
GOVERNMENT COLLEGE OF ENGINEERING, BARGUR

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

(ACCREDITED BY NBA)

P.G. FULLTIME M.E. - APPLIED ELECTRONICS CURRICULUM & SYLLABI (REGULATIONS – 2017)

GOVERNMENT COLLEGE OF ENGINEERING, BARGUR

Krishnagiri - 635104, Tamil Nadu Phone No: 04343 266 067 Website: <u>www.gcebargur.ac.in</u>

GOVERNMENT COLLEGE OF ENGINEERING, BARGUR DEPARTMENT OF ECE

VISION OF THE INSTITUTE

To provide world class engineers who are ethical and good citizens of our motherland

MISSION OF THE INSTITUTE

To groom the student community through learner centric quality lectures, laboratories, Library and value added training.

GOVERNMENT COLLEGE OF ENGINEERING, BARGUR DEPARTMENT OF ECE

VISION OF THE DEPARTMENT

We envision our students to be excellent engineers not only in the field of science and technology, but also embed the greatest values of human life. Our commitment lies in producing good citizens, comprehensive knowledge seekers and remains as an asset in building a strong and developed nation.

MISSION OF THE DEPARTMENT

- To achieve the vision we should have hard working faculty who use effective teaching methodologies.
- To impart knowledge in the latest trends of technical education.
- To prepare our young students to become professionally and morally sound engineers.
- To teach global standards in production and value based living through a truthful and technical approach.

PROGRAM EDUCATIONAL OBJECTIVES (PEO)

PEO1. To demonstrate the education skills that will enable to integrate fundamentals with advanced knowledge to provide solutions to complex electronics engineering problems.

PEO2. To provide a successful career in electronic system design or associated industries or research and higher education, or as entrepreneurs.

PEO3. To develop the ability and attitude to adapt to evolving technological challenges

PROGRAMME OUTCOMES (PO)

a) Graduates will demonstrate knowledge of fuzzy logic and matrix theory, random variables and probability functions, dynamic programming and queuing models.

b) Graduates will demonstrate an ability to identify, analyze and develop solutions to solve complex problems using digital signal processing techniques.

c) Graduates will demonstrate an ability to design advanced digital circuits and analyze them through Simulation and practice.

d) Graduates will demonstrate an ability to design digital and analog VLSI circuits and analyze them through simulation and practice and to understand and program advanced microprocessors and microcontrollers and analyze them for embedded applications.

e) Graduates will demonstrate an ability to visualize and work on laboratory and multi-disciplinary tasks.

f) Graduates will demonstrate skills to use modern electronics design and simulation tools (both software and hardware) to analyze problems.

g) Graduates will demonstrate knowledge of professional and ethical responsibilities.

h) Graduates will be able to communicate effectively in both verbal and written form.

i) Graduates will show the understanding of impact of engineering solutions on the society and also will be aware of contemporary issues.

j) Graduates will develop confidence for self-education and ability for lifelong learning.

k) Graduates will be able to participate and succeed in competitive examinations.

1) Graduates will demonstrate an ability as an individual or as a member of a team to solve complex and socially relevant engineering problems.

GOVERNMENT COLLEGE OF ENGINEERING BARGUR

Regulation – 2017

AUTONOMOUS

Curriculum for Full Time M.E.–Applied Electronics (Department of ECE)

From the Academic Year 2017 -2018 onwards

SEMESTER-I

SL.No.	COURSE CODE	COURSE TITLE	CATEGORY	L	Т	Р	С			
THEOR	RY									
1.	17AEFC01	Applied Mathematics for Electronics Engineers	FC	4	0	0	4			
2.	17AEPC02	Advanced Digital System Design	PC	3	0	0	3			
3.	17AEPC03	Advanced Digital Signal Processing	PC	3	2	0	4			
4.	17AEPC04	Embedded System Design	PC	3	0	0	3			
5.	17AEPC05	Modern communication techniques	PC	3	0	0	3			
6.		Professional Elective I	PC	3	0	0	3			
PRACT	PRACTICALS									
7.	17AEPC06	Embedded System Design Laboratory	PC	0	0	4	2			
			TOTAL	12	2	4	22			

SEMESTER-II

SL.No.	COURSE CODE	COURSE TITLE	CATEGORY	L	Т	Р	С
THEOR	RY						
1.	17AEPC07	Soft Computing and Optimization Techniques	PC	3	0	0	3
2.	17AEPC08	VLSI System Design	PC	3	0	0	3
3.	17AEPC09	Hardware – Software Co-design	PC	3	0	0	3
4.	17AEPC10	Internet of Things	PC	3	0	0	3
5.		Professional Elective II	PE	3	0	0	3
6.		Professional Elective III	PE	3	0	0	3
PRACT	TICALS						
7.	17AEPC11	VLSI System Design Laboratory	PC	0	0	4	2
8.	17AEEE12	Term Paper Writing and Seminar	EEC	0	0	2	1
	•	·	TOTAL	18	0	6	21

SEMESTER-III

SL.No.	COURSE CODE	COURSE TITLE	CATEGORY	L	Т	Р	С
THEOI	RY						
1.	17AEPC13	Electronic Product design and development	PC	3	0	0	3
2.		Professional Elective IV	PE	3	0	0	3
3.		Professional Elective V	PE	3	0	0	3
PRACT	TICALS						
4.	17AEEE14	Project Work Phase I	EEC	0	0	12	6
			TOTAL	12	0	12	15

SEMESTER-IV

SL.No.	COURSE CODE	COURSE TITLE	CATEGORY	L	Т	Р	С
PRACT	TICALS						
1.	17AEEE15	Project Work Phase II	EEC	0	0	24	12
			TOTAL	0	0	24	12

TOTAL NO. OF CREDITS: 70

SL.NO	COURSE CODE	COURSETITLE	L	Т	Р	С
1.	17AEEE12	Term Paper Writing and Seminar	0	0	2	1
2.	17AEEE14	Project Work Phase I	0	0	12	6
3.	17AEEE15	Project Work Phase II	0	0	24	12

PROFESSIONAL ELECTIVES (PE)

SEMESTER I

ELECTIVE I

SL.NO	COURSE CODE	COURSETITLE	CATEGORY	L	Т	Р	С
1.	17AEPE01	Digital Control Engineering	PE	3	0	0	3
2.	17AEPE02	Computer Architecture	PE	3	0	0	3
3.	17AEPE03	Digital VLSI design	PE	3	0	0	3
4.	17AEPE04	Electromagnetic Interference and Compatibility	PE	3	0	0	3

PROFESSIONAL ELECTIVES (PE)

SEMESTER II

ELECTIVE II

SL.NO	COURSE CODE	COURSETITLE	CATEGORY	L	T	Р	С
1.	17AEPE05	CAD for VLSI	PE	3	0	0	3
2.	17AEPE06	Nano Electronics	PE	3	0	0	3
3.	17AEPE07	Sensors and measurement systems	PE	3	0	0	3
4.	17AEPE08	MEMS and NEMS	PE	3	0	0	3

SEMESTER II

ELECTIVE III

SL.NO	COURSE CODE	COURSETITLE	CATEGORY	L	Т	Р	С
1.	17AEPE09	DSP processor Architectures and Programming	PE	3	0	0	3
2.	17AEPE10	RF System Design	PE	3	0	0	3
3.	17AEPE11	Speech Signal Processing	PE	3	0	0	3
4.	17AEPE12	Solid State Device Modeling and simulation	PE	3	0	0	3

SEMESTER III

ELECTIVE IV

SL.NO	COURSE CODE	COURSETITLE	CATEGORY	L	Т	Р	С
1.	17AEPE13	Advanced Microprocessor and Microcontroller Architecture	PE	3	0	0	3
2.	17AEPE14	System on Chip Design	PE	3	0	0	3
3.	17AEPE15	Robotics	PE	3	0	0	3
4.	17AEPE16	Physical Design of VLSI Circuits	PE	3	0	0	3
5.	17AEPE17	High Performance Networks	PE	3	0	0	3

SEMESTER III

ELECTIVE V

SL.NO	COURSE CODE	COURSETITLE	CATEGORY	L	Т	Р	С
1.	17AEPE18	Pattern Recognition	PE	3	0	0	3
2.	17AEPE19	Secure Computing Systems	PE	3	0	0	3
3.	17AEPE20	Signal Integrity for High Speed Design	PE	3	0	0	3
4.	17AEPE21	Wireless AD-HOC and Sensor Networks	PE	3	0	0	3

SEMESTER-I

17AEF(C 01	APPLIED MATHEMATICS FOR ELECTRONICS ENGINEERS	L	T	Р	C		
			4	0	0	4		
OBJEC	TIVES	:				L		
•	To imp	part knowledge on fuzzy logic.						
•	To und	lerstand the basic concepts of matrix theory and their applicat	ions.					
•	To find	the optimum solution of the random variables.						
•	To und	lerstand the concepts of dynamic programming and queuing r	node	ls.				
UNIT I		FUZZY LOGIC						
	logic – N	Multivalued logics – Fuzzy propositions – Fuzzy quantifiers.						
UNIT I	[MATRIX THEORY				9		
•	-	osition - Generalized Eigenvectors - Canonical basis - QR Singular value decomposition.	fact	oriza	ation	– Least		
UNIT I	II	PROBABILITY AND RANDOM VARIABLE				9		
-Probabili	ity funct Geomet	oms of probability – Conditional probability – Baye's theore ion – Moments – Moment generating functions and their p ric, Uniform, Exponential, Gamma and Normal distributi	rope	rties	– B	inomial,		
UNIT I	V	DYNAMIC PROGRAMMING				9		
•		nming – Principle of optimality – Forward and backward recomming – Problem of dimensionality.	ursic	on –	App	lications		
UNIT V	7	QUEUEING MODELS				9		
		Markovian queues – Single and multi server models – Little l – Steady state analysis – Self service queue.	e's fo	rmu	la – I	Machine		
		TOTAL:60 PERI	OD	S				
OUTCO	DMES :							
•		epts of fuzzy sets, knowledge representation using fuzzy rul sitions and fuzzy quantifiers and applications of fuzzy logic.	es, f	uzzy	logi	c, fuzzy		

•	Apply various methods in matrix theory to solve system of linear equations.
•	Computation of probability and moments, standard distributions of discrete and continuous random variables and functions of a random variable.
•	Conceptualize the principle of optimality and sub-optimization, formulation and computational procedure of dynamic programming
•	Exposing the basic characteristic features of a queuing system and acquire skills in analyzing queuing models
•	Using discrete time Markov chains to model computer systems.
REFERE	INCES:
1.	Bronson, R., "Matrix Operations", Schaum's Outline Series, McGraw Hill, 2011.
2.	George, J. Klir. and Yuan, B., "Fuzzy sets and Fuzzy logic, Theory and Applications", Prentice Hall of India Pvt. Ltd., 1997.
3.	<i>Gross, D., Shortle J. F., Thompson, J.M., and Harris, C. M., "Fundamentals of Queueing Theory", 4th Edition, John Wiley, 2014.</i>
4.	Johnson, R.A., Miller, I and Freund J., Miller and Freunds "Probability and Statistics for Engineers", Pearson Education, Asia, 8 th Edition, 2015.

