q UNIT III Primary co coding:noise MBnBcodes codes. UNIT IV SS&MA t communicat UNIT V Orbits:type: communicat	Aulations–c and codin PSK,QAM SOUR((Qualit ommunicat eless cod s:Efficiency MULT echniques: ion: Advar SATEI s of sate ion,earthst	oncepts of sampling and sampling theorems,PAM g:DCM,DM,slope overload error.ADM,DPCM,OOKsys ,MSK,GMSK,applicationsofDatacommunication. E CODES,LINE CODES&ERROR CONTROL htiveonly) on–entropy, properties, BSC, BEC, source coding:Sha ng theorem,BW–SNR trade off codes:NRZ,RZ, of transmissions,error control codes and applications:co PLE ACCESS TECHNIQUES FDMA, TDMA, CDMA, SDMA application in v tages.	ster L aum A onv wire es In	ms n,Fa MI, rolut e a use use	-A	SK,FSK 9 Huffma 3P,ABQ & bloc 9 wireles 9

OUTCON	MES:	After successful completion of the course students able to		
•	Explain analog and digital communication techniques.			
•	Use va	arious codes and error control in communications.		
•	Apply	various multiple access techniques in communications.		
•	Expla	in advanced communication techniques.		
ТЕХТВО	OKS:			
1.		e Tomasi,'Electronic Communications System: Fundamentals through Advanced' on, Fifth edition, 2008.		
2.	J.Das'	'Principles of Digital Communication" New Age International, 1986.		
REFERE	NCES	:		
1.		edy and Davis"Electronic Communication Systems" Tata McGraw hill,4 th n,1993		
2.	Sklar "Digital Communication Fundamentals and Applications" Pearson Education, 2001.			
З.	Baryle, Memuschmidt, Digital Communication, Kluwer Publication, 2004.			
4.	B.P.Lathi "Modern Digital and Analog Communication Systems" Oxford University Press, 1998.			

17EPC507

SYNCHRONOUS AND ASYNCHRONOUS MACHINES LABORATORY

00

OBJEC	CTIVES :
•	To study the various methods of regulation calculation of alternator.
•	To study the working principles of Synchronous Motor and to draw V and Inverted V curves
•	To estimate the various losses takes place in Induction Motor and to study the load test methods to arrive at their performance.
•	To study the various methods of winding configuration of induction motor

LISTOFEXPERIMENTS:

1. Regulation of three phase alternator by EMFand MMF methods.

2. Regulation of three phase alternator by ZPF and ASA methods.

- 3. Regulation of three phase salient pole alternator by sliptest.
- 4. Measurements of negative sequence and zero sequence impedance of alternators.
- 5. V and Inverted V curves of Three Phase Synchronous Motor.
- 6. Load test on three-phase induction motor.

7. No load and blocked rotor test on three-phase induction motor (Determination of equivalent circui tparameters).

- 8. Separation of No-load losses of three-phase induction motor.
- 9. Load test on single-phase induction motor.
- 10. No load and blocked rotor test on single-phase induction motor.
- 11.Study of Induction motor Starters

12. Winding configuration of two pole and three pole connections for motors.

LISTOFEQUIPMENTFORABATCHOF30STUDENTS:

- 1. Synchronous Induction motor3HP-1 No.
- 2. DC Shunt Motor Coupled With Three phase Alternator –4nos
- 3. DC Shunt Motor Coupled With Three phase Slipring Induction motor–1 No.
- 4. Three Phase Induction Motor with Loading Arrangement–2nos.
- 5. Single Phase Induction Motor with Loading Arrangement–2nos
- 6. Tachometer -Digital/Analog-8nos
- 7. BLDC Motor–1No.
- 8. Single Phase Auto Transformer –2nos
- 9. Three Phase Auto Transformer–3nos

10.Single Phase Resistive Loading Bank–2nos

- 11. Three Phase Resistive Loading Bank–2nos
- 12. Capacitor Bank-1 No.
- 13. SPST switch–2nos

			TOTAL : 60 PERIODS	
OUTCOMES:		After successful completion of the	course students able to	
•	Estimate the regulation of three phase cylindrical pole Alternator by EMF, MMF, ZPI ASA methods.			
•	Estimate the regulation of three phase Salient pole Alternator by slip test.			
•	Draw the V- and Inverted V curves of Synchronous motor.			
•	Calculate the losses in single phase and three phase induction motors.			
•			anging.	

17EPC508	

CONTROL AND INSTRUMENTATION LABORATORY

L	Т	Р	C
0	0	4	2

OBJECTIVES :

•	To provide knowledge on design and analysis of frequency response and stability of various order system using Simulation tool
•	To provide knowledge on design and analysis of various compensators
•	To study the Characteristics of Synchro-Transmitter-Receiver and Position Control Systems
•	To conduct experiment on DC and AC Bridges to find unknown values of circuits elements
•	To provide knowledge characteristics of signal conditioning devices.

LISTOFEXPERIMENTS:

CONTROLSYSTEMS:

- 1. Simulation of First and Second Order Systems
- 2. P,PI and PID Controllers
- 3. Stability Analysis
- 4. Modelling of Systems–Machines, Sensors and Transducers
- 5. Design of Lag, Lead and Lag-Lead Compensators
- 6. Position Control Systems
- 7. Synchro-Transmitter- Receiver and Characteristics

INSTRUMENTATION:

- 8. Bridge Networks–AC and DC Bridges
- 9. Dynamic Sensors / Transducers

A.Temperature B.Pressure, C. Displacement, D.Optical, E. Strain F.Flow

- 10. Signal Conditioning
- A. Instrumentation Amplifier

B.Analog-Digital and Digital - Analog Converters (ADCs and DACs), Active Filters

		TOTAL : 60 PERIODS
OUTCOMES:	After successful completion of th	ne course students able to

•	Analyse the time response, frequency response and stability of various order system using Simulation tool
Design the compensators and frequency generators.	
•	Analyse the characteristics of various control and instrument elements.
•	Analyse the characteristics of signal conditioning devices.

17ZEE509		COMMUNICATION AND SOFT SKILLS- LABORATORY BASED	L	T	P	C
			0	0	4	2
OBJECT	IVES :					
•		op their communicative competency in English with spe and listening.	cific	refe	erenc	e to their
٠	To enha	nce their ability to communicate effectively in interviews	•			
٠	To streng	gthen their prospects of success in competitive examinati	ons.			
•	To Stren	gthen a good command over of the language proficiency	<i>'</i> .			
٠	To comp	rehend a different types of accent and use them in their c	omm	nuni	catio	n
UNITI	LISTE	NING AND SPEAKING SKILLS				12
discussions.		ING AND WRITING SKILLS				12
		es of tests ranging from newspapers to creative writing.W e-mails- memos- reports.Writing abstracts- summaries- in				
UNITIII	ENGL	ISH FOR NATIONAL AND INTERNATION	AL			12
		EXAMINATIONS AND PLACEMENT	ſS			
		Language Testing System (IELTS)- Test of English a ce(Language related)- Verbal Ability.	s a F	Forei	ign I	_anguage
UNITIV	INTE	RVIEW SKILLS				12
•	1	erview format- answering questions- offering informat guistic features)- articulation of sounds- intonation.	ion-	moc	k in	terviews-
UNITV	SOFT	SKILLS				12
		al intelligence-Multiple intelligences- managing change n work- career planning- creative and critical thinking.	es- ti	me	man	agement-
		TOTAL:60PERI	ODS	5		

OUTCOM	/IES:	After successful completion of the course students able to				
•	Face is	nterviews, group discussions and other language parameters in the job market				
•	Write any competitive examinations which cover language part in it.					
•		part in any English conversations of any kind in English. Flawlessly without fear syness.				
•	Write articles for newspapers and magazines or any write-up in English without grammistakes.					
•		out with leadership qualities, team work and career planning and will also ss critical and creative thinking.				
ТЕХТВО	OKS:					
1.	Comr 2014.	nunication Skills for Engineers and Scientists, PHI Learning PVT.LTD, Delhi,				
2.		nunication Skills and Soft Skills An Integrated Approach, Dorling Kindersley IA) PVT.LTD, New Delhi, 2012.				
3.	Soft S	Skills, MJP Publishers, Chennai, 2010.				
REFERE	NCES	:				
1.		n, Miles. Listening Extra-A resource book of multi-level skills activities. ridge University Press, 2004.				
2.	Seely, Press,	John. The Oxford guide to writing & Speaking. New Delhi: Oxford University 20				
3.		ort, Jeremy, et al. Speaking Effectively: Developing speaking skills for Business h. Cambridge University Press, Cambridge: Reprint 2011.				
4.	Dutt Books	P. Kiranmai and RajeevanGeetha. Basic Communication Skills, Foundation :2013				

SEMESTER VI

17EPC601		POW	ER ELECTRONICS	L	T	Р	C
				3	0	0	3
OBJEC	TIV	ES:			1		
•		-	verview of different types of power semiconductor dearacteristics.	evice	es a	nd th	eir
•		understa rolled re	and the operation, characteristics and performance	pai	ame	eters	of
٠		•	e operation, switching techniques and basics topolo gulators.	gies	of	DC-l	C
٠	Tos	study the	operation of AC voltage controller and various config	urati	ons.		
•			different modulation techniques of pulse width modulated harmonic reduction methods.	ted in	iver	ters a	ınd
UNIT I		POW	ER SEMI-CONDUCTOR DEVICES			9	
			switching characteristics of SCR, TRIAC, DIAC, Pow Driver and Snubber circuit-Commutation circuit for SC		JT, I	Powe	r
UNIT I	I	PHAS	E-CONTROLLED CONVERTERS			9	
-	-		pulse converters – Effect of source inductance – Perfor tor control – Dual converters.	man	ce		
UNIT I	II	DC T	O DC CONVERTER			9	
Step-down and step-up chopper – Time ratio control and current limit control – Switching mode regulators -Buck, Boost, Buck-Boost and Cuk regulator - Concept of resonant switching.							
UNIT IV		AC T	O AC CONVERTERS			9	
Introduction to phase control and Integral cycle control -Single phase and three AC voltage controllers Multistage sequencecontrol - Single and three phase cycloconverters.							
UNIT V	7	INVE	RTERS			9	
Single phase and three phase (both 120° mode and 180° mode) inverters – PWM techniques:							

Single phase and three phase (both 120° mode and 180° mode) inverters – PWM techniques: Single PWM- Multiple PWM - Sinusoidal PWM, modified sinusoidal PWM — Voltage and harmonic control – Series resonant inverter – Current source inverter- Uninterrupted power supply topologies.

		TOTAL : 45 PERIODS				
OUTC	OUTCOMES: After successful completion of the course students able to					
•	Explain t	he characteristics of various power semiconductor devices				
•	• Design and analyse the performance of Phase controlled, AC-AC, and DC-DC converters.					
•	Design a	nd analyse the performance of AC-ACconverters				
•	Design a	nd analyse the performance of DC-DC converters.				
•	Design a	nd analyse the performance of various Inverters.				
TEXT	TEXT BOOKS:					
1.		.H., "Power Electronics: Circuits, Devices and Applications", Pearson a, PHI, New Delhi, 3 rd Edition, 2004.				
2.	Bimbra P	.S., "Power Electronics", Khanna Publishers, 3rd Edition, 2003.				

3.	Singh M. D. and Khanchandani K. B., "Power Electronics" Tata McGraw-Hill
	Publishing Company Limited, New Delhi, 3 rd Edition, 2008.

REFERENCES:

1.	Ashfaq Ahmed, "Power Electronics for Technology", Pearson Education, Indian reprint, 2003.
2.	Philip T. Krein, "Elements of Power Electronics", Oxford University Press, 2004.
3.	Ned Mohan, Tore M. Undeland, William P. Robbins, "Power Electronics: Converters, Applications and Design", John Wiley and sons, 3rd Edition, 2003.
4.	Bimal K. Bose, "Modern Power Electronics and AC Drives", Pearson Education, 2003.

1721 0	602		OPROCESSORS,MICROCONTROI APPLICATIONS	LLERS	L	Τ	Р	C
					3	0	0	3
OBJEC	CTIV	ES:						
•	To s	tudy th	Architecture of uP8085 & uC 8051					
•	To s	tudy th	addressing modes & instruction set of 8085 &	8051.				
٠	To i	ntroduc	the need & use of Interrupt structure 8085 & 8	8051.				
٠	Тос	levelop	kill in simple applications development with p	orogrammi	ng 80	085 8	& 80:	51
•	To i	ntroduc	commonly used peripheral / interfacing					
UNIT I		INT	RODUCTION TO MICROPROCESS	SORS			9	
	– Timi	ing Dia	pin outs - Signals – Memory interfacing – ram – Interrupt structure. Introduction to 8086 /).	-				
UNIT I	Ι	PRO	GRAMMING OF 8085 PROCESSOF	R			9	
Instructio	on for							
manipula	tion&	contro	addressing modes – Assembly language fo instructions – Programming: Loop structure v ne instructions - stack.					
manipula	tion& able -	contro Subrou	instructions - Programming: Loop structure v					
manipula Lookup ta UNIT I Functiona	tion& able - II al bloc	contro Subrou 805 ck diagu	 instructions – Programming: Loop structure v ne instructions - stack. MICRO CONTROLLER m - Instruction format and addressing modes - 	with count	ting d	& Ind	dexir 9	ng –
manipula Lookup ta UNIT I Functiona	tion& able - II al bloc – Tim	contro Subrou 805 ck diagu er –I/O	instructions – Programming: Loop structure v ne instructions - stack. MICRO CONTROLLER	with count	ting d	& Ind	dexir 9	ng –
manipula Lookup ta UNIT I Functiona structure UNIT I Study of board dis	tion& able - II al bloc – Tim V Archi play c	contro Subrou 805 ck diagn ler –I/O PI tecture ontrollo	instructions – Programming: Loop structure v ne instructions - stack. MICRO CONTROLLER m - Instruction format and addressing modes - ports – Serial communication.	Timing - Timing - Timing	Diag	& Ind ram 1 T, 82	dexir 9 Inter 9 279	ng - rup
manipula Lookup ta UNIT I Functiona structure UNIT I Study of board dis	tion& able - II al bloc – Tim V Archi play c D, digi	contro Subrou 805 ck diagu er –I/O Pl tecture ontrolle tal IOs, MIC	instructions – Programming: Loop structure v ne instructions - stack. MICRO CONTROLLER m - Instruction format and addressing modes - borts – Serial communication. RIPHERAL INTERFACING-8051 and programming of ICs: 8255 PPI, 8259 PIC and 8253 Timer/ Counter -A/D and D/A conve	- Timing C, 8251 U erter inter	Diag Diag	& Ind ram 1 T, 82	dexir 9 Inter 9 279	ng - rup
manipula Lookup ta UNIT I Functiona structure UNIT I Study of board dis with LCI UNIT V Data Tra board and	tion& able - II al bloc – Tim V Archi play c D, digi V nsfer, d disp	contro Subrou 805 ck diagu er –I/O Pl tecture ontrolle tal IOs, MIC API Manip	 instructions – Programming: Loop structure vine instructions - stack. MICRO CONTROLLER m - Instruction format and addressing modes - borts – Serial communication. RIPHERAL INTERFACING-8051 and programming of ICs: 8255 PPI, 8259 PIC and 8253 Timer/ Counter -A/D and D/A converses and memory. RO CONTROLLER PROGRAMMING 	Timing - Timing C, 8251 U erter inter NG ANI programm	Diag Diag SAR facin	& Ind ram T, 82 g, int	dexir 9 Inter 9 279 terfac 9	rup Key cing key
manipula Lookup ta UNIT I Functiona structure UNIT I Study of board dis with LCI UNIT V Data Tra board and	tion& able - II al bloc – Tim V Archi play c D, digi V nsfer, d disp	contro Subrou 805 ck diagu er –I/O Pl tecture ontrolle tal IOs, MIC API Manip	instructions – Programming: Loop structure v ne instructions - stack. MICRO CONTROLLER m - Instruction format and addressing modes - borts – Serial communication. RIPHERAL INTERFACING-8051 and programming of ICs: 8255 PPI, 8259 PIC and 8253 Timer/ Counter -A/D and D/A convectors (seypad and memory). RO CONTROLLER PROGRAMMIN LICATIONS lation, Control & I/O instructions – Simple p face – Design of PID controller - Closed loce	- Timing - Timing C, 8251 U erter inter NG ANI programm op control	Diag Diag SAR facin	& Ind ram Tram Tram Transform	dexir 9 Inter 9 279 terfac 9	rup Key cing key

•	Explain the architecture of Microprocessors and its blocks.
•	Write the program for various functions using 8085 processor.
•	Explain the architecture and Program structure of 8051 Microcontrollers.
•	Explain the peripheral interfacing of 8051 Microcontrollers.
•	Apply the 8051 microcontroller into various applications.
TEXT	BOOKS:
1.	Senthilkumar N. and Saravanan M. "Microprocessor and Microcontrollers", Oxford University Press, 2011
2.	Krishna Kant "Microprocessor and Microcontrollers" Eastern Company Edition, Prentice – Hall of India, New Delhi, 2007
3.	Ramesh Gaonkar, 'Microprocessor Architecture Programming and Application', CBS Publishers 2011.
REFE	RENCES:
1.	Ankaj Gupta "Microcontroller and Embedded System"S.K.Kataria and Sons Publishers 2013
2.	Muhammad Ali Mazidi& Janice GilliMazidi, R.D.Kinely"The 8051 Micro Controller and Embedded Systems" (Using Assembly Language and C), PHI Pearson Education, 2011
3.	The 8088 & 8086 Microprocessors, Walter A Tribal & Avtar Singh, Pearson, 200
4.	Singh B.P., Renu Singh "Advanced Microprocessors and Microcontrollers", New Age International Private Limited, 2009.

17EPC603	POWER SYSTEM OPERATION AND CONTROL	L	T	Р	С
		3	0	0	3

OBJECTIVES :

•	To have an o	overview of power system operation and control.
٠	To study the	economic operation of power system
•	To model po	ower-frequency dynamics and to design power-frequency controller.
•		active power-voltage interaction and the control actions to be implemented ing the voltage profile against varying system load.
•	To teach abo systems	out SCADA and its application for real time operation and control of power

UNIT I CHARACTERISTICS OF LOADS

9

9

9

Basics of Power system control and operation – Real and Reactive power of Loads - System load variation – Load characteristics – Load curves and Load Duration curve – load factor and diversity factor - Reserve requirements: Installed reserves, spinning reserves, cold reserves, hot reserves – Overview of system operation: Load forecasting, techniques of forecasting, Importance of load forecasting.

UNIT II POWER SYSTEM OPERATION

Statement of Unit Commitment problem - Constraints - Solution methods: Priority-list methods, forward dynamic programming approach - Formulationofeconomic dispatch problem with and without losses - Solution by direct method and λ -iteration method. - Base point and participation factors – Hydrothermal scheduling problem – Short term and long term model and algorithm – Dynamic Programming solution methods for hydrothermal scheduling (Qualitative treatment only).

UNIT III ACTIVE POWER FREQUENCY CONTROL

Basicsofspeedgoverningmechanismandmodeling- speed-loadcharacteristics–Parallel operation of Alternators- LFCcontrolofasingle-area system–Static and Dynamic characteristics – PI controller in LFC– LFC in Two area system - Staticanalysiswith uncontrolledcase- tielinewithfrequency biascontrol- Statemodel– LFC with Economic dispatch controller. Software simulation of LFC (Single Area and Two area system).

UNIT IV REACTIVE POWER VOLTAGE CONTROL

9

Generation, Absorption and controlofreactivepower– Modeling of excitationsystems – Static and dynamic characteristics-Stability compensation- Secondary voltage control – Tap changing transformers for voltage control – FACTS applications to reactive power control: STATCOM, SVC, TCS and TSC.

UNIT V	V	SMA	RT POWER CONTROL	9
monitori functions	ng -c s-netv	lataacq vork	trol of power systems-concept of energy controlcentre- function uisition and control-system hardware configuration–SCADA a topology-state estimation–WLSE-Contingency Analysis-state rious state transitions and control strategies. Recent trends in pow	and EMS etransition
			TOTAL : 45 PERIODS	
OUTC	OM	ES:	After successful completion of the course students able to	
•	Ana	lyse the	e loads and apply forecasting methods for power system restructuring	ıg.
•	Ope	erate th	e generating units in an efficient way to reduce fuel cost.	
•	Des	ign loa	d frequency controller to regulate the frequency and speed.	
•		-	excitation systems with appropriate voltage controllers to regulate vo	oltage and
•	App	oly sma	rt techniques in power system security.	
TEXT	BOO	OKS:		
1.		-	gerd, 'Electric Energy Systems theory- An introduction', TataMc Pvt.Ltd., NewDelhi, 34 threprint, 2010.	GrawHill
2.			Vood and Bruce F.Wollenberg, 'Power Generation, Operation, Notes and Bruce F.Wollenberg, 'Power Generation, Operation, John Wiley & Sons, Inc., 2003.	ion and
3.			Chakrabarti, Sunita Halder, 'Power System Analysis Opera PHI learning Pvt.Ltd., NewDelhi, Third Edition, 2010.	tion and
4.			m, D. N. Vishwakarma ,'Power System Protection and Switchg Hill Education, 2001.	ear' Tata
REFEI	REN	CES:		
1.		0	h I.J.and Kothari D.P., 'Modern Power System Analysis',Tata urth Edition ,2011.	McGraw-
2.			r P., 'Power System Stability and Control,Tata McGraw'Hill I .,New Delhi ,10threprint, 2010.	Education
3.			aadat, 'Power System Analysis',Tata McGraw Hill Education Pvt 1 st reprint, 2010.	.Ltd.,New
4.		N.V.Ra	mana, "Power System Operation and Control," Pearson,2011.	
5.		C.A.Gr	oss, "PowerSystem Analysis, "Wiley India,2011.	
6.				

	Sunil S Rao, 'Switchgear Protection And Power Systems (Theory, Practice & Solved Problems), Khanna Publishers, 2008
7.	M. L. Soni, P. V. Gupta, U. S. Bhatnagar, 'A Course in Electrical Power' Dhanpat Rai, 1987.

17EPC604		PRC	DTECTION AND SWITCHGEAR		L	Т	Р	0
					3	0	0	3
OBJEC	TIVE	S :						
•			e the causes of abnormal operating conditions surges) of the apparatus and system.	(faults,	lig	htnir	ng a	nc
• To introduce the characteristics and functions of relays and protection s						hem	es.	
•	To in	npart	knowledge on apparatus protection					
•	To in	trodu	ce static and numerical relays					
•	To in	npart	knowledge on functioning of circuit breakers					
UNIT I		PRO	OTECTION SCHEMES				9	
current cal	lculatic	on usi	r protective schemes–nature and causes of faults–t ng symmetrical components–Methods of Neutral g al qualities of protection–Protection schemes	v 1				
UNIT II		ELI	ECTROMAGNETIC RELAYS			9		
	gnetic	Relay	of relays - the Universal relay – Torque equation - ys–Overcurrent,Directional,Distance,Differential,N ys.		-			d
UNIT II	Ι	API	PARATUS PROTECTION			9		
			and Potential transformers and their application of transformer, generator, motor, busbars and trans				l	
UNIT IV	V		ATIC RELAYS AND NUMERICAL OTECTION				9	
comparato	ors – Bl	lock d	mplitude Comparators–Synthesis of various relays liagram of Numerical relays–Over current protecti distant protection of transmission lines.					
UNIT V		CIR	RCUIT BREAKERS				9	
Physics of	-	-	nomenon and arc interruption- DC and AC circuit	-		swi	tchir	<u>ופ</u>
re-striking current che	opping nd vacu	- inter uum	rruption of capacitive current-Types of circuit break circuit breakers-comparison of different circuit	kers–air	blas	st, ai	rbrea	ak

OUT	COMES:	After successful completion of the course students able to
•	Analyze th	e faults and apply protection schemes for lines.
•	Apply the	electromagnetic relays for various protection systems.
•	Design pro equipments	oper protection scheme for generators, transformers, and other power system s.
•	Apply the	static relays into numerical protection schemes.
•	Analyze th	e various circuit breakers and apply them into proper protection system.
TEX	Г BOOKS	:
1.	Sunil S.Rac	, 'Switchgear and Protection', Khanna Publishers, New Delhi, 2008.
2.	B.Rabindra Internationa	nath and N.Chander, Power System Protection and Switchgear', New Age
3.		P.V.Gupta, U.S.Bhatnagar, A.Chakrabarti, 'A Text Book on Power System g', Dhanpat Rai & Co., 1998.
REFI	ERENCES	S:
1.	Badri Ram Internation	,B.H.Vishwakarma, 'PowerSystem Protection and Switchgear', New Age al
2.		nkar and S.R.Bhide, 'Fundamentals of power system protection', Second entice Hall of India Pvt.Ltd., New Delhi, 2010.
3.	C.L.Wadhw	a, 'Electrical PowerSystems', 6 th Edition,New Age International (P) Ltd.,

17EPC607	POWER ELECTRONICS LABORATORY	

L	Τ	Р	С
0	0	4	2

			U	U	4	2
OBJE	CTIVES :					
•	-	ide Experiment test bench to learn the characterist uctor devices	ics	of	pow	er
•	-	le hands on experience with power electronic AC to DC converter to determine the control characteristics	onve	rter	and	dc
•	To provid testing	le hands on experience with various power electronic inver	ters	desi	gn ai	nd
٠	To study	the characteristics of AC voltage controller and SMPS				
•	To know	the performances of resonant and quasi resonant converter.				
LIST (OF EXPE	RIMENTS				
1. Chara	cteristics of	SCR, TRIAC and DIAC.				
2. Chara	cteristics of	MOSFET and IGBT.				
3. Deter and 3-ph		Control Characteristics of AC to DC fully controlled con	verte	er (1	-pha	.se
4. Detern 3-phase)		Control Characteristics of AC to DC half controlled convert	er (1	-pha	ase ai	nd
	mination of (based PWM	Control Characteristics of Step down and Step up chopper.				
7. Series	and Paralle	inverter.				
8. AC V	oltage Contr	oller.				
		ower Supply (Fly back, Forward and half Bridge Methods).				
10. Perfe	ormances of	Resonant and Quasi Resonant Converter.				
		TOTAL: 60 PERIC	DDS	5		
OUTC	OMES:	After successful completion of the course students able to				
•	Design con	duct experiment on various converter				
٠	Compare th	he characteristics of various power semiconductor devices.				
٠	Demonstra	te the operation of phase controlled rectifiers based DC driv	ves.			_
٠	Analyze th	e basic topologies of DC-DC converters.				
٠	Employ the	e different modulation techniques of pulse width modulated	l inv	ertei	ſs.	
٠	Compute th	ne performance of AC voltage controller.				
	1					

MICROPROCESSORS, MICROCONTROLLERS AND APPLICATIONS LABORATORY

OBJECTIVES :

•	To provide training on programming of microprocessors and microcontrollers to perform basic binary and mathematical operations like Addition, Subtraction, Multiplication, Division
•	To provide training on programming of microprocessors and microcontrollers using fundamental features and operations
•	To impart knowledge to Develop Assembly Language Program that will provide solutions to real world controlproblems like Speed control, traffic light control.
•	To impart knowledge to Choose appropriate peripheral interfacing devices with 8085& 8051 for specific applications.
•	T o study the Measurement of frequency of the given waveform using microcontroller

1. Programming for 8/16 bit Arithmetic operations using 8085: Addition / Subtraction / Multiplication / Division.

2. Programming with control instructions using 8085: Increment / Decrement, Ascending /Descending order, Maximum / Minimum of numbers, Rotate instructions, Hex / ASCII / BCD codeconversions.

3. Interface Experiments using 8085: A/D Interfacing, D/A Interfacing, Traffic light controller, Simple experiments using 8251, 8253,8255, 8279

4. Interfacing of DC Motor Speed control using 8085

5. Interfacing of Stepper Motor control using 8085

6. Programming for 8/16 bit Arithmetic operations using 8051: Addition / Subtraction / Multiplication / Division.

7. Demonstration of basic instructions with 8051 Microcontroller execution, including: Conditional jumps, looping, calling subroutines.

8. Interface Experiments using 8051: A/D Interfacing, D/A Interfacing.

9. Interfacing of DC Motor Speed control using 8051.

10. Interfacing of Stepper Motor control using 8051.

11. Measurement of frequency of the given waveform using microcontroller.

			TOTAL: 60 PERIODS
OUTCOMES:		After successful completion of the cour	se students able to
• Develop basic binary and mathematical operations lik Division using microprocessor and microcontroller.		· 1	· · · ·

•	Describe the fundamental features and operations of contemporary microcontroller and microprocessor.
•	Develop Assembly Language Program that will provide solutions to real world controlproblems like Speed control, traffic light control.
•	Choose appropriate peripheral interfacing devices with 8085& 8051 for specific applications.

17EPC	701	SOL	D STATE DRIVES	L	T	Р	C
				3	0	0	3
OBJEC	CTIVI	ES:		L	11		
•	То	underst	and steady state operation and transient dynamics of a moto	r lo	ad	syste	m.
•			and analyze the operation of the converter/chopper fed ly and quantitatively.	dc	dr	ive,	both
٠	То	study a	nd understand the operation and performance of AC motor of	driv	es.		
•		analyze otors dri	e and design the current and speed controllers for a closed loo ve.	op so	olic	l state	DC
UNIT I	-	DRI	VE CHARACTERISTICS			9	
	s: acce	eleratior	ns governing motor load dynamics-steady state stability a, deceleration, starting & stopping- typical load torque of			-	
UNIT I	UNIT II CONVERTER/CHOPPER FED DC MOTOR DRIVE		E	9			
continuo	us and	discor	the single and three phase converter fed separately excited I tinuous conduction–Time ratio and current limit contro / chopper fed drive.				
UNIT I	II	IND	UCTION MOTOR DRIVES			9	
			nergy efficient drive-v/f control-constant air gap flux – field verter –closed loop control.	wea	ake	ning	mod
UNIT I	V	SYN	CHRONOUS MOTOR DRIVES			9	
			ntrol of synchronous motor: Marginangle control and power hronous motor.	r fac	cto	r cont	trol–
UNIT V	UNIT V DESIGN OF CONTROLLERS FOR DRIVES			9			
feedback	a – arm	nature v	OCmotor / load and converter – closed loop control with Cu oltage control and field weakening mode–Design of cont ontroller-converter selection and characteristics.			-	-
			TOTAL : 45 PERIO	DS			
OUTC	OME	S: Aft	er successful completion of the course students able to				
•	Desig	n conv	erter/chopper fed dc motor drive				
OUTC		5.	er successful completion of the course students able to	DS			

-						
•	Design induction motor drive					
•	Design synchronous motor drive					
•	Design controllers for drive					
TEXT BOOKS:						
1.	GopalK.Dubey,Fundamentals of Electrical Drives,Narosa Publishing House, 1992					
2.	Bimal K.Bose.Modern Power Electronics and AC Drives,Pearson Education, 2002					
3.	Vedam Subramanyam, "Thyristor Control of Electric Drives", Tata McGraw Hill, 2007					
4.	S.K.Pillai, A First course on Electrical Drives, Wiley Eastern Limited, 1993.					
REFE	REFERENCES:					
1.	John Hind marshand A lasdain Renfrew, "Electrical Machines and Drives System, "Elsevier 2012					
2.	Shaahin Felizadeh, "Electric Machines and Drives", CRC Press (Taylor and Francis Group), 2013.					
3.	R.Krishnan, Electric Motor & Drives: Modelling, Analysis and Control, Prentice Hall of India, 2001					

17EPC702		EL	ECTRICAL MACHINE DESIGN	L	Т	Р	0	
				2	2	0	3	
OBJE	CTIVI	ES:						
•	To stu	ıdy n	nmf calculation and thermal rating of various types of electr	ical	mac	hine	s	
•	To de	To design armature and field systems for D.C. machines						
٠	To design core, yoke, windings and cooling systems of transformers.							
٠	To de	To design stator and rotor of induction machines.						
•	To de	To design stator and rotor of synchronous machines and study their thermal behaviour						
UNIT	I	IN	TRODUCTION			6-	⊦6	
Dissipat	ion - To ations. ent).	empe Intro	Specific Electrical and Magnetic loadings – Thermal considerature gradient in cores slots and windings - Rating of mach oduction to Computer aided Design in Electrical Machines	nines	s – S	tand	ar pl	
Netleng Armatur	th of Iro re – Des	on —F sign c	Main Dimensions - Magnetic circuit calculations - Carter Real & Apparent flux densities – Selection of number of po of commutator and brushes – Design of field winding.				0	
UNIT	III	T	RANSFORMERS			0-	FU	
Window	v space : ature ris	facto	Main Dimensions - KVA output for single and three phase t r – Design of core and windings - Overall dimensions – No Transformers – Design of Tank with cooling tubes - Metho	load	l cur	rent-	_	
UNIT IV		IV INDUCTION MOTORS				6-	⊦ 6	
rotor slo ofwound	ots of squ d rotor ·	uirrel − M	nduction motor – Main dimensions – Length of air gap- Ru cage machines – Design of rotor bars & slots – Design of en agnetic leakage calculations – Leakage reactance of polypl - Short circuit current.	d rin	gs –	Des	ig	
UNIT	V	SY	YNCHRONOUS MACHINES			6-	+6	
			choice of loadings – Design of salient pole machines – Sho - Armature design – Armature parameters – Estimation of a					

Design of rotor –Design of damper winding – Design of field winding – Design of turbo alternators – Rotor design.							
		TOTAL : 60 PERIODS					
OUTCOMES:		After successful completion of the course students able to					
•	Formulate Specific Electrical and Magnetic loadings for various electrical DC and AC machines.						
•	Devise ma	Devise main dimensions (D, L) of armature and field systems for D.C. machines.					
•	-	Design overall Dimensions of single and three phase transformers core, windings and cooling systems for transformers					
•	Design ma	Design main dimensions of squirrel cage and Slip ring induction machines.					
•	Design main dimensions of Synchronous machines.						
TEXT	TEXT BOOKS:						
1.	Sawhney A.K., "A Course in Electrical Machine Design", Dhanpat Rai & Sons, New Delhi, 2006.						
2.	Sen S.K., "Principles of Electrical Machine Designs with Computer Programmes", Oxford and IBH Publishing Co. Pvt. Ltd., New Delhi, 2009.						
3.	Shanmugasundaram A., Gangadharan G. and Palani R., "Electrical Machine Design Data Book", New Age International Pvt. Ltd., Reprint 2007.						
REFEI	REFERENCES:						
1.	Say.M.G, "The Performance and Design of Alternating current Machines", Isaac Pitman & sons Limited, 1995.						