5.	Taha, H.A., "Operations Research: An Introduction", 9 th Edition, Pearson Education, Asia,
	NewDelhi, 2016.

17AEPC02	ADVANCED DIGITAL SYSTEM DESIGN	L	Т	Р	С	

OBJECT • •	TIVES					<u> </u>
		•				
•	To ana	yze synchronous and asynchronous sequential circuits				
	To real	ize and design hazard free circuits				
•		iliarize the practical issues of sequential circuit design	1			
	-	h knowledge about different fault diagnosis and testing method mate the performance of digital systems	IS			
		w about timing analysis of memory and PLD				
UNIT I		SEQUENTIAL CIRCUIT DESIGN				9
table assign	nment a	ed synchronous sequential circuits and modelling- State diagr nd reduction-Design of synchronous sequential circuits design alization using ASM				
UNIT II		ASYNCHRONOUS SEQUENTIAL CIRCUIT DESIGN				ç
essential h vending ma UNIT III	achine	- data synchronizers – mixed operating mode asynchronous controller FAULT DIAGNOSIS AND TESTABILITY ALGORITH			- de	esigning
Fault table	metho	I-path sensitization method – Boolean difference method-D al compact algorithm – Fault in PLA – Test generation-DFT scl	lgor	ithm		olerance
UNIT IV	7	SYNCHRONOUS DESIGN USING PROGRAMMABLE DEVICES				9
-		c device families – Designing a synchronous sequential circu te state machine using PLD – FPGA – Xilinx FPGA-Xilinx 40		sing	PLA	A/PAL -
UNIT V		SYSTEM DESIGN USING VERILOG				9
in Verilog Finite Stat bench -Rea	HDL - e Mach alization	ng with Verilog HDL – Logic System, Data Types and Oper Behavioural Descriptions in Verilog HDL – HDL Based Syn ines– structural modeling – compilation and simulation of n of combinational and sequential circuits using Verilog – Re e – serial adder – Multiplier- Divider – Design of simple micro	thes Ve egis	sis – rilog ters	Synt g cod – co	thesis o le –Tes
		TOTAL : 45 PER	RIC	DS		
OUTCO	MEC.					

٠	Analyze and design sequential digital circuits
•	Identify the requirements and specifications of the system required for a given application
٠	Identify the fault diagnosis.
•	Realize and design hazard free circuits.
•	Design the logic system using VHDL
REFE	RENCES:
1.	C. H.Roth Jr and L.L.Kinney, "Fundamentals of Logic Design" Cengage Learning ,2004
2.	M.D.Ciletti, "Modeling, Synthesis and Rapid Prototyping with the Verilog HDL", Prentice Hall, 1999.
3.	M.G.Arnold, "Verilog Digital – Computer Design", Prentice Hall (PTR), 1999.
4.	N. N. Biswas "Logic Design Theory" Prentice Hall of India, 2001
5.	P. K.Lala "Digital system Design using PLD" B S Publications, 2003
6.	P.KLala "Fault Tolerant and Fault Testable Hardware Design" B S Publications,2002
7.	S. Palnitkar, "Verilog HDL – A Guide to Digital Design and Synthesis", Pearson, 2003.

17AEPC03

ADVANCED DIGITAL SIGNAL PROCESSING

OBJECTIVES:

•	To get in-depth knowledge about Discrete-time signal transforms.
•	To analyse the Power spectrum estimation.
•	To learn DSP architectures which are of importance in the areas of signal processing, control and communications
•	To understand digital filter design and optimal filtering technique.
•	To analyse different multi-rate digital signal processing technique.

UNIT I

DISCRETE RANDOM SIGNAL PROCESSING

12

12

12

12

Wide sense stationary process – Ergodic process – Mean – Variance - Auto-correlation and Autocovariance matrix - Properties - Weiner Khintchine relation - Power spectral density – filtering random process, Spectral Factorization Theorem–Finite Data records, Simulation of uniformly distributed/Gaussian distributed white noise – Simulation of Sine wave mixed with Additive White Gaussian Noise.

UNIT II

SPECTRUM ESTIMATION

Bias and Consistency of estimators - Non-Parametric methods - Correlation method - Co-variance estimator - Performance analysis of estimators – Unbiased consistent estimators - Periodogram estimator - Barlett spectrum estimation - Welch estimation.

UNIT III LINEAR ESTIMATION AND PREDICTION

Model based approach - AR, MA, ARMA Signal modeling - Parameter estimation using Yule-Walker method - Maximum likelihood criterion - Efficiency of estimator - Least mean squared error criterion – Wiener filter - Discrete Wiener Hoff equations – Mean square error.

UNIT IV ADAPTIVE FILTERS

Recursive estimators - Kalman filter - Linear prediction – Forward prediction and Backward prediction, Prediction error - Whitening filter, Inverse filter - Levinson recursion, Lattice realization, Levinson recursion algorithm for solving Toeplitz system of equations.

UNIT V

MULTIRATE DIGITAL SIGNAL PROCESSING

12

FIR Adaptive filters - Newton's steepest descent method - Adaptive filters based on steepest descent method - Widrow Hoff LMS Adaptive algorithm - Adaptive channel equalization - Adaptive echo canceller - Adaptive noise cancellation - RLS Adaptive filters - Exponentially weighted RLS -

Sliding window RLS - Simplified IIR LMS Adaptive filter.

TOTAL45+15: 60 PERIODS

OUTCOMES:

•	Exposed to different discrete signal processing methods.
•	Understanding different spectral estimation techniques.
•	Apply linear estimation techniques and linear prediction.
•	To design adaptive filters for a given application.
•	To design multirate DSP systems.

REFERENCES:

1.	J. G. Proakis, D.G. Manolakis, "Digital Signal Processing", Prentice Hall of India, New Delhi, 2005.
2.	M. H. Hayes, "Statistical Digital Signal Processing and Modeling", John Wiley and Sons In, New York, 2006.
3.	P. P. Vaidyanathan, "Multirate Systems and Filter Banks", Prentice Hall, 1992.
4.	S. Kay," Modern spectrum Estimation theory and application", Prentice Hall, Englehood Cliffs, NJ1988.
5.	S. Haykin, "Adaptive Filter Theory", Prentice Hall, Englehood Cliffs, NJ1986.
6.	S. J. Orfanidis, "Optimum Signal Processing ", McGraw-Hill, 2000.

	04	EMBEDDED SYSTEM DESIGN	L	Т	Р	C
			3	3 0 0 3		3
OBJECT	TVES	:				
•	To lear	n the design challenges about embedded system.				
•	To lear	n various techniques of system processor.				
•	To out	ine various protocols.				
•	To und	erstand different state machine and process models.				
		ord awareness about Hardware and software design architors with real time examples.	tectu	re fo	or er	nbedded
UNIT I		EMBEDDED SYSTEM OVERVIEW				9
	gy, RT	m Overview, Design Challenges – Optimizing Desi -Level Combinational and Sequential Components, Optim s.	-			Design Single-
UNIT II		GENERAL AND SINGLE PURPOSE PROCES	SO	R		9
Counters an Concepts.		hdog Timer, UART, LCD Controllers and Analog-to-Digita BUS STRUCTURES	l Coi	nvert	ers,	Memory
Basic Proto Arbitration	ocol Co , Serial	Protocols, I2C, CAN and USB, Parallel Protocols – PCI and Bluetooth, IEEE 802.11.				sed I/O,
	7	STATE MACHINE AND CONCURRENT PROCESS MODELS				9
UNIT IV		I ROCESS MODELS				
Basic State Sequential Communic Systems,	Progra ation a Autom	ne Model, Finite-State Machine with Data path Model, Captu mming Language, Program-State Machine Model, Concu mong Processes, Synchronization among processes, Datafla ation: Synthesis, Verification : Hardware/Software Co ty Cores, Design Process Models.	rrent ow N	Pro Mode	ocess el, R	Model, eal-time
Basic State Sequential Communic Systems,	Progra ation a Autom	ne Model, Finite-State Machine with Data path Model, Captu mming Language, Program-State Machine Model, Concu mong Processes, Synchronization among processes, Datafle ation: Synthesis, Verification : Hardware/Software Co	rrent ow N	Pro Mode	ocess el, R	Model, eal-time Reuse:
Basic State Sequential Communic Systems, Intellectual UNIT V Compilatio	Progra ation a Autom Proper	ne Model, Finite-State Machine with Data path Model, Captur mming Language, Program-State Machine Model, Concur mong Processes, Synchronization among processes, Dataffa ation: Synthesis, Verification : Hardware/Software Co ty Cores, Design Process Models. EMBEDDED SOFTWARE DEVELOPMENT	rrent ow M o-Sin	Pro Mode nulat	ion,	Model, eal-time Reuse: 9

	TOTAL: 45 PERIODS
OUTC	COMES:
٠	Discuss design challenges and various architecture of embedded system.
•	Analyse the different Embedded Processors
•	Analyse the real time characteristics of embedded processors.
•	Discuss state machine and design process models
•	Outline embedded software development tools and RTOS
REFE	RENCES:
1.	B.P. Douglas, "Real time UML, second edition: Developing efficient objects for embedded systems", 3rd Edition 1999, Pearson Education.
2.	D.W. Lewis, "Fundamentals of embedded software where C and assembly meet", Pearson Education, 2002.
3.	F. Vahid and T.Gwargie, "Embedded System Design", John Wiley & sons, 2002.
4.	S. Heath, "Embedded System Design", Elsevier, Second Edition, 2004.

7AEPC05	MODERN COMMUNICATION TECHNIQUES	L	Т	Р	С
		3	0	0	3

OBJECTIVES:

•	To estimate the power spectra of different modulation techniques.
•	To learn coherent and non-coherent communication.
•	To analyze digital modulation techniques over band limited channels.
•	To apply various channel coding techniques.
•	To apply various decoding algorithm.

UNIT I POWER SPECTRUM AND COMMUNICATION OVER MEMORYLESS CHANNEL

9

PSD of a Synchronous Data Pulse Stream – M–ary Markov source – Convolutionaly Coded Modulation – Continuous Phase Modulation – Scalar and Vector Communication over Memory less Channel – Detection Criteria.

UNIT II

COHERENT AND NON –COHERENT COMMUNICATION

9

Coherent Receivers – Optimum Receivers in WGN – IQ Modulation & Demodulation – Non– Coherent receivers in Random Phase Channels – M–FSK Receivers – Rayleigh and Rician Channels – Partially Coherent Receivers – DPSK – M – PSK – M – DPSK – BER Performance Analysis.

UNIT III BANDLIMITED CHANNELS AND DIGITAL MODULATIONS

9

Eye pattern – Demodulation in the presence of ISI and AWGN – Equalization techniques – IQ modulations – QPSK – QAM – QBOM – BER Performance Analysis – Continuous Phase Modulation – CPFM – CPFSK – MSK – OFDM

UNIT IV BLOCK CODED DIGITAL COMMUNICATION

9

9

Architecture and Performance – Binary Block Codes – Orthogonal – Bi–orthogonal – Trans– orthogonal – Shannon's Channel Coding Theorem – Channel Capacity – Matched Filter – Concepts of Spread Spectrum Communication – Coded BPSK and DPSK Demodulators – Linear Block Codes – Hamming–Golay Cyclic – BCH – Reed– Solomon Codes

UNIT V	CONVOLUTIONAL CODED DIGITAL	
	COMMUNICATION	

Representation of Codes using Polynomial – State Diagram – Tree Diagram and Trellis Diagram – Decoding Techniques using Maximum Likelihood – Viterbi Algorithm – Sequential and Threshold

methods – Error probability performance for BPSK and Viterbi Algorithm – Turbo Coding

TOTAL : 45 PERIODS

OUTCOMES:

•	Discuss various power spectra of communication channels.
•	Discuss coherent and non-coherent communication.
•	Discuss various digital modulation schemes.
•	Discuss various coding techniques.
•	Design different coding methods.
REFE	RENCES:

REFERENCES:

1.	Simon M. K., Hinedi S. M. and Lindsey W. C., "Digital Communication Techniques, Signaling and Detection", Prentice Hall India, 1995.
2.	S. Haykin, "Digital communications", John Wiley and Sons, 1998.
3.	W. Tomasi, "Advanced Electronic Communication Systems", 4th Edition, Pearson Education, 1998.
4.	Lathi B. P., "Modern Digital and Analog Communication Systems", 3rd Edition, Oxford University Press, 1998.