17EPC	703	SP	ECIAL ELECTRICAL MACHINES	L	Т	Р	C	
				3	0	0	3	
OBJEC	CTIVE	ES:						
•		-	knowledge on the Construction, principle of operation ce of stepping motors.	on,	cont	rol a	and	
•			t knowledge on the Construction, principle of operation ce of switched reluctance motors.	on,	cont	rol a	anc	
•			t knowledge on the Construction, principle of operation ce of permanent magnet brushless D.C. motors.	on,	cont	rol a	anc	
•	To impart knowledge on the Construction, principle of operation and performance Permanent magnet synchronous motors.							
•		-	knowledge on the Construction, principle of operation and prepulsion motors and linear induction motors	perfo	orma	ance	of	
UNIT I		ST	TEPPER MOTORS			9)	
linear an UNIT I	•		aracteristics – Drive circuits WITCHED RELUCTANCE MOTORS			9)	
Construc	tional	featu	ares – Principle of operation – Torque prediction – Pow					
			-Inductance Profile- Microprocessor based control – Ch	arac	teris	sucs.		
UNIT I	11		ERMANENT MAGNET BRUSHLESS D.C. OTORS			,		
-	-		on – Types – Magnetic circuit analysis – EMF and torque eq characteristics and control.	uati	ons -	– Pov	wei	
UNIT I	V		ERMANENT MAGNET SYNCHRONOUS OTORS			9)	
controlle	rs - C	Conv	on – EMF and torque equations – Reactance – Phasor dia verter - Volt-ampere requirements – Torque speed c ed control.					
UNIT V	V	C	OMMUTATOR MOTORS			9)	
			ciple of operation- Characteristics – Applications – Univ duction motors.	versa	l, re	puls	ior	

		TOTAL : 45 PERIODS					
OUTC	OMES:	After successful completion of the course students able to					
٠	Use step	per motor for various step angle					
٠	Control t	he speed of switched reluctance motor using microprocessor					
•	Control t	he speed of the BLDC motors using power converters					
٠	Control t	he speed of PM synchronous motor					
٠	Identify	and characterise commutator motor for applications					
TEXT	BOOKS:						
1.	K.Venkataratnam, 'Special Electrical Machines', Universities Press (India) Private Limited, 2008.						
2.	T.Kenjo, London,	'Stepping Motors and Their Microprocessor Controls', Clarendon Press 1984.					
3.	E.G.Jana 2014.	rdanan, 'Special electrical machines', PHI learning Private Limited, Delhi,					
REFEI	RENCES:						
1.		ller, 'Brushless Permanent Magnet and Reluctance Motor Drives', on Press, Oxford, 1989.					
2.	T.Kenjo, London,	'Stepping Motors and Their Microprocessor Controls', Clarendon Press 1984.					
3.		P.P.Aearnley, 'Stepping Motors–A Guide to Motor Theory and Practice', Peter Perengrinus London, 1982.					
4.	•	and S.Nagamori, 'Permanent Magnet and Brushless DCMotors', Clarendon ondon, 1988.					

17EPC704

ENERGY UTILIZATION, CONSERVATION AND AUDITING

OBJECTIVES:

•	• To impart knowledge on electric drives and traction systems						
•	To introduce the energy saving concept by different ways of illumination.						
•	To understand the different methods of electric heating and electric welding.						
•	To study various enegy conservation principles						
To study various enegy audit Methodology and its benefits							

UNIT I

ELECTRIC DRIVES AND TRACTION

9

9

Fundamentals of electric drive - choice of an electric motor - application of motors for particular services- traction motors - characteristic features of traction motor-systems of railway electrification- electricbraking- train movement and energy consumption- traction motor controltrack equipment and collection gear.

UNIT II ILLUMINATION

Introduction-definition and meaning of terms used in illumination engineering-classification of light sources-incandescent lamps, sodium vapour lamps, mercury vapour lamps, fluorescent lampsdesign of illumination systems-indoor lighting schemes- factory lighting halls-outdoor lighting schemes-flood lighting- street lighting- energy saving lamps,LED

UNIT III

HEATING AND WELDING

Introduction- advantages of electric heating -modes of heat transfer - methods of electric heatingresistance heating-arc furnaces-induction heating-dielectric heating-electric welding-typesresistance welding-arc welding- power supply for arc welding- radiation welding.

UNIT IV ENERGY CONSERVATION

9

9

9

General energy problem-demand supply gap, Scope for energy conservation and its benefits-Energy conservation Principle –energy saving opportunities in electric motors by Power factor improvement-Energy conservations in air conditioners, compressors, fans, electric furnaces, ovenslighting techniques – Natural, CFL, LED lighting.

UNIT V ENERGY AUDITING

Energy audit and its benefits- Energy flow diagram- Preliminary, Detailed energy audit-Methodology of -Pre audit, audit and post audit- Energy audit report- Electrical Measuring Instruments: Power Analyser- Combustion analyser, fuel efficiency monitor, thermometer-contact, infrared, pitot tube and manometer, water flowmeter, leak detector, tachometer and luxmeter-IE

rules and regulations for energy audit Electricity act.

		TOTAL : 45 PERIODS					
OUTO	COMES:	After successful completion of the course students able to					
٠	Design tra	ction system					
•	Design ind	loor and outdoor lightening system					
•	Design dif	ferent heating and welding Machines.					
•	Apply Ene	ergy conservation methods in various loads.					
•	Perform er	nergy audit and prepare the report.					
TEXT	BOOKS:						
1.	N.V.Suryanarayana, "Utilisation of Electric Power", Wiley Eastern Limited, New Age International Limited, 1993.						
2.	J.B.Gupta,	J.B.Gupta, "Utilisation Electric power and Electric Traction", S.K.Kataria and Sons, 2000.					
3.	Paul O Cal	llaghan,' Energy management' Mcgraw Hill, New Delhi.					
REFE	RENCES:						
1.	R.K.Rajpu	t, Utilisation of Electric Power, Laxmi publications Private Limited., 2007.					
2.	H.Partab, New Delhi	Art and Science of Utilisation of Electrical Energy", Dhanpat Rai and Co., ,2004.					
3.		wa, "Generation, Distribution and Utilisation of Electrical Energy", New Age nalPvt.Ltd.,2003.					
4.	0	araju, M.Balasubba Reddy, D.Srilatha, ' Generation and Utilization of Energy', Pearson Education, 2010.					
5.	'Fundame	ntals of electrical system', Bureau of Energy Efficiency.					
6.	www.bee-i	india.com					

17EPO	C 706	POV	W	NE	ER	S	YS	ST]	EN	ЛL	LAE	BO	RA'	то	RY					I		Т	Р	0
			_																	0		0	4	2
OBJE	CTIV	ES:																						
•	То	provid	e	e b	ette	er ı	und	ders	stan	nding	g to	o de	sign	and	anal	lyse	e tra	nsm	issi	on lir	ies	5		
•		provid hod, N									-		-				-			-			s Sei	del
•		provid ts and							-	-				rans	ients	s in	ı pov	ver	syst	ems, j	po'	wer	syst	em
•		study l Single a								-			Unit	con	mitr	ner	nt ai	nd L	.oad	freq	lei	ncy	con	trol
•	То	study t	h	he	Pe	rfo	orma	anc	ce p	oarai	met	ers	of C	lircu	it Br	eal	kers	(AC	CB8	×VCE	B).			
LIST	OF EX	KPER	I	IN	Æ	N.	TS	5:																
 4. Simu 5. Stabi 6. Simu 7. Econ 8.Unit c 9. Load 10. Sim 11. Perfc 	lity ana lation o omic L commit freque ulation	llysis o of Tran oad Di ment ncy co of Exc	of isj on ci	of S isie ispa ntro cita	SMI ents atcl rol o atio	IB s in h. of S on s	sys n po Sin syst	sten owe ngle tem	n. er sy e are 1.	ea ai	and t			•										
]	ГО	[A]	L:6	0 PH	CR	RIO	DS	
OUTC	COME	S:	A	Af	fter	su	icce	essf	ful c	com	ple	tior	n of t	he c	ours	se s	stude	ents	able	e to				
•	Apply	simul	at	atio	on	too	ol to	o sc	olve	e po	wer	r sy	stem	pro	blen	ns.								
•	Evalu	ate the	P	Pe	erfo	orm	nanc	ce o	of C	Circ	uit l	Bre	aker	s.										
LIST	OF E	QUIP	N	M	E	NT	F	IO	R A	A B	A T	[C]	H O	F 3	80 S	Tl	UDI	EN	ГS:					
1.Person 2. Printo 3. Dotri	er laser	-1No.	5 (s (P	Pent	tiu	m-I	IV,	800	GB,	512	2 M	IBR <i>A</i>	AM)	-25	nos	s							
4. Serve	er (Pent		V.	7.8	300	GB.	.1G	3B I	RA	M)	(Hi	ghS	Spee	dPro	ocess	or)) —11	No.						

6.Any relevant Compliers:25users

7. Air circuit Breaker set up.

8. Vacuum Circuit Breaker Set up.

17EEE	707	ELECTRICAL SYSTEM DESIGN LABORATORY	L	T	Р	C
			0	0	4	2
OBJEC	TIVES:		<u>.</u>			
•	To provi supply	de better understanding to design, analyse and fabricate constar	nt vo	ltage	e pov	ver
•	To provi	de better understanding to design, analyse and fabricate variab	le po	ower	supp	oly
•	-	de better understanding to design, analyse and fabricate Driver omagnetic relay using Microprocessor with required Protection.	r Cir	cuit	to dr	ive
•	To provi	de better understanding to design, analyse and fabricate domes	tic U	JPS		
product)		MENTS : (Any Three of the following must be developed like a c	comi	nerc	ial	
1. Desigr	n, Analysis	and Fabrication of 5V Constant Voltage Power supply				
2. Design	n, Analysis	and Fabrication of 0-12 V, 1A Variable Power Supply				
U	•	and Fabrication of Driver Circuit to drive an Electromagnetic related required Protection.	ay us	ing		
-	•	and Fabrication of an isolation circuit using opto coupler which interfacing	is rec	quire	ed	
5. Desig	n, Analysis	and Fabrication of Domestic UPS.				
		TOTAL :60 Pl	ERI	OD	S	
OUTCO	OMES:	After successful completion of the course students able to				
•	7, 12V power supply and UPS.					
•	Design th	e driver circuits.				
•	Design the	e isolation Circuits.				

17EEE803	PR	OJECTWORK		L	T	Р	С
		-		0	0	12	6
OBJECTIV	ES:						
•	• To develop the ability to solve a specific problem right from its identification at literature review til lth esuccessful solution of the same. To train the students preparing project reports and to face reviews and vivavoce examination.						
			TOTAL :	180	PF	ERIC	DDS
OUTCOME	S:	After successful completion of the course	students able to	C			
•	challe	ompletion of the project work students wi enging practical problems and find so odology.	1			-	

LIST OF PROFESSIONAL ELECTIVES

17EPE	001	AP	PLIED SOFT COMPUTING	L	T	P	C	
				3	0	0	3	
OBJEC		ES:						
•	To ex	pose	the students to the concepts of feed forward neural netw	orks				
•	To p	rovid	e adequate knowledge about feedback neural networks					
•	To p	rovid	e adequate knowledge about fuzzy and neuro-fuuzy syst	ems				
•	To p	rovid	e comprehensive knowledge of fuzzy logic control to rea	al tim	ne sy	stem	IS.	
•	-		le adequate knowledge of genetic algorithms and it dispatch and unit commitment problems.	s apj	plica	tion	to	
UNIT I	UNIT I ARCHITECTURES-ANN							
			cal neuron–Artificialneuron–Neuronmodel –Supervised -Multi layer feed forward network–Learning algorithm-I					
UNIT I	I	NEU	URAL NETWORKS FOR CONTROL			9		
	Applica	ations	Discrete time Hopfield networks– Transient response of of artificial neural network-Process identification–Neu					
UNIT I	II	FUZ	ZZY SYSTEMS			9		
Members	hip fu	inctio	ysets –Fuzzy relations– Fuzzification – Defuzzification n–Knowledge base–Decision-making logic–Introduction zzy system.		-			
UNIT I	V	API	PLICATION OF FUZZYLOGIC SYSTEMS			9		
•	-		: Home heating system-liquid level control-aircraft control, Fuzzy based motor control.	landi	ing-i	nver	ted	
UNIT V	UNIT V GENETIC ALGORITHMS					9		
represent	ation : ing-co	schen nstrai	at Search–Non-gradient search–Genetic Algorithms: Thes, selection methods, crossover and mutation operator nt handling methods–applications to economic dis the second sec	s for	bin	ary a	and	
			TOTAL : 45 PER	loi	DS			

OUTC	COMES:	After successful completion of the course students able to				
•	Design an	n algorithm for Artificial Neural Network Controller				
•	Design a	Genetic algorithm				
•	Design ar	n algorithm for Fuzzy Logic Controller				
•	Apply Fu	zzy Logic Controller for specific applications				
•	Apply Ge	enetic algorithm for specific applications				
TEXT	BOOKS	:				
1.	Laurance Networks	Fausett, Engle woodcliffs, N.J., 'Fundamentals of Neural s', Pearson Education, 1992				
2.	S.N.Sivanandam and S.N.Deepa, Principles of Soft computing, Wiley India Editi 2 nd Edition, 2013.					
3.	TimothyJ Hill,1997	Ross, 'Fuzzy Logic with Engineering Applications', Tata McGraw				
REFE	RENCES	:				
1.	Simon Ha	ykin, 'Neural Networks',Pearson Education,2003.				
2.	John Yen	&RezaLangari, 'FuzzyLogic–Intelligence Control&Information', Pearson				
3.		d R, Cheng, Genetic algorithms and Optimization, Wiley Series in ing Design and Automation, 2000.				
4.	Hagan, L	Demuth, Beale, "Neural Network Design", Cengage Learning, 2012.				
5.	N.P.Padh	ny, "Artificial Intelligence and Intelligent Systems", Oxford, 2013				
6.	William S CRC Pre	S.Levine, "Control System Advanced Methods," The Control Handbook ss,2011.				

17EPE002	PRINCIPLES OF MANAGEMENT	L	Т	Р	C
		3	0	0	3

OBJECTIVES:

•	To enable the students to study the evolution of Management, to study the functions and principles of management and to learn the application of the principles in an organization.
•	To enable the students to study planning process and planning types.
•	To enable the students to study the organization structure.
•	To enable the students to study the leadership and process of communication.
•	To enable the students to study the System and process of controlling.

UNIT I INTRODUCTION TO MANAGEMENT AND ORGANIZATIONS

9

Definition of Management – Science or Art – Manager Vs Entrepreneur - types of managers - managerial roles and skills – Evolution of Management – Scientific, human relations, system and contingency approaches – Types of Business organization - Sole proprietorship, partnership, company-public and private sector enterprises - Organization culture and Environment – Current trends and issues in Management.

UNIT II PLANNING

9

9

9

9

Nature and purpose of planning – planning process – types of planning – objectives – setting objectives – policies – Planning premises – Strategic Management – Planning Tools and Techniques– Decision making steps and process.

UNIT III ORGANISING

Natureandpurpose–Formalandinformalorganization–organizationchart–organizationstructure– types – Line andstaffauthority– departmentalization–delegationofauthority–centralizationand decentralization – Job Design - Human Resource Management – HR Planning, Recruitment, selection,TrainingandDevelopment,PerformanceManagement,Careerplanningandmanagement

UNIT IV DIRECTING

Foundations of individual and group behaviour – motivation – motivation theories – motivational techniques – job satisfaction – job enrichment – leadership – types and theories of leadership – communication – process of communication – barrier in communication – effective communication – communication and IT.

UNIT V CONTROLLING

System and process of controlling – budgetary and non-budgetary control techniques – use of computers and IT in Management control – Productivity problems and management

- con	trol and perform	nance – direct and preventive control – reporting.
		TOTAL : 45 PERIODS
OUI	COMES:	After successful completion of the course students able to
•	Know how to	become manager and differentiate with entrepreneur.
•	Ability to bec	ome a good planner and successively executing the scheme.
•	Motivate the	individuals (workers) to finish the task.
•	Control the p	rocess as leader.
TEX	T BOOKS:	
1.	Stephen P. Ro 10th Edition,	bbbins & Mary Coulter, "Management", Prentice Hall (India) Pvt. Ltd., 2009.
2.	JAF Stoner, H 6th Edition,20	Freeman R.E and Daniel R Gilbert "Management", Pearson Education, 2004
REF	TERENCES:	
1.	1	obbins & David A. Decenzo & Mary Coulter, "Fundamentals of "Pearson Education, 7th Edition, 2011.
2.	Robert Kreitr	er & Mamata Mohapatra, "Management", Biztantra, 2008.
3.	Harold Koor Hill,1998	ntz & Heinz Weihrich "Essentials of Management" Tata McGraw
4.	Tripathy PC	& Reddy PN, "Principles of Management", Tata Mcgraw Hill, 1999.

17EPE003	BIO MEDICAL INSTRUMENTATION
I/EFEUUJ	DIO MEDICAL INSTRUMENTATION

L	Т	Р	С
3	0	0	3

OBJECTIVES:

•	To Introd	uce Fundamentals of Biomedical Engineering		
•	To Introduce various bio potential electrodes used in Biomedical Engineering			
•	To study	the heart system and its measurements		
•	To study	the measurement of electrical activity in neuromuscular system and be	rain	
•	To have a	a basic knowledge in life assisting and therapeutic devices		
UNIT I	FU	UNDAMENTALS OF BIOMEDICAL	9	

ENGINEERING

Brief description of musculoskeletal, endocrine, gastrointestinal, nervous, circulatory and respiratory systems; the nature of bioelectricity, action events of nerve; the origin of bio potentials. Basic components of a biomedical system-Kidney and blood flow - Biomechanics of bone - Biomechanics of soft tissues - Basic mechanics of spinal column and limbs.

UNIT II BIO POTENTIAL ELECTRODES

9

Signal acquisition; electrodes for biophysical sensing; electrode-electrolyte interface; skin preparation, electrode-skin interface and motion artifact; surface electrodes; microelectrodes; Internal electrodes; electrode arrays; electrodes for electric stimulation of tissues; electrode polarization, electrical interference problems in biopotential measurement; electrical safety.

UNIT III THE HEART SYSTEM AND ITS MEASUREMENTS

9

The heart; electro conduction system of the heart; the ECG waveform; the standard lead system; the ECG preamplifier; ECG machines; Cardiac monitors; Transient protection; common-mode and other interference-reduction circuits, Measurement of blood pressure, spirometer – Photo Plethysmography, Body Plethysmography, finger-tip oxymeter, measurement of blood pCO2, pO2

UNIT IV MEASUREMENT OF ELECTRICAL ACTIVITY IN NEUROMUSCULAR SYSTEM AND BRAIN

9

9

Neuron potential; muscle potential; electromyography (EMG); electroencephalography (EEG); EEG electrodes and the 10-20 system; EEG amplitude and frequency bands; the EEG system – simplified block diagram; preamplifiers and EEG system specifications; EEG diagnostic uses and sleep patterns; visual and auditory evoked potential recordings; EEG system artifacts.

UNIT V IMAGING, LIFE ASSISTING, THERAPEUTIC AND ROBOTIC DEVICES

Computer tomography – MRI – Ultrasonography – Endoscopy ,Pacemakers – Defibrillators – Ventilators – Nerve and muscle stimulators – Diathermy – Heart – Lung machine – Audio

		 Lithotripsy - ICCU patient monitoring 3D surgical techniques- Orthopedic pros 	
		ТО	TAL : 45 PERIODS
OUTC	OMES:	After successful completion of the course	e students able to
•	Know elec	ctrical signal production and its conductio	n in human body.
•	Select prop	per electrode for signal pick up from hum	an body
•	Trace card	liac waveform and characterise its conditi	on
•	Trace brain	n waveform and characterise its condition	1
•		different life saving, therapeutic and ima e to patients	ging bio medical systems its
TEXT	BOOKS:		
1.		omwell, Biomedical Instrumentation and N v Delhi,2007.	Measurement, Prentice hall of
2.	1	arr and John M. Brown, Introduction to B gy, John Wiley and sons, New York, 4th E	1 1
3.	-	R.S, Handbook of Biomedical Instrument l Edition, 2003	tation, , Tata McGraw-Hill, New
REFE	RENCES:		
1.		Vebster, Medical Instrumentation Applicat York, 1998	tion and Design, John Wiley and
2.	Duane Kn	udson, Fundamentals of Biomechanics, S	pringer, 2nd Edition, 2007.
3.		n D. Bronzino, The Biomedical Engineerin C Press LLC, 2006.	g Hand Book, Third Edition, Boca
4.	M.Arumug	gam, 'Bio-Medical Instrumentation', Anur	radha Agencies, 2003.

17EPE 0	004	FUNDAMENTALS OF NANOSCIENCE	L	T	P	C			
			3	0	0	3			
OBJEC	TIVES:								
•	To learn ab	out basis of nanomaterial science							
٠	To learn ab	oout nanomaterial preparation methods							
•	To learn ab	out basis of nanomaterial science, preparation method and ty	pes						
•	To learn ab	out nanomaterial characterization techniques							
٠	To study va	arious application fields of nano materials							
UNITI		INTRODUCTION				9			
Optical, (qualitat	Magnetic iveonly).	als.Length Scales in volved and effecton properties: Mechand Thermal properties.Introduction to properties and				ectroni or stuc 9			
UNITII		GENERAL METHODS OF PREPARATION				-			
Bottom- Colloida	up Synthesis	s-Top-down Approach: Co-Precipitation, Ultrasonication, -assembly, Vapour phase deposition, MOCVD, Sputtering, E c Layer Epitaxy,MOMBE.				Millin			
Bottom- Colloida	up Synthesis Il routes, Self- pitaxy, Atomi	s-Top-down Approach: Co-Precipitation, Ultrasonication, -assembly, Vapour phase deposition, MOCVD, Sputtering, E				Millin			
Bottom- Colloida Beam Ep UNITII Nano fo Nanotub ablation, ZnO, Tit	up Synthesis I routes, Self- pitaxy,Atomi I orms of Carb es(SWCNT); CVD routes O2,MgO,ZrC	s-Top-down Approach: Co-Precipitation, Ultrasonication, -assembly, Vapour phase deposition, MOCVD, Sputtering, E c Layer Epitaxy,MOMBE.	be,Sin nesis(ns-Na	gle arc-a	wall grow	Millin olecula 9 carbo rth, laso oxide			
Bottom- Colloida Beam Ep UNITII Nano fo Nanotub ablation, ZnO, Tit	up Synthesis I routes, Self pitaxy,Atomi I orms of Carl oes(SWCNT); CVD routes O2,MgO,ZrC ons-Quantun	s-Top-down Approach: Co-Precipitation, Ultrasonication, -assembly, Vapour phase deposition, MOCVD, Sputtering, E c Layer Epitaxy,MOMBE. NANO MATERIALS bon-Buckminster fullerene-graphene and carbon nano tub and Multiwall carbon nanotubes(MWCNT)-methods of syntl s,Plasma CVD),structure-property Relationships application 02, NiO, nano alumina, CaO,AgTiO2,Ferrites, Nano clays-	be,Sin nesis(ns-Na	gle arc-a	wall grow	Millin olecula 9 carbo rth, laso oxide			
Bottom- Colloida Beam Ep UNITII Nano fo Nanotub ablation, ZnO, Tit applicati UNITIV X-ray di Electron	up Synthesis I routes, Self pitaxy,Atomi I orms of Carb es(SWCNT); CVD routes O2,MgO,ZrC ons-Quantun 7 iffraction tec Microscopy	s-Top-down Approach: Co-Precipitation, Ultrasonication, -assembly, Vapour phase deposition, MOCVD, Sputtering, E c Layer Epitaxy,MOMBE. NANO MATERIALS bon-Buckminster fullerene-graphene and carbon nano tut and Multiwall carbon nanotubes(MWCNT)-methods of syntl s,Plasma CVD),structure-property Relationships application 02, NiO, nano alumina, CaO,AgTiO2,Ferrites, Nano clays- n wires,Quantum dots-preparation,properties and applications	be,Sin nesis(ns-Na func	ratio gle arc-; nom ction	wall wall grow netal aliza	Millin olecula 9 carbo rth, laso oxide tion an 9 smissio			
Bottom- Colloida Beam Ep UNITII Nano fo Nanotub ablation, ZnO, Tit applicati UNITIV X-ray di Electron	up Synthesis I routes, Self pitaxy,Atomi I orms of Carb es(SWCNT); CVD routes O2,MgO,ZrC ons-Quantun 7 iffraction tec Microscopy	s-Top-down Approach: Co-Precipitation, Ultrasonication, -assembly, Vapour phase deposition, MOCVD, Sputtering, E c Layer Epitaxy,MOMBE. NANO MATERIALS bon-Buckminster fullerene-graphene and carbon nano tub and Multiwall carbon nanotubes(MWCNT)-methods of synth s,Plasma CVD),structure-property Relationships application 02, NiO, nano alumina, CaO,AgTiO2,Ferrites, Nano clays- n wires,Quantum dots-preparation,properties and applications CHARACTERIZATION TECHNIQUES chnique, Scanning Electron Microscopy- environmental tec y including high-resolution imaging ,Surface Analysis tec	be,Sin nesis(ns-Na func	ratio gle arc-; nom ction	wall wall grow netal aliza	Milling olecula 9 carbo rth, lase oxides tion an 9 smissio			
Bottom- Colloida Beam Ep UNITII Nano fo Nanotub ablation, ZnO, Tit applicati UNITIV X-ray di Electron STM,SN UNITV NanoInfe Nanobio	up Synthesis I routes, Self pitaxy,Atomi I orms of Carb es(SWCNT): CVD routes 02,MgO,ZrC ons-Quantun / iffraction tec Microscopy IOM,ESCA,S	s-Top-down Approach: Co-Precipitation, Ultrasonication, -assembly, Vapour phase deposition, MOCVD, Sputtering, E c Layer Epitaxy,MOMBE. NANO MATERIALS bon-Buckminster fullerene-graphene and carbon nano tub and Multiwall carbon nanotubes(MWCNT)-methods of synth s,Plasma CVD),structure-property Relationships application 02, NiO, nano alumina, CaO,AgTiO2,Ferrites, Nano clays- n wires,Quantum dots-preparation,properties and applications CHARACTERIZATION TECHNIQUES chnique, Scanning Electron Microscopy- environmental tec y including high-resolution imaging ,Surface Analysis tec SIMS-Nano indentation. APPLICATIONS nation storage- nano computer,molecular switch,sup to probes in medical diagnostics and biotechnology,Nano medical	be,Sin hesis(hs-Na func chniq chniq chniq ber licine	ratio	wall wall grow hetal aliza Frans -AF	Milling olecula 9 carbo rth, lase oxides tion an 9 smissio M,SPM 9 ocrysta			

	ms(NEMS)-Nano sensors, nano crystalline silver for bacterial inhibition, Nano particles for rrier products- In Photostat, printing, solar cell, battery.
	TOTAL:45PERIODS
OUI	COMES: After successful completion of the course students able to
•	Familiarize about the science of nano material
•	Demonstrate the preparation of nano material
•	Develop knowledge in characteristic nano material
•	Apply Nano Science into the applications
TEX	TBOOKS:
1.	A.S.Edelstein and, R.C.Cammearata,eds., "Nano materials: Synthesis, Properties and Applications", Institute of Physics Publishing, Bristol and Philadelphia, 1996
2.	NJohn Dinardo,"Nano scale Charecterisation of surfaces &Interfaces",2 nd edition, Weinheim Cambridge,Wiley-VCH,2000.
REF	ERENCES:
1.	G Timp, "Nano technology", AIP press/Springer, 1999
2.	Akhlesh Lakhtakia, "The Hand Bookof NanoTechnology, Nanometer Structure, Theory, Modeling and Simulations". Prentice-Hall of India(P) Ltd, NewDelhi, 2007.

17EPE	005	HI	GH VOLTAGE ENGINEERING	Τ	Р	C
			3	0	0	3
OBJE (CTIV	ES:				
•	To ι meth		tand the various types of over voltages in power system	and	prote	ctio
٠	Gene	eration	n of over voltages in laboratories.			
٠	Meas	surem	ent of over voltages.			
٠	Natu	re of I	Breakdown mechanism in solid, liquid and gaseous dielectrics.			
•	Testi	ing of	power apparatus and insulation coordination.			
UNIT I OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS			9)		
temporar	y ove	rvoltag	ges and its effects on power system–Lightning,switching surg ges,Corona and its effects–Reflectionand Refractionof Travell vervoltages			s-
UNIT I	ΙΙ	DIEL	ECTRIC BREAKDOWN		9)
Conduct	ion an	d brea	in uniform and non-uniform fields–Corona discharges–Vacuuk kdown in pure and commercial liquids,Maintenance of oil Qua sms in solid and composite dielectrics.			own
UNIT I			ERATION OF HIGH VOLTAGES AND HIGH RENTS		9)
Generati	onof l	High A	DC: Voltage doubler, Voltage multiplier circuits and Van de C AC: Cascade Transformer and Resonant transformer, Circui generation- Tripping and control of impulse generator.		-	
UNIT I			SUREMENT OF HIGH VOLTAGES AND HIGH RENTS		9)
Voltmete	er,Gen	eratin	h series ammeter–Dividers,Resistance,Capacitance and Mixed g Voltmeters-Capacitance Voltage Transformers,Electrostat surrent shunts- Digital techniques in high voltage measurement	ic V		
UNIT			H VOLTAGE TESTING & INSULATION RDINATION		9)
frequenc	y,imp	ulse v	of electrical power apparatus as per International and Indiansta oltage and DC testing of Insulators, circuit breakers, bushin ion Coordination.			
crunor or n						

OUT	COMES:	After successful completion of the course students able to
•	Explain the	causes and effects of over voltages and transients
•	Know the e	lectrical breakdown on various medium
•	Design the	generation circuit of overvoltage, impulse voltage and Current.
•	Measure the	e overvoltage and current using various components.
•	Test the ele	ctrical apparatus against overvoltages and impulse current.
TEX	T BOOKS	:
1.	M.S.Naidu 2013.	andV.Kamaraju, 'High Voltage Engineering', Tata McGraw Hill, Fifth Edition,
2.		d W.S.Zaengl, J.Kuffel, 'High voltage Engineering fundamentals ',Newnes tion Elsevier ,New Delhi,2005.
3.	•	An Introduction to High Voltage Engineering'PHI Learning Private Limited, Second Edition, 2013.
REFI	ERENCES:	
1.	L.L.Alston,	High Voltage Technology', Oxford UniversityPress, First Indian Edition, 2011.
2.	C.L.Wadhw Edition,201	a, 'High voltage Engineering',NewAge International Publishers,Third 0

17EPE	006	OP	TIMIZATION TECHNIQUES	L	Т	Р	C
				3	0	0	3
OBJE	CTIVE	S:			•	•	
•	To int	rodu	ce the basic concepts of linear programming				
• To educate on the advancements in Linear programming techniqu							
•	To int	rodu	ce non-linear programming techniques				
•	To in	trodu	ce the interior point methods of solving problems				
•	To in	trodu	ce the dynamic programming method				
UNITI		LI	NEAR PROGRAMMING				9
			lation of linear programming model-Graphical solutio Revised Simplex Method.	n—sc	lvin	g Ll	PP using
UNITI	I	AD	VANCES IN LPP				9
	•		simplex method-Sensitivity analysis—Transportation p salesman problem –Data Envelopment Analysis.	robl	ems	–Ass	ignment
UNITI	II	NO	N LINEAR PROGRAMMING				9
	ions-Red		on Linear programming– Lagrange multiplier method – gradient algorithms–Quadratic programming method				
UNITI	V	IN	FERIOR POINT METHODS				9
	rkar's al algorith	-	hm–Projection Scaling method–Dual affine algorithm–Pr	imal	affi	ne al	gorithm
UNITY	V	DY	NAMIC PROGRAMMING				9
princip	ole of op	timal	ti stage decision problem–Characteristics–Concept of sub ity–Formulation of Dynamic programming–Backward an edure–Conversion of final value problem into Initialvalue	d Fo	rwai	rd re	
			TOTAL:45PERIC	DDS	•		
OUT	COME	S:	After successful completion of the course students able	to			
		in the	the methods of Linear Programming Problem				
Explain the methods of Linear Programmi							
•	Expla	in the	e methods of Non Linear Programming Problem				

•	Explain the methods of Dynamic Programming
TEX	ГВООКS:
1.	Hillier and Lieberman"Introduction to Operations Research", TMH, 2000.
2.	R.Panneerselvam, "Operations Research", PHI, 2006
3.	HamdyATaha,"Operations Research – An Introduction", Prentice Hall India, 2003.
4.	SS RAO : 'Optimization: Theory and Applications' Wiley Eastern, 1979.
REFE	ERENCES:
1.	Philips, Ravindran and Solberg, "Operations Research", JohnWiley, 2002.
2.	Ronald L.Rardin, "Optimization in Operation Research" Pearson Education Pvt. Ltd.New Delhi, 2005.