17AEF	PC06	EMBEDDED SYSTEM DESIGN LABORATORY	L	Т	Р	C
		(0	0	4	2
OBJE	CTIVES	:				
•	To ana	yze Synchronous and Asynchronous sequential circuits.				
•	To dest	gn system using 8086 and 8051 Microcontroller.				
٠	To stud	y different interfaces using embedded Microcontroller.				
•	To desi	gn and analysis of real time signal processing system.				
•	To imp	lement various equalization and coding technique.				
LIST (OF EXP	ERIMENTS:				
1.	System 8086.	design using PIC, MSP430, 51 Microcontroller and 16- bi	it I	Лісі	opro	
2.	Study	of different interfaces (using embedded microcontroller).				
3.	Implei	nentation of Adaptive Filters and multistage multirate system in	n D	SP	Proc	essor.
4.	Simula	tion of QMF using Simulation Packages.				
5.	Study	of 32 bit ARM7 microcontroller RTOS and its application				
6.	Testin	g RTOS environment and system programming				
7.	Design	ing of wireless sensor network using embedded systems				
8.	-		qui	sitio	on ar	nd signal
9.	-		e de	efine	ed ra	dio.
		TOTAL: 60 PER	ΙΟ	DS		
OUTC	OMES:	i				
•	LABORATORY004200420042004200420042004200420042004200420042004200421004100410041004100410001<					
•	Simul	ate QMF.				
•	Utilize	ARM with FPGA				
•	Desig	and analyze of real time signal processing system.				
•	Imple	nent various coding technique.				

SEMESTER -II

17AEP(C 07	SOFT COMPUTING AND OPTIMIZATION TECHNIQUES	L	T	Р	C
			4	0	0	4
OBJEC	TIVES	:	1			
•	To lear	n various Soft computing frameworks.				
•	• To familiarizes with the design of various neural networks.					
•	To und	erstand the concept of fuzzy logic.				
•	To gain	n insight onto Neuro Fuzzy modelling and control.				
•	To gain	h knowledge in conventional optimization techniques.				
•	To und	erstand the various evolutionary optimization techniques				
UNIT I		NEURAL NETWORKS				9
UNIT I Fuzzy Se	[ets – O d Fuzzy	Organizing map, Adaptive Resonance Architectures, Hopfie FUZZY LOGIC perations on Fuzzy Sets – Fuzzy Relations – Members r Reasoning – Fuzzy Inference Systems – Fuzzy Exper-	hip	Fun	ctior	•
UNIT I		NEURO-FUZZY MODELING				9
and Regr	ression '	Fuzzy Inference Systems – Coactive Neuro-Fuzzy Mode Trees – Data Clustering Algorithms – Rule base Struc trol – Case Studies.	-			
UNIT I	V	CONVENTIONAL OPTIMIZATION TECHNIQUES				9
Unconstra conjugate	ained op gradien	ptimization techniques, Statement of an optimization pro otimization-gradient search method-Gradient of a function t, Newton's Method, Marquardt Method, Constrained opti- ng, Interior penalty function method, external penalty function	n, st imiza	eepe	est g 1 —se	gradient

UNIT V	r	EVOLUTIONARY OPTIMIZATION TECHNIQUES		9
Genetic a hypothesi	U	n - working principle, Basic operators and Terminolog lling Salesman Problem, Particle swam optimization, Ant colo	•	e
		TOTAL : 45 PEI	RIOD	5
OUTCO)MES:			
•	Imple	ement machine learning through Neural networks.		
•	Devel	lop a Fuzzy expert system.		
•	Under	rstand the various evolutionary optimization techniques		
•	Mode	el Neuro Fuzzy system for clustering and classification.		
•	Able	to use the optimization techniques to solve the real world prob	olems	
REFER	ENCE	S:		
1.		. Goldberg, "Genetic Algorithms in Search, Optimization and son wesley, 1989.	l Machi	ne Learning ",
2.		J. Klir and B.Yuan, "Fuzzy Sets and Fuzzy lications",Prentice Hall, 1995.	Logic-	Theory and
3.		Freeman and D. M. Skapura, "Neural Networks Algorithn gramming Techniques", Pearson Edn., 2003.	ns, App	lications, and
4.		Jang, C.T. Sun, E. Mizutani, "Neuro-Fuzzy and Soft Computing, 2003.	uting",	Prentice-Hall
5.	<i>M. M</i>	Ielanie, "An Introduction to Genetic Algorithm", Prentice Ha	ull, 1998	
6.		Haykins, "Neural Networks: A Comprehensive Foundati national Inc, 1999.	ion", I	Prentice Hall
7.		. Rao, "Engineering optimization Theory and practice", . Fourth Edition, 2009	John W	/iley & sons,
8.	T. J.1	Ross, "Fuzzy Logic with Engineering Applications", McGraw	-Hill, 1	997.
9.		ao, V. J. Savsani, "Mechanical Design Optimization Using Ad miques", Springer ,2012.	dvancea	Optimization

17AEP(C 08	VLSI SYSTEM DESIGN	L	Т	Р	С	
			3	0	0	3	
OBJEC	TIVES	:					
•	To study the design flow of different types of ASIC.						
 To familiarize the different types of programming technologies and logic de 			dev	ices.			
٠							
•	 To gain knowledge about partitioning, floor planning, placement and rout circuit extraction of ASIC 			outi	ng ir	ncluding	
•	To ana	lyse the synthesis, Simulation and testing of systems.					
•	To und	erstand the design issues of SOC.					
•	 To know about different high performance algorithms and its applications in ASICs. 						
UNIT I OVERVIEW OF ASIC AND PLD		9					
		RAM – EPROM and EEPROM technology, Programmable Lo LA –PAL. Gate Arrays – CPLDs and FPGAs	ogic	Dev	vices	: ROM	
UNIT II	[ASIC PHYSICAL DESIGN				9	
• •	floor pl	partitioning - partitioning methods – interconnect delay mode anning - placement – Routing: global routing - detailed routin DRC.					
UNIT II	II	LOGIC SYNTHESIS, SIMULATION AND TESTING				9	
PLA tools	s -EDIF-	Logic Synthesis - Half gate ASIC -Schematic entry - Low lev CFI design representation. Verilog and logic synthesis -VHD on -boundary scan test - fault simulation - automatic test patter	L ar	id lo	gic s	ynthesis	
UNIT I	V	FIELD PROGRAMMABLE GATE ARRAYS				9	
	-	GA Physical Design Tools -Technology mapping - Placement c Synthesis - Controller/Data path synthesis - Logic minimiza			ng -	Registe	
× ×							
UNIT V	τ	SOC DESIGN				ç	
UNIT V System-O Concepts SoCs as	n-Chip of Bus- case st	SOC DESIGN Design - SoC Design Flow, Platform-based and IP based Based Communication Architectures. High performance alg udies: Canonical Signed Digit Arithmetic, Knowledge C netic, High performance digital filters for sigma-delta ADC.	gori	hms	for	s, Basi ASICs	

	TOTAL : 45 PERIODS
OUTC	OMES:
٠	Apply different high performance algorithms in ASICs.
•	Be familiar the different types of programming technologies and logic devices.
•	Analyze the synthesis, Simulation and testing of systems.
•	Have the knowledge of FPGA.
•	Discuss the design issues of SOC.
REFE	RENCES:
1.	D.A.Hodges, "Analysis and Design of Digital Integrated Circuits (3/e)/, MGH, 2004.
2.	H.Gerez, "Algorithms for VLSI Design Automation", John Wiley, 1999.
3.	J. M. Rabaey, "Digital Integrated Circuit Design Perspective (2/e)", PHI, 2003
4.	M.J.S. Smith, "Application Specific Integrated Circuits", Pearson, 2003
5.	J. O.Field, R.Dorf, "Field Programmable Gate Arrays", John Wiley& Sons, Newyork, 1995.
6.	P.K.Chan& S. Mourad, "Digital Design using Field Programmable Gate Array", Prentice Hal, 1994.
7.	S. Pasricha and NikilDutt, "On-Chip Communication Architectures System on Chip Interconnect", Elsevier, 2008
8.	S.Trimberger, "Field Programmable Gate Array Technology", Kluwer Academic Pub, 1994.
9.	S.Brown, R.Francis, J.Rose, Z.Vransic, "Field Programmable GateArray", BS, 2007.

3 3 0 **OBJECTIVES:** To acquire the knowledge about system specification and modelling. • • To estimate the hardware/software partitioning. • To study the different technical aspects about prototyping and emulation. • To learn the hardware/software co-synthesis. • To verify and design various system level specification languages. UNIT I SYSTEM SPECIFICATION AND MODELLING 9 Embedded Systems, Hardware/Software Co-Design, Co-Design for System Specification and Modeling, Co-Design for Heterogeneous Implementation - Single-Processor Architectures with one ASIC and many ASICs, Multi-Processor Architectures, Comparison of Co- Design Approaches, Models of Computation, Requirements for Embedded System Specification. UNIT II 9 HARDWARE / SOFTWARE PARTITIONING The Hardware/Software Partitioning Problem, Hardware-Software Cost Estimation, Generation of the Partitioning Graph, Formulation of the HW/SW Partitioning Problem, Optimization, HW/SW Partitioning based on Heuristic Scheduling, HW/SW Partitioning based on Genetic Algorithms. **UNIT III** HARDWARE / SOFTWARE CO-SYNTHESIS 9 The Co-Synthesis Problem, State-Transition Graph, Refinement and Controller Generation, Co-Synthesis Algorithm for Distributed System- Case Studies with any one application. **UNIT IV PROTOTYPING AND EMULATION** 9 Introduction, Prototyping and Emulation Techniques, Prototyping and Emulation Environments, Future Developments in Emulation and Prototyping, Target Architecture- Architecture Specialization Techniques, System Communication Infrastructure, Target Architectures and Application System Classes, Architectures for Control-Dominated Systems, Architectures for Data-Dominated Systems ,Mixed Systems and Less Specialized Systems 9 UNIT V **DESIGN SPECIFICATION AND VERIFICATION** Concurrency, Coordinating Concurrent Computations, Interfacing Components, Verification ,Languages for System-Level Specification and Design System-Level Specification ,Design Representation for System Level Synthesis, System Level Specification Languages, Heterogeneous Specification and Multi-Language Co- simulation. **TOTAL: 45 PERIODS**

HARDWARE - SOFTWARE CO-DESIGN

L Т Р

0

С

17AEPC09

OUTC	OMES:
•	Design of system specification and modelling.
•	Assess prototyping and emulation techniques.
•	Outline various hardware and software partitioning problem.
•	Compare hardware / software co-synthesis.
•	Formulate the design specification and validate its functionality by simulation.
REFER	RENCES:
1.	G. D.Micheli, R. E. Morgon, "Reading in Hardware/Software Co-Design" Kaufmann Publishers,2001.
2.	J. Staunstrup, W. Wolf, "Hardware/Software Co-Design: Principles and Practice", Kluwer Academic Pub, 1997.
3.	<i>R. Niemann</i> , <i>"Hardware/Software Co-Design for Data Flow Dominated Embedded Systems", Kluwer Academic Pub, 1998.</i>