17EPE007			RO ELECTRO MECHANICAL TEMS	L	Τ	Р	C
				3	0	0	3
OBJE	CTIV	ES:					
•	• To provide knowledge of semiconductors and solid mechanics to fabrica devices.						
•	• To educate on the rudiments of Micro fabrication technique						
•	To in	troduce	various sensors and actuators				
•	To in	troduce	different materials used for MEMS				
•			on the applications of MEMS to disciplines beyond ngineering.	l Ele	ctric	cal a	and
UNIT	I	INTR	ODUCTION:			9	
Introduc Electric	ction to al and	Micro f Mechar	s of MEMS–Energy Domains and Transducers-Sensors Fabrication-Silicon based MEMS processes–New Mate nical concepts in MEMS–Semi conductor devices–S n bending- Torsional deflection.	rials-	-Rev	view 1 str	of of
UNIT	II	SENS	ORS AND ACTUATORS I			9	
Combdu expansion Actuato	rive dev on–The rs–Mic	vices–Mi ermal co romagne	Parallel plate capacitors–Applications–Interdigitated Fi acro Grippers–Micro Motors- Thermal Sensing and Act puples–Thermal resistors–Thermal Bimorph- Applica etic components–Case studies of MEMS in magn Memory Alloys	uation:	on–T S–M	Theri lagne	mal etic
UNIT	III	SENS	ORS AND ACTUATORS II			9	
Applica	tions to ectric e	Inertia,	Piezoresistive sensor materials- Stress analysis of mecha Pressure, Tactile and Flow sensors–Piezoelectric sensor ezoelectric materials– Applications toInertia, Acoustic	s and	l act	uato	rs–
UNIT	IV	MICR	ROMACHINING			9	
of sacri	ficial E		chining processes – Structural and Sacrificial Material riction and Antistriction methods – LIGA Process - Access.				
UNIT	V	POLY	MERAND OPTICALMEMS			9	
Polymersin MEMS–Polimide-SU-8-Liquid Crystal Polymer (LCP) –PDMS–P Parylene– Fluoro carbon- Application to Acceleration, Pressure, Flow and Tactile s							

Optical	MEMS– Lei	nses and Mirrors–Actuators for Active Optical MEMS.
		TOTAL : 45 PERIODS
OUTC	COMES:	After successful completion of the course students able to
•	Fabricate N	MEMS devices.
•	Design sen	sors and actuators for MEMS.
•	Do micron	nachining process.
•	Apply rece	ent MEMS into physical applications.
TEXT	BOOKS:	
1.	Chang Liu	, 'Foundations of MEMS', PearsonEducationInc., 2012.
2.	Stephen D	Senturia, 'Microsystem Design', Springer Publication, 2000.
3.	Tai RanHs NewDelhi,	u, "MEMS&MicrosystemsDesignandManufacture"TataMcGrawHill, 2002.
REFER	ENCES:	
1.	Nadim Ma House,200	<i>luf, "An Introduction to Micro Electro Mechanical System Design",Artech</i> 0.
2.	Mohamed 2001.	Gad-el-Hak, editor, " The MEMS Handbook", CRC press BacoRaton,
3.	Julian w.G	Gardner, VijayK.Varadan, OsamaO.Awadelkarim,Micro Sensors MEMS.
4.	JamesJ.Ali 2005.	len, Micro Electro Mechanical System Design, CRC Press Publisher,
5.	Thomas M Application	Adams and Richard A.Layton, "Introduction MEMS, Fabrication and n,"

17EPE008	AD	ANCED	CONTRO	DL SYS	STEM			L	Т	Р	C
								3	0	0	3
OBJECTI	VES:										
• To	provide	nowledge or	n design in s	state var	riable fo	rm					
• To	provide	nowledge in	phase plan	ne analys	sis						
• To	give bas	c knowledge	in describi	ing func	tion ana	lysis					
• To	study th	design of op	timal contr	roller							
• To	study th	design of op	otimal estim	nator inc	luding I	Kalman I	Filter				
UNIT I	STA	TE VARIA	BLE CO)NTR()LLEI	R DESI	GN			9)
Introduction ArbitraryPole principle- ser	e-placen	ent- pole pla	acement D	Design-	design						
UNIT II	PHA	SE PLANI	E ANALY	YSIS						9)
Features of oflinearization	n Conce										
phaseportrait	s – Phas	plane analys									of
phaseportrait			is of linear	and nor	n-linear	systems					
	DES opts, de	plane analys CRIBING ivation of	is of linear FUNCTI describing	and nor ON A g function	n-linear NALY	systems SIS r comr	– Isocli	ne m	near	od. 9 ities	
UNIT III Basic conce	DES opts, de nction a	plane analys CRIBING ivation of	is of linear FUNCTI describing -linear syste	and nor ON A g function	n-linear NALY	systems SIS r comr	– Isocli	ne m	near	od. 9 ities	
UNIT III Basic conce Describingfu	DES opts, de nction a OPT -Contin	plane analys CRIBING ivation of alysis of non IMAL CO ous Time Lir	is of linear FUNCTI describing -linear syste NTROL	ON A ON A g function	n-linear NALY ions fo mit cycl	systems SIS r comr es – Stal	– Isocli non no	ne m on-li osci	near Ilati	od. 9 ities ons. 9	-
UNIT III Basic conce Describingfu UNIT IV Introduction	DES pts, de nction a OPT -Contin Ricatti'	plane analys CRIBING ivation of alysis of non IMAL CO ous Time Lir	is of linear FUNCTI describing -linear syste NTROL hear State R	and nor [ON A] g function terms – li Regulator	n-linear NALY ions fo mit cycl	systems SIS r comr es – Stal	– Isocli non no	ne m on-li osci	near Ilati	od. 9 ities ons. 9)
UNIT III Basic conce Describingfu UNIT IV Introduction – Solution of	DES pts, do nction a OPT -Contin Ricatti' OPT nation -	plane analys CRIBING ivation of alysis of non IMAL CO ous Time Lir equation.	is of linear FUNCTI describing -linear syste NTROL hear State R	and nor [ON A] g function terms – li Regulator ON	n-linear NALY ions fo mit cycl	systems SIS r comr es – Stal	– Isocli non no pility of e Linear	ne m on-li osci	near llati	od. 9 ities ons. 9 egula 9)
UNIT III Basic conce Describingfu UNIT IV Introduction – Solution of UNIT V Optimal estim	DES pts, do nction a OPT -Contin Ricatti' OPT nation -	plane analys CRIBING ivation of alysis of non IMAL CO ous Time Lir equation.	is of linear FUNCTI describing -linear syste NTROL hear State R	and nor [ON A] g function terms – li Regulator ON	h-linear NALY ions fo mit cycl r – Discr by dua	systems SIS r comr es – Stal	– Isocli non no pility of e Linear	ne m on-li osci	near llati e Re	od. 9 ities ons. 9 egula 9)
UNIT III Basic conce Describingfu UNIT IV Introduction – Solution of UNIT V Optimal estim	DES pts, do nction a OP'I -Contin Ricatti' OP'I nation -	plane analys CRIBING ivation of alysis of non IMAL CO ous Time Lir equation.	is of linear FUNCTI describing -linear syste NTROL hear State R	and nor [ON A] g function terms – li Regulator ON	h-linear NALY ions fo mit cycl r – Discr by dua	systems SIS r comr es – Stal rete Time	– Isocli non no pility of e Linear	ne m on-li osci	near llati e Re	od. 9 ities ons. 9 egula 9)
UNIT III Basic conce Describingfu UNIT IV Introduction – Solution of UNIT V Optimal esti KalmanFilter OUTCOM After success	DES pts, de nction a OPT -Contin Ricatti' OPT nation - ES: ful com	plane analys CRIBING ivation of alysis of non IMAL CO ous Time Lir equation. IMAL EST Kalman- Bu	is of linear FUNCTI describing -linear syste NTROL hear State R FIMATIC hey Filter-S	i and non iON Al g function cems – li Regulator ON Solution	h-linear NALY ons fo mit cycl r – Discr by dua TOT	systems SIS r comr es – Stal rete Time	– Isocli non no pility of e Linear	ne m on-li osci	near llati e Re	od. 9 ities ons. 9 egula 9)
UNIT III Basic conce Describingfu UNIT IV Introduction – Solution of UNIT V Optimal esti- KalmanFilter OUTCOM After success • De	DES pts, do nction a OP'I -Contin Ricatti' OP'I mation - ES: ful com sign in s	plane analys CRIBING ivation of alysis of non IMAL CO ous Time Lir equation. IMAL EST Kalman- Bu	is of linear FUNCTI describing -linear syste NTROL iear State R FIMATIC icy Filter-S	i and nor iON Al g function cems – li Regulator ON Solution	h-linear NALY ons fo mit cycl r – Discr by dua TOT	systems SIS r comr es – Stal rete Time	– Isocli non no pility of e Linear	ne m on-li osci	near llati e Re	od. 9 ities ons. 9 egula 9)
UNIT III Basic conce Describingfu UNIT IV Introduction – Solution of UNIT V Optimal esti KalmanFilter OUTCOM After success • De • Un	DES pts, de nction a OPT -Contin Ricatti' OPT nation - ES: ful com sign in s derstand	plane analys CRIBING ivation of alysis of non IMAL CO ous Time Lir equation. IMAL EST Kalman- Bu kalman- Bu	is of linear FUNCTI describing -linear syste NTROL lear State R FIMATIC locy Filter-S course stud orm. une analysis	egulator	n-linear NALY ions fo mit cycl r – Discr by dua TOT e to	systems SIS r comr es – Stal rete Time	– Isocli non no pility of e Linear	ne m on-li osci	near llati e Re	od. 9 ities ons. 9 egula 9)
UNIT III Basic conce Describingfu UNIT IV Introduction – Solution of UNIT V Optimal estic KalmanFilter OUTCOM After success • De • Un	DES pts, de nction a OPT -Contin Ricatti' OPT nation ES: ful com sign in s derstand	plane analys CRIBING ivation of alysis of non IMAL CO ous Time Lir equation. IMAL EST Kalman- Bu	is of linear FUNCTI describing -linear syste NTROL ear State R FIMATIC icy Filter-S course stud orm. une analysis g function a	egulator	n-linear NALY ions fo mit cycl r – Discr by dua TOT e to	systems SIS r comr es – Stal rete Time	– Isocli non no pility of e Linear	ne m on-li osci	near llati e Re	od. 9 ities ons. 9 egula 9)

•	Design of optimal estimator including Kalman Filter.
TEXT	BOOKS:
1.	M.Gopal, "Digital Control & State Variable Methods", Tata McGraw Hill, 4th EDITION, 2012
2.	I.J. Nagrath and M.Gopal, "Control Systems Engineering", New Age International Publishers, 5 th Edition, 2010.
3.	Richard C. Dorf, "Modern control systems",8th Edition, Addison Wesley, 2012.
REFE	RNCES:
1.	K.Ogatta, "Discrete time control system", PHI, 2010.
2.	B.C.Kuo," Digital Control Systems", SRL Publication, 1997.
3.	<i>M. Gopal, "Control Systems Principles and Design", TATA Mcgraw hill, 3 Edition, 2010</i>
4.	M.Gopal," Modern control system theory", New Age International Publishers, 2002

17EPE009			POWER QUALITY]	L	Τ	Р	C				
		I										Í	3	0	0	3
OBJEC	TIVES	:														
•	To intr	oduc	e the	power	quality	proble	em									
•	To edu of cont		on pr	oducti	on of vo	oltages	sags, o	over v	oltage	es an	d har	moni	cs	and	metł	nods
٠	To stuc	y ov	vervol	tage p	roblems	5										
•	To stuc	y the	e sour	ces an	d effect	t of har	rmonic	es in po	ower s	syste	m					
٠	To imp	art k	nowle	edge o	n variou	us meth	hods of	of powe	er qua	ality 1	monit	oring	ς.			
UNITI	I	ITI	ROD	UCT	IONT	OPOV	WER	QUA	LIT	ſΥ						9
swells-ve variation Associat	ns such a oltagesag ns.Interna ions (CB	s int -volt tiona EMA	tagesv al star A) cur	tion-lo vell-vo dards ve.	ong dur oltage of powe	ation v imbala er quali	variatio ance-v lity. C	on suc voltage Compu	flu ter Bı	ictua usine	ained tion ess Ec	inter	ruj pov	ptior wer	n. Sa fre	ags an equenc acturer
swells-ve variation Associat UNITII Sources –analysi	oltagesag is.Interna ions (CB V of sags a s and cal	s int -volt tiona EMA OL nd ir	terrup tagesv al star A) cur TAG nterruj ion o	tion-lo vell-vo dards ve. E S otions f vario	AGS A - estima	ation v imbala er quali ND I ting vo ced con	variatio ance-v lity. C I NTE oltage s ndition	on suc voltage Compu RRU sag per	flu ter Bı PTI(rform ge sag	ortua usine ONS ance g due	ained tion ess Ec S S C.Theve to in	inter - juipn venin nduct	ruj pov ien 'se	ption wer at Ma	n. Sa fre anufa valen	ags an equenc acturer 9 tsourc starting
swells-ve variation Associat UNITII Sources –analysis Estimatio	oltagesag is.Interna ions (CB V of sags a	s int -volt tiona EMA OL nd ir culat sags	terrup tagesv al star A) cur TAG nterrup tion of everit	tion-lo vell-vo dards ve. E S otions f varic y- mit	AGS A - estima	ation v imbala er quali ND I ting vo ced con	variatio ance-v lity. C I NTE oltage s ndition	on suc voltage Compu RRU sag per	flu ter Bı PTI(rform ge sag	ortua usine ONS ance g due	ained tion ess Ec S S C.Theve to in	inter - juipn venin nduct	ruj pov nen 'se	ption wer at Ma	n. Sa fre anufa valen	ags an equence acturer 9 tsource starting transfe
swells-ve variation Associat UNITII Sources –analysis Estimatio	oltagesag is.Internations (CB of sags a s and cal on of the andfasttr	s int -volt tiona EMA OL nd ir culat sags ansfe	terrup tagesv al star A) cur TAG nterrug ion o everit er swi	tion-lo vell-vo dards ve. E S ptions f varic y- mit tches.	AGS A - estima	ation v imbala er quali ND I ting vo ced con	variatio ance-v lity. C I NTE oltage s ndition	on suc voltage Compu RRU sag per	flu ter Bı PTI(rform ge sag	ortua usine ONS ance g due	ained tion ess Ec S S C.Thever	inter - juipn venin nduct	ruj pov nen 'se	ption wer at Ma	n. Sa fre anufa valen	ags an equenc acturer 9 tsourc starting
swells-ve variation Associat UNITII Sources –analysis Estimatio switches UNITII Sources swells - s	oltagesag is.Internations (CB of sags a s and cal on of the andfasttr I C of over v surge arre	s int -volt tiona EMA OL nd ir culat sags ansfe VE	terrup tagesv al star A) cur TAG nterrup ion of everit er swi RV(ges - 1 s - lov	tion-lowell-voldards velowell-voldards velowell-voldards velowelle standards to the second second second second se	AGS A - estima ous fault igation AGES itor swi filters -	ation v imbala er quali ND I ting vo ed con of volta tching power	variatio ance-v lity. C INTE oltage s adition tage say - light condit	on suc voltage Compu XRRU sag per Voltag gs, act	flu ter Bu PTIC rform ge sag ive se . ferro s. Ligl	o resolution	ained tion ess Ec S . They e to in comp onance ng pro	inter juipn venin nduct vensa ce. Motectio	ruj pov ien 'se ion tors	ption wer tt Ma quiv n mo s. St gatio – shi	n. Sa fre anufa valen otor s atic t	ags an equence acturer 9 tsource tarting transfer 9 voltaging - lin
swells-ve variation Associat UNITII Sources –analysis Estimation switches UNITII Sources swells - s Arresters	oltagesag is.Internations (CB v of sags a s and cal on of the andfasttr I C of over v surge arro - protec	s int -volt tiona EMA OL nd ir culat sags ansfe VE voltagesters ion	terrup tagesv al star A) cur TAG nterrup ion of everit er swi RVC ges - 0 s - 10v of tra	tion-lo well-vo dards ve. E S otions f vario y- mit tches. DLTA Capac v pass unsform	AGS A - estima ous fault igation AGES itor swi filters -	ation v imbala er quali ND I ting vo ed con of volta tching power	variatio ance-v lity. C INTE oltage s adition tage say - light condit	on suc voltage Compu XRRU sag per Voltag gs, act	flu ter Bu PTIC rform ge sag ive se . ferro s. Ligl	o resolution	ained tion ess Ec S . They e to in comp onance ng pro	inter juipn venin nduct vensa ce. Motectio	ruj pov ien 'se ion tors	ption wer tt Ma quiv n mo s. St gatio – shi	n. Sa fre anufa valen otor s atic t	ags an equence acturer 9 tsource tarting transfer 9 voltaging - lin
swells-ve variation Associat UNITII Sources –analysis Estimatic switches UNITII	oltagesag is.Internations (CB of sags a s and cal on of the andfasttr I C of over v surge arro - protec , PSCAD	s int -volt tiona EMA OL nd ir culat sags ansfe VE voltagesters ion and	terrup tagesv al star A) cur TAG nterrug ion of everit er swi RVC ges - 10v of tra EMT	tion-lo well-vo dards ve. E S otions f vario y- mit tches. DLTA Capac v pass unsform	AGS A - estima ous fault igation AGES itor swi filters - ners an	ation v imbala er quali ND I ting vo ed con of volta tching power	variatio ance-v lity. C INTE oltage s adition tage say - light condit	on suc voltage Compu XRRU sag per Voltag gs, act	flu ter Bu PTIC rform ge sag ive se . ferro s. Ligl	o resolution	ained tion ess Ec S . They e to in comp onance ng pro	inter juipn venin nduct vensa ce. Motectio	ruj pov ien 'se ion tors	ption wer tt Ma quiv n mo s. St gatio – shi	n. Sa fre anufa valen otor s atic t	ags an equence acturer 9 tsource tarting transfer 9 voltaging - lin
swells-ve variation Associat UNITII Sources –analysis Estimatic switches UNITII Sources swells - s Arresters transients. UNITIV Harmoni response and curr	oltagesag is.Interna- ions (CB V of sags a s and cal on of the andfasttr I C of over v surge arro- protec , PSCAD 7 H icsources e characte	s int -volt tiona EMA OL nd ir culat sags ansfe VE voltag esters ion and (AR from ristic tortic	terrup tagesv al star (A) cur (A) cur (A) cur (A) cur (C) (C) (C) (C) (C) (C) (C) (C) (C) (C)	tion-lo vell-vo dards ve. E S otions f varic y- mit tches. DLTA Capac v pass unsform P. NICS numerc armon harmon	AGS A - estima ous fault igation AGES itor swi filters - mers an itor swi filters - mers an	ation v imbala er quali ND I ting vo ed con of volta tching power d cable industr ansient lices -	variatio ance-v lity. C INTE oltage s adition tage sag - light condit les. Ar rial loa ts.Effe inter l	on suc voltage Compu Sag per Voltage Sag per Voltage ags, act thing - itioners n intro	flu ter Bu PTIC rform ge sag ive se · ferro s. Ligl ductio ductio cating armo nics -	o resolution o resolution htnin on to g har onics- – resolution	ained tion ess Ec S Theve to in comp onance o com cono cono cono cono cono cono cono c	inter juipn venin nduct bensa ce. M tectio npute c sou nonic ce. H	ruj pov nen 'se ion itig on - r a	ption wer tt Ma quiv n mo s. St gatio – shi analy es.Po	n. Sa fre anufa valen otor s atic n on of ieldin ysis	ags an equence acturer 9 tsource transfe 9 voltag ng - lin tools = 9

Monitoring considerations - monitoring and diagnostic techniques for various power quality problems - modelling of power quality (harmonics and voltage sag) problems by mathematical simulation tools - power line disturbance analyzer – quality measurement equipment - harmonic / spectrum analyzer - flicker meters -Applications of expert systems for power quality monitoring.

		TOTAL:45PERIODS
OUTC	OMES:	After successful completion of the course students able to
٠	Classify t	the power quality issues.
٠	Explain I	EEE and IEC standards of power quality.
•	Analyze	and mitigate the voltage sag, over voltages and interruptions.
•	Analyze	the harmonic distortion and design the components to reduce harmonics.
•	Explain p	power quality monitoring devices.
TEXTH	BOOKS:	
1.	-	C.Dugan, Mark.F.Mc Granagham,Surya Santoso,H.Wayne Beaty, 'Electrical Systems Quality' McGrawHill,2003.
2.		.F.Fucksand M.A.S.Masoum,"Power Quality in Power System and Electrical es," Elsevier Academic Press, 2013.
3.	J.Arrilla	nga, N.R.Watson, S.Chen,'Power System Quality Assessment', Wiley, 2011.
REFER	RENCES	:
1.		vdt,'Electric Power Quality', 2 nd Edition. (West Lafayette,IN,Starsina Circle tions,1994).
2.		ollen, 'Understanding Power Quality Problems: Voltage Sags and otions',(New York: IEEEP ress, 1999).(For Chapters1,2,3and5)
3.		kileh, ''Power Systems Harmonics–Fundamentals, Analysis and Filter ''Springer 2007.
4.		and M.Madrigal, "Power System Harmonics, Computer Modelling and s, "Wiley India,2012.
5.	R.S.Ved Press 20	am, M.S.Sarma, "Power Quality–VAR Compensation in Power Systems," CRC 013.
6.	C.Sanka	ıran, 'Power Quality',CRC press,Taylor&Francis group,2002.

17EPE010				ENTIFIC CONTR(ON ANI)	L	T	Р	C
		I						3	0	0	3
OBJECT	TVES:										
•	To introdu	ce Non p	arametric	methods							
•	To impart	knowledg	ge on para	ameter estin	mation	metho					
•	To impart	knowledg	ge on Rec	cursive ident	ntificat	ion methoo	ds				
•	To impart	knowledg	ge on Ada	aptive contro	rol sch	emes					
•	To introdu	ce stabili	ty, Robus	stness and A	Applic	ations of a	daptive co	ntrol 1	neth	od	
UNIT I	NON PA	RAME	TRIC	METHOI	DS						9
Non param	etric metho	ds:Transi	ent analy	sis-frequenc	ncy ana	lysis–Corr	elation ar	alysis	–Spe	ctral	analysis
Non parametric methods:Transient analysis–frequency analysis–Correlation analysis–Spec UNIT II PARAMETER ESTIMATION METHODS							0				
Least squa parameter prediction	are estimat estimates t methods–	ion–bestl for linea optimal	inear ur r regress predictio	ibiased esti ion models n – relatio	timatio ls–prec on bet	on under liction err	or metho liction er	ds: ror m	de etho	scrip ds a	tion of nd other
Least squa parameter prediction identificati	are estimat estimates methods— ion metho al variable	ion–bestl for linea optimal ds–theore methods-	inear ur r regress predictio etical au -Inputsig	biased esti	timatio ls–prec on bet nstrum for ide	on under liction err ween prec nental va entification	or metho liction er riable m n.	ds: ror m	de etho	scrip ds a	ting the tion of nd other
Least squa parameter prediction identification instrument UNIT III The recurs prediction	are estimate estimates methods— ion metho al variable RECUI sive least s error metho	ion-bestl for linea optimal ds-theore methods- RSIVE quare me ods-Maxi	inear ur r regress predictio etical ar -Inputsig IDENT ethod –th mum lik	ibiased esti ion models n – relationalysis- In nal design f	timation ls-prection on bet nstrum for ide ON N ve instruction	on under liction err ween prec entification (ETHO) rumental w tion of sy	or metho liction er riable m n. DS variable r rstems op	ds: ror m ethod	de etho s:De	scrip ds an scrip	ting the tion of nd other otion of 9 cursive
Least squa parameter prediction identification instrument UNIT III The recurs prediction	are estimat estimates methods- ion metho al variable RECUI sive least s error metho ity consider	ion–bestl for linea optimal ds–theore methods- RSIVE quare me ods–Maxi ations–di	inear ur r regress predictio etical au -Inputsig IDENT ethod –th mum lik rect iden	abiased esti- tion models n – relation nalysis- In nal design f IFICATIC nere cursive elihood.Ider	timation ls-precion bet nstrum for ide CON N we instruct entificat	on under liction err ween prec entification METHO rumental tion of sy identifica	or metho liction er riable m n. DS variable r rstems op	ds: ror m ethod	de etho s:De	scrip ds an scrip	ting the tion of nd other otion of 9 cursive
Least squa parameter prediction identificati instrument UNIT III The recurs prediction Identifiabil UNIT IV Introductio schemes–S	are estimate estimates methods— ion metho al variable RECUI sive least s error metho ity consider ADAPI m – Types of elftuning co	ion-bestl for linea optimal ds-theore methods- RSIVE quare me ods-Maxi ations-di TIVE C adaptive ontroller-	inear ur r regress predictio etical ar -Inputsig IDENT ethod –th mum lik rect iden ONTR(CONTR(abiased esti- tion models in – relation halysis- In nal design f IFICATIO here cursive elihood.Ider tification-in	timation ls-precion on bet nstrum for ide ON N we instruct entificat ndirect EMES duling Appro	on under liction err ween prec nental va entification IETHO rumental v tion of sy identification S controller- baches-Tho	or metho liction er riable m n. DS variable r vstems op tion. -Model re e Gradier	ds: ror m ethod nethoc erating ferenc it app	de etho s:De ls- ti g in e ada roacl	scrip ds an scrip here close	ting the tion of nd other otion of 9 cursive ed loop: 9 e control yapunov
Least squa parameter prediction identificati instrument UNIT III The recurs prediction Identifiabil UNIT IV Introductio schemes–S	are estimate estimates methods- ion metho al variable RECUI sive least s error metho ity consider ADAPI n –Types of elftuning co Passivity th	ion-best for linea optimal ds-theore methods- RSIVE quare me ods-Maxi ations-di TIVE C adaptive ontroller- eory- po	inear ur r regress predictio etical an -Inputsig IDENT ethod –th mum lik rect iden ONTR(CONTR(-MRAC le placem	biased esti- ion models n – relation nalysis- In nal design f IFICATIC nere cursive elihood.Iden tification—in DL SCHE Gain schedu and STC:	timation ls-prection for bet nstrum for ide ON N ve instruct entificat ndirect EMES duling d-Mini	on under liction err ween prec entification IETHO rumental v tion of sy identifica S controller- baches–The mum varia	or metho liction er riable m n. DS variable r rstems op tion. -Model re e Gradier ance contr	ds: ror m ethod nethoc erating ference t app ol – P	de etho s:De s:De ls- ti g in e ada roacl redic	scrip ds an scrip here close	ting the tion of nd other otion of 9 cursive ed loop: 9 e control yapunov
Least squa parameter prediction identification instrument UNIT III The recurse prediction Identifiabil UNIT IV Introduction schemes—S functions— UNIT V	are estimates methods- ion metho al variable RECUI sive least s error metho ity consider ADAPT on -Types of elftuning co Passivity th ISSUES	ion-bestl for linea optimal ds-theore methods- RSIVE quare me ods-Maxi ations-di TIVE C adaptive ontroller- eory- po IN AD	inear ur r regress predictio etical an -Inputsig IDENT ethod –th mum lik rect iden ONTRO control- -MRAC le placem	abiased esti- ion models in – relation nalysis- In nal design f IFICATIC here cursive elihood.Ider tification-in DL SCHE Gain schedu and STC: A	timation ls-precion bet nstrum for ide ON N we instruct entificat ndirect EMES duling d-Mini ROL	on under liction err ween prec entification IETHO rumental v tion of sy identifica S controller- baches-The mum varia	or metho liction er riable m n. DS variable r rstems op tion. -Model re e Gradier ance contr PPLICA	ds: ror m ethod nethoc erating ference t app ol – P	de etho s:De s:De ls- ti g in e ada roacl redic	scrip ds an scrip here close	ting the tion of nd other otion of 9 cursive ed loop: 9 e control yapunov control.
Least squa parameter prediction identification instrument UNIT III The recurse prediction Identifiabil UNIT IV Introduction schemes—S functions— UNIT V	are estimates methods- ion metho al variable RECUI sive least s error metho ity consider ADAPT on -Types of elftuning co Passivity th ISSUES	ion-bestl for linea optimal ds-theore methods- RSIVE quare me ods-Maxi ations-di TIVE C adaptive ontroller- eory- po IN AD	inear ur r regress predictio etical an -Inputsig IDENT ethod –th mum lik rect iden ONTRO control- -MRAC le placem	abiased esti- ion models in – relation halysis- In nal design f IFICATION here cursive elihood.Ident tification-in DL SCHE Gain schedu and STC: A hent method- E CONTH	timation ls-precion bet nstrum for ide ON N we instruct entificat ndirect EMES duling d-Mini ROL	on under liction err ween prec entification IETHO rumental v tion of sy identifica S controller- baches-The mum varia	or metho liction er riable m n. DS variable r rstems op tion. -Model re e Gradier ance contr PPLICA trol.	ds: ror m ethod nethod erating ferenc t app ol – P TIO	de etho s:De s:De ls- ti g in e ada roacl redic	scrip ds an scrip here close	ting the tion of nd other otion of 9 cursive ed loop: 9 e control yapunov control.

•	Apply non parametric methods to control problems
•	Apply parameter estimation methods to control problems
•	Apply recursive identification methods to control problems
•	Apply adaptive control schemes to control problems
TEXT	BOOKS:
1.	Soder Storm TandPeter Stoica, "System Identification", Prentice Hall International, 1989.
2.	Astrom,K.J.andWittenmark,B.,"Adaptive Control",Pearson Education,2 nd Edition,2001
3.	Sastry,S. and Bodson,M.," Adaptive Control–Stability,Convergence and Robustness",Prentice Hall inc.,New Jersey,1989.
REFE	RENCES:
1.	LjungL,System Identification: Theoryfor theuser, Prentice Hall, Engle wood Cliffs, 1987.
2.	Bela.G.Liptak., "Process Control and Optimization"., Instrument Engineers' Handbook., volume 2, CRC press and ISA, 2005.
3.	WilliamS.Levine, "Control Systems Advanced Methods, the Control Handbook, CRC Press, 2011.

17EPE	011	MIC: DES	ROCONTROLLER BASED SYSTEM IGN	L	T	P	C
				3	0	0	3
OBJE	CTIV	/ES:				•	
•	To i	ntroduce	e the architecture of PIC microcontroller				
•			on use of interrupts and timers To educate on the peription and transfer	ohera	l de	vices	for data
•	To i	ntroduce	e the functional blocks of ARM processor				
•	Тое	educate o	on the architecture of ARM processors				
•	To e	educate o	on design applications of ARM processors				
UNITI		INTRO	DOUCTION TO PIC MICROCONTROLLER	Ł			9
modes -		ple Ope	rations. RRUPTS AND PERIPHERALS INTERFACIN	NG			9
Constant Serial E	imer and EPRC	Progran Variable DM—Ar	Interrupts- External Interrupts-Interrupt Programming- ming-Frontpanel I/O-Soft Keys-State machines and ke strings- I ² C Bus for Peripherals Chip Access-Bus opera- nalog to Digital Converter-UART-Baud rate selection- ind keyboard Interfacing-ADC,DAC, and Sensor Interfacing	ey sw ation- Data	vitcho -Bus	es–D sub:	isplay o routines
UNITI	II	INTRO	DDUCTION TO ARM PROCESSOR				9
	Assen		ARM programmer's model–ARM Development tool nguage Programming–Simple Examples–Architectural S				
UNITI	V	ARM	ORGANIZATION				9
Executi	ion-A	RM Imp	RM Organization– 5-Stage Pipeline ARM Organization Dementation–ARM InstructionSet–ARM co processor in rel Languages–Embedded ARM Applications.				
UNITV	7	DESIC	GN APPLICATIONS				9
			ignals for converters and Inverters – Motor Controls – Co ature Control Applications- Monitoring: Overvoltage,		-	-	

Overc	current- Meas	urement of frequency – Stand-alone Data Acquisition System application	18.
		TOTAL:45PERIODS	
OUT	COMES:	After successful completion of the course students able to	
٠	Explain the	e architecture and programming of PIC microcontrollers.	
•	Interface v	arious peripherals to PIC microcontrollers.	
•	Explain are	chitecture, Programming and organization of ARM processor.	
•	Apply AR	M processor to Various applications	
TEX	TBOOKS:		
1.	Peatman,J.	B., "Design with PIC MicroControllers" Pearson Education, 3 rd Edition, 200	14.
2.	Furber,S.,"	ARM System on Chip Architecture"AddisonWesley trade Computer Publ	lication
REFF	ERENCES:		
1.	-	".Microcontrollers-Architecture, Programming, Interfacing & ed ,Pearson,2012.	System
2.	Mazidi, M. 2007.	A., "PIC Microcontroller" RollinMckinlay, Dannycausey Printice Hall	ofIndia

17EPE	2012		GH VOLTAGE DIRECT CURRENT ANSMISSION	L	T	Р	C
				3	0	0	3
OBJE	CTIV	'ES:					
•			and the concept, planning of DC power transmission and con smission.	npar	ison	with	I AC
•	To a	nalyze	e HVDC converters.				
٠	To st	tudy a	bout the HVDC system control.				
٠	To a	nalyze	e harmonics and design of filters.				
٠	To n	nodel a	and analysis the DC system under study state.				
UNIT	I	INT	RODUCTION				9
transmis in HVD	ssion–I C techi	Descrij nology	ssion technology–Comparison of AC and DC transmission ption of DC transmission system– Planning for HVDC transmi –DC breakers–Operating problems–HVDC transmission base C systems.	nissi	on–N	Aode	ern trends
UNIT	II	ANA	ALYSIS OF HVDC CONVERTERS				9
Choice	of con	verter	converter-Analysis of Graetz circuit with and without ove configuration–Converter bridge characteristics–Analysis of a pologies and firing schemes.	-			
UNIT	III	CO	NVERTER AND HVDC SYSTEM CONTROL				9
control-	Currer	nt and	k control–Converter control characteristics–System control h extinction angle control–Starting and stopping of DC link–F ntrol of VSC based HVDC link.		-		
UNIT	IV	REA	ACTIVE POWER AND HARMONICS CONTRO	DL			9
	-		quirements in steady state–Sources of reactive power–SVC onics–Design of AC and DC filters–Active filters.	C ar	nd S	TAT	COM –
UNIT	V	PO	WER FLOWANALYSIS IN AC/DC SYSTEMS				9
Per un Case st	-	em for	DC quantities-DC system model-Inclusion of constraints-	-Pov	ver f	low	analysis

			TOTAL:45PERIODS
OUT	COMES:	After successful completion of the	course students able to
•	Understan	d the concepts of DC transmission Te	echnology
•	Apply and	Analysis of HVDC Converters	
•	Explain ab	out HVDC system control	
•	Explain ab	out Reactive Power control	
•	Explain ab	out Harmonics control	
TEXT	BOOKS:		
1.		R.,"HVDC power transmission syster ition,2010.	n",New Age International (P) Ltd.,NewDelhi,
2.		ilson Kimbark,"Direct Current Trans dney,1971.	mission",Vol.I,Wiley interscience,NewYork,
3.	Arrillaga,	J.,"High Voltage Direct Current Tran	smission",Peter Pregrinus,London,1983.
REFI	ERENCES	:	
1.	KundurP	., "Power System Stability and Contr	vol", McGraw-Hill, 1993.
2.		Adamson and Hingorani NG, " sion",Garraway Limited,London,196	0 0
3.		as Begamudre, "Extra High Voltage onal (P)Ltd.,NewDelhi,1990.	e AC Transmission Engineering", New Age

17EPE	013	B E	MBEDDED SYSTEMS	L	Т	Р	(
				3	0	0	3
OBJE	CTI	VES:					
•	То	studt the	e characteristics of Embedded systems and its architecture	es.			
•	То	study th	e types of embedded architectures and its variants.				
•	То	Underst	and the CPU bus and its protocols.				
•	То	study th	e operation of real time operating systems.				
•			and the operation of control systems applications g and design the same.	S 0	f el	ectri	ca
UNIT I	[INTR	RODUCTION			9	
C	ture	Design	edded System Design- Design Process- Requirements, S - Designing of Components and System Integration.	Spe		catio	
Instructio [ARM [Hardwar Executio	on S proc e A on,	Set Arch essors], Accelerat CPU F	itecture-CISC architecture [8051] and RISC instruction s DSP Processors, Harvard Architecture-PIC. Co- pro tors, Processor Performance Enhancement- Pipelining, Power Consumption, Memory System Architecture-, C management unit and address Translation.	oces S	ssor	s a r-sca	an ala
UNIT I	II		GNING EMBEDDED COMPUTING			9	
Develop	mer PU	nt Enviro Bus: B	cessors-System Architecture, Hardware Design, and Imonment, Debugging Techniques, Manufacturing and Testus Protocols, Bus Organization, I/O Device Interfacing REWIRE, USB, Watchdog Timers.	stin	ıg.	Desi	ig
UNIT I	V	OPE	RATING SYSTEMS			9	
System, tasking,	Mu Pro	lti-rate S e-emptiv	eal-time Kernels, Polled Loops System, Co-routines, Int System, Processes and Threads, Context Switching, Coop we Multi-tasking. Scheduling-Rate-Monotonic Scheduling eduling Task Assignment Fault-Tolerant Scheduling	pera ling	ative g, E	e Mu Earlie	lti est

System, Multi-rate System, Processes and Threads, Context Switching, Cooperative Multitasking, Pre-emptive Multi-tasking. Scheduling-Rate-Monotonic Scheduling, Earliest-Deadline First Scheduling, Task Assignment, Fault-Tolerant Scheduling. Inter-process Communication-Real-time Memory Management: Stack Management, Dynamic Allocation-Evaluating and Optimizing Operating System Performance-Response.

UNIT V

- EMBEDDED CONTROL APPLICATIONS

Open-loop and Closed Loop Control Systems-Application Examples-Washing Machine, Automotive Systems, Auto-focusing digital camera, Air-conditioner, Elevator Control System, ATM System.

TOTAL : 45 PERIODS

OUTCOMES:		After successful completion of the course students able to			
•	• Understand the characteristics of Embedded systems and its architectures.				
•	• Understand the types of embedded architectures and its variants.				
•	Understand and use the CPU bus and its protocols.				
•	Understand the operation of real time operating systems.				
•	Explain th and design	e operation of control systems applications of electrical engineering the same.			

TEXT BOOKS:

1.	Stewart, James W, Miao, Kai X, "8051 Microcontroller: Hardware, Software and Interfacing", 2nd Edition, Prentice Hall.
2.	Arnold S. Berger – Embedded System Design CMP books, USA 2002
3.	David E. Simon, "An Embedded Software Primer", Pearson Education, 1999.
4.	A.S.Tenenbaum,"Modern Operating System" Pearson Education International, Third Edition,2006.

REFERENCES:

1.	Wayne wolf, "Computers as components", Morgan Kaufmann publishers,
	2nd Edition, 2008.
2.	Ayala. K.J. "The 8051 Microcontroller", Penram International, 1991.
3.	Dr. Prasad, "Embedded Real Time System", Wiley Dreamtech, 2004.
4.	Jean J.Labrosse, "Embedded system building blocks", CMP books, 2nd
	Edition, 1999.
5.	Arnold berger, "Embedded system design", CMP books, 1st Edition, 2001.
6.	Narayan and gong, "Specifications and design of embedded systems", Pearson education, 2nd Edition, 1999
7.	Raj Kamal, "Embedded Systems", TMH, first edition, 2004.

17EPE014	POWER ELECTRONICS FOR RENEWABLE				
	ENERGYSYSTEMS	L	Т	Р	С
		3	Δ	Δ	3

		3	0	0	3
OBJEC	CTIVES:				
•	To study importance of renewable energy systems in distributed ge	enera	tion		
•	To analyse and comprehend the various operating modes of solar energy systems and develop maximum power point tracking algorithm				
•	To analyse and comprehend the various operating modes of wind electrical generators and develop maximum power point tracking algorithm			ical	
•	To impart knowledge on fuel cell systems				
•	To Provide knowledge about various hybrid renewable energy systems				
UNIT I				9	
Importance of renewable energy, renewable energy systems in distributed power system, Need for Distributed generation, current scenario in Distributed Generation, Planning of DGs.					
UNIT I	I PHOTOVOLTAIC SYSTEMS AND ITS GRID INTEGRATION			ç)
Basics of	Photovoltaic, Maximum Power Point Tracking (MPPT) techniques	, Sizi	ng o	f sta	nd-
Alone P	V systems, Inverters for grid-connected PV system: Line co	ommu	itate	d, s	elf-
	ted with high frequency transformer, central-plant inverter, multipl	e stri	ng i	nver	ter,
	ntegrated inverter.				
UNIT III WIND POWER SYSTEMS		<u>9</u>			
	wind power, Fixed speed and variable speed wind turbines, storm as Induction generators, synchronous generators, half scale, full scale				
	rgy systems, Stand-alone systems, and grid connected wind power systems			150	101
UNIT I				9)
Introduction to fuel cell systems, types of fuel cell systems, Power Electronic Interface of fuel cell systems, Fuel cell/Battery Hybrid systems.					
UNIT V	HYBRID RENEWABLE ENERGY SYSTEMS			9)
	Need for Hybrid Systems- Range and type of Hybrid systems, wind-diesel system, wind-PV				
system, n	nicro hydro-PV system, biomass-PV-diesel system, PV-Fuel cell hyt		•		
OUTCO	TOTAL : 45 PER OMES: After successful completion of the course students able		0		
•	Apply Distributed generation in existing power systems.				
•	 Design PV cell integrated solar power system 				
•	Design controllers for wind power systems.				
•	Apply fuel cells in renewable energy integrated power systems.				
•					
	• Design the converter system for hybrid renewable energy sources. TEXT BOOKS:				
1.				ns",	
	Latui stan, 2003.				

2.	M.GodoySimoes, Felix A. Farret, "Renewable Energy Systems - Design and	
	Analysis with Induction Generators", CRC press, 2nd edition 2007	
3.	Siegfried Heir, "Grid Integration of Wind Energy Systems", John Willey & Sons;	
	2nd Edition, 2006.	
REFERENCES:		
1.	Mohammed H. Rashid, "Power Electronics Handbook", Elsevier, 2011.	
2.	Nick Jenkins, Ron Allan, Peter Crossley, David Kirchen and GoranStrbac,	
	"Embedded Generation" IET Power and Energy series, London-2000.	
3.	M. P. Kazmierkowski, R. Krishnan, J.D. Irwin, "Control in Power Electronics:	
	Selected Problems", Academic Press; 2002.	
4.	James Larminie and Andrew Dicks, "Fuel Cell Systems Explained", John Wiley &	
	Sons; 2nd edition, 2003.	

17EPE	2015	FLI	EXIBLE AC TRANSMISSION SYSTEMS	L	Т	Р	C
				3	0	0	3
OBJE	CTIV	/ES:					
•	To i	ntroduce	e the reactive power control techniques				
٠	To e	educate o	on static VAR compensators and their applications				
٠	Top	provide l	knowledge on Thyristor controlled series capacitors				
٠	To e	educate o	on STATCOM devices				
•	Top	orovide k	knowledge on FACTS controllers				
UNIT	I	INTRO	ODUCTION			9)
line- se	ries c	compens	ol in electrical power transmission lines-Uncompensa aation–Basic concepts of Static Var Compensator acitor (TCSC)–Unified power flow controller (UPFC).			hyris	stor
						9)
UNIT		APPL	IC VAR COMPENSATOR (SVC) AND ICATIONS				
Voltage system transien – Enhan	contro voltage t stabil	APPL1 ol by SV e–Desig lity–App nt of pov	ICATIONS /C-Advantages of slope in dynamic characteristics-Infl n of SVC voltage regulator-Modelling of SVC for pow- plications:Enhancement of transient stability-Steady sta- wer system damping.	wer f. ite po	low a wer	SVC and t trans	on fast
Voltage system transien	contro voltage t stabil cemer	APPLI ol by SV e–Desig lity–App nt of pov	ICATIONS /C-Advantages of slope in dynamic characteristics-Infl n of SVC voltage regulator-Modelling of SVC for pov plications:Enhancement of transient stability-Steady sta	wer f. ite po	low a wer	SVC and t	on fast
Voltage system v transien – Enhan UNIT Operatio model–l	contro voltage t stabil cemer III	APPLI ol by SV e–Desig lity–App nt of pov THYR (TCSC he TCSC ling for	ICATIONS 'C-Advantages of slope in dynamic characteristics-Infl n of SVC voltage regulator-Modelling of SVC for pow- plications:Enhancement of transient stability-Steady sta- wer system damping. CISTOR CONTROLLED SERIES CAPACIT	wer finte po TOR	low a wer	SVC and t trans	confast
Voltage system v transien – Enhan UNIT Operatio model–l	contro voltage t stabiliticement III on of the Model stabilititititititititititititititititititi	APPLI ol by SV e-Desig lity-App nt of pov THYR (TCSC ling for ty limit- VOLT	ICATIONS C-Advantages of slope in dynamic characteristics-Infl n of SVC voltage regulator-Modelling of SVC for pow- plications:Enhancement of transient stability-Steady sta- ver system damping. ISTOR CONTROLLED SERIES CAPACIT C) AND APPLICATIONS C-Different modes of operation-Modelling of TCSC-V Power Flow and stability studies.Applications: Imp	wer finte po	low a wer	SVC and t trans	on fast fer
Voltage system v transient – Enhan UNIT Operatio model–I system s UNIT Static S Applica voltage i	controvoltage t stabiliticemer III pon of the Model stabiliti IV ynchrotions: instabi	APPLI ol by SV e–Desig lity–App nt of pov THYR (TCSC he TCSC ling for ty limit– VOLT CONT onous C Steady ility. SSS	ICATIONS 'C-Advantages of slope in dynamic characteristics-Infl n of SVC voltage regulator-Modelling of SVC for power plications:Enhancement of transient stability-Steady state ver system damping. USTOR CONTROLLED SERIES CAPACIT C) AND APPLICATIONS C-Different modes of operation-Modelling of TCSC-V Power Flow and stability studies.Applications: Imp Enhancement of system damping.	Ver finite poor FOR Tariatorove: CTS I Charge poor	low : wer	SVC and t trans acta of erist ttion	nce
Voltage system v transient – Enhan UNIT Operatio model–I system s UNIT Static S Applica voltage i	controvoltage t stabil cemer III on of the Model stabilite IV ynchro- tions: instabi flow an	APPLI ol by SV e–Desig lity–App nt of pov THYR (TCSC he TCSC ling for ty limit– VOLT CONT onous C Steady ility. SSS nd transi	C-Advantages of slope in dynamic characteristics–Infl n of SVC voltage regulator–Modelling of SVC for power polications:Enhancement of transient stability–Steady state wer system damping. CISTOR CONTROLLED SERIES CAPACITE C) AND APPLICATIONS C-Different modes of operation–Modelling of TCSC–V Power Flow and stability studies.Applications: Imp Enhancement of system damping. CAGE SOURCE CONVERTER BASED FAC PROLLERS Compensator (STATCOM)–Principle of operation–V- state power transfer-enhancement of transient stability SC-operation of SSSC and the control of power flow–m	Ver finite poor FOR Tariatorove: CTS I Charge poor	low : wer	SVC and t trans acta of erist ttion	con fast sfer nce the ics. SC
Voltage system v transient – Enhan UNIT Operatio model–I system s UNIT Static S Applica voltage i in load f UNIT Controll	controvoltage t stabiliticemer III on of the Model stabiliti IV ynchrotions: instabi flow at V ler intervoltage ler intervoltage	APPLI ol by SV e–Desig lity–App nt of pov THYR (TCSC he TCSC ling for ty limit– VOLT CONT onous C Steady ility. SSS nd transi CO-OI eraction	C-Advantages of slope in dynamic characteristics–Infl n of SVC voltage regulator–Modelling of SVC for power polications:Enhancement of transient stability–Steady state wer system damping. CISTOR CONTROLLED SERIES CAPACIT C) AND APPLICATIONS C-Different modes of operation–Modelling of TCSC–V Power Flow and stability studies.Applications: Imp Enhancement of system damping. CAGE SOURCE CONVERTER BASED FAC FOLLERS Compensator (STATCOM)–Principle of operation–V- state power transfer-enhancement of transient stabilit SC-operation of SSSC and the control of power flow–m ient stability studies.	ver finte por FOR Tariatorove CTS I Char Sy- prodell	low : wer ole rement aract rever ing c	SVC and t trans acta of erist ntion of SS	con fast sfer nce the ics. of SC

OUTC	OMES:	After successful completion of the course students able to
•	Design st	atic VAR compensator
•	Design T	CSC and various Facts controllers
•	Explain V	Voltage Source Converter
•	Explain c	coordination of multiple controllers
TEXT	BOOKS	:
1.		Mathur, RajivK.Varma, "Thyristor –Based Facts Controllers for Electrical sion Systems", IEEE press and John Wiley&Sons, Inc,2002.
2.		Hingorani, "Understanding FACTS-Concepts and Technology of Flexible smission Systems", Standard Publishers Distributors, Delhi 2011.
3.		yar," FACTS Controllers in Power Transmission and Distribution", New mational (P) Limited, Publishers, NewDelhi, 2008.
REFE	RENCES	5:
1.		, "Flexible A.C. Transmission Systems", Institution of Electrical and ic Engineers (IEEE), 1999.
2.		l, HVDC and FACTS controllers Applications of Static Converters in Power APRIL 2004, Kluwer AcademicPublishers,2004.
3.		ng Zang, Christian Rehtanz and BikashPal, "Flexible AC Transmission Modelling and Control"Springer, 2012

17EPE016	POWER SYSTEM DYNAMICS	L	T	Р	C
----------	-----------------------	---	---	---	---

3 0 0 3

OBJECTIVES:

TINIT		9
•	To educate on the transient stability simulation of multi machine power system.	
•	To study small signal stability of a single-machine infinite bus system with excitat system and power system stabilizer.	tion
•	To educate on the excitation system and speed-governing controllers.	
•	To educate on modeling of synchronous machines	
•	To introduce the basics of dynamics and stability problems	

UNIT I INTRODUCTION

Concept and importance of stability in power system operation and design- distinction between transient and dynamic stability-complexity of stability problem in large system-Need for reduced models- stability of interconnected systems.

UNIT II MACHINE MODELING

Park'stransformation- flux linkageequations, currentspace model-per unit conversionnormalizing theequations- equivalent circuit- flux linkage state space model- Simplified models(oneaxis and constant flux linkage)- steady state equations and phasordiagrams.

UNIT III MACHINE CONTROLLERS

9

9

Exciter and voltage regulators- function of excitation systems, types of excitation systemstypical excitation system configuration-block diagram and state space representation of IEEE type1 excitation system-saturation function- stabilizing circuit-Function of speed governing systems-block diagram and state space representation of IEEE mechanical hydraulic governor and electrical hydraulic governors for hydro turbines and steam turbines.

UNIT IV TRANSIENT STABILITY

State equation for multimachine simulation withoneaxismodel-transient stability simulation of multimachinepower system with one axis machine model including excitation system and speed governing system using R-K method of fourthorder (Gill's technique)- power system stabilizer.

UNIT V DYNAMIC STABILITY

9

9

System response to small disturbances- Linear model of the unregulated synchronous machine and its modes of oscillation-regulated synchronous machine- distribution of power impact-linearization of the load equation for the one machine problem – Simplified linear model-effect

		amic stability- approximate system representation- supplementary amic performance measure- small signal performance measures.
		TOTAL : 45 PERIODS
OUT	COMES:	After successful completion of the course students able to
٠	Analyse vario	ous types of stability
٠	Design synch	ronous machines based on flux in power system.
•	Design excita	tion systems and speed regulation systems
•	Analyse trans	ient stability and design power system stabilizer.
•	Analyse the d	ynamic stability.
TEXT	Г BOOKS:	
1.	Kundur.P, "P	owerSystem Stability andControl", McGraw Hill Inc., USA, 1994
2.	Anderson.P.M GalgotiaPubli	I and Fouad.A.A, "Power System Control and Stability" cations, New Delhi, 2003
3.	R.Ramanujan	n, "Power System Dynamics – Analysis and Simulation", PHI, 2009.
REFE	ERENCES:	
1		Sauer.W, "Power System Dynamics and Stability", Pearson ia, India, 2002.
2.		h, Mohamed.E.EI-Hawary. "Electric Systems, Dynamics and Stability Intelligence applications", Marcel Dekker, USA First Edition, 2000.
3.	C.A.Gross, "Pa	wer System Analysis, "WileyIndia,2011.
4.	B.M.Weedy, B Systems",Wile	.J.Lory, N.Jenkins, J.B.Ekanayake and G.Strbac," Electric Power y India,2013.
5.	K.Umarao, "Co 2007.	omputer Techniques and Models in Power System," I.K.International,

17EPE0 2	17 P	RI	NCI	PI	LES	5 (OF	FR	RO	B	SO '	TI	[CS	5						L	'	Т	Р	0
																				3		0	0	3
OBJEC	FIVES	:																					<u>I</u>	
• T	To introd	luce	e the b	oasi	ics c	cone	iceŗ	pts	s and	nd c	dri	ive	s sy	vstei	m c	of r	obo	t						
• T	To impar	t kn	nowle	dge	e on	en	ıd e	effe	ecto	ors	's a	and	rob	or o	con	ntro	ols							
• T	To educat	te o	on var	iou	is co	oor	din	nate	es ti	trar	inst	sfor	mat	tion	s a	nd	sen	sors						
• T	o study	rob	ot ce	ll d	esig	gn a	and	l rol	obot	ot aj	app	plic	catic	ons										
• T	o introd	luce	e appl	ica	tion	ori	ien	nted	d M	Aic	cro	o/ N	Jano	o ro	bot	tics	s sys	tem	s					
UNIT I	BA	AS]	IC C	'0]	NC	EF	PT	ſS																9
Brief his Application Pneumatic		ot	anato	omy	y-M	anij	ipul	lati	tion	n a	anc	d (Con	trol									catio drau	
UNIT II	E	ND	EF]	FE	CT	[O]	RS	S A	AN	ND) F	RO	B (ЭT	C	O	NT	RO	LS					9
Mechanica grippers-V problems-I Control sy Motion Int	acuum g Robot co vstem for	gripj ontr r ro	pers- rols-P obot j	Air Poin Ioin	ope t to t-Co	erato po pontr	ted oin rol	l gri nt c l act	rippo cont	pers ntro	rs- (ol,	Gri	ppe onti	er fo inuc	orce ous	e ar pa	naly ath	sis-C cont	Gripj rol,	oer d Intel	es llig	ign gent	-Sin t rol	nple bot
UNIT II	I RO	OB	BOT	TF	RAI	NS	SF(OR	RM	ЛA	41	ГI(ON	S A	٩N	D	SE	NS	OR	S				9
Robot kine coordinate sensor – H Pressure se	s, multip Proximit <u>y</u>	ole ti	ransf	orm	natic	on-S	Sim	nple	le p	prol	oble	lem	is. S	lens	ors	in	rob	ot –	Tou	ch se	ens	sors	-Tac	ctile
UNIT IV	7 R	OB	OT	CI	ELI	LI	DE	ESI	IG	N	IA	٩N	D A	AP	PL	10	CA	ГІС	ONS					9
Robot wor devices in Introduction	Robot-Nons-Robo	Mot ot aj	bile ro pplica	obo atio	ot wo ons N	ork Mat	cing teria	g pi ial h	prino han	ncip ndl	ple llin	e, a 1g,]	nctu Mao	atio chin	nι	ısir	ng N	/IAT	'LA	3, N	X	ΤS	oftw	/are

UNIT V MICRO/NANO ROBOTICS SYSTEM

9

Micro/Nanorobotics system overview-Scaling effect-Top down and bottom up approach-Actuators of Micro/Nano robotics system-Nanorobot communication techniques-Fabrication of micro/nano grippers-Wall climbing micro robot working principles-Biomimetic robot-Swarm robot-Nanorobot in targeted drug delivery system.

		TOTAL : 45 PERIODS
OUT	COMES:	After successful completion of the course students able to
٠	An ability	to develop an understanding automated systems and their design.
•	An ability of robotics	to develop skills in sensor integration about the design aspects in the areas.
٠	An ability	to apply skills in robot dynamics.
٠	An ability	to apply skills in robot programming.
ТЕХТ	BOOKS:	
1.	S.R. Deb Education	, Robotics Technology and flexible automation, Tata McGraw-Hill
2.		Groover & Nicholas G Odrey, Mitchel Weiss, Roger N Nagel, Ashish Dutta Robotics, Technology programming and Applications, McGraw Hill, 2012
3.		9. Klafter, Thomas .A, Chri Elewski, Michael Negin, Robotics Engineering ted Approach, Phi Learning., 2009.
REFE	RENCES	:
1.	Francis N. Inc., 1987.	. Nagy, Andras Siegler, Engineering foundation of Robotics, Prentice Hal
2.		ki Raman, Robotics and Image Processing an Introduction, Tata McGraw shing company Ltd., 1995.
3.		Crane and Joseph Duffy, Kinematic Analysis of Robot manipulators, we University press, 2008.
4.		Gonzalez. R. C. & Lee C.S.G., "Robotics control, sensing, vision and ce", McGraw Hill Book co, 1987.
5.	Craig. J 1999.	J. "Introduction to Robotics mechanics and control", Addison- Wesley,
6.	Ray Asfal Inc.,1985.	hl. C., "Robots and Manufacturing Automation", John Wiley & Sons
7.	Bharat Bh	nushan., "Springer Handbook of Nanotechnology", Springer, 2004.
8.	Julian W. 2001	Gardner., "Micro sensor MEMS and Smart Devices", John Wiley & Sons,

17EPE018	8	T	'0 '	[A]	L	QU	JA	\mathbf{L}	IT	ſY	M	[A]	NA	GE	EN	1E]	N'I	Γ			L	Т	1	Р	C
																					3	0		0	3
OBJECTI	IVES	5:																							
•	То	intı	trod	luce	qu	ıali	ty (def	fin	nitic	ons	s, qı	uali	ty s	state	eme	ents	s and	l baı	riers	to T	QM			
٠	То	fac	cilit	ate	the	un	nde	erst	tan	ndir	ng c	of (Qua	lity	M	ana	igei	men	t pri	ncipl	es an	d pr	00	cess.	
•	То	imj	npar	t kn	IOW	vlec	dge	9 OI	nЛ	Γot	tal (Qua	ality	y M	lana	age	me	nt to	ols						
•	То	imj	npar	t kn	IOW	vlec	dge	e 01	nЛ	Γot	tal (Qua	ality	y M	[ana	age	me	nt te	chni	ques					
•	То	edu	luca	te o	n v	vari	iou	s q	lna	ality	ty sy	yste	ems	and	d it	ts b	ene	efits						_	
UNIT I	IN	TF	RO	DU	JC	TI	[0]	N																9	
Introduction product an Deming,Jur orientation,	id sei ran a	rvic nd	ice I Ci	qua rosb	lity y-]	y- Bar	Bas rrie	asic erst	с с toT	con TQI	ncep (M	pts -Q	of Qual	T T C	QM sta	1-T(ater	QM ner	1 Fr nts-	ame Cus	worł tome	-Con er fo	ntrib cus-	ut C	tions usto	me
UNIT II	TÇ)M	ЛP	RI	N(CII	PL	ĿE	S															9	
Leadership Empowerm appraisal-C Partnering,	nent,T Contin	lear uou	am Dus	and pro	T oce	'ear ess	mw in	vor mpi	rk, prov	Q	Qual mer	lity nt-F	circ	eles	R	eco	gni	ition	and	l Re	ward	,Pei	fc	orma	nce
UNIT III	TC	QM	ИЛ	00	DL	S	Aľ	NI) [TE	EC	' H	NI() U	ES	5 I								9	
The seven Methodolog to benchma	gy, ap	pli	licat	ions	s to	m	anu	ufa	icti	urir	ing,	, ser	rvice	e se	cto	or in	clu				-				-
UNIT IV	TC	QM	ΓN	00	DL	S.	Aľ	NI) [TE	EC	' H Ì	NI() U	ES	5 II	[9	
Control Ch (QFD)- Ta measures.						-		-			-					-		-	-					-	
UNIT V	QU	JA	\L]	TY	Z S	SYS	ST	E.	M	IS														9	
Need for Auditing- Q in manufact	QS 90	00) - IS	SO 1	140)00) - C	Cor	nce																

		TOTAL:45PERIODS										
OUTCON	MES:	After successful completion of the course students able to										
•	Explain	about TQM Principles										
•	Apply t	he tools of quality management to manufacturingandservicesprocesses										
•	Apply processe	the techniques of quality management to manufacturing and services es										
•	Underst	and the concepts of Quality Systems										
ТЕХТВО	OKS:											
1.		H.Besterfiled, etat.,"Total quality Management", Pearson Education ird Edition, Indian Reprint,2006.										
REFERE	NCES:											
1.	th	Evans and William M.Lindsay, "The Management and Control of Quality", on, First Indian Edition, Cengage Learning, 2012.										
2.	Suganth Pvt.Ltd.	ni.L and Anand Samuel, "Total Quality Management", Prentice Hall (India) ,2006.										
3.		aman. B and Gopal .R.K., "Total Quality Management - Text and Cases", e Hall (India) Pvt. Ltd., 2006.										

ELECTRICAL APPARATUS 3 0 0 3 OBJECTIVES: • To introduce the importance of computer aided design method. • To provide basic electromagnetic field equations and the problem formulation for CA applications. • To get familiarized with Finite Element Method as applicable for Electrical Engineerin • To introduce the organization of a typical CAD package. • To introduce Finite Element Method for the design of different Electrical apparatus. UNIT I INTRODUCTION • To introduce Finite Element Method for the design of different Electrical apparatus. UNIT I INTRODUCTION • To introduce Finite Element Method for the design of different Electrical apparatus. UNIT II MATHEMATICAL FORMULATION OF FIELD PROBLEMS • PROBLEMS 9 Electromagnetic Field Equations – Magnetic Vector/Scalar potential – Electrical vector /Sca a potential-Stored energy in Electric and Magnetic fields-Capacitance-Inductance-Laplace a Poisson's Equations-Energy functional. 9 UNIT II PHILOSOPHY OF FEM 9 Mathematical models – Differential/Integral equations – Finite Difference method –Finite eleme method-Energy minimization –Variational method-2D field problems-Discretistation-Shaf functions Setting up solution Post processing. <	17EPE	019	COM	IPUTER AIDED DESIGN OF	L	Τ	Р	Т
OBJECTIVES: • To introduce the importance of computer aided design method. • To provide basic electromagnetic field equations and the problem formulation for CA applications. • To get familiarized with Finite Element Method as applicable for Electrical Engineerir • To introduce the organization of a typical CAD package. • To introduce Finite Element Method for the design of different Electrical apparatus. UNIT I INTRODUCTION 9 Conventional design procedures-Limitations-Need for field analysis based design-Review of Basic principles of energy conversion – Development of Torque/Force. 9 UNIT II MATHEMATICAL FORMULATION OF FIELD PROBLEMS 9 Electromagnetic Field Equations – Magnetic Vector/Scalar potential – Electrical vector /Sca potential – Stored energy in Electric and Magnetic fields-Capacitance-Inductance-Laplace a Poisson's Equations-Energy functional. 9 UNIT III PHILOSOPHY OF FEM 9 Mathematical models-Differential/Integral equations-Finite Difference method-Finite eleme method-Energy minimization -Variational method-2D field problems-Discretisation-Shaf functions-Settiffue system-Pre-processing-Modelling-Meshing-Material properties-Boundar Conditions-Setting up solution-Post processing. 9 Voltage Stress in Insulators-Capacitance calculation - Design of Solenoid Actuator -Inductanc and force calculation-Torque calculation in Switched Reluctance Motor. 9 Voltage Stress in Insulators-Capacitance calc			ELE	CTRICAL APPARATUS				
• To introduce the importance of computer aided design method. • To provide basic electromagnetic field equations and the problem formulation for CA applications. • To get familiarized with Finite Element Method as applicable for Electrical Engineerin • To introduce the organization of a typical CAD package. • To introduce Finite Element Method for the design of different Electrical apparatus. UNIT I INTRODUCTION 9 Conventional design procedures—Limitations—Need for field analysis based design—Review of Basic principles of energy conversion—Development of Torque/Force. 9 UNIT II MATHEMATICAL FORMULATION OF FIELD PROBLEMS 9 Electromagnetic Field Equations — Magnetic Vector/Scalar potential – Electrical vector /Sca potential—Stored energy in Electric and Magnetic fields-Capacitance-Inductance-Laplace a Poisson's Equations—Energy functional. 9 UNIT III PHILOSOPHY OF FEM 9 Mathematical models—Differential/Integral equations—Finite Difference method—Finite elemeen method-Energy minimization —Variational method-2D field problems—Discretisation—Shaf functions—Stiffness matrix—Solution techniques. 9 UNIT IV CAD PACKAGES 9 Elements of a CAD System—Pre-processing—Modelling—Meshing—Material properties-Boundar Conditions—Setting up solution—Post processing. 9 Voltage Stress in Insulators—Capacitance calculati					3	0	0	3
• To provide basic electromagnetic field equations and the problem formulation for CA applications. • To get familiarized with Finite Element Method as applicable for Electrical Engineerin • To introduce the organization of a typical CAD package. • To introduce Finite Element Method for the design of different Electrical apparatus. UNIT I INTRODUCTION 9 Conventional design procedures–Limitations–Need for field analysis based design–Review of Basic principles of energy conversion– Development of Torque/Force. 9 UNIT II MATHEMATICAL FORMULATION OF FIELD PROBLEMS 9 Electromagnetic Field Equations – Magnetic Vector/Scalar potential – Electrical vector /Sca potential–Stored energy in Electric and Magnetic fields–Capacitance-Inductance-Laplace a Poisson's Equations–Energy functional. 9 UNIT III PHILOSOPHY OF FEM 9 Mathematical models–Differential/Integral equations–Finite Difference method–Finite eleme method–Energy minimization –Variational method-2D field problems–Discretisation–Shaf functions–Stiffness matrix–Solution techniques. 9 UNIT IV CAD PACKAGES 9 Elements of a CAD System–Pre-processing–Modelling–Meshing–Material properties-Boundar Conditions–Setting up solution–Post processing. 9 VINIT V DESIGN APPLICATIONS 9 Voltage Stress in Insulators–Capacitance calculation- Design of Solen	OBJEC	CTIV	ES:					
applications. To get familiarized with Finite Element Method as applicable for Electrical Engineerin To introduce the organization of a typical CAD package. To introduce Finite Element Method for the design of different Electrical apparatus. UNIT I INTRODUCTION Conventional design procedures-Limitations-Need for field analysis based design-Review of Basic principles of energy conversion- Development of Torque/Force. UNIT II MATHEMATICAL FORMULATION OF FIELD PROBLEMS UNIT III PROBLEMS UNIT III PHILOSOPHY OF FEM VINIT III PHILOSOPHY OF FEM UNIT III PHILOSOPHY OF FEM UNIT IV CAD PACKAGES UNIT IV CAD PACKAGES UNIT IV DESIGN APPLICATIONS Voltage Stress in Insulators-Capacitance calculation- Design of Solenoid ActuatorInductance and force calculation in Switched Reluctance Motor. OUTCOMES: After successful completion of the course students able to	•	To in	ntroduc	e the importance of computer aided design method.				
• To introduce the organization of a typical CAD package. • To introduce Finite Element Method for the design of different Electrical apparatus. UNIT I INTRODUCTION 9 Conventional design procedures–Limitations–Need for field analysis based design–Review of Basic principles of energy conversion– Development of Torque/Force. 9 UNIT II MATHEMATICAL FORMULATION OF FIELD PROBLEMS 9 Electromagnetic Field Equations – Magnetic Vector/Scalar potential – Electrical vector /Sca potential–Stored energy in Electric and Magnetic fields–Capacitance-Inductance-Laplace a Poisson's Equations–Energy functional. 9 UNIT III PHILOSOPHY OF FEM 9 Mathematical models–Differential/Integral equations–Finite Difference method–Finite eleme method–Energy minimization –Variational method-2D field problems–Discretisation–Shaf functions–Stiffness matrix–Solution techniques. 9 UNIT IV CAD PACKAGES 9 Elements of a CAD System–Pre-processing–Modelling–Meshing–Material properties-Boundar Conditions–Setting up solution–Post processing. 9 Voltage Stress in Insulators–Capacitance calculation- Design of Solenoid Actuator –Inductance and force calculation–Torque calculation in Switched Reluctance Motor. 10 OUTCOMES: After successful completion of the course students able to • • Formulate mathematical problem. • <td>•</td> <td>-</td> <td></td> <td>• • •</td> <td>orm</td> <td>ulati</td> <td>on fo</td> <td>or CAE</td>	•	-		• • •	orm	ulati	on fo	or CAE
 To introduce Finite Element Method for the design of different Electrical apparatus. UNIT I INTRODUCTION 9 Conventional design procedures–Limitations–Need for field analysis based design–Review of Basic principles of energy conversion– Development of Torque/Force. UNIT II MATHEMATICAL FORMULATION OF FIELD PROBLEMS Electromagnetic Field Equations – Magnetic Vector/Scalar potential – Electrical vector /Sca potential–Stored energy in Electric and Magnetic fields–Capacitance-Inductance-Laplace a Poisson's Equations–Energy functional. UNIT III PHILOSOPHY OF FEM Mathematical models–Differential/Integral equations–Finite Difference method–Finite eleme method–Energy minimization –Variational method-2D field problems–Discretisation–Shaf functions–Stiffness matrix–Solution techniques. UNIT IV CAD PACKAGES P Elements of a CAD System–Pre-processing–Modelling–Meshing–Material properties-Boundar Conditions–Setting up solution–Post processing. UNIT V DESIGN APPLICATIONS Voltage Stress in Insulators–Capacitance calculation- Design of Solenoid Actuator –Inductance and force calculation–Torque calculation in Switched Reluctance Motor. TOTAL :45 PERIODS OUTCOMES: After successful completion of the course students able to Formulate mathematical problem. 	•	To g	et famil	liarized with Finite Element Method as applicable for Element	ectri	cal E	Ingin	eering
UNIT I INTRODUCTION 9 Conventional design procedures-Limitations-Need for field analysis based design-Review of Basic principles of energy conversion- Development of Torque/Force. 9 UNIT II MATHEMATICAL FORMULATION OF FIELD PROBLEMS 9 Electromagnetic Field Equations - Magnetic Vector/Scalar potential - Electrical vector /Sca potential-Stored energy in Electric and Magnetic fields-Capacitance-Inductance-Laplace a Poisson's Equations-Energy functional. 9 UNIT III PHILOSOPHY OF FEM 9 Mathematical models-Differential/Integral equations-Finite Difference method-Finite eleme method-Energy minimization -Variational method-2D field problems-Discretisation-Shaf functions-Stiffness matrix-Solution techniques. 9 UNIT IV CAD PACKAGES 9 Elements of a CAD System-Pre-processing-Modelling-Meshing-Material properties-Boundar Conditions-Setting up solution-Post processing. 9 Voltage Stress in Insulators-Capacitance calculation in Switched Reluctance Motor. 9 Voltage Stress in Insulators-Capacitance calculation in Switched Reluctance Motor. 9 OUTCOMES: After successful completion of the course students able to • • Formulate mathematical problem. •	•	To ii	ntroduc	e the organization of a typical CAD package.				
CONTITION INTRODUCTION Conventional design procedures–Limitations–Need for field analysis based design–Review of Basic principles of energy conversion– Development of Torque/Force. 9 UNIT II MATHEMATICAL FORMULATION OF FIELD PROBLEMS 9 Electromagnetic Field Equations – Magnetic Vector/Scalar potential – Electrical vector /Sca potential–Stored energy in Electric and Magnetic fields–Capacitance-Inductance-Laplace a Poisson's Equations–Energy functional. 9 UNIT III PHILOSOPHY OF FEM 9 Mathematical models–Differential/Integral equations–Finite Difference method–Finite eleme method–Energy minimization –Variational method-2D field problems–Discretisation–Shaf functions–Stiffness matrix–Solution techniques. 9 UNIT IV CAD PACKAGES 9 Elements of a CAD System–Pre-processing–Modelling–Meshing–Material properties-Boundar Conditions–Setting up solution–Post processing. 9 Voltage Stress in Insulators–Capacitance calculation- Design of Solenoid Actuator –Inductance and force calculation–Torque calculation in Switched Reluctance Motor. 9 OUTCOMES: After successful completion of the course students able to • • Formulate mathematical problem. •	•	To ii	ntroduc	e Finite Element Method for the design of different Elec	ctrica	al ap	para	tus.
Basic principles of energy conversion – Development of Torque/Force. 9 UNIT II MATHEMATICAL FORMULATION OF FIELD PROBLEMS 9 Electromagnetic Field Equations – Magnetic Vector/Scalar potential – Electrical vector /Sca potential–Stored energy in Electric and Magnetic fields–Capacitance-Inductance-Laplace a Poisson's Equations–Energy functional. 9 UNIT III PHILOSOPHY OF FEM 9 Mathematical models–Differential/Integral equations–Finite Difference method–Finite eleme method–Energy minimization –Variational method-2D field problems–Discretisation–Shap functions–Stiffness matrix–Solution techniques. 9 UNIT IV CAD PACKAGES 9 Elements of a CAD System–Pre-processing–Modelling–Meshing–Material properties-Boundar Conditions–Setting up solution–Post processing. 9 VNIT V DESIGN APPLICATIONS 9 Voltage Stress in Insulators–Capacitance calculation - Design of Solenoid Actuator –Inductance and force calculation–Torque calculation in Switched Reluctance Motor. 9 OUTCOMES: After successful completion of the course students able to 6 • Formulate mathematical problem. 9	UNIT I		INTI	RODUCTION				9
UNIT II MATHEMATICAL FORMULATION OF FIELD PROBLEMS PROBLEMS Electromagnetic Field Equations – Magnetic Vector/Scalar potential – Electrical vector /Sca potential–Stored energy in Electric and Magnetic fields–Capacitance-Inductance-Laplace a Poisson's Equations–Energy functional. 9 UNIT III PHILOSOPHY OF FEM 9 Mathematical models–Differential/Integral equations–Finite Difference method–Finite eleme method–Energy minimization –Variational method-2D field problems–Discretisation–Shaf functions–Stiffness matrix–Solution techniques. 9 UNIT IV CAD PACKAGES 9 Elements of a CAD System–Pre-processing–Modelling–Meshing–Material properties-Boundar Conditions–Setting up solution–Post processing. 9 UNIT V DESIGN APPLICATIONS 9 Voltage Stress in Insulators–Capacitance calculation- Design of Solenoid Actuator –Inductance and force calculation–Torque calculation in Switched Reluctance Motor. 1 OUTCOMES: After successful completion of the course students able to 6 Formulate mathematical problem. Formulate mathematical problem. 1			0	· · ·	l des	ign–	Rev	iew of
potential-Stored energy in Electric and Magnetic fields-Capacitance-Inductance-Laplace a Poisson's Equations-Energy functional. UNIT III PHILOSOPHY OF FEM Mathematical models-Differential/Integral equations-Finite Difference method-Finite eleme method-Energy minimization -Variational method-2D field problems-Discretisation-Shap functions-Stiffness matrix-Solution techniques. UNIT IV CAD PACKAGES 9 Elements of a CAD System-Pre-processing-Modelling-Meshing-Material properties-Boundar Conditions-Setting up solution-Post processing. UNIT V DESIGN APPLICATIONS Voltage Stress in Insulators-Capacitance calculation- Design of Solenoid Actuator -Inductance and force calculation-Torque calculation in Switched Reluctance Motor. OUTCOMES: After successful completion of the course students able to • Formulate mathematical problem.	UNIT	II			D			9
UNIT III PHILOSOPHY OF FEM 9 Mathematical models-Differential/Integral equations-Finite Difference method-Finite eleme method-Energy minimization -Variational method-2D field problems-Discretisation-Shap functions-Stiffness matrix-Solution techniques. 9 UNIT IV CAD PACKAGES 9 Elements of a CAD System-Pre-processing-Modelling-Meshing-Material properties-Boundar Conditions-Setting up solution-Post processing. 9 UNIT V DESIGN APPLICATIONS 9 Voltage Stress in Insulators-Capacitance calculation- Design of Solenoid Actuator -Inductance and force calculation-Torque calculation in Switched Reluctance Motor. 9 OUTCOMES: After successful completion of the course students able to • • Formulate mathematical problem. 9	potential-	-Store	d ener	gy in Electric and Magnetic fields-Capacitance-Indu				
method–Energy minimization –Variational method-2D field problems–Discretisation–Shap functions–Stiffness matrix–Solution techniques. 9 UNIT IV CAD PACKAGES 9 Elements of a CAD System–Pre-processing–Modelling–Meshing–Material properties-Boundar Conditions–Setting up solution–Post processing. 9 UNIT V DESIGN APPLICATIONS 9 Voltage Stress in Insulators–Capacitance calculation- Design of Solenoid Actuator –Inductance and force calculation–Torque calculation in Switched Reluctance Motor. 9 OUTCOMES: After successful completion of the course students able to • • Formulate mathematical problem. •								9
CAD PACKAGES Elements of a CAD System-Pre-processing-Modelling-Meshing-Material properties-Boundar Conditions-Setting up solution-Post processing. UNIT V DESIGN APPLICATIONS Voltage Stress in Insulators-Capacitance calculation- Design of Solenoid Actuator -Inductance and force calculation-Torque calculation in Switched Reluctance Motor. OUTCOMES: After successful completion of the course students able to • Formulate mathematical problem.	method-	-Energ	gy min	imization -Variational method-2D field problems-D				
Conditions-Setting up solution-Post processing. 9 UNIT V DESIGN APPLICATIONS 9 Voltage Stress in Insulators-Capacitance calculation- Design of Solenoid Actuator -Inductance and force calculation-Torque calculation in Switched Reluctance Motor. Inductance Motor. TOTAL :45 PERIODS 0UTCOMES: After successful completion of the course students able to • Formulate mathematical problem.	UNIT	IV	CAD	PACKAGES				9
ONIT V DESIGN APPLICATIONS Voltage Stress in Insulators–Capacitance calculation- Design of Solenoid Actuator –Inductance and force calculation–Torque calculation in Switched Reluctance Motor. TOTAL :45 PERIODS OUTCOMES: After successful completion of the course students able to • Formulate mathematical problem.					orope	rties	-Boi	ındary
and force calculation–Torque calculation in Switched Reluctance Motor. TOTAL :45 PERIODS OUTCOMES: After successful completion of the course students able to • Formulate mathematical problem.	UNIT	V	DES	IGN APPLICATIONS				9
OUTCOMES: After successful completion of the course students able to • Formulate mathematical problem.					ctuat	or –	Indu	ctance
Formulate mathematical problem.				TOTAL :45 PERI	[OD	S		
	OUTC	OME	AS: A	fter successful completion of the course students able to	0			
	•			•				