17AEI	PC10	INTERNET OF THINGS	L	Т	Р	С		
			3	0	0	3		
OBJE	CTIVES	:						
٠	To und	lerstand the fundamentals of Internet of Things						
٠	To lear	ut the basics of IOT protocols						
٠	To bui	a small low cost embedded system using Raspberry Pi.						
٠	To lear	To learn about the basics of IOT architecture.						
٠	To app	ly the concept of Internet of Things in the real world scenario						
UNIT	I	ΙΝΤRODUCTION ΤΟ ΙοΤ				9		
1 .		plates - Domain Specific IoTs - IoT and M2M - IoT Syste G- IoT Platforms Design Methodology	m N	Iana	igem	ent with		
UNIT	II	IoT ARCHITECTURE				9		
referenc	e architec		nicat	ion	mod	el - IoT		
UNIT	III	IoT PROTOCOLS				9		
Protoco	ls – Unifi	lization for IoT – Efforts – M2M and WSN Protocols – ed Data Standards – Protocols – IEEE 802.15.4 – BACNet re – Network layer – 6LowPAN - CoAP - Security						
UNIT	IV	BUILDING I0T WITH RASPBERRY PI&ARDUINO				9		
Devices	& Endpo	h RASPERRY PI- IoT Systems - Logical Design using Py ints - IoT Device -Building blocks -Raspberry Pi -Board - Lir faces -Programming Raspberry Pi with Python - Other IoT Pl	nux (on R	aspb	erry Pi -		
UNIT	V	SIMULATION OF DEVICES				9		
Comme Softwar	rcial build e & Mana	constraints - Applications - Asset management, Industrial auting automation, Smart cities - participatory sensing - Data An gement Tools for IoT Cloud Storage Models & Communication b Services for IoT.	alyti	ics f	or Io	T –		

	TOTAL : 45 PERIODS
OUTC	OMES:
•	Analyze various protocols for IoT
•	Develop web services to access/control IoT devices.
•	Design a portable IoT using Rasperry Pi
•	Deploy an IoT application and connect to the cloud.
•	Analyze applications of IoT in real time scenario
REFE	RENCES:
1.	A. Bahga, V. Madisetti, "Internet of Things – A hands-on approach", Universities Press, 2015
2.	D. Uckelmann, M. Harrison, Michahelles, Florian (Eds), "Architecting the Internet of Things", Springer, 2011.
3.	H. Zhou, "The Internet of Things in the Cloud: A Middleware Perspective", CRC Press, 2012.
4.	J. Holler, V. Tsiatsis, C. Mulligan, Stamatis, Karnouskos, S. Avesand, D. Boyle, "From Machine-to-Machine to the Internet of Things - Introduction to a New Age of Intelligence", Elsevier, 2014.
5.	O. Hersent, D. Boswarthick, O. Elloumi, "The Internet of Things – Key applications and Protocols", Wiley, 2012

17AEP	C11	VLSI SYSTEM DESIGN LABORATORY	L	T	Р	C
			0	0	4	2
OBJE	CTIVES	:	1			
٠	To ana	yze synchronous and asynchronous sequential circuits.				
•	To desi	gn and implement ALU in FPGA using VHDL.				
٠	To desi	gn ,simulate and analyze the signal integrity.				
٠	To asse	ss flash controller programming - data flash with erase, verify and	fusir	ıg		
•	To desi	gn sensor using simulation tools				
LIST (OF EXP	ERIMENTS:				
1.	Analys	is of Asynchronous and clocked synchronous sequential circu	uits.			
2.	Testin	g and Fault diagnosis of VLSI circuits.				
3.	VHDL	/VERILOG implementation of temperature sensor.				
4.	Design	, Simulation and analysis of Signal Integrity.				
5.	VHDL	/VERILOG implementation of I2C, SPI Interfacing.				
6.	Design	and Implementation of ALU in FPGA using VHDL and Ver	rilog			
7.	Model	ing of Sequential Digital system using Verilog and VHDL.				
8.	Flash	controller programming - data flash with erase, verify and fus	ing.			
		TOTAL : 60 PE	RIO	DS		
OUTC	OMES:					
•	Desig	n sensor using simulation tools.				
•	Explai	n design, simulation and analysis of signal integrity				
•	Demo	nstrate design of ALU in FPGA using VHDL and Verilog				
•	Assess	flash controller programming - data flash with erase, verify and fu	using			
•	Analys	e synchronous and asynchronous sequential circuits.				

SEMESTER -III

17AEP	PC13	ELECTRONIC PRODUCT DESIGN AND DEVELOPMENT	L	T	Р	С
			3	0	0	3
OBJEC	TIVE	5:				
•	To learn the electronic product design and development stages.					
•	To apply fundamentals of PCB and PCB design.					
•	To test and debug hardware/software design.					
•	To test different electronic products.					
•	To learn different types of standards.					
UNIT I		PRODUCT DESIGN AND DEVELOPMENT				9

Introduction, Product development basics, Product development stages, Identification of the customer requirements, Designing the product ,Techno-commercial feasibility of a product, Pilot production batch, Product assessment, Availability, Screening test of component, redundancy, Effects of environmental conditions on reliability, Comparison between repairable and non-repairable systems, Failure rates of electronic components, Ergonomic and aesthetic design considerations.

UNIT II FUNDAMENTALS OF PCB

Introduction to PCBs, Layout, Issues related to PCB size, Interconnection parameters, Recommendations for Power and ground traces routing, PCB design for digital circuits, Noise due to ground and supply line, Grounds, Returns and Shields, PCB design rules for analog circuits, Design issues related to supply and ground conductors, Multilayer Boards, Component assembly techniques, Testing of assembled PCBs, Board layout checklist, Bare board testing, Testing of multilayer PCB, Compare of PCBs.

UNIT III

PCB DESIGN

Introduction, Computer-aided design, Automation in design, Soldering techniques, Soldering testing, Packages for semiconductor devices and ICs, Reliability issues in ICs, Parastic elements, High-speed PCBs and parasitic elements, PCB designing for microprocessor-based circuits, High speed PCB design, Design consideration in high speed PCBs, Component mounting under vibration ,SMDs, Cable.

UNIT IV	HARDWARE, SOFTWARE DESIGN AND
	TESTING METHODS

9

9

Introduction, Logic analyzer, uses of logic analyze, Oscilloscope Probes, Signal integrity, Use and limitation of Different types of analysis, SPICE, Monte-Carlo analysis, evolution of virtual

instrumentation. Introduction, Phases of software design, Goals of software design, Design of Structured program, Testing and debugging of program, Algorithmic state machine, Finite state machines, Selection of language for software development, Assemblers, Compilers, Simulators, Emulators.

UNIT V ELECTRONIC PRODUCT TESTING

9

Introduction, Environmental testing, Temperature testing, Thermal modelling of components, Humidity testing, Electrical overstress testing, Altitude testing, Special testing, Environmental test chambers and rooms, Various test on enclosures, EMI and EMC related testing, EMC and Compliance, Conducted emission test using time domain principle, Radiated emission test, Importance of standards, Standards and Standard developing organisations, List of some standards, CE marking and certification, UL marking and certification, IEC standards, IEC safety standards: CAT standards.

TOTAL : 45 PERIODS

OUTCOMES:

•	Design electronic products
•	Apply fundamentals of PCB and PCB design
•	Implement and Test hardware design
•	Model Software design and testing
•	Prepare product documentation
REFERENCES:	
1	

1.	<i>R.G.Kaduskar</i> , <i>V.B.Baru</i> , <i>"Electronic Product design"</i> , 2 nd Edition, Wiley, 2011.
2.	B.Haskell, "Portable Electronics Product design and development", Mcgraw hill publisher, 2004.
3.	P.Horowitz, "The Art of Electronics", Harvard university, 2015.
4.	https://www.amazon.com/Electronic-Product-Design-V-B-Kaduskar-ebook/dp/B01LZF18QV

PROJECT WORK PHASE I

L	T	Р	С
0	0	12	6

OBJECTIVES: • To develop the ability to solve a specific problem right from its identification and literature review till the successful solution of the same.

• To train the students in preparing project reports and to face reviews and viva voce examination.

The dissertation / project topic should be selected / chosen to ensure the satisfaction of the urgent

need to establish a direct link between education, national development and productivity and thus

reduce the gap between the world of work and the world of study. The dissertation should have the following

- Relevance to social needs of society
- Relevance to value addition to existing facilities in the institute
- Relevance to industry need
- Problems of national importance
- Research and development in various domain

The student should complete the following:

- Literature survey Problem Definition
- Motivation for study and Objectives
- Preliminary design / feasibility / modular approaches
- Implementation and Verification
- Report and presentation

GUIDELINES FOR DISSERTATION PHASE – I

- As per the AICTE directives, the dissertation is a year long activity, to be carried out and evaluated in two phases i.e. Phase I: July to December.
- The dissertation may be carried out preferably in-house i.e. departments laboratories and centers OR in industry allotted through departments T & P coordinator.
- After multiple interactions with guide and based on comprehensive literature survey, the student shall identify the domain and define dissertation objectives. The referred literature should preferably include IEEE/IET/IETE/Springer/Science Direct/ACM journals in the areas of Computing and Processing (Hardware and Software), Circuits-Devices and Systems, Communication-Networking and Security, Robotics

•	In case of Industry sponsored projects, to product catalogues should be referred and reported. Student is expected to detail out specific critical issues involved in design and distribution, and submit the proposal with Phase – I deliverables: A document rep survey, detailed objectives, project spec design, proof of concept/functionality, progress. Phase – I evaluation: A committee specialization shall assess the progress/pe	implementation and phase wise work in a month from the date of registration. Fort comprising of summary of literature cifications, paper and/or computer aided part results, A record of continuous
		TOTAL : 180 PERIODS
OUTCOM	IES:	
-	Ability to synthesize knowledge and skills p study and execution of new technical proble	
	Capable to select from different methodolog produce a suitable research design, and justi	
• 1	Ability to present the findings of their technic	ical solution in a written report.

SEMESTER- IV

17AEEF	215 PROJECT WORK PHASE II	L	Т	Р	С		
		0	0	24	12		
OBJEC	OBJECTIVES:						
• To develop the ability to solve a specific problem right from its identification and literature review till the successful solution of the same.							
•	To train the students in preparing project reports and to face re-	views	an	d viva	a voce		

The dissertation / project topic should be selected / chosen to ensure the satisfaction of the urgent

need to establish a direct link between education, national development and productivity and thus

reduce the gap between the world of work and the world of study. The dissertation should have the following

- Relevance to social needs of society
- Relevance to value addition to existing facilities in the institute
- Relevance to industry need

examination.

- Problems of national importance
- Research and development in various domain

The student should complete the following:

- Literature survey Problem Definition
- Motivation for study and Objectives
- Preliminary design / feasibility / modular approaches
- Implementation and Verification
- Report and presentation

The dissertation stage II is based on a report prepared by the students on dissertation allotted to

them. It may be based on:

- Experimental verification / Proof of concept.
- Design, fabrication, testing of Communication System.
- The viva-voce examination will be based on the above report and work.

GUIDELINES FOR DISSERTATION PHASE – II

• As per the AICTE directives, the dissertation is a yearlong activity, to be carried out and evaluated in two phases i.e. Phase – I: July to December and Phase – II: January to June .