•	Understand the CAD packages.
•	Design Electrical machine design using CAD packages.
TEXT BOO	KS:
1.	S.JSalon, 'Finite Element Analysis of Electrical Machines', Springer, Yes DEE publishers, Indian reprint, 2007
2.	Nicola Bianchi, 'Electrical Machine Analysis using Finite Elements', CRC Taylor & Francis, 2005.
REFERENC	CES:
1.	Joao Pedro, A.Bastos and Nelson Sadowski, 'Electromagnetic Modeling by Finite
	Element Methods', Marcell Dekker Inc., 2003.
2.	M Ramamoorthy, " Computer Aided, Analysis and Design of Electrical equipment"
3.	P.P.Silvester and Ferrari, 'Finite Elements for Electrical Engineers', Cambridge University Press, 1983.
4.	D.A.Lowther and P.PSilvester, 'Computer Aided Design in Magnetics', Springer Verlag, NewYork, 1986.
5.	S.R.H.Hoole, 'Computer Aided Analysis and Design of Electromagnetic Devices', Elsevier, NewYork, 1989.
6.	George, Omura, "Mastering AutoCAD", BPB Publications, New Delhi, 1988.
7.	User Manuals of MAGNET, MAXWELL & ANSYS Softwares.

17EPE02	20 V	VLS	SI	DES	IGI	N														L	T	I	Р	C	l ,
																				3	0		0	3	
OBJECT	TVES	S:																							
•	To stu	udy	7 mc	odes c	of op	perat	atio	on o	of N	MOS	S Tra	ans	sis	stoi	r an	nd f	fabı	ricat	ion	of Cl	MOS	5			
•	To ge charae				zed v	witł	h N	MC	OS	circ	cuit	de	esi	gn	ru	les	, d	esig	n pı	oces	s ai	nd	sw	itch	ning
•	To im	npart	rt k	nowle	edge	on	n CN	MC	OS o	circ	uit a	nd	110	ogi	ic ci	irc	uit	desi	gn						
•	To stu	udy	de:	sign c	of Pro	ogra	ram	nma	able	e Lo	ogic	De	ev	vice	es										
•	To Pr	ovic	ide	know	ledg	ge fo	or c	circ	cuit	t des	signi	ng	g u	ısir	ng V	VH	IDI	_							
UNIT I	N	MO)S	TRA	NS	SIST	TC	OR	R T	THE	EOF	RY	Y											9	
Basic MOS Saturation a Sub micron	and lin	near	r me								<u> </u>								-				-		
UNIT II	N	MO)S	CIR	CU	IT	' D]	E S	SIC	GN	PR	0	C	E	SS									9	
MOS Laye layers –NM problem in	IOS In	vert	rter	–CM																					
UNIT II	ΙΟ	CM	10	S CI	RC	UĽ	T	AN	ND) L	OG	IC	CI	DI	ESI	IG	N							9	
Pass Transi Logic Desi						-						d (CI	MC	DS]	Lo	gic	gat	es- (СМС	SC	on	nbin	atio	onal
UNIT IV	7 P	PRO	00	FRA	MN	A]	BI	LE	EL	.00	GIC	D)F	EV	IC	'E	S							9	
Read Only Programma Flow.				,						-				-				<u> </u>						·	
UNIT V	0	CIR	RC	UIT	DE	ESI	[G]	NU	US	SIN	GV	/H	Ħ	DL	1									9	
EDA Tools and variable									Data	a tyj	pes -	– c	201	ncı	ırre	ent	co	de –	seq	uent	ial c	00	1e –	sig	nals
													Т	O]	TA	۱L	. : 4	15 P	PER	IOI	DS				

OUTCOME	After successful completion of the course students able to						
•	Understand the Concept of MOS circuit design						
•	Understand the Concept of CMOS circuit design						
•	Design Programmable Logic Devices						
•	Design the Circuits using VHDL						
•	Apply VHDL for various Electrical applications						
TEXT BOO	KS:						
1.	Douglas a. Pucknell and K.Eshragian, "Basic VLSI Design" 3rd Edition. Printice Hall India Pvt Ltd, 2000						
2.	Volnei A Pedroni,"Circuit design with VHDL",Printice Hall India Pvt Ltd, 2005						
3.	N.Weste, K.Eshraghian, "Principles of CMOS VLSI Design", Second Edition, Addision Wesley 1993.						
REFERENC	CES:						
1.	Charles H Roth, "Digital System Design Using VHDL", PWS Publishing company						
2.	R.JacobBaker,HarryW.LI.,DavidE.Boyee, "CMOSCircuitDesign,LayoutandSimul ation", PrenticeHall ofIndia2005						
3.	A.Pucknell, Kamran Eshraghian, "BASIC VLSI Design", Third Edition, Prentice Hall of India, 2007.						
4.	Zylinc 4000 series data sheets.						

17EPE02	021 POWER SYSTEM TRANSIENTS			Т	Р	C
			3	0	0	3
OBJECT	IVES:			1		1
•	To study	the importance, casues and effectys of transients				
•	-	the generation of switching transients and their coal concept.	ontro	lus	ing (circuit –
٠	To study	the mechanism of lighting strokes and the production of	light	ing	surge	es.
•	To study	the propagation, reflection and refraction of travelling w	aves			
•	-	the impact of voltage transients caused by faults, circu on integrated power system.	it bre	eake	r acti	ion, load
UNIT I	INTRO	DUCTION				9
sine wave Different	e excitation types of po	nce of the study of transients-causes for transients. RL of -double frequency transients-basic transforms of the RI wer system transients- effect of transients on power system m planning.	.C ci	rcui	t trai	nsients.
UNIT II	SWITC	CHING TRANSIENTS				9
interruptin	ng the resis	o switching transients - resistance switching and the tor current - load switching and equivalent circuit - wa oad and the switch - normal and abnormal switchin	vefo	rms	for t	ransient

interrupting the resistor current - load switching and equivalent circuit - waveforms for transient voltage across the load and the switch - normal and abnormal switching transients. Current suppression - current chopping - effective equivalent circuit. Capacitance switching - effect of source regulation - capacitance switching with a restrike, with multiple restrikes. Illustration for multiple restriking transients - ferro resonance.

UNIT III | LIGHTNING TRANSIENTS

9

Review of the theories in the formation of clouds and charge formation-rate of charging of thunder clouds-mechanism of lightning discharges and characteristics of lightning strokes-model for lightning stroke- factors contributing to good line design- protection using ground wires-tower footing resistance- Interaction between lightning and power system.

UNIT IV	TRAVELING WAVES ON TRANSMISSION
	LINES

		9
UNIT V	TRANSIENTS IN INTEGRATED POWER SYSTEM	
load reject	line and kilometric fault- distribution of voltages in a power system-Line tion- voltage transients on closing and reclosinglines- over voltage indu surges on integrated system Qualitative application of EMTP for transient o	ced by faults-
	TOTAL:45PERIODS	
OUTCO	MES: After successful completion of the course students able to	
•	Explain the causes and analyse the switching transients	
•	Explain the lightning transients and protection methods.	
•	Explain the effect of travelling waves on transmission lines.	
٠	Explain the effect of transient in integrated power system.	
ТЕХТВ	DOKS:	
1.	AllanGreenwood, 'Electrical TransientsinPower Syste Science, NewYork, 2 nd Edition, 1991.	ms',WileyInte
2.	Pritindra Chowdhari,"ElectromagnetictransientsinPowerSystem",JohnWileyand SecondEdition,2009	SonsInc.,
3.	C.S.Indulkar, D.P.Kothari, K.Ramalingam, 'Power System Astatistical approach', PHILearningPrivateLimited, SecondEdition, 2010	Transients
4.	R.D. Begamudre, "Extra High Voltage AC Transmission Engineer International.	ring", NewAg
REFER	ENCES:	
1.	M.S.NaiduandV.Kamaraju, 'High Voltage Engineering', Tata McG Edition,2013.	raw Hill,Fift
2.	R.D.Begamudre, 'Extra High Voltage AC Engineering', WileyEasternLimited, 1986.	Transmissio
З.	Y.Hase,Handbook of Power System Engineering,"Wiley India,2012.	
4.	J.L.Kirtley, "Electric Power Principles, Sources, Conversion, Distribut Wiley, 2012.	ution and use,

17EPE02	22 I	NT	ER	NET	C O	FΊ	THI	NGS	5						L	Τ	Р	C
															3	0	0	3
OBJECT	FIVE S	S:																
٠	To in	trodu	uce	ne co	once	pts	of Int	ternet	t of Tl	hir	ngs							
٠	To stu	ıdy t	the b	asic j	prot	oco	ls in v	wirel	ess se	ens	or n	etwoi	·k					
•	To in	npart	t kno	wled	ge o	on 1	the Io	oT de	sign c	cha	llen	ges						
•	To in their j	-			ge o	on 1	the Io	oT ap	oplicat	tio	ons ir	n diff	erent	doma	in and	to a	analy	ze
٠	To stu	ıdy t	the	oT a	ppli	icati	ions c	on en	nbedd	led	plat	form						
UNIT I	Ι	NTI	RO)U(CTI	10	N											09
blocks of I M2M, Sof	tware d					dels	s & A	APIs,	Mach	nine	e to	Mach	nine, 1	Differ	ence l	oetw	een l	loT ar
UNIT II	N	ЕТ				ND) CO)MN	IUN	C	ΓΑΤ	IOI	JAS	PEC	TS			09
Wireless n	nedium	acce	FW cess i	RK ssues	X A l 5, M	AC	proto	ocol s		y, S	Surv	ey ro	uting			Sens		09
Wireless n deploymer	nedium nt & No	acce ode d	FW cess i	RK ssues very	X A l 5, M , Da	AC ita a	proto	ocol s	survey	y, S	Surv	ey ro	uting			Sens	or	09 09 09
Wireless n deploymer UNIT II	nedium nt & No I I	acce ode d	rwe cess i disco	ORK ssues very AL	(A l , M , Da L E l	AC ita a NG	proto aggreg ES	ocol s gatio	survey n & d	y, S liss	Surv semi	rey ro natio	uting n	proto	cols,		or	
Wireless n deploymer UNIT II Design cha	nedium nt & No I I(allenges	acco ode d OT s, De	rw(cess i disco ' CE	PRK ssues very ALI	(A l , M , Da L E l nt c	AC ita a NG hall	proto aggreg ES	es, Sec	survey n & d	y, S liss	Surv semi	rey ro natio	uting n	proto	cols,		or	
Wireless n deploymer UNIT II Design cha UNIT IV	nedium nt & No I I allenge	acco ode d OT s, De OT	rwo cess i disco ' CE pevel	PRK ssues very AL ppme PLI	Al , M , Da LE nt c	AC ita a NG hall	proto aggreg ES lenges ONS	ocol s egation es, Sec S	survey n & d	y, s liss y cł	Surv semi	rey ro natio	uting n Othe	proto	cols,	S	or	09
UNIT II Wireless n deploymer UNIT II Design cha UNIT IV Home auto UNIT V	nedium nt & No I I allenge 7 I omatior	acce ode d OT s, De OT	FWC cess i disco CE evel	PRK ssues very AL ppme PLI y app	(A) , Da , Da LE ont c CA	AC Ita a NG hall TI atio	proto aggreg SES lenges ONS ns, Su	ocol s egation es, Sec S	survey n & d curity llance	y, s liss y cł	Surv semi	rey ro natio	uting n Othe	proto	cols,	S	or	09
Wireless n deploymer UNIT II Design cha UNIT IV Home auto UNIT V Introductio tools, Devo	nedium nt & No I I allenges 7 I omation I on to Py eloping	acce ode d OT s, De OT n, Inc OT ython g sens	FWC cess i disco CE evel AP dust Multipan, Ir nsor	PRK ssues very AL ppme PLI y app PLF rodu	(A) , M , Da (LE) nt c CA plica CM	AC ta a NG hall ATI atio EN on to plica	Proto aggreg ES lenges ONS ns, Su TAT o diffe	ocol s egation es, Sec S urveil TIOI	survey n & d curity llance N IoT t	y, S liss y ch e aj too	Surv semi halle	rey ro nation enges, cation	uting n , Othe ns, Ot	proto er chal her Io appli	cols, lenge T app cation	s licat	ions	09 09 09 09
Wireless n deploymer UNIT II Design cha UNIT IV Home auto UNIT V Introductio tools, Devo	nedium nt & No I I allenges 7 I omation I on to Py eloping	acce ode d OT s, De OT n, Inc OT ython g sens	FWC cess i disco CE evel AP dust Multipan, Ir nsor	PRK ssues very AL ppme PLI y app PLF rodu	(A) , M , Da (LE) nt c CA plica CM	AC ta a NG hall ATI atio EN on to plica	Proto aggreg ES lenges ONS ns, Su TAT o diffe	ocol s egation es, Sec S urveil TIOI	survey n & d curity llance N IoT t	y, <u>s</u> liss y ch e aj too mb	Surv semi halle	ey ro natio	uting n Othe ns, Ot oping stem	proto er chal her Io appli	cols, lenge T app cation rm, Ir	s licat	ions	09 09 09 09
Wireless n deploymer UNIT II Design cha UNIT IV Home auto	nedium nt & No I I allenge / I omatior on to Py eloping pts with	acco ode d OT s, De OT n, Inc OT ythou g sense n pyt	FWC cess i disco CE evel AP dust Mon, Ir nsor thon	PLI PLI PLI PLI PLI PLI PLI	(A) , M , Da LEI nt c CA plica CMI actio	AC ata a NG hall TI atio EN on to plic:	Proto aggreg ES lenges ONS ns, Su TAT o diffe ation	es, Sec S urveil Ferent throu	survey n & d curity llance N IoT t	y, s liss / cl too mb	Surv semi halle pplid	enges, cation Develor ed system FAL	uting n Othens, Othen opping stem	proto er chal her Io appli platfo ERIC	cols, llenge T app catior rm, Ir	s licat	ions	09 09 09 09

•	Analyze basic protocols in wireless sensor network							
•	Explain the IoT challenges and Design its applications in different domain and be able to analyze their performance							
•	Implement basic IoT applications on embedded platform							
TEXT	BOOKS:							
1.	Vijay Madisetti, Arshdeep Bahga, "Internet of Things: A Hands-On Approach"							
2.	Waltenegus Dargie, Christian Poellabauer, "Fundamentals of Wireless Sensor Networks: Theory and Practice"							
REFE	REFERENCES:							
1.	Adrian McEwen and Hakim Cassimally "Designing the Internet of Things"							
2.	Gaston C. Hillar, "Internet of Things with Python"							

LIST OF OPEN ELECTIVES OFFERED BY EEE DEPARTMENT

17EOE 0	001	MATLAB PROGRAMMING	L	Т	Р	С	
			3	0	0	3	
OBJEC	TIVES:						
٠	To study	basics of MATLAB programming					
•	To introd	uce MATLAB Functions and File processing					
•	To impar	t knowledge on MATLAB programming techniques					
٠	To enable	the students to plot the functions using MATLAB					
•	To develo	op skill in simple engineering applications development w	vith	MA	TLA	В	
UNIT I	1	INTRODUCTION				9	
Multidime	ensional Ar	programming–Variables and Arrays – initializing variable rays – Sub arrays – Special Values–Displaying Output Da prations – Hierarchy of Operations					
UNIT II	[FUNCTIONS & FILES				9	
Binary I/C	O Function	unctions – Elementary Mathematical Functions – User E s – Advanced Function Programming – Introduction ening and Closing, Working with Data Files.					
UNIT III PROGRAMMING TECHNIQUES					9		
UNIT II							
Program I	Design and	Development–Relational Operators and Logical Variables litional Statements–Loops–The Switch Structure–Debu		<u> </u>	-		
Program I and Func	Design and tions–Conc	Development–Relational Operators and Logical Variables		<u> </u>	-		
Program I and Func Program. UNIT IV XY plottin Polar Plot	Design and Entropy of the second seco	Development–Relational Operators and Logical Variables itional Statements–Loops–The Switch Structure–Debu	iggi Spe unc	ng 1 cial tion	MAT Plot Disc	9 types–overy–	

Numerical Differentiation in single variable,: Higher derivatives, multiple variables, Newton-Cotes integration formulae, MATLAB functions for integration, Linear algebra in MATLAB, Gauss Elimination, LU decomposition and partial pivoting, Iterative methods: Gauss Siedel, Special Matrices: Tri- diagonal matrix algorithm- Engineering Applications-Optimization.

			TOTAL :45 PERIODS
OUTCO	OMES:	After successful completion of the	e course students able to
•	Articulat	e importance of MATLAB software	e's in research by simulation work
•		nd the Basics of MATLAB program in solving engineering problems	nming tools, functions and files that are
•	In-depth	knowledge of providing programm	ing techniques and plotting of functions.
•	Understa	nd the loops and Debugging of MA	T LAB Programs
•	Understa problems		ation in MATLAB for engineering
TEXT	BOOKS	:	
1.	Amos Gi edition, 2		7 With Applications By, Wiley Publication.6 th
2.	Rudra P	ratap , "MATLAB 7" , Oxford Univ	versity Press,2006
3		nsal, A.K. Goel , "MATLAB and / pvt. Lt, india, 2009.	Its Applications In Engineering" Dorling
REFER	RENCES	:	
1.	- ·	i. Chapman.,"MATLAB programmi America, 2015.	ing for engineers ", Fifth Education,United
2.		Denier J.P.,"An introduction to p AB ", Springer –verlag London limi	r o g r a m m i n g and numerical methods ited.2005.

17EOE002	RE	NEWABLE ENERGY SOURCES	L	Τ	Р	C
			3	0	0	3
OBJECTIV	ES:					
•	To ir	ntroduce Different types of Renewable Energy Sources				
•	To educate the students on principle of solar energy					
•	To e	ducate the students on wind energy conversion systems				
•	To e	ducate the students on biomass energy and cogeneration s	syste	ems		
•	To ir	npart knowledge on tidal energy and geothermal energy				
UNIT I	INT	RODUCTION				9

Energy Conservation and Energy Efficiency – Needs and Advantages, Different types of Renewable Energy Sources - Energy Resources Availability in World –Environmental aspects of energy utilization – Energy Conservation Act 2003 - Statistical Report on Renewable energy scenario in India - Applications.

UNIT II SOLAR ENERGY

Solar Flat plate and concentrating collectors – Solar heating and cooling techniques –Solar desalination – Solar Pond – Solar cooker – Solar Drying – Solar pumping – Solar thermal power plant – Solar photo voltaic conversion – Solar cells – PV applications.

UNIT III WIND ENERGY

Wind energy estimation in World and in India – Types of wind energy systems –Performance of Wind energy System– Details of wind turbine generator – Safety and Environmental Aspects.

UNIT IV BIOMASS ENERGY

Biomass direct combustion – Biomass gasifier – Biomass: Types – Advantages &Drawbacks -Biogas plant – Ethanol production – Bio diesel – Cogeneration: steam turbine cogeneration systems, gas turbine cogeneration systems, reciprocating IC engine cogeneration systems, combined cycle cogeneration systems – Applications of Cogeneration in utility sector – Biomass applications.

UNIT V OTHER RENEWABLE ENERGY SOURCES

9

9

9

9

Tidal energy – Wave energy – Open and closed OTEC Cycles – Small hydro –Geothermal energy – Fuel cell systems - Stirling Engines.

			TOTAL :45 PERIODS
OUTCOME	students able to		
•	То	know importance of renewable energy sour	ce
•	Un	derstand about Solar Energy.	
•	Un	derstand about Wind Energy.	
•	Un	derstand about BioMass Energy.	
•	Un	derstand about all renewable Energy Source	s.
REFERENC	CES	:	
1.	G.1 199	D. Rai, Non-Conventional Energy Sources, 1 99.	Khanna Publishers, New Delhi,
2.		P. Sukhatme, Solar Energy, Tata McGraw H lhi, 1997.	Iill Publishing Company Ltd., New
3.		N. Tiwari, Solar Energy – Fundamentals De rosa Publishing House, New Delhi, 2002.	esign, Modelling and applications,

17EOE(003 ENI	ERGY MANAGEMENT AND AUDITING	L	Т	Р	С
			3	0	0	3
OBJEC	TIVES:					
•	To introduc	e the forms of energy, energy auditing types and roles o	of ene	ergy	mana	agers
•	To impart k	nowledge on energy costing and importance of power fa	actor	in e	nergy	y cost
•	to study me	tering for energy management & power quality analyses	S			
•	To educate	the students on different lighting systems				
•	To study en	ergy economics techniques				
UNIT I	INTE	RODUCTION				9
UNIT II		RGY COSTING, MONITORING RGETING				9
: Compon	ents & Costs	nalysis – Cost / Energy Share Diagram – Data Graphing – kVA – Need & Control – Determination of kVA dem	hand	& C		
and Banki		Power Factor Basics – Penalty Concept for PF – PF Co d Side Management – comparison on unit cost of pow rom different sources.			– Wh	leelin
and Banki sources –	steam cost fr	d Side Management - comparison on unit cost of pow	ver co		– Wh com v	leelin
and Banki sources – UNIT II Instrumen Flue gas a between p for kilowa transforma	steam cost fr II MET POW Its Used in H analysis, Tem barameters-U att measurer er burdens-M	d Side Management – comparison on unit cost of pow om different sources. ERING FOR ENERGY MANAGEMENT &	ver co z uipm nalys Timin	ent, is-Rong of ers -	– Wh om v Watt elatio f mete	9 meter nship er dis rumer
and Banki sources – UNIT II Instrumen Flue gas a between p for kilowa transforma	steam cost fr II MET POW tts Used in H nalysis, Tem parameters-U att measurer er burdens-N - Metering te	d Side Management – comparison on unit cost of pow com different sources. ERING FOR ENERGY MANAGEMENT & ER QUALITY ANALYSES Energy systems: Load and power factor measuring equiperature and thermal loss measurements, Air quality an inits of measure-Typical cost factors- Utility meters – 7 nent - Demand meters - Paralleling of current transfor Multitasking solid-state meters - Metering location vs.	ver co z uipm nalys Timin	ent, is-Rong of ers -	– Wh com v Watt elatio f met Instr nents	9 meter nship er dis

Concept of lighting systems - The task and the working space - Light sources - Ballasts -Luminaries - Lighting controls - Optimizing lighting energy - Power factor and effect of harmonics on power quality - Cost analysis techniques - Lighting and energy standards Cogeneration: Forms of cogeneration - feasibility of cogeneration- Electrical interconnection.

UNIT V	EC	ONOMICS	9
Period, In	ternal Rate	 Depreciation - Financial Analysis Techniques – Discount Rate of Return, Net Present Value, Life Cycle Costing – ESCO concept Concept – ESCO Contracts. 	-
		TOTAL : 4	5 PERIODS
OUTCO	OMES:	After successful completion of the course students able to	
•	Analyse t	the energy data of industries.	
•	Can carry	y out energy accounting and balancing.	
•	Can sugg	est methodologies for energy saving.	
•	Design L	ighting systems	
•	Explain t	he concepts of Energy Economics	
TEXT I	BOOKS:		
1.	training.c	Manager Training Manual (4Volumes) available at www.Encom, a website administered by Bureau of Energy Efficiency (BEE er Ministry of Power, Government of India. 2004.	0. 0
2.	Amit K.	Tyagi, Handbook on Energy Audits and Management, TERI, 2003	
3.	•	Capehart, Wayne C. Turner, and William J. Kennedy, Guid nent, Fifth Edition, The Fairmont Press, Inc., 2006.	e to Energy
REFER	ENCES	:	
1.		e, P.S. Schmidt, D.R. Brown, "Industrial Energy Management and ere Publ, Washington, 1988.	Utilisation"
2.	Callaghn Oxford, 19	, P.W. "Design and Management for Energy Conservation", Perg 981	amon Press,
З.	-	D & Croft D.R, Energy Efficiency for Engineers and Technologi & Technical, ISBN-0-582-03184, 1990.	sts, Logman
4.	WC Turn 2007)	eer: Energy Management Handbook, Seventh Edition, (Fairmon	t Press Inc.,

17EOE004		SMA	٩R	T GR	ID												L	Τ	P	Τ	
																	3	0	0	3	
OBJEC	TIV	ES:																I		1	
•	• To introduce the architecture of smart grid																				
•	To st	tudy the	ie si	mart gi	rid co	ommu	unica	catio	ions	ns ar	nd it	ts m	eası	uren	nent	techr	nique	s			
•	To e	ducate t	the	stude	nts on	n loac	d flo	ow	y ana	naly	/sis i	in sn	nart	t gri	d						
•	To in	npart k	kno	wledge	e on v	voltag	ge st	stabi	bilit	ity ii	in sn	nart	gric	ł							
•	To ir	ntroduce	ce g	rid into	egrati	ion fo	for re	ene	ewa	vable	e en	ergy	y soi	uces	S						
UNIT I	[SMA	٩R	T GR	RID A	ARC	CHI		ГЕС	СТ	ſUF	RE								9	
Introducti communi and Func Wholesal	cation tion -	and sta Measu	anc	lards - s - Rep	Gene preser	ral V ntativ	/iew ve A	v of Arcl	f the chite	he Si tecti	lmar ture	t Gri - Fu	id M ınct	/ark	ket D s of	river	s - St	akeł	olde	r Role onents	
UNIT I	I	SMA MEA		T GR URE									NS	A	ND]	ITS			9		
Commun Wide are Mapping	a mo	nitoring																			
UNIT I	II	LOA	٩D	FLO	W A	NA	LY	YSI	SIS	5 IN	N SI	MA	RT	ſG	RII)			9		
the Preser	Introduction to Load Flow Studies - Challenges to Load Flow in Smart Grid and Weaknesses o the Present Load Flow Methods - Load Flow State of the Art: Classical, Extended Formulations and Algorithms –Load flow for smart grid design-Contingencies studies for smart grid.																				
UNIT I	[V	SMA	٩R	T GR	SID S	STA	BI	[LI	ITY	Y										9	
Indexing-	Voltage Stability Analysis Tools-Voltage Stability Assessment Techniques-Voltage Stability Indexing-Application and Implementation Plan of Voltage Stability in smart grid-Angle stability assessment in smart grid-Approach of smart grid to State Estimation-Energy management in smar grid.																				
UNIT	V	GRII ENE		INTE GY	GR	ATI	ION	N V	WI	ITI	HR	REN	IEV	WA	BL	E				9	

Renewable Energy Resources-Sustainable Energy Options for the Smart Grid-Penetration and Variability Issues Associated with Sustainable Energy Technology-Demand Response Issues-Electric Vehicles and Plug-in Hybrids-PHEV Technology-Environmental Implications-Storage Technologies-Grid integration issues of renewable energy sources.

TOTAL :45 PERIODS

OUTCOMES:		After successful completion of the course students able to				
•	Explain the concepts and design of Smart grid					
•	Explain the various communication and measurement technologies in smart grid					
•	Per	form load flow in smart grid.				
•	Analyze the stability of smart grid.					
•	Inte	egrate the renewable energy resources and storages with smart grid				

TEXT BOOKS:

1.	Stuart Borlase "Smart Grid: Infrastructure, Technology and Solutions", CRC Press 2012.
2.	Janaka E kanayake, Nick Jenkins, Kithsiri Liyanage, Jianzhong Wu, Akihiko Yokoyama, "Smart Grid: Technologyand Applications", Wiley2012.

REFERENCES:

1.	VehbiC.Güngör,Dilan Sahin,Taskin Kocak,SalihErgüt,Concettina Buccella,CarloCecati, and Gerhard P. Hancke, "Smart Grid Technologies: Communication Technologies and Standards" IEEE Transactions On Industrial Informatics, Vol.7,No.4, November2011.
2.	Xi Fang, Satyajayant Misra, Guoliang Xue, and Dejun Yang "Smart Grid – The New and Improved PowerGrid: ASurvey", IEEE Transaction on Smart Grids, vol. 14, 2012.

OPEN ELECTIVES OFFERED BY DEPARTMENT OF ECE

17LOE0	01 RE	AL TIME SYSTEMS	L	T	Р	С	
			3	0	0	3	
OBJECT	IVES:						
•	To expo	ose the students to the fundamentals of Real Time systems					
•	To teach	n the fundamentals of Scheduling and features of program	min	g La	ngua	.ges	
•	To stud	y the data management system for real time					
•	To intro	duce the fundamentals of real time communication					
•	To teacl	n the different algorithms and techniques used for real tim	e sy	stem	S		
UNIT I	INT	RODUCTION				9	
– Task Ass	Introduction – Issues in Real Time Computing – Structure of a Real Time System – Task classes – Task Assignment and Scheduling – Task assignment – Mode changes and Fault Tolerant Scheduling.						
UNIT II	PR	OGRAMMING LANGUAGES AND TOOLS				9	
structures –	Multitas	ages and Tools – Desired language characteristics – Data king – Low level programming – Task Scheduling – Timin ironments – Run – time support.	• •	0			
UNIT III	RE	AL TIME DATABASES				9	
Memory D Disk Sched	Real time Databases – Basic Definition, Real time Vs General Purpose Databases, Main Memory Databases, Transaction priorities, Transaction Aborts, Concurrency control issues, Disk Scheduling Algorithms, Maintaining Serialization Consistency – Databases for Hard Real Time Systems.						
UNIT IV	FAU	ULT TOLERANCE AND RELIABILTY				9	
	Real – Time Communication – Fault Tolerance Techniques – Fault Types – Fault Detection. Fault Error containment Redundancy – Data Diversity – Reversal Checks – Integrated Failure handling.						
UNIT V	UNIT V EVALUATION TECHNIQUES					9	
Hardware F	Reliability Evaluation Techniques – Obtaining parameter values, Reliability models for Hardware Redundancy – Software error models. Clock Synchronization – Clock, A Nonfault – Tolerant Synchronization Algorithm – Impact of faults – Fault Tolerant Synchronization in						

Hardw	are – Fault Tol	erant Synchronization in software.
		TOTAL : 45 PERIODS
OUT	COMES :	After successful completion of the course students able to
٠	Understand t	he basics of the real time systems.
•	Analyse the	programming languages and tools.
•	Remember th	ne real time database.
٠	Evaluate real	time communication between devices
•	Evaluate diff	erent fault tolerant techniques.
TEX	Г BOOKS:	
1.	C.M. Krishna Editions, 199	a, Kang G. Shin, "Real – Time Systems", McGraw – Hill International 7.
2.	Rajib Mall, "	Real-time systems: theory and practice", Pearson Education, 2007
3.	Peter D.Lawı McGraw Hill	rence, "Real Time Micro Computer System Design – An Introduction", , 1988.
REFI	ERENCES:	
1.	Stuart Benne. India, 1998.	tt, "Real Time Computer Control – An Introduction", Prentice Hall of
2.	S.T. Allworth 2nd Edition,	and R.N.Zobel, "Introduction to real time software design", Macmillan 1987.
3.	R.J.A Buhur, International	D.L Bailey, "An Introduction to Real – Time Systems", Prentice – Hall , 1999.
4.	Philip.A.Lap 3rd Edition, A	lante, "Real Time System Design and Analysis", Prentice Hall of India, April 2004

17LOE002		WI	RELESS SENSOR NETWORKS	L	Τ	Р	C
				3	0	0	3
OBJEC	TIV	ES:					
•	Uno	dersta	nd the overview of sensor networks.				
٠	Lea	rn the	different types of sensor networks architecture.				
•	Be	famili	ar with networking sensors				
•	Be	expos	ng to the infrastructure establishment in sensor networks	•			
•	Lea	rn the	platforms and tools of wireless sensor networks.				
UNIT I		OV	ERVIEW OF WIRELESS SENSOR NETWO	RK	S		9
Challenge Networks		r Wir	eless Sensor Networks, Enabling Technologies For	Wire	eless	Ser	isor
UNIT II	[AR	CHITECTURES				9
Operating	g Syst	tems	and Execution Environments, Network Architecture -	Sen	sor]	Netw	ork
	, Opti	imizat	and Execution Environments, Network Architecture - ion Goals and Figures of Merit, Gateway Concepts.	Sen	sor]	Netw	
Scenarios UNIT II Physical I Networks	, Opti II Layer - S-N anage	NE NE and ' AC, ment,	ion Goals and Figures of Merit, Gateway Concepts. WORKING SENSORS Transceiver Design Considerations, MAC Protocols for The Mediation Device Protocol, Wakeup Radio Concep Assignment of MAC Addresses, Routing Protocols-	Wiı pts,	eles: Add	s Sei ress	9 Isor
Scenarios UNIT II Physical I Networks Name Ma	, Opti II Layer - S-N anage Geogr	NET and ' AC, ement, raphic	ion Goals and Figures of Merit, Gateway Concepts. WORKING SENSORS Transceiver Design Considerations, MAC Protocols for The Mediation Device Protocol, Wakeup Radio Concep Assignment of MAC Addresses, Routing Protocols-	Wiı pts,	eles: Add	s Sei ress	9 Isor and
Scenarios UNIT II Physical I Networks Name Ma Routing, (UNIT I	, Opti II Layer - S-M anage Geogr V Cont	ME NE And AC, ment, raphic INF	ion Goals and Figures of Merit, Gateway Concepts. WORKING SENSORS Transceiver Design Considerations, MAC Protocols for The Mediation Device Protocol, Wakeup Radio Concep Assignment of MAC Addresses, Routing Protocols- Routing. RASTRUCTUREESTABLISHMENT Clustering, Time Synchronization, Localization and Pos	Wir pts, Ene	reless Add rgy-]	s Ser ress Effic	9 nsor and ient 9
Scenarios UNIT II Physical I Networks Name Ma Routing, (UNIT I Topology	, Opti II Layer - S-N anage Geogr V Cont nd Co	imizat NE7 AAC, ment, raphic INF trol, ontrol	ion Goals and Figures of Merit, Gateway Concepts. WORKING SENSORS Transceiver Design Considerations, MAC Protocols for The Mediation Device Protocol, Wakeup Radio Concep Assignment of MAC Addresses, Routing Protocols- Routing. RASTRUCTUREESTABLISHMENT Clustering, Time Synchronization, Localization and Pos	Win pts, Ene	reless Add rgy-]	s Ser ress Effic	9 nsor and ient 9
Scenarios UNIT II Physical I Networks Name Ma Routing, (UNIT I Topology Tasking a UNIT V Sensor N	, Opti II Layer - S-N anage Geogr V Cont nd Co 7	imizat NET and f AC, ment, raphic INF trol, ontrol SEN Hardw	ion Goals and Figures of Merit, Gateway Concepts. WORKING SENSORS Fransceiver Design Considerations, MAC Protocols for The Mediation Device Protocol, Wakeup Radio Concept Assignment of MAC Addresses, Routing Protocols- Routing. RASTRUCTUREESTABLISHMENT Clustering, Time Synchronization, Localization and Pos	Win pts, Ene sitio	reless Add rgy-] ning	s Ser ress Effic	9 nsor and ient 9 nsor 9
Scenarios UNIT II Physical I Networks Name Ma Routing, (UNIT I Topology Tasking a UNIT V Sensor N	, Opti II Layer - S-N anage Geogr V Cont nd Co 7	imizat NET and f AC, ment, raphic INF trol, ontrol SEN Hardw	 ion Goals and Figures of Merit, Gateway Concepts. WORKING SENSORS Transceiver Design Considerations, MAC Protocols for The Mediation Device Protocol, Wakeup Radio Concept Assignment of MAC Addresses, Routing Protocols- Routing. RASTRUCTUREESTABLISHMENT Clustering, Time Synchronization, Localization and Post SOR NETWORK PLATFORMS AND TOOI are – Berkeley Motes, Programming Challenges, Nod 	Win pts, Ene sitio	reless Add rgy-] ning vel :	s Ser ress Effic	9 nsor and ient 9 nsor 9
Scenarios UNIT II Physical I Networks Name Ma Routing, (UNIT I Topology Tasking a UNIT V Sensor N	, Opti II Layer - S-N anage Geogr V Cont nd Co 7 Tode I , Nod	imizat NET and f AC, ment, raphic INF trol, ontrol SEN Hardw	ion Goals and Figures of Merit, Gateway Concepts. WORKING SENSORS Transceiver Design Considerations, MAC Protocols for The Mediation Device Protocol, Wakeup Radio Concep Assignment of MAC Addresses, Routing Protocols- Routing. RASTRUCTUREESTABLISHMENT Clustering, Time Synchronization, Localization and Pos SOR NETWORK PLATFORMS AND TOOI are – Berkeley Motes, Programming Challenges, Nod I Simulators, State-centric programming.	Win pts, Ene sitio LS le-le	reless Add rgy-] ning vel :	s Ser ress Effic	9 nson and ient 9 nson 9
Scenarios UNIT II Physical I Networks Name Ma Routing, (UNIT I Topology Tasking a UNIT V Sensor N platforms	, Opti II Layer - S-N anage Geogr V Cont nd Co 7 Cont nd Co 7 Cont nd Co 7	imizat NET and a AC, ement, raphic INF trol, ontrol SEN Hardw e-leve	ion Goals and Figures of Merit, Gateway Concepts. WORKING SENSORS Transceiver Design Considerations, MAC Protocols for The Mediation Device Protocol, Wakeup Radio Concep Assignment of MAC Addresses, Routing Protocols- Routing. RASTRUCTUREESTABLISHMENT Clustering, Time Synchronization, Localization and Pos SOR NETWORK PLATFORMS AND TOOI are – Berkeley Motes, Programming Challenges, Nod I Simulators, State-centric programming. TOTAL:45PERIC	Win pts, Ene sitio LS le-le	reless Add rgy-] ning vel :	s Ser ress Effic	9 nsor and ient 9 nsor 9
Scenarios UNIT II Physical I Networks Name Ma Routing, (UNIT I Topology Tasking a UNIT V Sensor N platforms	, Opti II Layer - S-N anage Geogr V Cont nd Co 7 Cont nd Co 7 Ode I , Nod	imizat NE7 AC, and AC, ment, raphic INF trol, ontrol SEN Hardw ke-leve	ion Goals and Figures of Merit, Gateway Concepts. WORKING SENSORS Fransceiver Design Considerations, MAC Protocols for The Mediation Device Protocol, Wakeup Radio Concep Assignment of MAC Addresses, Routing Protocols- Routing. RASTRUCTUREESTABLISHMENT Clustering, Time Synchronization, Localization and Pos ISOR NETWORK PLATFORMS AND TOOL rare – Berkeley Motes, Programming Challenges, Nod I Simulators, State-centric programming. TOTAL:45PERIC After successful completion of the course students able to	Win pts, Ene sitio LS le-le	reless Add rgy-] ning vel :	s Ser ress Effic	9 nsor and ient 9 nsor 9

	protocol design issues
•	Analyse the infrastructure establishment in Sensor networks.
•	Anayse the sensor network platforms and tools.
TEXT I	BOOKS:
1.	Holger Karl & Andreas Willig, "Protocols And Architectures for Wireless Sensor Networks", John Wiley, 2005.
2.	Feng Zhao & Leonidas J. Guibas, "Wireless Sensor Networks- An Information Processing Approach", Elsevier, 2007.
REFER	ENCES:
1.	Kazem Sohraby, Daniel Minoli, & Taieb Znati, "Wireless Sensor Networks- Technology, Protocols, And Applications", John Wiley, 2007.
2.	Anna Hac, "Wireless Sensor Network Designs", John Wiley, 2003

17LOE00	4	USTRIAL AUTOMATION AND BOTICS	L	T	Р	C
			3	0	0	3
OBJECT	IVES:					
•	To know	the evolution of robotics				
•	To study	the dynamics and kinematics				
•	To learn	the various actuators				
•	To learn	the various sensors				
•	To under	stand the automation			1	
UNIT I		RODUCTION TO ROBOTICS AND OMATION				9
-	ftware Pa	ler, Power conversion unit etc, Specifications of robo ckages for Robot Simulation EMATICS AND DYNAMICS	n. C			any 12
Kinematics: Homogeneous co-ordinate vector operations, Workspace, Forward Kinem Forward solutions- Link coordinate frames, D-H matrix, Inverse Kinematics - Existence Uniqueness of Solutions, Analytical Approaches - Reduction of Inverse Kinematics to problems, Dynamics : Newton's equation, Euler equations, Dynamic Modeling of R Manipulators - Two DOF Planar Robot with Two Revolute Joints, Generalized Coord and Speeds, Velocities, Partial Velocities, Accelerations, Generalized Inertia F					cs -	
Uniqueness problems, I Manipulator and Speeds)ynamics rs - Two s, Veloci	ons, Analytical Approaches - Reduction of Inverse Kin : Newton's equation, Euler equations, Dynamic Mod DOF Planar Robot with Two Revolute Joints, General	nema eling ized Ine	atics g of Coc rtia	to S Rob rdina	ub- otic ates
Uniqueness problems, I Manipulator and Speeds)ynamics rs - Two s, Veloci Active F	ons, Analytical Approaches - Reduction of Inverse Kin : Newton's equation, Euler equations, Dynamic Mod DOF Planar Robot with Two Revolute Joints, General ties, Partial Velocities, Accelerations, Generalized	nema eling ized Ine	atics g of Coc rtia	to S Rob rdina	ub- otic ates
Uniqueness problems, I Manipulator and Speeds Generalized UNIT III Some Popul Cams and C	Dynamics rs - Two s, Veloci Active F ME(ar Mecha Cranks, G	ons, Analytical Approaches - Reduction of Inverse Kin : Newton's equation, Euler equations, Dynamic Mod DOF Planar Robot with Two Revolute Joints, General ties, Partial Velocities, Accelerations, Generalized press, Equations of Motion, Special Issues in Kane's Me	nema eling ized Ine ethoc	atics g of Coc rtia l	to S Robordina Foro	otic ates ces, 9

UNIT IV SENSORS

Sensors:Encoders - Rotary and Linear Incremental Encoders, Tachometer, Quadrature Encoders, Absolute Encoders. Analog Displacement Sensors, Force and Tactile Sensors, Ultrasonic Transponder, Accelerometers, Gyroscopes, proximity sensors, Infrared Sensors,

7

-	sensor, laser range finder, Vision-based Sensors, Color-tracking Sensors, Sens Arrangement, Reading the Pulses in a Computer, Design of the Circuitry	sor
UNIT V	AUTOMATION	8
Product, Machines	of Automatic Industrial Systems, Relationship between the Robot Intelligence and the Productivity of a Manufacturing Process, Kinematics and Control of Automatics Feedback Sensors, Transporting Devices, Feeding and Orientation Devices, Assembling, Inspection Systems, Welding _ Automation.	tic
	TOTAL:45PERIODS	
OUTCO	MES: After successful completion of the course students able to	
•	Understand the basic concepts of working of robot	
•	Analyze the function of sensors in the robot	
•	Apply program to use a robot for a typical application	
•	Analyze Robots in different applications	
TEXT I	OOKS:	
1.	Bruno Siciliano, Oussama Khatib (Eds.), _"Springer Handbook of Robotics"_, 2008,.	
2.	Jorge Angeles, _"Fundamentals of Robotic Mechanical Systems Theory, Method and Algorithms"_ Second Edition, 2003, Springer-Verlag New York, Inc.,	ds,
3.	Edwin Wise, _"Robotics Demystified_", 2005, The McGraw-Hill Companies,	
REFER	ENCES:	
1.	Thomas R. Kurfess, _"Robotics And Automation Handbook"_, CRC Press, 2004	4,
2.	_Robotics: "Appin Knowledge Solutions (Firm)"_, Infinity Science Press, 2007	7,
3.	J. Norberto Pires, Altino Loureiro and Gunnar Bölmsjo, _"Welding Robots - Technology, System Issues and Applications"_, Springer-Verlag 2006,	
4.	J.G Proakis, "Digital Communication", 4th Edition, Tata Mc Graw Hill Company, 2001.	

17LOE00	4	PRINCIPLES OF VLSI DESIGN	L	Τ	Р	C
			3	0	0	3
OBJECT	IVES:					
•	Underst	and the fabrication process of CMOS				
•	To unde	erstand the electrical properties of circuits				
•	To Stuc	y the design of combinational and sequential circuit				
•	To learn	n the testing of CMOS				
•	Analyse	e the verilog HDL				
UNIT I	CM	OS TECHNOLOGY				9
effects, DC	transfer of	S transistor, Ideal I-V characteristics, C-V characteristic characteristics - CMOS technologies, Layout design Rules nology related CAD issues, Manufacturing issues				
UNIT II		CUIT CHARACTERIZATION AND IULATION				9
margin, Rel	iability,	gical effort and Transistor sizing, Power dissipation, Inter Scaling- SPICE tutorial, Device models, Device character perconnect simulation				
UNIT III		MBINATIONAL AND SEQUENTIAL CIRC	UIT	1		9
circuits, cire	cuit desi	w power logic design – comparison of circuit families – S gn of latches and flip flops, Static sequencing elemen circuits – synchronizers	Sequ nt m	enci etho	ng st odolo	atic gy-
UNIT IV		OS TESTING				9
	•	sters, Text fixtures and test programs- Logic verification turing test – Design for testability – Boundary scan	n- S	ilico	n de	bug
UNIT V	JNIT V SPECIFICATION USING VERILOG HDL				9	
Basic concepts- identifiers- gate primitives, gate delays, operators, timing controls, procedural assignments conditional statements, Data flow and RTL, structural gate level switch level modeling, Behavioral and RTL modeling, Structural gate level description of decoder, equality detector, comparator, priority encoder, half adder, full adder, Ripple carry adder, D latch and D flip flop.						
		TOTAL : 45 PER	ΙΟΙ	DS		
OUTCOM	IES:	After successful completion of the course students able to				

•	Understand the basics of CMOS circuits.
•	Understand the CMOS process technology.
•	Understand the concepts of designing VLSI subsystems.
•	Analyze the techniques of chip design using programmable devices.
•	Remember digital system using hardware description language.
ТЕХТ	BOOKS:
1.	Weste and Harris: "CMOS VLSI DESIGN", (Third edition) Pearson Education, 2005
2.	J.Bhasker: "Verilog HDL primer", BS publication,2001
REFE	CRENCES:
1.	Uyemura J.P: "Introduction to VLSI circuits and systems", Wiley 2002.
2.	D.A Pucknell & K.Eshraghian , "Basic VLSI Design", Third edition, PHI, 2003
3.	M.J.S.Smith: "Application specific integrated circuits", Pearson Education, 1997
4.	Ciletti "Advanced Digital Design with the Verilog HDL", Prentice Hall of India, 2003

17LOE005		AP	P	L	T	Р	C				
					3	0	0	3			
OBJE	CTIV	ES:									
•	Describe the basic principles of electronics										
٠	Ide	Identify the electronic components and their various applications on board									
•	Tra	Trace and analyze the electronic circuits									
٠	An	alyse	tł	e telecommunication systems							
٠	То	study	/t	ne concepts of PIC microcontroller							
UNIT	JNIT I AN			LOG CIRCUITS				9			
				ductors, diodes, transistor switches, capacitors, fields a lifiers, MOSFET amplifiers.	nd ind	ucto	rs – l	3JT			
UNIT	II	API	P	LICATION OF ANALOG CIRCUITS				9			
Operati amplifi		-		s, application of op-amps, active filters, 555 timer and opplies.	oscilla	itors	– po	wer			
UNIT	III	DIG	DIGITAL CIRCUITS								
Overvie devices				ircuits, logical operations, combinational and sequentia	al circu	uits -	- disp	olay			
UNIT IV EL		ELI	E	ECTRONIC COMMUNICATION SYSTEMS							
			•	stems – noise – telecommunications – cable transinic control systems – process control systems.	nsmiss	sion,	opt	ical			
UNIT V		MI	MICROPROCESSORS AND MICROCONTROLLER								
-	-			icroprocessors and programming - sensors and intentity simulation – circuit construction.	rfacin	g - [The 1	PIC			
				TOTAL : 45 PE	RIOI	DS					
OUT	COME	ES:		After successful completion of the course students able	e to						
•	Acquires knowledge for building, testing and modifying simple circuits to complex circuits.						ex				
٠	Acquires the basic knowledge of electronics.										
٠	Gains knowledge about the microprocessor and microcontroller.										

•	Understand the communication systems					
TEXT	TEXT BOOKS:					
1.	Owen Bishop, "Electronics – Circuits and Systems", 3 rd Edition, Newnes, 2010.					
2.	Michael Tooley B A, "Electronic Circuits: Fundamentals and Applications", 3 rd Edition, Newnes, 2006.					
REFE	REFERENCES:					
1.	John B.Peatman," Design with PIC Microcontrollers", Prentice Hall, 1998.					

17LOE006		WIRELESS NETWORKS				L	T	Р	C							
													3	0	0	3
OBJEC	TIV	ES:														
Learn the design of the wireless network					KS .											
•	Understand the concepts of				f wirele	ess netv	work	s laye	er							
• To study the			e wi	reless	s proto	cols w	ith TC	P en	hance	emen	t					
• Analyse th			wir	eless	wide	area ne	twork									
•	• Understand the concepts of wireless networks and next generation netw						netwo	orks								
UNIT I W		WIR	REI	ESS	5 LA	N										9
System ar LAN: WA Link mar allocation	ATM, nager	BRA Proto	N, H col,	IiperI	LAN2	– Blue	etooth:	Arc	hitect	ture,	Radio	Laye	r, Bas	sebai	nd la	yer, rum
UNIT II MO																
	L	MO	BII	EN	ЕТИ	VORK	K LAY	YER	R							9
Introducti IPV6-Net network:	ion - twork	Mobile layer	e IP in	: IP p the in	backet	delive t- Mob	ery, Ag ile IP	gent sess	disco ion i	nitiat	ion p	otoco	- m	obile		ion,
Introducti IPV6-Net	ion - twork Routi	Mobile layer ng, De	e IP in estin	: IP p the in ation	oacket iternet Seque	delive t- Mob	ery, Ag ile IP stance	gent sess vect	disco ion ii or, D	nitiat	ion p	otoco	- m	obile		ion,
Introducti IPV6-Net network:	ion - twork Routi II nancer t/fast	Mobile layer ng, De MO nents recove	e IP in estin BII for ery, 1	: IP p the in ation E T wire Implic	backet aternet Seque RAN lless	t delive t- Mob ence dis SPOI protoco s of mo	ery, Ag ile IP stance RT L A ols - 7 obility -	gent sess vecto AYI Tradi - Cla	disco ion in or, D E R itiona	nitiat ynam al TC l TCF	ion pr ic sou CP: C Pimpr	cotoco irce ro conges	l - m uting tion	obile	e ad-	ion, hoc 9 fast
Introducti IPV6-Net network: UNIT I TCP enh retransmit	ion - twork Routi II nancer t/fast ; TCP	Mobile layer ng, De MO I nents recove , Mobi	e IP in estin BII for ery, 1 le T	: IP p the in ation LE T wire (mplic CP, T	cacket Iternet Seque RAN Iless j cation Time c	t delive t- Mob ence dis SPOI protoco s of mo	ery, Ag ile IP stance RT L A ols - T obility - zing, S	gent sess vecto AYI Tradi - Cla Selec	disco ion in or, D E R itiona issical tive r	nitiat ynam al TC l TCF retran	ion pr ic sou CP: C P impr smissi	cotoco irce ro conges	l - m uting tion	obile	e ad-	ion, hoc 9 fast
Introducti IPV6-Net network: UNIT II TCP enh retransmit Snooping	ion - twork Routi II nancer t/fast TCP TCP V of U G-SGS	Mobile layer ng, De MO nents recove , Mobi WIR TMS N, 3G	e IP in estin BII for ery, 1 le T le T REI Ferr	: IP p the in ation E T wire Implic CP, T ESS estria 3SN,	RAN RAN less j cation Time c S WI 1 Radi SMS-	delive t- Mob ence dis SPOI protoco s of mo out free DE AI io acces GMSC	ery, Ag ile IP stance RT L A ols - T obility - zing, S REA ss netw	gent sess vecto AYI Tradi - Cla Selec NE NE	disco ion in or, D ER itiona ssical tive r TW(-UMT MSC,	nitiat ynam al TC l TCF etran ORK FIS Co Fire	CP: C CP: C Pimpr smissi	cotoco irce ro conges ovema ion. twork	tion Arch	obile cont ndire	e ad- rol, ect T	ion, hoc 9 fast CP, 9 3G-
Introducti IPV6-Net network: UNIT II TCP enh retransmit Snooping UNIT I Overview MSC, 3G	ion - twork Routi II nancer t/fast TCP TCP V of U S-SGS c pack	Mobile layer ng, De MO nents recove , Mobi WIR TMS N, 3G	e IP in estin BII for ery, 1 le T REI Ferr a-GC ess (: IP p the in ation JE T wire Implic CP, T JESS estria GSN, HSD	packet Internet Seque RAN Eless Cation Fime of SWII I Radi SMS- PA)- I	t delive t- Mob ence dis ISPOI protoco s of mo out free DE AI io acces GMSC LTE ne	ery, Ag ile IP stance RT L A ols - T obility - zing, S REA ss netw	gent sess vecto AYI Tradi - Cla Selec NE NE	disco ion in or, D ER itiona ssical tive r TW(-UMT MSC,	nitiat ynam al TC l TCF etran ORK FIS Co Fire	CP: C CP: C Pimpr smissi	cotoco irce ro conges ovema ion. twork	tion Arch	obile cont ndire	e ad- rol, ect T	ion, hoc 9 fast CP, 9 3G-
Introducti IPV6-Net network: UNIT II TCP enh retransmit Snooping UNIT I Overview MSC, 3G Downlink	ion - twork Routi II nancer t/fast ; TCP; V of U S-SGS c pack 7 ion - 4	Mobile layer ng, De MOI nents recove , Mobi WIR TMS 7 N, 3G tet acco 4G N	e IP in estin BII for ery, 1 le T REI Ferr -GC ess (NE7	: IP p the in ation JE T wire Implic CP, T JESS estria SSN, HSDI	Packet Internet Seque RAN Eless Cation Fime of SWI 1 Radi SMS- PA)- 1 DRKS	t delive t- Mob ence dis ISPOI protoco s of mo out free DE AI io acces GMSC LTE ne S es and o	ery, Ag ile IP stance RT L A ols - 7 obility - zing, S REA ss netw C/SMS- etwork	gent sess vecto A YI Tradi - Cla Selec NE vork- IWN arch	disco ion in or, D ER itiona ssical tive r TW(-UMT MSC, iitectu	nitiat ynam al TC l TCF etran ORK Fire ure an	CP:	twork DNS/I tocol.	tion ents: I Arch DHCF	cont ndir	e ad- rol, ect T ure: gh sp	ion, hoc 9 fast CP, 9 3G- eed 9
Introducti IPV6-Net network: UNIT II TCP enh retransmit Snooping UNIT I Overview MSC, 3G Downlink UNIT V Introducti	ion - twork Routi II nancer t/fast ; TCP; V of U S-SGS c pack 7 ion - 4	Mobile layer ng, De MOI nents recove , Mobi WIR TMS 7 N, 3G tet acco 4G N	e IP in estin BII for ery, 1 le T REI Ferr -GC ess (NE7	: IP p the in ation JE T wire Implic CP, T JESS estria SSN, HSDI	Packet Internet Seque RAN Eless Cation Fime of SWI 1 Radi SMS- PA)- 1 DRKS	t delive t- Mob ence dis ISPOI protoco s of mo out free DE AI io acces GMSC LTE ne S es and o	ery, Ag ile IP stance RT L A ols - 7 obility - zing, S REA ss netw C/SMS- etwork	gent sess vecto A YI Tradi - Cla Selec NE vork- IWN arch	disco ion in or, D ER itiona issical tive r FW(-UMT MSC, iitectu	nitiat ynam al TC l TCH retran ORK TS Co Fire ure an plicati	CP: C impr smissi ore ne wall, I ad pro	twork DNS/I tocol.	a - m uting tion ents: I Arch DHCF	obile cont ndire itect P-Hig	e ad- rol, ect T ure: gh sp	ion, hoc 9 fast CP, 9 3G- eed 9
Introducti IPV6-Net network: UNIT II TCP enh retransmit Snooping UNIT I Overview MSC, 3G Downlink UNIT V Introducti	ion - twork Routi II nancer t/fast TCP V of U S-SGS c pack 7 ion – 4	Mobile layer ng, De MOI nents recove , Mobi WIR TMS 7 N, 3G ret acco 4G N 4G vis: odulati	e IP in estin BII for ery, 1 le T REI Ferr -GC ess (NET ion,	: IP p the in ation JE T wire Implic CP, T JESS estria JSN, HSD FWC - 4G f Smar	And the sequence of the sequen	t delive t- Mob ence dis ISPOI protoco s of mo out free DE AI io acces GMSC LTE ne S es and o	ery, Ag ile IP stance RT L A ols - T obility - zing, S REA ss netw C/SMS- etwork challen hnique	gent sess vecto A YI Tradi - Cla Selec NE vork- IWN arch	disco ion in or, D ER itiona issical tive r TW(-UMT MSC, itectu -UMT MSC, itectu	nitiat ynam al TCH etran ORK TS Co Fire are an olicati I-MIN OTA	CP: C impr smissi ore ne wall, 1 id pro-	twork conges overacion. twork DNS/I tocol. f 4G – stems 5 PEI	Arch DHCF	obile cont ndire itect P-Hig	e ad- rol, ect T ure: gh sp	ion, hoc 9 fast CP, 9 3G- eed 9

	architecture.					
•	Understand the wireless network environment for any application using latest wireless protocols and standards.					
•	Apply different types of applications for smart phones and mobile devices with late network strategies.					
•	Remember the concepts of networks layers and its applications.					
TEXT	T BOOKS:					
1.	Jochen Schiller, "Mobile Communications", Second Edition, Pearson Education 2012.(Unit I,II,III)					
2.	Vijay Garg, "Wireless Communications and networking", First Edition, Elsevier 2007.(Unit IV,V)					
REFE	CRENCES:					
1.	Erik Dahlman, Stefan Parkvall, Johan Skold and Per Beming, "3G Evolution HSPA and LTE for Mobile Broadband", Second Edition, Academic Press, 2008.					
2.	Anurag Kumar, D.Manjunath, Joy kuri, "Wireless Networking", First Edition, Elsevier 2011.					
3.	Simon Haykin , Michael Moher, David Koilpillai, "Modern Wireless Communications", First Edition, Pearson Education 2013					

17SOE(001	PRO	GRAMMING IN C++	L	Τ	Р	С	
				3	0	0	3	
OBJEC	TIVES	:						
•	To get in	ntrodu	eed to bacis of C++ programming					
•	To be fa	miliar	with OOPS concepts					
•	To unde	rstand	the concept of Inheritance and its types					
•	To unde	rstand	the concept of Polymorphism					
•	To be fa	miliar	with templates and file handling concepts					
UNIT I		BAS	IC C++ PROGRAMMING				9	
C++ Prog – Functio			es –Data types, Variables and Arrays – Operators - dling.	Point	ers –	Refe	rences	
UNIT I	I	OOP	S CONCEPTS			9		
	nt Memb	ers –	osulation - Class - Object – Constructors - Destructions - Member Functions - Friend Functions- Role of tor.					
UNIT I	II	INH	ERITANCE				9	
	t and Co		neritance –public, protected and private inheritance Class – Virtual Class - Virtual Functions - Dynam				-	
UNIT I	V	POL	YMORPHISM				9	
• 1		-	ile Time and Run Time Polymorphisms – Fun Dynamic Binding – Exception Handling.	nction	Ov	erload	ling –	
UNIT V	7	ADV	ANCED OOPS FEATURES			9		
			eric Programming - Templates – Class Template ptors – Allocators - File Handling concepts.	Fund	ction	Tem	plate –	
			TOTAL: 45 PH	RIC	DS			
OUTCO	OMES:		After successful completion of the course students able to					
•]	Have the	knowl	edge about the concepts of object oriented program	nming	g lan	guage		

Know the various concepts related to inheritance and polymorphism.
Describe about the concepts of templates and error handling.
XT BOOKS:
Bjarne Stroustrup, "The C++ Programming Language", 3rd edition, Pearson Education, 2007.
K R Venugopal, Rajkumar Buyya, "Mastering C++", 2nd Edition, McGraw Hill Education, 2013.
FERENCES:
Ira Pohl, "Object Oriented Programming using C++", 2nd edition, Pearson Education, 1997.
<i>Herbert Schildt, "C++: The Complete Reference", 4th Edition, McGraw Hill Education, 2003.</i>

OPEN ELECTIVES OFFERED BY DEPARTMENT OF CSE

17SOE00	2 JA	VA PROGRAMMING	L	Т	Р	С
	I		3	0	0	3
OBJECT	IVES:					
• 7	Го get intr	oduced to fundamentals of java programming				
•	• To be familiar with concepts of classes and objects in java					
•	To understand how information hiding and reusability is implemented					
•	To underst	and the concept of exception, concurrency and streams				
•	Го be fam	iliar with graphical programming using applets				
UNIT I	FU	JNDAMENTALS OF JAVA				7
Java Progra UNIT II		LASSES AND OBJECTS				11
Methods & Default Co method- Ov methods –	Method Si nstructor verloading recursion	Class fundamentals- Declaring objects- Assigning object gnatures- Method retuning Values- Method with parameter Parameterized constructor- this keyword- Garbage (methods and constructors- Using object as parameters - Access control- static and final keyword- Nested ment- String and String Buffer class.	eters Coll - ret	s – C ector urni	onstr r- fir ng ol	uctors- nalize() oject in
UNIT III	IN	FORMATION HIDING AND REUSABILIT	ГҮ			9
dispatch Ab Path Enviro	stract clas	- Using super- Method Overriding- Constructor call s- Using final with inheritance - Packages - Default Pac riables- Package level access- Importing Packages – xtending interface- Wrapper class.	ckag	ge- P	ath 8	z Class
UNIT IV	EX	KCEPTION, CONCURRENCY NAD STREA	AM	S		9
-	0	nechanism - I/O Basics - Byte stream & Character S le input & Writing console output- Reading and Writin				0

Deadlo	CK.	
UNIT	V	GRAPHICAL PROGRAMMING
Event l	istener inter	ethods – creation - designing and examples - Event handling- event classes faces - AWT classes - working with frames - AWT controls-layout manager ponents –Swings – JDBC Connectivity – Introduction to JavaFX.
		TOTAL: 45 PERIODS
OUTO	COMES:	After successful completion of the course students able to
•	Differenti	ate between Java and other OOPs languages.
•	Develop p	programs using classes and objects.
٠	Implemen	t multi threading.
٠	Design a j	page using applet.
ТЕХТ	BOOKS	:
1.		ughton & Herbert Schildt, "The Complete Reference Java 2", Tata Mcgra Delhi, 2001, 4th Edition.
2.	Bruce Eck	cel, "Thinking in Java", Pearson Eduction Asia, 2000, 2nd Edition.
REFE	RENCES	5:
1. D	eitel & Deit	tel, "Java How to Program", Prentice Hall, 2002, 5th Edition.
2. K	en Arnold &	& James Gosling, "The Java Programming Language", 2000, AWL.
	eter Haggai 000, 1st Edi	r, "Practical Java: Programming Language Guide", Addison Wesley Pub Co tion.