- The dissertation may be carried out preferably in-house i.e. departments laboratories and centers OR in industry allotted through departments T & P coordinator.
- After multiple interactions with guide and based on comprehensive literature survey, the student shall identify the domain and define dissertation objectives. The referred literature should preferably include IEEE/IET/IETE/Springer/Science Direct/ACM journals in the areas of Computing and Processing (Hardware and Software), Circuits-Devices and Systems, Communication-Networking and Security, Robotics and Control Systems, Signal Processing and Analysis and any other related domain. In case of Industry sponsored projects, the relevant application notes, while papers, product catalogues should be referred and reported.
- Student is expected to detail out specifications, methodology, resources required, critical issues involved in design and implementation and phase wise work distribution, and submit the proposal within a month from the date of registration.
- Phase I deliverables: A document report comprising of summary of literature survey, detailed objectives, project specifications, paper and/or computer aided design, proof of concept/functionality, part results, A record of continuous progress.
- Phase I evaluation: A committee comprising of guides of respective specialization shall assess the progress/performance of the student based on report, presentation and Q & A. In case of unsatisfactory performance, committee may recommend repeating the Phase-I work.
- During phase II, student is expected to exert on design, development and testing of the proposed work as per the schedule. Accomplished results/contributions/innovations should be published in terms of research papers in reputed journals or reviewed focused conferences or IP/Patents.
- Phase II deliverables: A dissertation report as per the specified format, developed system in the form of hardware and/or software, A record of continuous progress.
- Phase II evaluation: Guide along with appointed external examiner shall assess the progress/performance of the student based on report, presentation and Q & A. In case of unsatisfactory performance, committee may recommend for extension or repeating the work.

TOTAL : 360 PERIODS

OUTC	OUTCOMES:						
•	Ability to synthesize knowledge and skills previously gained and applied to an in-depth study and execution of new technical problem						
•	Capable to select from different methodologies, methods and forms of analysis to produce a suitable research design, and justify their design.						
•	Ability to present the findings of their technical solution in a written report.						
•	Presenting the work in International/ National conference or reputed journals.						

PROFESSIONAL ELECTIVES (PE)

SEMESTER-I

ELECTIVE I

17AEPE01	DIGITAL CONTROL ENGINEERING	L	Т	Р	С	
		3	0	0	3	
OBJECTI	VES:	-				
• To	• To learn the principles of PI,PD,PID controllers					
• To	analyse time and frequency response of discrete time control	system				
• To	be familiar in digital control algorithms.					
• To	get basic knowledge to implement PID control algorithms.					
• To	learn the basic DSP in control system.					
UNIT I	CONTROLLERS IN FEEDBACK SYSTEMS				9	
	BASIC DIGITAL SIGNAL PROCESSING IN	CONI	ROL		ç	
UNIT II	SYSTEMS			ticalı		
Sampling the	SYSTEMS orem, quantization, aliasing and quantization error, hold opera and hold, zero and first order hold, factors limiting the c	tion, m	athema		mode	
Sampling the of sample a	SYSTEMS orem, quantization, aliasing and quantization error, hold opera and hold, zero and first order hold, factors limiting the c	tion, m hoice	athema of sam	pling	mode rate	
Sampling the of sample a reconstruction UNIT III Difference eq frequency re- stability test,	SYSTEMS orem, quantization, aliasing and quantization error, hold opera nd hold, zero and first order hold, factors limiting the c	tion, m hoice L SYS ransfer	athema of sam STEM functio ol syste	pling n, tim ems,	rate, 9 ne and Jury's	
Sampling the of sample a reconstruction UNIT III Difference eq frequency re- stability test,	SYSTEMS orem, quantization, aliasing and quantization error, hold operated hold, zero and first order hold, factors limiting the control MODELING OF SAMPLED DATA CONTROL uation description, Z-transform method of description, pulse to sponse of discrete time control systems, stability of digital state space description, first companion, second co	tion, m hoice L SYS ransfer l contro Jordan	athema of sam STEM functio ol syste	pling n, tim ems,	mode rate 9 ne anc Jury's	

9 ALGORITHMS Algorithm development of PID control algorithms, standard programmes for microcontroller implementation, finite word length effects, choice of data acquisition systems, microcontroller based temperature control systems, microcontroller based motor speed control systems, DSP implementation of motor control system. **TOTAL: 45 PERIODS OUTCOMES:** Describe continuous time and discrete time controllers analytically. • Define and state basic analog to digital and digital to analog conversion principles. • Analyze sampled data control system in time and frequency domains. • • Design simple PI, PD, PID continuous and digital controllers. Develop schemes for practical implementation of temperature and motor control systems. **REFERENCES:** J. J. D'Azzo, "Constantive Houpios, Linear Control System Analysis and Design", Mc 1. Graw Hill, 1995. K. J. Ayala, "The 8051 Microcontroller- Architecture, Programming and Applications", 2. Penram International, 2nd Edition, 1996. M.Gopal, "Digital Control and Static Variable Methods", Tata McGraw Hill, New Delhi, 3. 1997.

UNIT V PRACTICAL ASPECTS OF DIGITAL CONTROL

17AEPE02		COMPUTER ARCHITECTURE	L	Т	Р	С
			3	0	0	3
OBJEC	CTIVE	ES:		1		
• To understand the difference between pipeline and parallel processing concepts						
٠	• To study various types of processor architectures and the importance of architectures					
•	To st	udy Memory Optimization and Technique.				
•	To le	earn issues related to memory architecture.				
•	To st	udy Memory Architectures				
UNIT I		COMPUTER DESIGN AND PERFORMANCE MEASURES				9
	1 0 0 0					
	ow arch	D architectures – Multithreaded architectures – Stanford Dash n hitectures - Performance Measures PARALLEL PROCESSING, PIPELINING AND			sor – 1	
- Data-flo UNIT I Instructio Overcom	ow arch I on Leve ing Da	itectures - Performance Measures	ILP Pipe edicti	lining p on - Sp	proces	9 sors -
- Data-flo UNIT I Instructio Overcom Multiple	ow arch I on Leve ing Da Issue P	hitectures - Performance Measures PARALLEL PROCESSING, PIPELINING AND el Parallelism and Its Exploitation - Concepts and Challenges - ta Hazards with Dynamic Scheduling – Dynamic Branch Pre	ILP Pipe edicti	lining p on - Sp	proces	9 sors -
- Data-flo UNIT I Instructio Overcom Multiple UNIT I Memory	I Leve ing Da Issue P II Hierare	hitectures - Performance Measures PARALLEL PROCESSING, PIPELINING AND el Parallelism and Its Exploitation - Concepts and Challenges - ta Hazards with Dynamic Scheduling – Dynamic Branch Pre Processors - Performance and Efficiency in Advanced Multiple	Pipe edicti Issue	lining p on - Sp e Proces	proces pecula ssors	9 sors - tion - 9 ons of
- Data-flo UNIT I Instructio Overcom Multiple UNIT I Memory	ow arch I on Leve ing Da Issue P II Hierard erforma	hitectures - Performance Measures PARALLEL PROCESSING, PIPELINING AND el Parallelism and Its Exploitation - Concepts and Challenges - ta Hazards with Dynamic Scheduling – Dynamic Branch Pre Processors - Performance and Efficiency in Advanced Multiple MEMORY HIERARCHY DESIGN chy - Memory Technology and Optimizations – Cache memory	Pipe edicti Issue	lining p on - Sp e Proces	proces pecula ssors	9 sors - tion - 9 ons of
- Data-flo UNIT I Instructio Overcom Multiple UNIT I Memory Cache Pe UNIT I Symmetr Issues –	ow arch I on Leve ing Da Issue P II Hierard erforma V ic and Synch	Antitectures - Performance Measures PARALLEL PROCESSING, PIPELINING AND A Parallelism and Its Exploitation - Concepts and Challenges - ta Hazards with Dynamic Scheduling – Dynamic Branch Pre Processors - Performance and Efficiency in Advanced Multiple MEMORY HIERARCHY DESIGN chy - Memory Technology and Optimizations – Cache memor nce – Memory Protection and Virtual Memory - Design of Me	ILP Pipe edicti Issue ory – emory	lining p on - Sp e Proces - Optim 7 Hieran es – Pe	proces becula ssors izatio	9 sors - tion - 9 ons of 9 nance
- Data-flo UNIT I Instructio Overcom Multiple UNIT I Memory Cache Pe UNIT I Symmetr Issues – Buses, cre	ow arch I on Leve ing Da Issue P II Hierard erforma V ic and Synchu ossbar	Antitectures - Performance Measures PARALLEL PROCESSING, PIPELINING AND Parallelism and Its Exploitation - Concepts and Challenges - ta Hazards with Dynamic Scheduling – Dynamic Branch Pre Processors - Performance and Efficiency in Advanced Multiple MEMORY HIERARCHY DESIGN chy - Memory Technology and Optimizations – Cache memor nce – Memory Protection and Virtual Memory - Design of Me MULTIPROCESSORS distributed shared memory architectures – Cache coherence ronization issues – Models of Memory Consistency - Interce	ILP Pipe edicti Issue ory – emory	lining p on - Sp e Proces - Optim 7 Hieran es – Pe	proces becula ssors izatio	9 sors - tion - 9 ons of 9 nance
- Data-flo UNIT I Instructio Overcom Multiple UNIT I Memory Cache Pe UNIT I Symmetr Issues – Buses, cr UNIT V Software	ow arch I on Leve ing Da Issue P II Hierard erforma V ic and Synchu- ossbar V and ha	A parallelism and Its Exploitation - Concepts and Challenges - ta Hazards with Dynamic Scheduling – Dynamic Branch Pre Processors - Performance and Efficiency in Advanced Multiple MEMORY HIERARCHY DESIGN chy - Memory Technology and Optimizations – Cache memor nce – Memory Protection and Virtual Memory - Design of Me MULTIPROCESSORS distributed shared memory architectures – Cache coherence ronization issues – Models of Memory Consistency - Interc and multi-stage switches.	Pipe edicti Issue ory – emory e issu conne	lining p on - Sp e Proces - Optim / Hieran / Hieran	process becula ssors iizatic rchies erform netwo	9 sors - tion - 9 ons of 9 nance rks - 9

OUTC	OMES:
•	Have the basic fundamentals of computer design and measure the performance.
•	Understand pipelining and parallel processing
•	Explain design of memory hierarchies.
•	Assess Performance Issues and Synchronization issues.
•	Compare multicore architectures.
REFE	RENCES:
1.	D. E. Culler, J. P.Singh, "Parallel Computing Architecture: A hardware/ software approach", Morgan Kaufmann / Elsevier, 1997.
2.	D.Soudris, A. Jantsch, "Scalable Multi-core Architectures: Design Methodologies and Tools", Springer, 2012.
3.	H. Briggs, "Computer Architecture and parallel processing", McGraw Hill, 1984.
4.	J.L. Hennessey and D. A. Patterson, "Computer Architecture – A quantitative approach", Morgan Kaufmann / Elsevier, 4th. edition, 2007.
5.	J. P. Hayes, "Computer Architecture and Organization", McGraw Hill, 3 rd Edition, 2017.
6.	J.P. Shen, "Modern processor design. Fundamentals of super scalar processors", Tata McGraw Hill ,2003.
7.	K. Hwang, "Advanced Computer Architecture", McGraw Hill International, 2001.
8.	W. Stallings, "Computer Organization and Architecture – Designing for Performance", Pearson Education, Seventh Edition, 2006.