17SOE003		PYTHON PROGRAMMING	L	Τ	Р	С	
			3	0	0	3	
OBJEC :	CTIVES						
•	To Unc	erstand the basic of Python Programming					
٠	To Lea	rn about string in Python					
٠	• To be introduced to Classes in python						
•	To Un	derstand basic concepts on files.					
٠	To get	hands on XML and serialization					
UNIT I		INTRODUCTION TO PYTHON				9	
Variables	s - Case S ctionarie	ion - Import - Objects - Indenting as Requirement - Exc sensitive - Scripts - Native Data Types - Booleans - Numbers - Comprehensions - List Comprehensions - Dictionary Co	ers -	List	s - T	uples -	
Variables Sets - Dio Compreh UNIT I	s - Case S ctionaries lensions.	Sensitive - Scripts - Native Data Types - Booleans - Numbers - Comprehensions - List Comprehensions - Dictionary Co	ers - omp	List	ts - T nsior	uples - is - Set 9	
Variables Sets - Dio Compreh UNIT I	s - Case S ctionaries ensions. I Unicode	Sensitive - Scripts - Native Data Types - Booleans - Number - Comprehensions - List Comprehensions - Dictionary Co STRING - Formatting - String Methods - Bytes - Encoding - Re	ers - omp	List	ts - T nsior	uples - as - Set 9 sions -	
Variables Sets - Dio Compreh UNIT I Strings -	s - Case S ctionaries ensions. I Unicode - Case St	Sensitive - Scripts - Native Data Types - Booleans - Number - Comprehensions - List Comprehensions - Dictionary Co STRING - Formatting - String Methods - Bytes - Encoding - Re	ers - omp	List	ts - T nsior	uples - is - Set 9	
Variables Sets - Dia Compreh UNIT I Strings - Verbose - UNIT I Closures	s - Case S ctionaries ensions. I Unicode - Case St II - List of	Sensitive - Scripts - Native Data Types - Booleans - Number - Comprehensions - List Comprehensions - Dictionary Co STRING - Formatting - String Methods - Bytes - Encoding - Rejudies.	ers - omp egula - De	List orehe	s - T nsior cpres	uples - ss - Set 9 sions - 9 asses -	
Variables Sets - Dia Compreh UNIT I Strings - Verbose - UNIT I Closures	s - Case S ctionaries ensions. I Unicode - Case St II - List of ing Class	Sensitive - Scripts - Native Data Types - Booleans - Number S - Comprehensions - List Comprehensions - Dictionary Co STRING - Formatting - String Methods - Bytes - Encoding - Re- udies. CLASSES Functions - List of Patterns - File of Patterns - Generators -	ers - omp egula - De	List orehe	s - T nsior cpres	uples - ss - Set 9 sions - 9 asses -	
Variables Sets - Dia Compreh UNIT I Strings - Verbose - UNIT I Closures Instantiat UNIT I	s - Case S ctionaries ensions. I Unicode - Case St II - List of ing Class	 Sensitive - Scripts - Native Data Types - Booleans - Numbers - Comprehensions - List Comprehensions - Dictionary Comprehensions - Dictionary Comprehensions - Dictionary Comprehensions - String Methods - Bytes - Encoding - Resulting. CLASSES Functions - List of Patterns - File of Patterns - Generators - Ses - Instance Variables - Iterators – Itertools - Assert - Generators - Ses - Instance Variables - Iterators – Itertools - Assert - Generators - Ses - Instance Variables - Iterators – Itertools - Assert - Generators - Ses - Instance Variables - Iterators – Itertools - Assert - Generators - Ses - Instance Variables - Iterators – Itertools - Assert - Generators - Ses - Instance Variables - Iterators – Itertools - Assert - Generators - Ses - Instance Variables - Iterators – Itertools - Assert - Generators - Ses - Instance Variables - Iterators – Itertools - Assert - Generators - Ses - Instance Variables - Iterators – Itertools - Assert - Generators - Ses - Instance Variables - Iterators – Itertools - Assert - Generators - Ses - Instance Variables - Iterators – Itertools - Assert - Generators - Ses - Instance Variables - Iterators – Itertools - Assert - Generators - Ses - Instance Variables - Iterators – Itertools - Assert - Generators - Ses - Instance Variables - Iterators – Itertools - Assert - Generators - Ses - Instance Variables - Iterators – Itertools - Assert - Generators - Ses - Instance Variables - Iterators – Itertools - Assert - Generators - Ses - Instance Variables - Iterators - Iterators - Ses - Iterators - Ses - Iterators - Ses - Ses	ers - omp - De erat	ar Exercises	s - T nsior cpres	uples - ss - Set 9 sions - 9 asses - ssions. 9	
Variables Sets - Dia Compreh UNIT I Strings - Verbose - UNIT I Closures Instantiat UNIT I	s - Case S ctionaries ensions. I Unicode - Case St II - List of ing Class V and Writi	 Sensitive - Scripts - Native Data Types - Booleans - Numbers - Comprehensions - List Comprehensions - Dictionary Comprehensions - Dictionary Comprehensions - List Comprehensions - Dictionary Comprehensions - String Methods - Bytes - Encoding - Republics. CLASSES Functions - List of Patterns - File of Patterns - Generators - Ses - Instance Variables - Iterators – Itertools - Assert - Generators - Files 	ers - omp - De erat	ar Exercises	s - T nsior cpres	uples - ss - Set 9 sions - 9 asses - ssions. 9	
Variables Sets - Dia Compreh UNIT I Strings - Verbose - UNIT I Closures Instantiat UNIT I Reading a UNIT V XML - A	s - Case S ctionaries ensions. I Unicode - Case St II - List of ing Class V and Writi	Sensitive - Scripts - Native Data Types - Booleans - Number Se - Comprehensions - List Comprehensions - Dictionary Co STRING - Formatting - String Methods - Bytes - Encoding - Re- adies. CLASSES Functions - List of Patterns - File of Patterns - Generators - ses - Instance Variables - Iterators – Itertools - Assert - Gen FILES ng Text Files - Binary Files - Stream Objects - Standard Inpu	ers - omp gula - De ierat	List prehe ar Ex efinin cor E	arg Cl arg Cl arg cl arg and	uples - as - Set 9 sions - 9 asses - ssions. 9 l Error. 9	

OUTCOMES:		After successful completion of the course students able to				
•	Understand	the concepts of object oriented programming.				
•	Use generat	tors and iterators.				
•	Develop tes	st cases and handle refactoring.				
•	Use objects	to program over the web.				
TEX	Г BOOKS:					
1.	Mark Pilgri	m, "Dive into Python 3", Apress, 2009.				
2.	John V. Gu Hall of Indi	uttag, "Introduction to Computation and Programming using Python", Prentice a, 2014.				
REFI	ERENCES:					
	Mark Lutz, "Learning Python: Powerful Object-Oriented Programming", Fifth Edition, O'Reilly, Shroff Publishers and Distributors, 2013.					
	Allen Downey, Jeffrey Elkner, Chris Meyers, "How to Think Like a Computer Scientist Learning with Python", Green Tea Press, 2002.					

17SOE004		W]	EB DESIGNING	L	Τ	Р	С	
				3	0	0	3	
OBJECTIVES:								
•	To Lea	rn a	bout basics of websites and get introduced to HTML 5	5, CS	S 3,	WEI	3 2.0	
•	To und	erst	and client side programming using java script					
•	To Lea	rn a	bout java servlets and DB connectivity					
•	To Lea	rn w	veb development using PHP and XML					
•	To Get	Intr	roduced to AJAX and web services					
UNIT I		W]	EBSITES BASICS, HTML 5, CSS 3, WEB 2	2.0		9		
websites a server- In intranet	and we ternet te	b se echn	A Rich Internet Applications - Collaborations tool ervers: Understanding Internet – Difference between nologies Overview –Understanding the difference b TML 5.0, XHTML, CSS 3.	n we	ebsit	es an	id web	
UNIT II		CL	LIENT SIDE PROGRAMMING				9	
Expression JavaScript	ns- Exce	eptio	oduction to JavaScript–JavaScript DOM Model-Date a on Handling-Validation-Built-in objects-Event Hand		•		-	
v D Scrip	$\iota: VDSC$	npt	programming – Forms – Scripting Object.					

UNIT III SERVLETS AND JSP	9
---------------------------	---

Servlets: Java Servlet Architecture- Servlet Life Cycle- Form GET and POST actions- Session Handling- Understanding Cookies-Installing and Configuring Apache Tomcat Web Server.**Database Connectivity:** JDBC perspectives, JDBC program example.

JSP: Understanding Java Server Pages-JSP Standard Tag Library(JSTL)-Creating HTML forms by embedding JSP code.

9

UNIT IV PHP AND XML

An introduction to PHP: PHP- Using PHP- Variables- Program control- Built-in functions-Connecting to Database – Using Cookies-Regular Expressions

XML: Basic XML- Document Type Definition- XML Schema DOM and Presenting XML, XML Parsers and Validation, XSL and XSLT Transformation, News Feed (RSS and ATOM).

UNIT		INTRODUCTION TO AJAX AND WEB SERVICES	9
Web S	Services: In	t Server Architecture-XML Http Request Object-Call Back Meth troduction- Java web services Basics – Creating, Publishing, services (WSDL)-Consuming a web service, Database Driven web	Testing and
		DAP – Introduction to modern tools / framework – AngloJS – Jque TOTAL : 45 PERIODS	ery.
OUT	COMES:	After successful completion of the course students able to	
•	Create a b	basic website using HTML and Cascading Style Sheets.	
•	-	d implement dynamic web page with validation using JavaScript objects and by applying different event handling mechanisms.	objects and
•	Design ric	ch client presentation using AJAX.	
•	Design an	d implement simple web page in PHP, and to present data in XM	L format.
٠	Design an	d implement server side programs using Servlets and JSP.	
TEXT	F BOOKS	:	
1.		d Deitel, Nieto, "Internet and World Wide Web - How to Progra Edition, 2011.	m", Prentice
2.	Herbert S Profession	Schildt, "Java-The Complete Reference", Eighth Edition, Monal, 2011.	e Graw Hill
REFF	ERENCES	5:	
1.	Stephen W	ynkoop, John Burke "Running a Perfect Website", QUE, 2nd Edi	tion,1999.
2.	Chris Bate Publicatio	es, "Web Programming – Building Intranet Applications", 3rd Ea ns, 2009.	lition, Wiley
3.	Jeffrey C, Education	Jackson, "Web Technologies- A Computer Science Perspective", 2011.	, Pearson
4.	Paul Diete India.	el, Harvey Deitel, "Java How to Program", 8th Edition Prentice I	Hall of
5.	Gopalan N	N.P., Akilandeswari J., "Web Technology", Prentice Hall of India	, 2011.
6.	Mahesh P.	Matha, "Core Java A Comprehensive Study", Prentice Hall of I	ndia, 2011.
7.	Uttam K.R	oy, "Web Technologies", Oxford University Press, 2011.	

17SOE005			NDROID APPLICATION EVELOPMENT	L	T	Р	С
				3	0	0	3
OBJE	CTIVES	:					
•	Understa	and	how to work with various mobile application developm	nent	fran	newo	rks.
٠	Learn ho	ow I	JI for mobile application development is done for And	lroid			
•	• Know the tools used in android application development						
٠	Learn th applicati		asic and important design concepts and issues of dev.	velop	omen	t of	mobile
٠	Understa	and	the process of android application development				
UNIT	[IN	TRODUCTION				9
	Classes an		 Characteristics and Benefits – Frameworks and Too Objects – Inheritance – Packages and Interfaces – St 				
UNIT	Π	US	SER INTERFACE				9
	tion to XI	-	ment – Multimodal and Multichannel UI – Desig –XML basics – Attributes – DTD - XML schema – S		·	<u> </u>	
UNIT	III	TC	OOLS				9
-			form – Android Application Architecture – Android Event handling – Packaging and Deployment - Apple				
UNIT	IV	AF	PPLICATION DESIGN				9
	Managar	men	t – Design patterns for limited memory – Work fl				
Memory Develop	-	echr	niques for composing Applications – Intents and Server.	vices	, 1	U	
Memory Develop	ment – To s – Anima	echr tion		vices			9
Memory Develop Graphics UNIT Storing a	ment – To s – Anima V and Retriev on based	echr tion AF ving		Ala	rms -	- Tele	ephony
Memory Develop Graphics UNIT Storing a – Locati	ment – To s – Anima V and Retriev on based	echr tion AF ving	PPLICATION DEVELOPMENT g data – Communication via the Web – Notification and	Ala: Proje	rms - ct oi	- Tele	
Memory Develop Graphics UNIT Storing a – Locati Disciplin	ment – To s – Anima V and Retriev on based	echr tion AF ving serv	PPLICATION DEVELOPMENT g data – Communication via the Web – Notification and vices – Apps with Firebase Real Time Database – P	Ala Proje	rms - ct oi	- Tele	ephony

•	Design and implement the user interfaces for mobile applications.
•	Design the mobile applications that are aware of the resource constraints of mobile devices.
•	Develop advanced mobile applications that access the databases and the web.
•	Develop useful mobile applications in the current scenario using Google Android Studio.
TE	XT BOOKS:
1.	Jeff Friesen, "Learn Java for Android Development: Java 8 and Android", 5th Edition Paperback – 2014.
2.	Share Conder, Lauren Darcey, "Android Wireless Application Development" Pearson 3 rd Edition.
RE	FERENCES:
1.	Zigurd Mednieks, Laird Dornin, G, Blake Meike and Masumi Nakamura, "Programming Android", O"Reilly, 2011.
2.	Jeff Mcherter, Scott Gowell, "Professional mobile Application Development", paperback, 2012, Wiley India Private Limited.
3.	Reto Meier, Wrox Wiley, "Professional Android 2 Application Development", 2010.
4.	Alasdair Allan, "iPhone Programming", O"Reilly, 2010.
5.	Wei-Meng Lee, "Beginning iPhone SDK Programming with Objective-C", Wrox Wiley, 2010.
6.	Stefan Poslad, "Ubiquitous Computing: Smart Devices, Environments and interactions", Wiley, 2009.
7.	Bear Cachil, "iOS in Practise", Paperback, 2012.
8.	Markus Jakobsson, "Mobile Authentication: Problems and Solutions", (SpringerBriefs in Computer Science), Paperback, 2012.
9.	Paula Beer, Carl Simmons, "Android App Development for Young Adults & The Rest of US", Paperback, 2015.
10.	Luc Bros., "Oracle Mobile Application Framework Developer Guide: Build Multiplatform Enterprise Mobile Apps", Paperback, 2014.
11.	Herbert Schildt, "Java: The Complete Reference", Ninth Edition – The McGraw-Hill, 2014.
12.	Heather Williamson, "XML: The Complete Reference", The McGraw-Hill, 2001.
13.	Tim Duckett, Apress, "Pro iOS Table VIews: for iPhone, iPad and IPod Touch", Paperback, 2012.

OPEN ELECTIVES OFFERED BY DEPARTMENT OF MECHANICAL ENGINEERING

17MOE	001	DIS	SASTER MANAGEMENT AND MITIGATION	L	Т	Р	C		
				3	0	0	3		
OBJEC	FIVE	S:							
•	To	make	the students understand basic concepts of disaster and hazard	ls if	India	ı			
•	To	study	the various natural disasters						
•	To	study	the various manmade disasters						
•	То	unders	stand the disaster management principles.						
•	To	study	the modern techniques used in disaster mitigation and manag	geme	nt.				
UNIT I		INT	TRODUCTION TO DISASTER			9			
Disaster N	Aanag	ement	portance of Hazard, Risk, Vulnerability and Disaster-Dimens t - India's Key Hazards –Vulnerabilities - National disas Management Cycle.						
UNIT II		NA	FURAL DISASTER			9			
cyclone, e	Natural Disasters- Meaning and nature of natural disaster; their types and effects. Floods, drought, cyclone, earthquakes, landslides, avalanches, volcanic eruptions, Heat and cold waves, Climatic change: global warming, Sea level rise, ozone depletion.								
UNIT II	Ι	AN	THROPOGENIC DISASTER			9			
			Nuclear disasters, chemical disasters, biological disasters, b re, air pollution, water pollution, deforestation and indust		-				

UNIT IV APPROACHES IN DISASTER MANAGEMENT

Pre-disaster stage (preparedness) - Preparing hazard zonation maps, Predictability/ forecasting & warning - Preparing disaster preparedness plan -Land use zoning - Preparedness through Information, education. Emergency Stage - Rescue training for search & operation - Immediate relief – Assessment surveys. Post Disaster stage – Rehabilitation - Social Aspect - Economic Aspectand Environmental Aspect.

9

9

UNIT V DISASTER MITIGATION

Meteorological observatory - Seismological observatory - Hydrology Laboratory and Industrial Safety inspectorate. Technology in Disaster Management -Emergency Management Systems (EMS) in the Disaster Management Cycle -Remote Sensing and Geographic Information Systems (GIS) in Disaster Management.

тот	AL: 45 Pl	ERIODS
OUT	COMES:	After successful completion of the course students able to
٠	Explain the	e basic concepts of disaster and hazards.
•	Understand	the various natural disasters.
•	Analyzethe	e various manmade disasters.
•	Explore the	e disaster management principles.
•	Compare th	ne modern techniques used in disaster mitigation andmanagement.
TEX	T BOOKS	
1.	Sharma.S.I	R, "Disaster management", A P H Publishers, 2011.
2.	Gupta.H.K	, "Disaster Management", University Press, India, 2003.
3.	D. B. N. I Publication	Moorthy, "Disaster Management: Text and Case studies", Deep and Deep as, 2007.
REF	ERENCES	:
1.	VenuGopa Distributor	l Rao. K, " Geoinformatics for Disaster Management", ManglamPublishers and rs, 2010.
2.	•	e, "Natural Hazards and Disaster Management: Vulnerability and Mitigation", lications, 2006.
3.	-	C, "Manuals on Natural Disaster management in India", NationalCentre for Janagement, IIPA, New Delhi, 2001.
4.	·	nar Sahoo, Tilotama Senapati, "Management and Mitigation of Natural , Regal Publication, 2013.
5.	Palanivel I Pvt. Ltd., 20	K., Saravanavel J., Gunasekaran S., "Disaster Management" , Allied Publishers 015

17M(DE002	E	NVIRC	DNMEN	TAL M	ANA	GEMI	ENT			L	Т	Р	С
											3	0	0	3
OBJI	ECTIV	ES:												
•	To und	erstar	d the im	portance o	of nature a	and stu	dv abou	it the	wate	r. air a	ind so	il pol	llutio	on
-				id waste n			uj ucou			.,		p		
•	To und	erstar	d the im	portance o	of nature a	and stu	dy abou	it the	wate	r pollu	tion a	and co	ontro	ol.
•	To und	erstar	d the im	portance o	of nature a	and stu	dy abou	it the	air p	ollutio	n.			
•			nd the imposed the imposed of the second secon	portance o ent.	of nature a	and stu	dy abou	it the s	soil I	olluti	on co	ntrol	as w	ell a
•	ISO 14	001 a	nd skills	for enviro	nmental p	erform	nance in	terms	s of l	egal c	ompli	ance,	poll	utio
	preven	tion a	nd contin	ual impro	vement									
UNII	ΓΙ		FURE OBLEN		SCO	PE	OF	EN	[VI]	RON	MEN	ITA	L	9
Global Kyoto	l warmin protocol	g –ac – Inc	id rain – lia's effo	e developi ozone dep rts for Env	oletion – e vironment	effects tal prot	and contection –	ntrol - - Publ	- clir	nate cl	nange	conv	venti NGC	ons - D's
Global Kyoto UNIT Fresh industr – BOD	l warmin protocol Г II water an rial, agrid C conside	g –ac – Ind WA nd its cultura	id rain – lia's effo TER P pollutio al and mu	ozone dep	vironment TION AN cal process astes – eff en Sag Cu	effects tal prot ND Co sses – fects or urve – S	and con ection – ONTR sources n stream Strategie	ntrol - Publ ROL s and us - lin es for	- clin lic po poll nitati	utants ons of	nange nd rol – po f dispo	conv le of] ollutionsal b	venti NGC	ons D's 9 ue t lutio
Global Kyoto UNIT Fresh industr – BOD	l warmin protocol Г II water an rial, agrid conside managen	g –ac – Inc WA nd its cultura ration ment -	id rain – lia's effo: TER P pollutio al and mu in stream - Marine	ozone dep rts for Env OLLUT n – Natur inicipal wa ns – Oxygo	TION AN ral process astes – eff en Sag Cu ent and its	effects tal prot ND C sses – fects or irve – S s mana	and con- ection – ONTR sources a stream Strategic agement	ntrol - Publ ROL s and us - lin es for	- clin lic po poll nitati	utants ons of	nange nd rol – po f dispo	conv le of] ollutionsal b	venti NGC on d oy dil nagen	ons - D's 9 ue te
Global Kyoto UNIT Fresh industr – BOE Water UNIT Polluta climate polluti	l warmin protocol Г II water an rial, agrid Conside manager Г III ant emissien – Globa ton surve	g –ac – Inc WA nd its cultura ration ment - AIR sions al effe	id rain – lia's effor TER P pollutio al and mu in stream Marine AND - sources ects – pro	ozone dep rts for Env OLLUT n – Natur inicipal wa ns – Oxygo environm	Vironment Vironment VION AN Cal process astes – eff en Sag Cu ent and its POLLU – effects und contro uality more	effects tal prot ND C sses – fects or urve – S s mana TION of air ol of ai nitorin	and con- ection – ONTR sources n stream Strategie agement N pollutio ir pollu g - Air	ntrol - Publ ROL a and as - lin es for to r tion - Act –	poll nitati susta ater a hun - Co Mar	utants ons of inable icts.	- pc dispc wate alth, of par ent of	conv le of l ollutio osal b r mar veget ticula air p	venti NGC Don d y dil nager cation tes ollut	ons - 9 ue tr ution ment 9 n and Aition
Global Kyoto UNIT Fresh industr – BOE Water UNIT Polluta climate polluti	l warmin protocol Г II water an rial, agrid conside manager Г III ant emissi e – Globa don surve level – I	g –ac – Inc WA nd its cultura ration ment - AIR sions al effect SOI	id rain – lia's effo TER P pollutio al and mu in stream - Marine R AND I - sources ects – pro d samplin of noise	ozone dep rts for Env OLLUT n – Natur unicipal wa ns – Oxyge environm NOISE I s and sink evention a ng – Air qu on people	Poletion – e vironment TION AN ral process astes – eff en Sag Cu ent and its POLLU – effects und contro uality mon – Environ	effects tal prot ND C sses – fects or irve – S s mana TTION of air of air of air of air nitorin	and con- ection – ONTR sources a stream Strategic agement N pollutio ir pollu g - Air , al noise	ntrol - Publ ROL s and us - lin es for s z - Wa on on tion - Act - contr	poll nitati susta ater a hun - Co Mar rol- n	utants ons of inable introl o ageme oise p	- pc dispc wate alth, of par ent of	conv le of l ollutio osal b r mar veget ticula air p	venti NGC Don d y dil nager cation ates ollut les 2	ons - D's 9 ue te ution ment 9 n and – Ai tion -

UNIT V ENVIRONMENTAL MANAGEMENT SYSTEM

Terminology – installation and common motives of EMS – Environmental standards – ISO 14000 (Series) – basicprinciples – Environmental Audit – Environmental Impact assessment - Trade rules and environmental protection– Practices For Waste Minimisation And Cleaner Production.

TOTAL : 45 PERIODS

9

- Explain the concept of sustainable development, climate change and roles of NGO's.
- Understand the sources and management of Water pollution.
- Discuss the causes of Air and Noise pollution and various management techniques.
- Analyse solid waste and environmental protection legislations.
- Explore the various Environmental Standards.

TEXT BOOKS:

- 1. N.K.Uberoi, "Environmental Management", Excel Books, New Delhi(2006).
- 2. Mallick A., "Environmental Science and Management", 1st Edition, Viva Books, 2014.
- 3. PrakashTalwar, "Environmental Management", Isha Books, 2006.

REFERENCES:

- 1. S. Vigneahwaran, M. Sundaravadivel and D.S. Chaudhary, **"EnvironmentalManagement"**, SCITECH Publications(India) Pvt.Ltd, Chennai & Hyderabad (2004).
- 2. <u>Mackenzie Davis</u>, <u>David Cornwell</u>., "Introduction to Environmental Engineering", 4th Edition, McGraw-Hill Companies Incorporated, 2008.
- *3. Mary K. Theodore, Louis Theodore, "Introduction to Environmental Management"*, *1st Edition, CRC Press, 2009.*
- 4. P.S. BhushanaRao., "Environment Management", Deep & Deep Publishers, 2007.
- 5. T.V. Ramachandra, Vijay Kulkarni, "Environmental Management", TERI Press New Delhi, 2009.

17MOE003		0	COMPOSITE MATERIALS	L	Τ	P	C
				3	0	0	3
OBJE	CTIVE	S:					
٠	To ena	able	the students understand the properties and design of compo	osite r	nater	ials	
•	To fan	nilia	rize the manufacturing methods for polymer matrix compo	osites			
•	To fan Comp		rize the students with the manufacturing methods for meta	l matr	ix		
•	To fan Compe		rize the students with the manufacturing methods for cerar	nic m	atrix		
•	To uno	ders	tand practical requirements associated with joining and ma	nufact	uring	5	
UNIT I			FRODUCTION TO REINFORCEMENT AND FERFACE	MA	ΓRI	X	12
Propertie	es – App s – Prop	olica ertie	bres – Glass fibre, Aramid fibre, Carbon fibre, boron fi ations – Comparison of fibres – Particulate and whisker reir es.Wettability – Effect of surface roughness – Interfacial bo ngth.	nforce	ment	s. N	latrix
UNIT I	II]	POLYMER MATRIX COMPOSITES					8
winding, composi	Pultru tes – Inj	tion ecti	– Thermal matrix composites – Hand layup and spray a, resin transfer moulding, autoclave moulding – Th on moulding, film stacking – Diaphragm forming – Therm interface. Mechanical properties – Fracture. Applications	ermoj oplast	plasti	c n	natrix
UNIT I	III 1	ME	TAL MATRIX COMPOSITES				8
	-		netallic matrices. Processing – Solid state, liquid state, de rface. Mechanical properties. Applications.	epositi	ion, i	nsitu	1. Sic
UNIT IV		IV CERAMIC MATRIX COMPOSITES					8
insitu ch	emical 1	reac	erials – Processing – Hot pressing, liquid infiltration techniq tion techniques – CVD, CVI, sol-gel process. Interface in l shock resistance – Applications.			-	
UNIT			OMETRICAL ASPECTS, FATIGUE AND C MPOSITE MATERIALS	REF	CP I	N	9

Unidirectional laminas – Volume fraction and weight fraction – Woven roving, in-plane random fibres – Fibre length and fibre orientation distribution – Voids – Fibre orientation during flow.

Fatigue – S-N curves – Fatigue behaviours of CMCs – Fatigue of particle and whisker reinforced composites – Hybrid composites – Thermal fatigue – Creep.

TOTAL : 45 PERIODS

OUTCOMES:	After successful completion of the course students able to
------------------	--

- Analyse the fiber reinforced Laminate for optimum design.
- Explore the concepts of Polymer Matrix Composites.
- Discuss different Metal Matrix Composites properties and manufacturing process.
- Understand the different Ceramic Matrix Composites properties.
 - Apply Fatigue and creep theory to study and analyse the Mechanical behaviour of Composites.

TEXT BOOKS:

1.	Krishnan K Chawla, "Composite Materials Science and Engineering", Springer, 2001.
2.	Mathews F L and Rawlings R D. "Composite Materials: Engineering and Science". CRC

- ^{2.} Mathews F L and Rawlings R D, "Composite Materials: Engineering and Science", CRC Press and Woodhead Publishing Limited, 2002.
- 3. Derek Hull, "An introduction to Composite Materials", Cambridge Univ. Press, 1988.

REFERENCES:

1.	"Handbook of Composites" – American Society of Metals, 1990
2.	Gibson, R.F., '' Principles of Composite Material Mechanics '', Second Edition, McGraw- Hill, CRC press in progress, 1994.
3.	Autar K. Kaw, "Mechanics of Composite Materials", Second Edition, CRC Press, 2006
4.	Halpin, J.C., "Primer on Composite Materials, Analysis", Technomic Publishing Co., 1984.
5.	Mallick, P.K. and Newman, S., "Composite Materials Technology: Processes and Properties" , Hansen Publisher, Munish, 1990.

17MOE004	RENEWABLE ENERGY SOURCES AND TECHNOLOGY	L	Т	
		3	0	ſ

• To educate the students scientifically the new developments in renewable energy studies.

С

3

9

9

9

9

Р

0

- To educate the concepts of various aspects of Solar energy and utilization
- To enable the students understand wind energy
- To understand the various aspects of Biomass energy and utilization
- To emphasize the significance of Green Energy Technologies.

UNIT I INTRODUCTION

World energy status, Current energy scenario in India, Environmental aspects of energy utilization, Environment - Economy - Energy and Sustainable Development, Energy planning. Reserves of Energy resources, Renewable energy resources - potentials -achievements – applications. Technical and social implications, issuesin grid integration of power from renewable energy sources, Comparison between different Renewable energy sources.

UNIT II SOLAR ENERGY

Basic concepts, Solar radiation, Measurement, Solar thermal systems, Flat plate and concentrating collectors, Solar passive space, Solar heating andcooling techniques, Solar desalination, Solar dryers, Solar furnaces, Solar pumping, Solar greenhouse, Solar thermal electricpower plant, Photovoltaics, p-n junctions. Solar cells, PV systems, Standalone, Grid connected solar power satellite, Calculation of energy through photovoltaic power generation, Hybrid systems, Solar Engines: Stirling, Brayton engines.

UNIT III WIND ENERGY

Energy available from wind, General formula, Lift and drag. Basis of Wind energy conversion, Effect of density, Frequency variances, Angle of attack, Wind speed, Windmill rotors, Horizontal axis and Vertical axis rotors, Determination of torque coefficient, Induction type generators, Working principle of wind power plant and Site selection.

UNIT V BIOMASS ENERGY

Biomass – usable forms- composition- fuel properties – applications, Biomassresources, Biomass conversion technologies - direction combustion - pyrolysis –gasification -anaerobic digestion, Bioethanol and Biodiesel Production -Economics - Recent developments.Energy farming, Biogas technology – Domestic biogas plants, Community and institutional biogas plants – design consideration –applications.

UNIT	V OTHER RENEWABLE ENERGY SOURCES	9
Social	nergy – Wave energy – Open and closed OTEC Cycles – small hydro –Geothermal en and environmental aspects.Fuel cell technology -types, principle of operat tions.Hydrogen energy production – Storage– transportation – utilization.	
TOT	AL: 45 PERIODS	
OUT	COMES: After successful completion of the course students able to	
•	Emphasis the current energy status and role of renewable energy sources.	
•	Explain the concepts of various aspects of Solar energy and utilization.	
•	Explore the various aspects of Wind energy and utilization.	
•	Familiarize with various aspects of Biomass energy and utilization.	
•	Understand various other renewable energy sources.	
TEX	Г BOOKS:	
1.	Ashok Desai V, "Non-Conventional Energy", Wiley Eastern Ltd, 1990	
2.	Mittal K.M, "Non-Conventional Energy Systems", Wheeler Publishing Co. Ltd, 1	997.
3.	Ramesh R, Kurnar K.U, "Renewable Energy Technologies" , Narosa Publishing I New Delhi, 1997.	House,
REFI	ERENCES:	
1.	Freris, L.L, "Wind Energy Conversion systems", Prentice Hall, UK, 1990	
2.	Veziroglu.T.N, "Alternative Energy Sources", Vol 5 and 6, McGraw-Hill, 1978.	
3.	S.P. Sukhatme, "Solar Energy", Tata McGraw Hill, New Delhi, 1997.	
4.	Kothari P, K C Singal and Rakesh Ranjan, " Renewable Energy Sources and Em Technologies ", PHI Pvt. Ltd., New Delhi, 2008.	erging
5.	G.D. Rai, "Non Conventional Energy Sources", Khanna Publishers, New Delhi, 19	999.

17MC)E005	I	NTELLECTUAL PROPERTY RIGHTS	L	Τ	Р	C
				3	0	0	3
OBJE	CTIV	ES:					
•	To er	nable	the students have an overall law of Property				
•	To u	nderst	and details about of the impacts of IP on industry				
•	To u	nderst	and the protecting cumulative innovations				
•	To u	nderst	and Litigation and Enforcement				
•	To te	ach st	udents about details current government policy about IPR				
UNIT	Ι	INT	RODUCTION			ç	9
in Know Copyrig	vledge	- IP, F	cepts - Brief History of - Institutions - Investing in Knowle Public Sponsorship & Prize - IP Law Basics Meansof IP P ecrets - Others - IP andAntitrustProperty.			Pate	ents
UNIT II 7							u
The log Plants: A	ic of I A Puzz	P - Pa le - O	E IMPACTS OF IP ON THE PLANT/SEED IN atenting vs. Company Secrets - Plant Patent Timeline En ptimal Design of IP - Scarce Ideas vs.Non-scarce ideas - ength - Required InventiveSteps - Optimal Size of Reward a	mpiric Polic	alEv y Le	x viden vers	in I
The log Plants: A Design -	ic of I A Puzz - Bread gime H	P - Pa le - O th - Le forizon	atenting vs. Company Secrets - Plant Patent Timeline En ptimal Design of IP - Scarce Ideas vs.Non-scarce ideas -	mpiric Polic and St	alEv y Le	Y viden vers ire - l	ce i in I
The log Plants: A Design - Cost Reg UNIT	ic of II A Puzz - Bread gime H III ypes of	P - Pa le - O th - Le orizon PR(atenting vs. Company Secrets - Plant Patent Timeline En ptimal Design of IP - Scarce Ideas vs.Non-scarce ideas - ength - Required InventiveSteps - Optimal Size of Reward a ntalCompetitionRegime- Economic Effects of Exemptions	mpiric Polic and St	calEv y Le ructu	riden vers ure - I	ce i in I Entr 9
The log Plants: A Design - Cost Reg UNIT	ic of I A Puzz - Bread gime H III ypes of Levers a	P - Pa le - O th - Le orizon PR(Cum nd Pr	Attenting vs. Company Secrets - Plant Patent Timeline En ptimal Design of IP - Scarce Ideas vs.Non-scarce ideas - ength - Required InventiveSteps - Optimal Size of Reward a ntalCompetitionRegime- Economic Effects of Exemptions DTECTING CUMULATIVE INNOVATIONS ulativeness - Basic v. Applied Research - Research Tool Q	mpiric Polic and St	calEv y Le ructu	riden vers ire - I	ce i in I Entr 9
The log Plants: A Design - Cost Rea UNIT Three T Policy L UNIT Litigatio Technica Adoptio	ic of I A Puzz - Bread gime H III ypes of Levers a IV on and al Mea on - Net	P - Pa le - O th - Le orizon PR(Cum and Pr LIT Enfor ns - 1 works	Attenting vs. Company Secrets - Plant Patent Timeline En ptimal Design of IP - Scarce Ideas vs.Non-scarce ideas - ength - Required InventiveSteps - Optimal Size of Reward a ntalCompetitionRegime- Economic Effects of Exemptions DTECTING CUMULATIVE INNOVATIONS ulativeness - Basic v. Applied Research - Research Tool Q ospecting - Open Source.	mpiric Polic and St and	calEv y Le ructu Ladc emer Diffu etwo	riden vers ure - 1 ders -	ce i in I Entr 9 - 9 IP b , an
The log Plants: A Design - Cost Rea UNIT Three T Policy L UNIT Litigatio Technica Adoptio	ic of I A Puzz - Bread gime H III ypes of evers a IV on and al Mea on - Net al Netw	P - Pa le - O th - Le orizon PR(Cum nd Pr LIT Enfor ns - I works vorks	Atenting vs. Company Secrets - Plant Patent Timeline En- ptimal Design of IP - Scarce Ideas vs.Non-scarce ideas - ength - Required InventiveSteps - Optimal Size of Reward a ntalCompetitionRegime- Economic Effects of Exemptions DTECTING CUMULATIVE INNOVATIONS ulativeness - Basic v. Applied Research - Research Tool Q ospecting - Open Source. IGATION AND ENFORCEMENT cement - Remedies for Infringement - How they matter E Limited Sharing of Copyrighted Works TechnologyTran and Network Effects Conceptsand Issues - Direct vs. Indir	mpiric Polic and St and	calEv y Le ructu Ladc emer Diffu etwo	riden vers ure - 1 lers -	ce i in I Entr 9 - 9 IP b , an
The log Plants: A Design - Cost Rea UNIT Three T Policy L UNIT Litigatio Technic: Adoptio - Physic: UNIT A Privat Public In Treaties	ic of I A Puzz Bread gime H III ypes of Levers a IV on and al Mea on - Net al Netv V te-Publ ncentiv - Paris	P - Pa le - O th - Le orizon PR(Cum nd Pr LIT Enfor ns - I works vorks INN ic Pan es - In Conv	Attenting vs. Company Secrets - Plant Patent Timeline En- ptimal Design of IP - Scarce Ideas vs.Non-scarce ideas - ength - Required InventiveSteps - Optimal Size of Reward a ntalCompetitionRegime- Economic Effects of Exemptions DTECTING CUMULATIVE INNOVATIONS ulativeness - Basic v. Applied Research - Research Tool Q ospecting - Open Source. IGATION AND ENFORCEMENT cement - Remedies for Infringement - How they matter E Limited Sharing of Copyrighted Works TechnologyTran and Network Effects Conceptsand Issues - Direct vs. Indin BusinessStrategies- System Competition vs. Standard Con	mpiric Polic and St and	emer Diffu etwo Mixe ade F	riden vers ure - 1 lers - lers -	ce i in I Entr 9 9 9 IP b , an ffec 9 vate y an
The log Plants: A Design - Cost Rea UNIT Three T Policy L UNIT Litigatio Technic: Adoptio - Physic: UNIT A Privat Public In Treaties Efficient	ic of I A Puzz Bread gime H III ypes of Levers a IV on and al Mea on - Net al Netv V te-Publ ncentiv - Paris t Proteo	P - Pa le - O th - Le orizon PR(Cum and Pr LIT Enfor ns - I works vorks INN ic Pau es - In Convection -	atenting vs. Company Secrets - Plant Patent Timeline En ptimal Design of IP - Scarce Ideas vs.Non-scarce ideas - ength - Required InventiveSteps - Optimal Size of Reward a ntalCompetitionRegime- Economic Effects of Exemptions DTECTING CUMULATIVE INNOVATIONS ulativeness - Basic v. Applied Research - Research Tool Q ospecting - Open Source. IGATION AND ENFORCEMENT cement - Remedies for Infringement - How they matter E Limited Sharing of Copyrighted Works TechnologyTran and Network Effects Conceptsand Issues - Direct vs. Indin BusinessStrategies- System Competition vs. Standard Con OVATION TODAY tnership - University Innovation - Government Grant Pro movation in the Global Economy – WhoPatents and Wher vention, BerneConvention, TRIPS - PCT and WIPO - Nat	mpiric Polic and St and	emer Diffu etwo Mixe ade F	riden vers ure - 1 lers - lers -	ce i in I Entr 9 9 9 1P b , an ffect 9 vate y an

•	Explain the basics of intellectual property.
•	Discuss the impacts of IP on Plants/Seed industry
•	Explore protecting methods of innovations.
•	Understand the concept of litigation and enforcement.
•	Learn Various treaties and acts on Innovation.
TEXT	T BOOKS:
1.	Christopher May, Susan K. Sell, "Intellectual Property Rights", Lynne Rienner Publishers. 2005
2.	N. K. Acharya, "Text Book on Intellectual Property Rights" Asia Law House, 2010.
3.	R Radhakrishnan and S. Balasubramanian, "Intellectual Property Rights: Text and Cases", First Edition, Excel books New Delhi, 2008
REFE	CRENCES:
1.	Subbaram, N. R. "Handbook Of Indian Patent Law And Practice", S. Viswanathan Printers And Publishers Pvt. Ltd., 1998.
2.	N.S. Gopalakrishnan & T.G. Agitha, "Principles Of Intellectual Property". 2 nd Edition, Eastern Book Company, 2014.
3.	Tanya Frances Aplin, Jennifer Davis, "Intellectual Property Law: Text, Cases and Materials", 3 rd Edition, Oxford University Press, 2017.
4.	Neeraj Pandey, Khushdeep Dharni, "Intellectual Property Rights", PHI Learning, 2014.
5.	Rachna Singh Puri, Arvind Viswanathan, "Practical Approach to Intellectual Property Rights", I. K. International Publishing House Pvt. Ltd. Delhi 2009.

ENGINEERING ECONOMICS AND FINANCIAL ACCOUNTING

9

9

9

9

9

OBJECTIVES:

•	To make the	ne students understand the basic concepts of managerial economics.
•	To make the	ne students understand the basics of demand, supply and related concepts.
•	To make the	ne students understand various production and cost concepts
•	To make th	ne students understand and apply the basic concepts of pricing.
•	To make the	ne students understand and apply the basic concepts of capital budgeting.

UNIT I INTRODUCTION

Managerial Economics - Relationship with other disciplines - Firms: Types, objectives and goals - Managerial decisions - Decision analysis.

UNIT II DEMAND & SUPPLY ANALYSIS

Demand - Types of demand - Determinants of demand - Demand function – Demand elasticity –Demand forecasting - Supply – Determinants of supply - Supply function - Supply elasticity.

UNIT III PRODUCTION AND COST ANALYSIS

Production function - Returns to scale - Production optimization - Least cost input - Isoquants – Managerial uses of production function.

Cost Concepts- Cost function - Determinants of cost - Short run and Long run cost curves Cost Output Decision - Estimation of Cost.

UNIT IVPRICINGDeterminants of Price - Pricing under different objectives and different market structures
- Price discrimination - Pricing methods in practice.UNIT VCAPITAL BUDGETING

Investments - Risks and return evaluation of investment decision - Average rate of return - Payback Period - Net Present Value - Internal rate of return.

TOTAL: 45 PERIODS

OUTCOMES:		After successful completion of the course students able to
•	Explain the basics of managerial economics and decisions.	

•	Analyse the concepts of demand and supply.
•	Discuss various functions of production and cost analysis concepts.
•	Understand various pricing techniques.
•	Explore the concept of capital budgeting.
TEX	Г BOOKS:
1.	R. Kesavan, C.Elanchezhian, T. Sunder selvin, "Engineering Economics And Financial Accounting" , laxmi publications (p) Ltd. First edition, 2005.
2.	M. Kasi Reddy, S. Saraswathy, "Managerial Economics and Financial Accounting", Prentice Hall of India Private Limited,2007.
3.	McGuigan, Moyer and Harris, 'Managerial Economics ; Applications, Strategy and Tactics', Thomson South Western, 10th Edition, 2005.
REFI	ERENCES:
1.	Salvatore Dominick, 'Managerial Economics in a global economy'. Thomson South Western, 4th Edition, 2001.
2.	Prasanna Chandra. 'Fundamentals of Financial Management', Tata Mcgraw Hill Publishing Ltd., 4th edition, 2005.
3.	N. Samuelson. Paul A and Nordhaus W.D., 'Economics', Tata Mcgraw Hill Publishing Company Limited, New Delhi, 2004.
4.	Paresh Shah, 'Basic Financial Accounting for Management', Oxford University Press, N ew Delhi, 2007.
5.	<i>R. Panneerselvam, "Engineering Economics", PHI Learning PVT. Ltd. Delhi. 2013.</i>

			USTRIAL SAFETY ACTS AND NDARDS	L	T	Р	С
				3	0	0	3
OBJE	CTIVI	ES:					
•	To make the students to understand basic concepts of factories act.						
•	To understand basic concepts of Environment act.						
To study the various hazardous chemical rules							
To study the various Indian Boiler ,industry and Electricity act							
To study the various international acts and standards							
UNIT I FACTORIES ACT – 1948		TORIES ACT – 1948				9	

Statutory authorities – inspecting staff, health, safety, provisions relating to hazardous processes, welfare, working hours, employment of young persons – special provisions – penalties and procedures-Tamilnadu Factories Rules 1950 under Safety and health chapters of Factories Act 1948

UNIT II ENVIRONMENT ACT – 1986

General powers of the central government, prevention, control and abatement of environmental pollution-Biomedical waste (Management and handling Rules, 1989-The noise pollution (Regulation and control) Rules, 2000-The Batteries (Management and Handling Rules) 2001- No Objection certificate from statutory authorities like pollution control board. Air Act 1981 and Water Act 1974: Central and state boards for the prevention and control of air pollution-powers and functions of boards – prevention and control of air pollution and water pollution – fund – accounts and audit, penalties and procedures.

UNIT III MANUFACTURE, STORAGE AND IMPORT OF HAZARDOUS CHEMICAL RULES 1989

Definitions – duties of authorities – responsibilities of occupier – notification of major accidents – information to be furnished – preparation of offsite and onsite plans – list of hazardous and toxic chemicals – safety reports – safety data sheets

UNIT IV OTHER ACTS AND RULES

Indian Boiler Act 1923, static and mobile pressure vessel rules (SMPV), motor vehicle rules, mines act 1952, workman compensation act, rules – electricity act and rules – hazardous wastes (management and handling) rules, 1989, with amendments in 2000- the building and other construction workers act 1996., Petroleum rules, Gas cylinder rules-Explosives Act 1983-Pesticides Act

UNIT V INTERNATIONAL ACTS AND STANDARDS

9

9

9

9

Occupational Safety and Health act of USA (The Williames - Steiger Act of 1970) – Health and safety work act (HASAWA 1974, UK) – OSHAS 18000 – ISO 14000 – American National Standards Institute (ANSI)

TOTAL: 45 PERIODS

OUT	COMES:	After successful completion of the course students able to					
•	List out in	portant legislations related to health, Safety and Environment.					
•	• Creating requirements mentioned in factories act for the prevention of accidents.						
•	Analyze th	he health and welfare provisions given in factories act.					
٠	Evaluate the	he statutory requirements for an Industry on registration and license					
•	Learn the	various international acts and standards.					
TEX	T BOOKS	:					
1.	The Facto	ories Act 1948, Madras Book Agency, Chennai, 2000					
2.	The Envi	ronment Act (Protection) 1986, Commercial Law Publishers, Delhi, 1986.					
3.	L. M. Deshmukh, Industrial Safety Management, Tata McGraw Hill, NewDelhi, 2005.						
REF	ERENCES	5:					
1.	The manu Agency,	ufacture, storage and import of hazardous chemical rules 1989, Madras Book					
2.	The India	n boilers act 1923, Commercial Law Publishers (India) Pvt.Ltd., Allahabad					
3.	S. N. Dhyani, International Labour Organisation and India: In Pursuit of Social Justice, National, 1977.						
4.	The Mines Act 1952, Commercial Law Publishers (India) Pvt.Ltd., Allahabad.						
5.		revention and control of pollution) act 1974, Air (Prevention and control of act 1981, Commercial Law Publishers (India) Pvt.Ltd., New Delhi.					

171100000	GLOBAL WARMING AND CLIMATE
17MOE008	CHANGE

L	Т	Р	С	
3	0	0	3	

9

9

9

9

OBJECTIVES:

•	To make t	he students to understand basic concepts of disaster and hazards if India.			
•	To study the	To study the various natural disasters.			
•	To study the various manmade disasters.				
•	To understand the disaster management principles.				
•	To study the modern techniques used in disaster mitigation and management.				
			9		

UNIT I EARTH'S CLIMATE SYSTEM

Role of ozone in environment-ozone layer-ozone depleting gases - Green House Effect, Radiative Effects of Greenhouse Gases - The Hydrological Cycle - Green House Gases and Global Warming – Carbon Cycle.

UNIT II ATMOSPHERE AND ITS COMPONENTS

Importance of Atmosphere-Physical Chemical Characteristics of Atmosphere - Vertical structure of the atmosphere-Composition - Atmospheric stability-Temperature profile of the atmosphere - Lapse rates –Temperature inversion-effects of inversion on pollution dispersion.

UNIT III IMPACTS OF CLIMATE CHANGE

Causes of Climate change : Change of Temperature in the environment - Melting of ice Pole-sea level rise-Impacts of Climate Change on various sectors –Agriculture, Forestry and Ecosystem – Water Resources – Human Health –Industry, Settlement and Society – Methods and Scenarios – Projected Impacts for Different Regions– Uncertainties in the Projected Impacts of Climate Change – Risk of Irreversible Changes.

UNIT IV OBSERVED CHANGES AND ITS CAUSES

Climate change and Carbon credits- Initiatives in India - Kyoto Protocol-Intergovernmental Panel on Climate change- Climate Sensitivity and Feedbacks –The Montreal Protocol – UNFCCC – IPCC –Evidences of Changes in Climate and Environment – on a Global Scale and in India .

UNIT V CLIMATE CHANGE AND MITIGATION MEASURES

Clean Development Mechanism –Carbon Trading - examples of future Clean Technology Biodiesel – Natural Compost – Eco - Friendly Plastic – Alternate Energy – Hydrogen – Bio-fuels – Solar Energy – Wind – Hydroelectric Power – Mitigation Efforts in India - Adaptation funding- Key Mitigation Technologies – Energy Supply – Transport – Buildings – Industry – Agriculture – Forestry - Carbon sequestration – Carbon capture and storage (CCS)- Waste MSW & Bio waste, Biomedical, Industrial waste – International and Regional cooperation.

TOTAL : 45 PERIODS

OUTC	OMES:	After successful completion of the course students able to				
•	Analysethe earth's climate system.					
•	Explain the various layers and composition of earth atmosphere.					
•	Discuss th	e impacts of Climate Change on various sectors.				
•	Explore va	arious observed climate changes and its causes.				
•	Understand the concept of mitigation measures against global warming.					
TEXT	BOOKS:					
1.	Dash Sushil Kumar,"Climate Change – An Indian Perspective", Cambridge					
	University Press (India Pvt. Ltd), 2007.					
2.	J. Houghton, "Global Warming The Complete Briefing", Cambridge Univ. press, 2015.					
3.	Jerry Silve	er, "Global Warming and Climate Change Demystified", McGraw-Hill, 2008.				
REFEI	RENCES:					
1.	Watson, Robert T., Marufu C. Zinyowera, and Richard H. Moss. "Impacts, adaptations and mitigation of climate change: scientific-technical analyses. 1996.					
2.	J.M. Walld	ace and P.V. Hobbs, "Atmospheric Science", Elsevier / AcademicPress 2006.				
3.	Jan C. van Dam, Impacts of "Climate Change and Climate Variability on Hydrological Regimes", Cambridge University Press, 2003.					
4.	T. M. Letcher "Climate Change: Observed impacts on planet Earth", Elsevier, 2015					
5.	Farmer, G. Thomas, Cook, John, "Climate Change Science: A Modern Synthesis", Springer Netherlands, 2013.					

LIST OF ONE CREDIT COURSES

17EOC001 SP		SPI	CE SIMULATION FOR CIRCUIT	ГS	L	Т	Р	C
					0	0	2	1
OBJEC	TIVE	S:						
•			ne students to stimulate the behavior of s lation software.	semicond	ucto	r de	vices	using
•			e students to stimulate the behavior of Analation software.	alog elec	tron	ic ci	rcuits	using
•			e students to stimulate the behavior of Diglation software.	gital elec	tron	ic ci	cuits	using
1. Simula	tion of	rectifi	er circuits and clipper/clamper circuit.					
2. Simula	tion of	any or	e transistor biasing circuit.					
3. Simulation of CE single/double stage amplifier circuit.								
4. Simulation of any one power amplifier circuit.								
5. Simula	tion of	any or	ne JFET/MOSFET amplifier circuit.					
6. Simula	tion of	any or	ne negative feedback circuit.					
7. Simula	tion of	encod	er/multiplexer circuit.					
8. Simulation of decoder/de multiplexer circuit.								
9. Simulation of any one flip-flop circuit using gates.								
10. Simul	lation of	f any c	one register/counter circuit.					
				TOTA	L :3	60 P	ERI	ODS
OUTCO	OMES	5: 4	After successful completion of the course s	students a	able	to		

٠	Design the electronics circuits using software tools like NGspice/LTSpice/Multisim.
٠	Simulate various analog and digital circuits using NGspice/LTSpice/Multisim

)C002	YO	GA AND MEDITATION		L	T	P	С
					1	0	0	1
OBJE	CTIV	ES:						
•	To st	tudy the	e origin of yoga, meaning of yoga and typ	bes of yoga				
•	to pr	ovide k	nowledge on yogic practices and modern	n concept of y	oga			
•		rovide l as and y	knowledge on different types of asanas ar yogas	nd know the di	ffere	enco	e be	twee
UNI	ΊΤΙ	INTI	RODUCTION					5
Yoga/T		Yoga: Yoga.	hy)-Meaning of meditation and its types a Hatha Yoga , Raja Yoga, Laya Yoga, Bh	akti Yoga, Gy	yan Y			
UNI'	UNIT II YOGIC PRACTICES AND MODERN CONCEPT OF YOGA							
Princip Pranaya	les of ama, its	YOG Yogic types a	A Practices: Meaning of Asana, its types and principles- Meaning of Kriya its type	s and princip	les-	Me Nat	eani curoj	path
Princip Pranaya Hydrot importa	les of ama, its herapy-	YOG Yogic types a Electro	FA Practices: Meaning of Asana, its types and principles- Meaning of Kriya its type therapy, Messotherapy-Acupressure, Psychology of mantras- Different mudra	s and princip es and principl acupuncture-	les- les- M	Me Nat	eani curoj	ng o path
Princip Pranaya Hydrot importa UNI Classif praline various	les of ama, its herapy- ance of F III fication position	YOG types a Electro prayer- ASA of Asa n & top ns-Diffe	Practices: Meaning of Asana, its types and principles- Meaning of Kriya its type therapy, Messotherapy-Acupressure, Psychology of mantras- Different mudra NAS anas and its Mechanism- Cultural Asan sy-turvy)- Meditative Asana and Relaxat erence between Asana and Exercise-Diffe	s and princip es and princip acupuncture- s during praye a (standing, s ive Asana. Eff	les- les- Mers.	Ma Nat ean	eani curoj iing supi Asar	ng o path ar 5 inlin
Princip Pranaya Hydrot importa UNI Classif praline various	les of ama, its herapy- ance of F III fication position 5 System	YOG types a Electro prayer- ASA of Asa n & top ns-Diffe	Practices: Meaning of Asana, its types and principles- Meaning of Kriya its type therapy, Messotherapy-Acupressure, Psychology of mantras- Different mudra NAS anas and its Mechanism- Cultural Asan sy-turvy)- Meditative Asana and Relaxat erence between Asana and Exercise-Diffe	s and princip es and princip acupuncture- s during praye a (standing, s ive Asana. Eff	les- les- mers. sittin fect n Pra	Mo Nat fean	eanii curoj iing supi supi Asar yam	ng path ar 5 inlin nas c na ar
Princip Pranaya Hydroti importa UNI Classif praline various deep br	les of ama, its herapy- ance of F III fication position 5 System	YOG types a Electro prayer- ASA of Asa n & top ns-Diffe -Yogic	Practices: Meaning of Asana, its types and principles- Meaning of Kriya its type therapy, Messotherapy-Acupressure, Psychology of mantras- Different mudra NAS anas and its Mechanism- Cultural Asan sy-turvy)- Meditative Asana and Relaxat erence between Asana and Exercise-Diffe	s and princip es and princip acupuncture- s during praye a (standing, s ive Asana. Efference betwees TOTAL	les- Mers. Sittin fect n Pr: :15	Mo Nat fean	eanii curoj iing supi supi Asar yam	ng o path ar 5 inlin nas o na ar
Princip Pranaya Hydroti importa UNI Classif praline various deep br	les of ama, its herapy- ance of F III fication position System reathing	YOG types a Electro prayer- ASA of Asa n & top ns-Diffe -Yogic	Practices: Meaning of Asana, its types and principles- Meaning of Kriya its types therapy, Messotherapy-Acupressure, Psychology of mantras- Different mudra NAS anas and its Mechanism- Cultural Asan sy-turvy)- Meditative Asana and Relaxat erence between Asana and Exercise-Diffe Diet.	s and princip es and princip acupuncture- s during praye a (standing, s ive Asana. Efference betwees TOTAL	les- Mers. Sittin fect n Pr: :15	Mo Nat fean	eanii curoj iing supi supi Asar yam	ng o path ar 5 inlin nas o na ar
Princip Pranaya Hydroti importa UNI Classif praline various deep br	les of ama, its herapy- ance of F III fication position System reathing COM	YOG Yogic types a Electro prayer- ASA of Asa n & top ns-Diffe -Yogic ES:	Practices: Meaning of Asana, its types and principles- Meaning of Kriya its type therapy, Messotherapy-Acupressure, Psychology of mantras- Different mudra NAS anas and its Mechanism- Cultural Asan sy-turvy)- Meditative Asana and Relaxat erence between Asana and Exercise-Diffe Diet.	s and princip es and princip acupuncture- s during praye a (standing, s ive Asana. Efference betwees TOTAL	les- Mers. Sittin fect n Pr: :15	Mo Nat fean	eanii curoj iing supi supi Asar yam	ng o path ar 5 inlin nas o na ar
Princip Pranaya Hydroti importa UNIT Classif praline various deep br OUT	les of ama, its herapy- ance of F III fication position System reathing COM	YOG Yogic types a Electro prayer- ASA of Asa n & top ns-Diffe -Yogic ES: ifferent ntain bo	FA Practices: Meaning of Asana, its types and principles- Meaning of Kriya its type therapy, Messotherapy-Acupressure, Psychology of mantras- Different mudra NAS anas and its Mechanism- Cultural Asan sy-turvy)- Meditative Asana and Relaxat erence between Asana and Exercise-Diffe Diet. After successful completion of the course t Yogas and Asanas.	s and princip es and princip acupuncture- s during praye a (standing, s ive Asana. Efference betwees TOTAL	les- Mers. Sittin fect n Pr: :15	Mo Nat fean	eanii curoj iing supi supi Asar yam	ng o path ar 5 inlin nas o na ar
Princip Pranaya Hydroti importa UNIT Classif praline various deep br OUT	les of ama, its herapy- ance of F III fication position System reathing COMI Do d Mair	YOG Yogic types a Electro prayer- ASA of Asa n & top ns-Diffe -Yogic ES: ifferent ntain bo KS:	FA Practices: Meaning of Asana, its types and principles- Meaning of Kriya its type therapy, Messotherapy-Acupressure, Psychology of mantras- Different mudra NAS anas and its Mechanism- Cultural Asan sy-turvy)- Meditative Asana and Relaxat erence between Asana and Exercise-Diffe Diet. After successful completion of the course t Yogas and Asanas.	s and princip acupuncture- s during praye a (standing, s ive Asana. Efference betwees TOTAL : e students able	les- Mers. sittin fect n Pr :15 to	Mat Nat ean of A ana PE	eanii uroj iing supi Asar yam	ng o path ar 5 inlin nas o na ar OD
Princip Pranaya Hydroti importa UNIT Classif praline various deep br OUT • • •	les of ama, its herapy- ance of F III fication position System reathing COMI Do d Mair F BOO B.1	YOG Yogic types a Electro prayer- ASA of Asa n & top ns-Diffe -Yogic ES: ifferent ntain bo KS: K.S Iye	Practices: Meaning of Asana, its types and principles- Meaning of Kriya its types therapy, Messotherapy-Acupressure, Psychology of mantras- Different mudra NAS anas and its Mechanism- Cultural Asan osy-turvy)- Meditative Asana and Relaxat erence between Asana and Exercise-Diffe Diet. After successful completion of the course t Yogas and Asanas. ody physically and mentally.	s and princip acupuncture- s during praye a (standing, s ive Asana. Efference betwees TOTAL : e students able	les- Mers. sittin fect n Pr :15 to w Y	Materia National Nati	eanii uroj iing supi Asar yam CRI	ng o path ar 5 inlin nas o na ar OD

17EC	C003	ST	RES	SS M.	AN	JA	G	GEN	CM	E	NT	1							L	T	Р	С	
																			1	0	0	1	
OBJE	CTIV	ES:																					
•	To ur	ndersta	and tl	he nat	ure	of	f str	stres	ess, s	soi	ourco	es c	of st	ress	an	ıd bo	dy's	rea	ctio	ns t	to st	ress	
٠	• To study the strategies of stress management and prevention and prevent								tio	n of	stres	S											
•	To st	udy the	e stra	tegies	s of s	syn	nth	thesi	esis														
UNI	ΤI	UND	DER	STAI	ND)IN	NG	GΊ	TH	HE	E N	[A]	۲UI	RE	0	F S'	ΓRI	ESS	5			5	
	eaning over and N																		oss t	the	Life	espan	-
UNI	ГП	STR PRE				OF	FS	ST	ΓR	RES	SS	M	AN	IAG	E	ME	NT	A	ND			5	
Spiritua College	iging St al Relax and Oc nflict in	ation N cupati	Metho ional	ods-Ph Stress	hysic	ical	ıl M	Metl	etho	ods	of	Stre	ess l	Redu	ıct	ion-	Prep	oarii	ng fo	or th	ne F	uture	:
UNI	Г III	STR	RATE	EGIE	ES (OF	FS	SY	YN	T	HF	ESI	I S A	١N)]	PRE	EVE	2N7	OI T	N		5	
Resilie	nce and	Stress-	-Opti	mal F	unct	tio	onir	ing-	g-M	Iak	king	g Ch	nang	ges L	Las	st.							
																ΤΟ	ΓA	L:1	5 P	EF	RIC	DDS	
OUT	COMI	ES:	After	r succe	essfi	ful o	l co	omp	nple	etio	on c	of th	ne c	ours	e s	tude	nts a	ıble	to				
•	Unders	stand th	the na	ture o	of str	ress	SS																
•	Comp	rehend	l the p	osycho	ologi	gica	al a	and	nd pl	ohy	/sio	logi	ical	effe	cts	s of s	tress	5.					
•	Assess	indivi	idual	risk fa	actor	ors a	s as	s rel	elate	ted	l to	stre	ess.										
TEXT	BOO	KS:																					
1.		er, J. A												0	em	ent a	nd p	orev	enti	on:			
2.	Gina	Lake,	"From	m Stre	ess te	to S	Stil	tilln	ness	ss: [Тос	ols f	for i	nner	r P	eace	" Ki	ndle	e, 20)12.			
3.		Emmet vorked		-	•								-	ır str	es	s:a]	hanc	lboc	ok fo	or tł	ne		

17EOC004 PCB DESIGN AND FABRICATION

L T P C

1

0 0

1

OBJECTIVES:

•	To study	the design of schematic electronic circuits using software	
•	To impar	t knowledge on simulation of electronic circuits	
•	To impar	t knowledge on PCB Layout design	
UNIT I		GN OF SCHEMATIC ELECTRONIC CIRCUITS G SOFTWARE	5

PCB layout design software- Wire, bus, junction, probe, voltage source, current source, and ground etc. used in circuit simulation software- Create new project and schematic file- Search, add and create new electronic part. Edit, Connect or wire the circuit.

UNIT II SIMULATION OF ELECTRONIC CIRCUITS

5

Test RC, LC or RLC based electronic circuit- Test diode, transistor or MOSFET based electronicCircuit- Test analog/digital IC based electronic circuit- Transient analysis of RC, LC, or RLC based electronic circuit-Bias point analysis or characteristic curve of diode, transistor or MOSFET based electronic circuit- Frequency response (AC Analysis) of RC, diode, andtransistor etc. based electronic circuit.

UNIT III PCB LAYOUT DESIGN

5

Net list file, back annotation, bill of material, foot print, PTH, track width, mil, etc- Transfer circuit to PCB layout- Search, add and create footprint- Place, route and generate PCB Layout-Drawing and printing layout on board, photo etching process, masking process- PCB manufacturing techniques.

			TOTAL:15 PERIODS		
OUTC	OMES:	After successful completion of the cours	e students able to		
•	State the fe	eatures of different circuit simulation tools	S.		
•	• Define the general terms used in circuit simulation.				
•	Simulate e	lectronic Circuits.			
•	Fabricate a	PCB.			
TEXT	BOOKS:				

1.	Bossart ,"Printed Circuit Boards: Design and Technology" TMH, New Delhi 2008 Edition.
2.	Multisim user manual by National Instruments. www.ni.com
3.	Orcade online manual by Cadence .www.cadence.com

	C 005	PE	ERS	ON	ALI	TYI	DEV	ELO)PM	ENT	[L	Т	Р	C
														1	0	0	1
OBJEC	CTIVI	ES:															
•	To st	udy tł	the s	elf aı	nalysi	is and	l impo	ortanc	e of s	elf co	onfi	idence	¢				
٠	To st	udy tł	the i	mpor	tance	e of at	ttitude	e and 1	motiv	ations	S						
٠	To st	udy tł	the g	goal s	etting	gs and	d time	e mana	ageme	ent							
UNIT	I	SELI	FA	NAL	YSIS	S AN	D CI	REAT	TIVIT	'Y							5
SWOT A box think						outes,	Impo	ortance	e of Se	elf Co	onf	idence	e, Self	Este	em	- 0	ut of
UNIT	II	ATT	TT	J DE	AND	MO	TIVA	TION	Ī								5
Factors in motivation		0		,		0				n Att	itu	de, Et	iquette	e-Fac	tor	s of	
UNIT	III	GOA	лт 6														
																	5
	anager	nent	Goa	ls, Bl	ue pr	rint fo					ier '	To do	list, F	riori	tizi	ng v	boals. work
Time Ma Value of	anager f time,	nent Diagn	Goa nosi	ls, Bl	ue pr	rint fo Manag	gemer		ekly]	Plann	ier '	To do	list, F AL:1	riori 5 PI	tizi	ng v	boals. work
Time Ma	anager f time, OME	nent Diagn	Goa nosi	ls, Bl ng Ti fter si	ue pr ime N ucces	int fo Manag	gemer	nt, We letion	of the	Plann e cour	ier '] rse	To do FOT.	list, F AL:1 nts abl	Priori 5 PI e to	tizi E R	ng v IO	boals. work
Time Ma Value of	anager f time, OMF	nent Diagn 2 S: velop	Goa nosi A inte	ls, Bl ng Ti fter si r per	ue pr ime N ucces	int fo Manag ssful c	gemer compl s and	nt, We	of the	Plann e cour tive g	ier '] rse goal	To do FOT.	list, F AL:1 nts abl	Priori 5 PI e to	tizi E R	ng v IO	boals. work
Time Ma Value of	anager f time, OMF Dev Dev	nent Diagn CS: velop	Goa nosi A inte	ls, Bl ng Ti fter st er per	ue pr ime N ucces sonal	int fo Manag ssful c I skills on and	gemer compl s and d prol	nt, We letion be an	of the effec	Plann e cour tive g g skil	ier ' 7 cse goai	To do F OT stude	list, F AL:1 nts abl	Priori 5 PI e to	tizi E R	ng v IO	boals. work
Time Ma Value of OUTC • •	OME Dev Dev Re-	nent Diagn ZS: velop	Goa nosi A inte	ls, Bl ng Ti fter st er per	ue pr ime N ucces sonal	int fo Manag ssful c I skills on and	gemer compl s and d prol	nt, We letion be an blem s	of the effec	Plann e cour tive g g skil	ier ' 7 cse goai	To do F OT stude	list, F AL:1 nts abl	Priori 5 PI e to	tizi E R	ng v IO	boals. work
Time Ma Value of OUTC • •	anager f time, Dev Dev Re- BOO	nent Diagn CS: velop engin KS:	Goa nosi A inte cor neer	ls, B1 ng Ti fter st r per nmun attitu "Sev	ue pr ime N ucces sonal nicatio	int fo Manag ssful c ssful c l skills on and nd und	gemer compl s and d prol dersta	nt, We letion be an blem s	of the effec solvin	Plann e cour tive g g skil ence o	rse goai lls. on	To do FOT stude l orien behav	list, F AL:1 nts abl nted te	Priori 5 PI e to am p	tizi E R lay	ng V IO er.	work
OUTC • • • TEXT	Anager f time, Dev Dev Re- BOO Put Car	nent Diagn ZS: velop engin KS: vey Se blisher	Goa nosi A inte com neer ean, ers, 1 e Da	ls, B1 ng Ti fter st r per nmun attitu "Sev 998. le, "H	ue pr ime N uccess sonal nication nde an <i>ven H</i> How t	int fo Manag ssful c I skills on and nd und	gemer compl s and d prol dersta	nt, We letion be an blem s and its	eekly of the effec solvin influ	Plann e cour tive g g skil ence ive Te	goal rse goal lls. on	To do FOT stude: l orien behav s", No	list, F AL:1 nts abl nted te vior	riori 5 PI e to am p	tizi E R lay	ng v IO er.	work
Time Ma Value of OUTC • • • TEXT	Anager f time, TOME Dev Dev Re- BOO Cov Put Car & S	nent Diagn ZS: velop engin KS: vey Se blisher negie Schust	Goa nosi A inte com neer ean, crs, 1 e Da tter,	ls, B1 ng Ti fter st r per nmun attitu "Sev 998. le, " <i>F</i> 1998	ue pr ime N ucces sonal nicatio nde ar <i>ven H</i> How t	int fo Managessful constants I skills on and und Uabits to win	gemen compl s and d prol dersta of Hi n Frie	nt, We letion be an blem s and its	eekly of the effec solvin s influ Effecti nd Inf	Plann e cour tive g g skil ence o tve Te	aer ' T	To do FOT . stude: l orien behav s ", No People	list, F AL:1 nts abl nted te vior ew Yo , Ne	riori 5 PI e to am p rk, F	tizi ER lay ires	ng v IO er.	oals.

17EOC006 ENTERPRENEURSHIP DEVELOPMENT

L	Т	P	С
1	0	0	1

OBJECTIVES:

•	To study the types and importance of enterpreneurship	
• .	To impart knowledge on business and challenges to be faced in market	
•	To study the Financing and accounting related to business.	
UNIT I	I ENTREPRENEURSHIP	5

Entrepreneur – Types of Entrepreneurs – Difference between Entrepreneur and Intrapreneur Entrepreneurship in Economic Growth, Factors Affecting Entrepreneurial Growth.

UNIT II BUSINESS

Small Enterprises – Definition, Classification – Characteristics, Ownership Structures – Project Formulation – Steps involved in setting up a Business – identifying, selecting a Good Business opportunity, Market Survey and Research, Techno Economic Feasibility Assessment – Preparation of Preliminary Project Reports – Project Appraisal – Sources of Information – Classification of Needs and Agencies.

UNIT III FINANCING AND ACCOUNTING

5

5

Need – Sources of Finance, Term Loans, Capital Structure, Financial Institution, Management of working Capital, Costing, Break Even Analysis, and Taxation – Income Tax, Excise Duty – Sales Tax.

TOTAL:15 PERIODS

Vnow the importance of Entrance equilin
• Know the importance of Entrepreneurship.
• Start a business and successfully run it.
Know Financing and accounting related to business.

TEXT BOOKS:

1.	Khanka S.S., "Entrepreneurial Development" S.Chand & Co. Ltd., Ram Nagar, New Delhi, 2013.
2.	Donald F Kuratko, "Entreprenuership – Theory, Process and Practice", Cengage Learning 9 th edition, 2014.
3.	Hisrich R D, Peters M P, "Entrepreneurship" 8th Edition, Tata McGraw-Hill, 2013.

4.	Rajeev Roy, "Entrepreneurship" 2 nd Edition, Oxford University Press, 2011.
----	--

17EOC007	SOLAR PV SYSTEM DESIGN	L	Т	Р	С
		1	0	0	1

OBJECTIVES:

•	To study the design of PV systems and its components					
• .		To impart knowledge on site selection for PV systems and to study different mounting methods				
•	To study the Design Grid Connected and Off grid connected PV system.					
UNIT I		PV S	SYSTEMS AND ELECTRICAL COMPONENTS	5		

Basic components for electrical and PV systems- components required for different types of PV systems- grid connected and off grid differences- economics of each- grid-connected PV system- basics of a micro inverter vs string inverter system- PV module- series/parallel circuits- temperature and irradiance fluctuations- MPPT.

UNIT II SITE ANALYSIS AND MOUNTING SOLUTIONS

5

Site analysis, planning, and implementation- instruments and tools required for solar site analysis- Azimuth-Magnetic declination-Tilt angle-Shading, debris, other losses- Roof type (material and condition)-Roof structure- solar resource data- different mounting methods.

UNIT III

GRID-CONNECTED PV SYSTEMS AND OFF GRID PV SYSTEMS

5

Grid Connected System: system sizing- energy efficiency- losses- derating factors, solar insolation, temperature co-efficient parameters - types of grid-dependent inverters-Off Grid System:Different system designs and configurations- sizing calculations for PV array and battery bank sizes- installation methods for PV arrays, battery banks, and additional Equipment- maintenance.

TOTAL :15 PERIODS

OUTCOMES:		After successful completion of the course students able to			
•	Design PV system and its components.				
• .	Select proper site for PV installation.				
•	Design Grid Connected and Off grid connected PV system.				
TEXT BOOKS:					
1.		langi ,"Solar Photovoltaic Technology and Systems: A Manual for ians, Trainers and Engineers".PHI,2016.			

\mathcal{O}	/		\mathcal{O}
Technicians,	Trainers a	and Enginee	ers".PHI,20

2.	Michael Boxwell ,"Solar Electricity Handbook".Greenstream,2015.
3.	"Photovoltaics: Design and Installation Manual" New Society Publisher, 2004.