17AEPE03			VLSI DESIGN TECHNIQUES	L	Т	Р	С	
				3	0	0	3	
OBJEC	TIVE	S:		I			1	
• To understand the principles of MOS transistor and CMOS inverter.								
•	To study the layout and stick diagram of combinational circuits.							
•	To stu	udy	various latches and register in logic circuits.					
•	To cla	assi	fy different building blocks and architecture.					
•	To di	scus	ss various digital systems design.					
UNIT I			OS TRANSISTOR PRINCIPLES AND CM VERTER	OS			9	
Secondar	y Effect MOS In	ts, F nvei	or Characteristic under Static and Dynamic Conditions Process Variations, Technology Scaling, Internet Parar rter - Static Characteristic, Dynamic Characteristic, Po	neter and	l electri	cal w		
UNIT I	I	CC	OMBINATIONAL LOGIC CIRCUITS				9	
	constar	nt, E	Stick diagram, Layout diagrams, Examples of combir Dynamic Logic Gates, Pass Transistor Logic, Power D		-	-	r	
UNIT I	II	SE	QUENTIAL LOGIC CIRCUITS			9		
			Registers, Dynamic Latches and Registers, Timing Is d Registers, Non bistable Sequential Circuits.	ssues, P	ipelines	, Puls	e and	
UNIT I			RITHMETIC BUILDING BLOCKS AND M RCHITECTURES	IEMO	RY		9	
-			Architectures for Adders, Accumulators, Multipliers, nory Architectures, and Memory control circuits.	Barrel S	Shifters,	Spee	d and	
UNIT V	UNIT V INTERCONNECT AND CLOCKING STRATEGIES		S		9			
Interconn			eters – Capacitance, Resistance, and Inductance, Elect			els, T	iming	
classifica	tion of l	Dig	ital Systems, Synchronous Design, Self-Timed Circuit	Design.				

OUTCO	DMES:
•	Design digital systems using MOS transistor and invertors.
•	Able to learn layout, stick diagram in combinational logic circuits
•	Discuss various latches and registers in sequential circuits.
•	Discuss design methodology of arithmetic building block.
•	Analyze tradeoffs of the various circuit choices for each of the building block.
REFER	RENCES:
1.	J. Baker "CMOS: Circuit Design, Layout, and Simulation, Third Edition", Wiley IEEE Press 2010.
2.	J. Rabaey, A. Chandrakasan, B Nikolic, "Digital Integrated Circuits: A Design Perspective". Prentice Hall of India 2nd Edition, 2003.
3.	M J Smith, "Application Specific Integrated Circuits", Addisson Wesley, 1997.
4.	N.Weste, K. Eshraghian, ," Principles of CMOS VLSI Design"., Addision Wesley, 2nd Edition, 1993.

17AEPE04		ELECTROMAGNETIC INTERFERENCE AND COMPATIBILITY	L	T	Р	C
			3	0	0	3
BJECT	FIVES	S:	1			
• To learn the basics of EMI						
•	Be fan	niliar with EMI sources and problems.				
•	• To understand solution methods in PCB.					
•		cuss various measurement techniques for emission.				
	To dis	cuss various measurement techniques for immunity.				
NIT I		BASIC THEORY				9
zards to	human	Conducted and Radiated EMI emission and susceptibility, C s, Various issues of EMC, EMC Testing categories EMC En				
NIT II	(COUPLING MECHANISM				9
NIT II		EMI MITIGATION TECHNIQUES				9
fectivene	ess, Cho Princij	e of Shielding and Murphy"s Law, LF Magnetic shielding, bice of Materials for H, E, and free space fields, Gasketting	and s ies fo	ealing, r Larg	PCB e sys	Level stems,
-	•	ble of Grounding, Isolated grounds, Grounding strateg xed signal systems, Filter types and operation, Surge prote	ection			
ounding						9
rounding otection. NIT IV eed for S andards, NSI, FC	7 Standar Produ CC, A	xed signal systems, Filter types and operation, Surge prote	trial en	rganiza	tions;	IEC,
rounding otection. NIT IV eed for S andards, NSI, FC	7 Standar Produ CC, A lity stan	xed signal systems, Filter types and operation, Surge prote STANDARD AND REGULATION ds, Generic/General Standards for Residential and Indust ct Standards, National and International EMI Standardizi S/NZS, CISPR, BSI, CENELEC, ACEC. Electro M	trial er ing Or lagnet	rganiza ic Em	tions;	Basic IEC

Feed through capacitors, Antennas, Current probes, MIL -STD test methods, Civilian STD test methods.

TOTAL :	45	PERIODS
	-10	

	IUIAL . 45 I EKIODS
OUTC	COMES:
•	Able to learn basic idea about EMI and EMC.
٠	Discuss different coupling mechanism.
٠	Discuss EMI mitigation techniques.
٠	Identify Standards.
٠	Compare EMI test methods.
REFE	RENCES:
1.	<i>B. Keiser, "Principles of Electromagnetic Compatibility", 3rd Ed, Artech house, Norwood, 1986.</i>
2.	C. Paul, "Introduction to Electromagnetic Compatibility", Wiley Interscience, 2006.
3.	D. Gerke and W. Kimmel, "EDN's Designer's Guide to Electromagnetic Compatibility", Elsevier Science & Technology Books, 2002.
4.	Dr K. L. Kaiser, "The Electromagnetic Compatibility Handbook", CRC Press, 2005.
5.	N.Violette, "Electromagnetic Compatibility", ,Published by Springer, 2013.
6.	D. R. J. White, "Electromagnetic Interference and Compatibility: Electrical noise and EMI specifications Volume 1 of A Handbook Series on Electromagnetic Interference and Compatibility", Publisher-Don white consultants Original from the University of Michigan Digitized 6, 2007.
7.	<i>H. W. Ott, "Electromagnetic Compatibility Engineering", John Wiley & Sons , Newyork,, 2009.</i>
8.	V.P. Kodali, "Engineering Electromagnetic Compatibility", IEEE Press, Newyork, ,2001.

PROFESSIONAL ELECTIVES (PE)

SEMESTER -II

ELECTIVE II

	PE05		CA	D FOR VLS	I	L	Т	Р	С
						3	0	0	3
BJECT	TVES					I			
•	To st	udy	arious physical desi	gn methods in V	LSI.				
٠	To ur	nders	and the concepts be	nind the VLSI d	lesign rules and ro	uting tec	hnique	s.	
•	To us	e th	simulation techniqu	es at various lev	vels in VLSI desig	n flow			
•	To ur techn		and the concepts of .	various algorith	ms used for floor	planning	and ro	uting	
٠	To st	udy	ardware models for	high level synth	iesis.				
UNIT I		IN'	RODUCTION	TO VLSI DE	SIGN FLOW				9
			orial optimization.						
•	Compact	ion,	YOUT, PLACEN Design rules, Problem oning, Circuit repres	n formulation,	Algorithms for co	nstraint g	-	ompao	9 ction,
Layout C	Compact nt and p	ion, artit		n formulation, a entation, Placen	Algorithms for co nent algorithms, F	nstraint g	-	ompao	
Layout C Placemer UNIT I Floor pla	Compact nt and p II anning of	ion, artit FL	Design rules, Problem oning, Circuit repres	n formulation, <i>A</i> entation, Placen G AND ROU s and floor pla	Algorithms for co nent algorithms, F TING n sizing, Types o	nstraint g artitionin	ıg.		ction, 9
Layout C Placemer UNIT I Floor pla	Compact nt and p II anning of ting, Ch	ion, artit FL conc	Design rules, Problem oning, Circuit repres OOR PLANNIN pts, Shape function	n formulation, A entation, Placen G AND ROU s and floor pla ting, Algorithm	Algorithms for co nent algorithms, F TING n sizing, Types o s for global routir	nstraint g artitionin	ıg.		ction, 9
Layout C Placemer UNIT I Floor pla Area rout UNIT I Simulatio	Compact nt and p II anning o ting, Ch V On, Ga	ion, artit FL conc anno SIN tte-le	Design rules, Problem oning, Circuit repres DOR PLANNIN pts, Shape function I routing, Global rou	n formulation, A entation, Placen G AND ROU s and floor pla ting, Algorithm D LOGIC SY simulation,	Algorithms for co nent algorithms, F TING n sizing, Types o s for global routir NTHESIS Switch-level mo	nstraint g artitionin of local r ng.	outing	prob	ction, 9 lems, 9
Layout C Placemer UNIT I Floor pla Area rout UNIT I Simulatio	Compact nt and p II anning o ting, Ch V Don, Ga tional L	ion, artiti FL conc anno SIN tte-le Logic	Design rules, Problem oning, Circuit represe DOR PLANNING pts, Shape function routing, Global rou IULATION ANI	n formulation, A entation, Placen G AND ROU s and floor pla ting, Algorithm D LOGIC SY simulation, ecision Diagran	Algorithms for co nent algorithms, F TING n sizing, Types o s for global routir NTHESIS Switch-level mo	nstraint g artitionin of local r ng.	outing	prob	ction, 9 lems, 9
Layout C Placemen UNIT I Floor pla Area rout UNIT I Simulatic Combina UNIT V Hardware	Compact nt and p II anning o ting, Ch V On, Ga tional L V e mode	ion, artit FL conc anno SIN tte-le cogic HIC	Design rules, Problem oning, Circuit represe DOR PLANNING pts, Shape function I routing, Global rou IULATION ANI vel modeling and Synthesis, Binary D	n formulation, A entation, Placen G AND ROU s and floor pla ting, Algorithm D LOGIC SY simulation, ecision Diagran THESIS esis, internal	Algorithms for co nent algorithms, F TING n sizing, Types o s for global routir NTHESIS Switch-level mons, Two Level Lo	nstraint g artitionin of local r ag. odeling gic Synth location,	and sesis.	prob	ction, 9 lems, 9 ation, 9

OUTC	OMES:
•	To use the simulation techniques at various levels in VLSI design flow.
•	Discuss the layout design rules and various placement algorithms.
•	Discuss the concepts of floor planning and routing.
•	Outline high level synthesis.
•	Discuss VLSI design methodology and its design automation tools.
REFER	RENCES:
1.	N.A. Sherwani, "Algorithms for VLSI Physical Design Automation", Kluwer Academic Publishers, Third Edition, 2002.
2.	S.H. Gerez, "Algorithms for VLSI Design Automation", John Wiley & Sons, 2002.
3.	S.M. Sait, H.Youssef, "VLSI Physical Design automation: Theory and Practice", World scientific, 1999.
4.	S.M.Rubin, "Computer Aids for VLSI Design", Addison Wesley Publishing, 1987.

17AEPE06			NANOELECTRONICS	L	Т	Р	С
		·		3	0	0	3
OBJEC	CTIVE	ES:			1		
•	To le	earn a	and understand basic concepts of Nano electronics.				
•	To k	now	about electronic and photonic materials.				
•	To u	nders	stand how transistor as Nano device.				
•	To g	ain k	nowledge about Nano Sensors.				
٠	To u	nders	stand various forms of nano devices.				
UNIT I	[SE	MICONDUCTOR NANO DEVICES				9
	nputers	: Opt	obotics and Nanomanipulation; Mechanical M tical Fibers for Nanodevices; Photochemical Molecul ased Nanodevices.			nodev NA-H	
Inallouev						1	
UNIT I	Ι	EL	ECTRONIC AND PHOTONIC MATERIAL		lasers:	- Oua	-
UNIT I Preparati cascade 1 lasers:- V	II ion – El lasers- (White I s - High	EL lectro Casca LEDs n Effi	ECTRONIC AND PHOTONIC MATERIAL oluminescent Organic materials - Laser Diodes - Quantu ade surface-emitting photonic crystal laser- Quantum d s - LEDs based on nanowires - LEDs based on nano iciency Materials for OLEDs- High Efficiency Materia	im well ot laser	s - Qua - LEDs	intum base	ntum wire
UNIT I Preparati- cascade 1 lasers:- V nanorods	II ion – El lasers- (White I s - High ared ph	EL lectro Casca LED n Effi oto d	ECTRONIC AND PHOTONIC MATERIAL oluminescent Organic materials - Laser Diodes - Quantu ade surface-emitting photonic crystal laser- Quantum d s - LEDs based on nanowires - LEDs based on nano iciency Materials for OLEDs- High Efficiency Materia	im well ot laser	s - Qua - LEDs	intum base	ntum wire ed or ntum
UNIT I Preparatic cascade l lasers:- V nanorods well infra UNIT I Thermal resistance magnetis	II ion – El lasers- (White I s - High ared ph III energy e senso sm senso	ELZ lectro Casca LEDs n Effi oto d TH 7 sen ors, e sors -	ECTRONIC AND PHOTONIC MATERIAL oluminescent Organic materials - Laser Diodes - Quantu ade surface-emitting photonic crystal laser- Quantum d s - LEDs based on nanowires - LEDs based on nano iciency Materials for OLEDs- High Efficiency Materia letectors.	im well ot laser otubes - ls for O netic se electrica	s - Qua - LEDs DLEDs ensors - il powe	e dec der ser	ntum wire ed or ntum g
UNIT I Preparatic cascade l lasers:- V nanorods well infra UNIT I Thermal resistance magnetis	II ion – El lasers- (White I s - High ared pho III energy e sensc sm sens Chemi	EL lectro Casca LEDs n Effi oto d TH y sen prs, e sors - cal se	ECTRONIC AND PHOTONIC MATERIAL oluminescent Organic materials - Laser Diodes - Quantu ade surface-emitting photonic crystal laser- Quantum d s - LEDs based on nanowires - LEDs based on nano iciency Materials for OLEDs- High Efficiency Materia letectors. ERMAL SENSORS sors -temperature sensors, heat sensors - Electromag electrical current sensors, electrical voltage sensors, of - Mechanical sensors - pressure sensors, gas and liquit	im well ot laser otubes - ls for O netic se electrica	s - Qua - LEDs DLEDs ensors - il powe	e dec der ser	ntum wire ed or ntum futrica sors sitior
UNIT I Preparati- cascade 1 lasers:- V nanorods well infra UNIT I Thermal resistance magnetis sensors - UNIT I Criteria f	II ion – El lasers- (White I s - High ared ph III energy e sense Sm sense Chemi IV for the ing pro	EL lectro Casca LEDs n Effi oto d TH y sen ors, e sors - cal so GA choid operty	ECTRONIC AND PHOTONIC MATERIAL oluminescent Organic materials - Laser Diodes - Quantu ade surface-emitting photonic crystal laser- Quantum d s - LEDs based on nanowires - LEDs based on nano iciency Materials for OLEDs- High Efficiency Materia letectors. ERMAL SENSORS sors -temperature sensors, heat sensors - Electromag electrical current sensors, electrical voltage sensors, e - Mechanical sensors - pressure sensors, gas and liqui ensors - Optical and radiation sensors. SSENSORS ce of materials - Experimental aspects – materials, pro y, sensitivity; Discussion of sensors for various gases	im well ot laser otubes - ls for O netic se electrica id flow	s - Qua - LEDs DLEDs ensors al powe sensor	- eleccer ser s, pos	ntum wire ed or ntum g trica isors sitior g ent of
UNIT I Preparatic cascade I lasers:- V nanorods well infra UNIT I Thermal resistance magnetis sensors - UNIT I Criteria f gas sensi	II ion – El lasers- (White I s - High ared ph ared ph III energy e sense Sm sens Chemi IV for the ing pro-	EL lectro Casca LEDs n Effi oto d TH y sen ors, e sors - cal so GA choid perty levice	ECTRONIC AND PHOTONIC MATERIAL oluminescent Organic materials - Laser Diodes - Quantu ade surface-emitting photonic crystal laser- Quantum d s - LEDs based on nanowires - LEDs based on nano iciency Materials for OLEDs- High Efficiency Materia letectors. ERMAL SENSORS sors -temperature sensors, heat sensors - Electromag electrical current sensors, electrical voltage sensors, e - Mechanical sensors - pressure sensors, gas and liqui ensors - Optical and radiation sensors. SSENSORS ce of materials - Experimental aspects – materials, pro y, sensitivity; Discussion of sensors for various gases	im well ot laser otubes - ls for O netic se electrica id flow	s - Qua - LEDs DLEDs ensors al powe sensor	- eleccer ser s, pos	ntum wire ed or ntum g trica isors sitior g ent of ed or
UNIT I Preparatic cascade 1 lasers:- V nanorods well infra UNIT I Thermal resistance magnetis sensors - UNIT I Criteria f gas sensi semiconce UNIT V Principle	II ion – El lasers- (White I s - High ared ph III energy e senso sm sens Chemi IV for the ing pro ductor c V es - DNA	EL lectro Casca LEDs n Effi oto d TH / sen ors, e sors - cal so GA choic perty levic BIC	ECTRONIC AND PHOTONIC MATERIAL oluminescent Organic materials - Laser Diodes - Quantu ade surface-emitting photonic crystal laser- Quantum d s - LEDs based on nanowires - LEDs based on nano iciency Materials for OLEDs- High Efficiency Materia letectors. ERMAL SENSORS sors -temperature sensors, heat sensors - Electromag electrical current sensors, electrical voltage sensors, of - Mechanical sensors - pressure sensors, gas and liqui ensors - Optical and radiation sensors. SSENSORS ce of materials - Experimental aspects – materials, pro y, sensitivity; Discussion of sensors for various gases es.	im well ot laser otubes - ls for O netic se electrica id flow	s - Qua - LEDs DLEDs ensors - al powe sensor , measu sensors	antum base - Qua - electer ser s, pos	wire ed on ntum 9 trical isors, sition 9 ent of ed on 9

OUTCO	OMES:
•	Knowledge of various materials used in nano devices.
•	Able to design and simulate nano device.
•	Exposure to the different nano sensors.
•	Able to design and simulate nano sensors.
•	To familiarize with the present research front in Nanooelectronics and to be able to critically assess future trends.
REFER	RENCES:
1.	K.E. Drexler, "Nano systems", Wiley, 1992.
2.	M.C. Petty, "Introduction to Molecular Electronics", Oxford University Press, 1995.
3.	W. Ranier, "Nano Electronics and Information Technology", Wiley, Third Edition, 2012.

17AEPE07		SENSORS AND MEASUREMENTS SYSTEMS	L	Т	Р	С
			3	0	0	3
OBJEC	TIVE	S:				
•	To kn	ow the static and dynamic characteristics of measurement s	ystems.			
٠	To stu	udy about the various types of sensors viz. Resistive, Reactive	ve.			
•	To stu	udy about Self- generating sensors.				
•	To kr	now the different types digital and semiconductor sensors.				
•	To stu	ady different types of actuators and their usage.				
UNIT I		INTRODUCTION TO MEASUREMENT SYST	TEMS			9
character measuren	istics: 1 nent sys	tatic characteristics of measurement systems, accuracy, pre- inearity, resolution, systematic errors, random errors, dy stems: zero-order, first-order, and second-order measuremen	namic	charact	eristi	cs of nse.
UNIT I	I	RESISTIVE AND REACTIVE SENSORS				9
dependen	t resist	: potentiometers, strain gages, resistive temperature detectors ors, Signal conditioning for resistive sensors: Wheatston	e bridg	ge, sen	sor b	light oridge
dependen calibration reduction sensors, 1	t resist n and , Reacta inear va		e bridg ference ors, diffe	ge, sen and i erential	sor b nterfe , indu	light oridge rence active
dependen calibration reduction sensors, 1	t resist n and , Reacta inear va nditioni	ors, Signal conditioning for resistive sensors: Wheatston compensation, Instrumentation amplifiers, sources of inter- ance variation and electromagnetic sensors, capacitive sensor ariable differential transformers (LVDT), magneto elastic sen-	e bridg ference ors, diffe	ge, sen and i erential	sor b nterfe , indu	light- pridge rence active nsors
dependen calibration reduction sensors, 1 Signal con UNIT I Self-gene photovolt chopper	t resist n and o , Reacta inear va nditioni II erating taic ser and lo	ors, Signal conditioning for resistive sensors: Wheatston compensation, Instrumentation amplifiers, sources of inter- ance variation and electromagnetic sensors, capacitive sensor ariable differential transformers (LVDT), magneto elastic sen ng for reactance-based sensors & application to the LVDT.	e bridg ference ors, diffe nsors, h	ge, sen and i erential all effe electric neratin	sor b nterfe , indu ect ser c ser g ser	light- oridge rence active nsors 9 nsors
dependen calibration reduction sensors, 1 Signal con UNIT I Self-gene photovolt chopper	t resist n and , Reacta inear va nditioni II trating taic ser and lo s, noise V	ors, Signal conditioning for resistive sensors: Wheatston compensation, Instrumentation amplifiers, sources of inter- ance variation and electromagnetic sensors, capacitive sensor ariable differential transformers (LVDT), magneto elastic sen ng for reactance-based sensors & application to the LVDT. SELF-GENERATING SENSORS sensors: thermoelectric sensors, piezoelectric sensors nsors, electrochemical sensors, Signal conditioning for w-drift amplifiers, offset and drifts amplifiers, electron	e bridg ference ors, diffe nsors, h	ge, sen and i erential all effe electric neratin	sor b nterfe , indu ect ser c ser g ser	light- pridge rence active nsors sors harge
dependen calibration reduction sensors, 1 Signal con UNIT I Self-gene photovolt chopper amplifiers UNIT I Relays, S control,	t resist n and , Reacta inear va nditioni II trating taic ser and lo s, noise V Solenoid 4-to-20	ors, Signal conditioning for resistive sensors: Wheatston compensation, Instrumentation amplifiers, sources of inter- ance variation and electromagnetic sensors, capacitive sensor ariable differential transformers (LVDT), magneto elastic sen- ng for reactance-based sensors & application to the LVDT. SELF-GENERATING SENSORS sensors: thermoelectric sensors, piezoelectric sensors nsors, electrochemical sensors, Signal conditioning for w-drift amplifiers, offset and drifts amplifiers, electron in amplifiers. ACTUATOR CHARACTERISTICS AND	e bridg ference ors, diffe nsors, h , pyro self-gen neter at	ge, sen and i erential all effe electric neratin mplifie	sor b nterfe , indu ect ser g ser rs, c and r	light- pridge rence active nsors 9 nsors harge 9 notor
dependen calibration reduction sensors, 1 Signal con UNIT I Self-gene photovolt chopper amplifiers UNIT I Relays, S control,	t resist n and a , Reacta inear vanditioni II trating taic ser and lo s, noise V Solenoid 4-to-20 7	ors, Signal conditioning for resistive sensors: Wheatston compensation, Instrumentation amplifiers, sources of inter- ance variation and electromagnetic sensors, capacitive sensor ariable differential transformers (LVDT), magneto elastic sen- ing for reactance-based sensors & application to the LVDT. SELF-GENERATING SENSORS sensors: thermoelectric sensors, piezoelectric sensors nsors, electrochemical sensors, Signal conditioning for w-drift amplifiers, offset and drifts amplifiers, electron in amplifiers. ACTUATOR CHARACTERISTICS AND APPLICATIONS drive, Stepper Motors, Voice-Coil actuators, Servo Motor mA Drive, Hydraulic actuators, variable transformer	e bridg ference ors, diffe nsors, h , pyro self-gen neter an rs, DC r rs: syn	ge, sen and i erential all effe electric neratin mplifie notors chros,	sor b nterfe , indu ect ser g ser rs, c and r	light- pridge rence active nsors sors harge
dependen calibration reduction sensors, 1 Signal con UNIT I Self-gene photovolt chopper amplifiers UNIT I Relays, S control, Inductosy UNIT V Digital se wire strai	t resist n and a , Reacta inear va nditioni II trating taic ser and lo s, noise V Solenoid 4-to-20 7 censors: j in gage	ors, Signal conditioning for resistive sensors: Wheatston compensation, Instrumentation amplifiers, sources of inter ance variation and electromagnetic sensors, capacitive sensor ariable differential transformers (LVDT), magneto elastic set ing for reactance-based sensors & application to the LVDT. SELF-GENERATING SENSORS sensors: thermoelectric sensors, piezoelectric sensors asors, electrochemical sensors, Signal conditioning for w-drift amplifiers, offset and drifts amplifiers, electron in amplifiers. ACTUATOR CHARACTERISTICS AND APPLICATIONS I drive, Stepper Motors, Voice-Coil actuators, Servo Motor mA Drive, Hydraulic actuators, variable transformer wer-to-digital and digital-to-resolver converters. DIGITAL SENSORS AND SEMICONDUCTOF	e bridg ference ors, diffe nsors, h , pyro self-gen neter at rs, DC r rs: syn R DEV al therm	ge, sen and i erential all effe electric neratin mplifie notors chros, TCE	sor b nterfe , indu ect ser g ser g ser rrs, c and r reso	light pridge rence active nsors nsors harge noto lvers

magneto diodes and magneto transistors, photodiodes and phototransistors, sensors based on MOSFET transistors, CCD imaging sensors, ultrasonic sensors, fiber-optic sensors.

TOTAL: 45 PERIODS

OUTC	OMES:
•	Discuss measurement systems.
•	Knowledge about resistive and reactive sensors.
•	Discuss Self-generating sensors.
•	Analyze the characteristics of Actuators.
•	Evaluate digital sensors and semiconductor device sensors.
REFEI	RENCES:
1.	A.M. Pawlak," Sensors and Actuators in Mechatronics Design and Applications", CRC Press, 2006.
2.	D. Johnson, "Process Control Instrumentation Technology", John Wiley and Sons, Eighth Edition, 2006.
3.	D.Patranabis, "Sensors and Transducers", TMH, Second Edition, 2003.
4.	E.O. Doeblin, "Measurement System : Applications and Design", McGraw Hill publications, Fifth Edition, 2007.
5.	G.Brooker, Introduction to Sensors for ranging and imaging, Yesdee, 2009.
6.	H.K.P. Neubrat, "Instrument Transducers – An Introduction to Their Performance and Design", Oxford University Press, Second Edition.
7.	I.Sinclair, "Sensors and Transducers", Elsevier, 3rd Edition, 2011.
8.	J.Wilson, "Sensor Technology Handbook", Elsevier, First Edition, 2004.
9.	K. James, PC Interfacing and Data acquisition, Elsevier, First Edition.
10.	Ramon Pallás-Areny, John G. Webster, "Sensors and Signal Conditioning", 2nd edition, John Wiley and Sons, 2012.
11.	C.W. de Silva, "Sensors and Actuators: Control System Instrumentation", CRC Press, Second Edition, 2015.

17AEPE08			MEMS AND NEMS	L	T	Р	С
				3	0	0	3
OBJEC	TIVE	ES:				_11	
٠	To ir	ntrodu	ce the concepts of micro electromechanical devices.				
٠	To k	now t	he fabrication process of Microsystems.				
٠	To k	now t	he design concepts of micro sensors and micro actuate	ors.			
٠	To fa	amilia	rize concepts of quantum mechanics and nano system	s.			
•	To ir	ntrodu	ce various opportunities in the emerging field of MEN	AS.		_	
UNIT I		OV	ERVIEW				9
NEMS, N	IEMS a	and N	ring and Science: Micro and Nanoscale systems, Introduct EMS – Applications, Devices and structures. Materials metals.		U		
compound	, p == j						
UNIT I Microsys film depo etching, 6	I fail fail fail fail fail fail fail fail	bricat s: LPC	MS FABRICATION TECHNOLOGIES ion processes: Photolithography, Ion Implantation, D CVD, Sputtering, Evaporation, Electroplating; Etching cal etching; Micromachining: Bulk Micromachining, (LIGA and LIGA-like) Technology; Packaging;	g techniq Surface	ues: D Micro	ry and machi	Thin d wet ning
UNIT I Microsys film depo etching, e High As	I tem fab ositions electroo pect- 1 packag	bricat s: LPC chemi Ratio ging t	ion processes: Photolithography, Ion Implantation, E	g techniq Surface	ues: D Micro	ry and machi	Thin d wet ning, ging,
UNIT I Microsys film depo etching, e High As Essential UNIT I MEMS Se	I tem fabositions electrod pect- packag II ensors: sistive	bricat s: LPC chemi Ratio ging t MI Desiş Pressu	ion processes: Photolithography, Ion Implantation, E CVD, Sputtering, Evaporation, Electroplating; Etching cal etching; Micromachining: Bulk Micromachining, (LIGA and LIGA-like) Technology; Packaging: echnologies, Selection of packaging materials. CRO SENSORS on of Acoustic wave sensors, resonant sensor, Vibratory re sensors- engineering mechanics behind these Micros	g techniq Surface Microsys gyrosco	ues: D Micron stems pe, Cap	ry and machi packa	Thin d wet ning, ging, g g g e and
UNIT I Microsys film depo etching, e High As Essential UNIT I MEMS So Piezo Res	I tem fai positions electroc pect- 1 packag II ensors: sistive 1 ressure	bricat s: LPC chemi Ratio ging t MI Desig Pressu senso	ion processes: Photolithography, Ion Implantation, E CVD, Sputtering, Evaporation, Electroplating; Etching cal etching; Micromachining: Bulk Micromachining, (LIGA and LIGA-like) Technology; Packaging: echnologies, Selection of packaging materials. CRO SENSORS on of Acoustic wave sensors, resonant sensor, Vibratory re sensors- engineering mechanics behind these Micros	g techniq Surface Microsys gyrosco	ues: D Micron stems pe, Cap	ry and machi packa	Thin d wet ning ging ging g e and Piezo
UNIT I Microsys film depo etching, e High As Essential UNIT I MEMS So Piezo Res resistive p UNIT I Design of piezoelect Micromec	I tem fa positions electroc pect- packag II ensors: sistive ressure V Actuat ric crys hanical	bricat s: LPC chemi Ratio ging t MIC Desig Pressu senso MIC ors: A stals, A Moto	ion processes: Photolithography, Ion Implantation, E CVD, Sputtering, Evaporation, Electroplating; Etching cal etching; Micromachining: Bulk Micromachining, (LIGA and LIGA-like) Technology; Packaging: echnologies, Selection of packaging materials. CRO SENSORS m of Acoustic wave sensors, resonant sensor, Vibratory re sensors- engineering mechanics behind these Micros r.	g techniq Surface Microsys gyrosco sensors. (ory Alloy bar, Con	ues: D Micros stems pe, Cap Case st ys, Actu nb drive	ry and machi packa acitiv udy: 1 hation e actua	Thin d wet ning, ging, ging, g e and Piezo- 9 using ators),
UNIT I Microsys film depo etching, e High As Essential UNIT I MEMS So Piezo Res resistive p UNIT I Design of piezoelect Micromec	I tem fa positions electrod pect- packag II ensors: sistive ressure V Actuat ric crys chanical pol inter	bricat s: LPC chemi Ratio ging t MIC Desig Pressu senso MIC ors: A stals, A Moto rferen	ion processes: Photolithography, Ion Implantation, E CVD, Sputtering, Evaporation, Electroplating; Etching cal etching; Micromachining: Bulk Micromachining, (LIGA and LIGA-like) Technology; Packaging: echnologies, Selection of packaging materials. CRO SENSORS of Acoustic wave sensors, resonant sensor, Vibratory re sensors- engineering mechanics behind these Micros r. CRO ACTUATORS ctuation using thermal forces, Actuation using shape mem- actuation using Electrostatic forces (Parallel plate, Torsion rs and pumps. Case study: Comb drive actuators. compon	g techniq Surface Microsys gyrosco gensors. (hory Alloy bar, Con ents , Ey	ues: D Micros stems pe, Cap Case st ys, Actu nb drive	ry and machi packa acitiv udy: 1 hation e actua	Thin d wet ning ging 9 e and Piezo 9 using ators) itter
UNIT I Microsys film depo etching, o High As Essential UNIT I MEMS So Piezo Res resistive p UNIT I Design of piezoelect Micromec inter-symb UNIT V Atomic S Equation	I tem fai positions electrod pect- packag II ensors: sistive v Actuate ric crys chanical pol inter / Structur and V	bricat s: LPC chemi Ratio ging t MIC Desig Pressu senso MIC ors: A stals, A stals, A moto rferen NA	ion processes: Photolithography, Ion Implantation, E CVD, Sputtering, Evaporation, Electroplating; Etching cal etching; Micromachining: Bulk Micromachining, (LIGA and LIGA-like) Technology; Packaging: echnologies, Selection of packaging materials. CRO SENSORS on of Acoustic wave sensors, resonant sensor, Vibratory re sensors- engineering mechanics behind these Micros r. CRO ACTUATORS ctuation using thermal forces, Actuation using shape mem- actuation using Electrostatic forces (Parallel plate, Torsion rs and pumps. Case study: Comb drive actuators. compon be Bit-error rate ,Timing analysis.	g techniq Surface Microsys gyrosco gyrosco sensors. (hory Alloy bar, Con ents , Ey NICS e Dynar structure	pe, Cap Case st ys, Actu nb drive e diagra	ry and machi packa pacitiv udy: I nation e actua ums , j chrod Mole	d wet ning, ging, ging, 9 e and Piezo- 9 using ators), itter , 9 inger ccular

OUTC	OMES:
•	Be familiar with the important concepts related to MEMS.
•	Outline MEMS fabrication technology.
•	Design of micro actuators.
•	Analyze the engineering mechanism of micro sensors.
•	Outline nano systems and Quantum mechanics.
REFEI	RENCES:
1.	C.Liu, "Foundations of MEMS", Pearson education India limited, Second Edition, 2011.
2.	M.Madou, "Fundamentals of Microfabrication and NanoTechnology", CRC press, Third Edition, 2011.
3.	S.D. Senturia," Micro system Design", Kluwer Academic Publishers,2001
4.	S.E.Lyshevski, "MEMS and NEMS: Systems, Devices, and Structures" CRC Press, 2002.
5.	T.R.Hsu ,"MEMS and Microsystems Design and Manufacture", Tata McGraw Hill, First Edition, 2002

SEMESTER- II

ELECTIVE III

17AEPE09		DSP PROCESSOR ARCHITECTURE AND PROGRAMMING	L	Т	Р	С
			3	0	0	3
OBJEC	TIVES	S:			1 1	
•	U	ve an exposure to the various DSP architectures and to develop processors.	op app	lication	ıs usir	ng
٠	Knowl	ledge on digital signal processor basics.				
٠	Knowl	ledge on third generation DSP Architecture.				
•	Knowl	ledge on programming skills.				
•	Knowl	ledge on advanced DSP architectures and some applications.				
UNIT I	I	FUNDAMENTALS OF PROGRAMMABLE DS	Ps			9
-		Iultiplier accumulator – Modified Bus Structures and Mem	-			
-		nemory – Multi-port memory – VLIW architecture- Pipelinir – On chip Peripherals.	ng – Sj	pecial A	Addre	ssing
-	P-DSPs		1g – Sj		Addre	ssing 9
modes in UNIT II Architectu Pipeline	P-DSPs [Sure – Asstructure	– On chip Peripherals.	langua	age Ins	tructi	9 ons -
modes in UNIT II Architectu Pipeline	P-DSPs [S Ire – As structure g real tir	s – On chip Peripherals. SPECIAL FUNCTIONS ssembly language syntax - Addressing modes – Assembly e, Operation – Block Diagram of DSP starter kit – Ap	langua	age Ins	tructi	9 ons -
modes in a UNIT II Architectu Pipeline s processing UNIT II Architectu Starter Ki	P-DSPsI S Ire - Asstructureg real tirIIIIIre of tht Suppo	s – On chip Peripherals. SPECIAL FUNCTIONS ssembly language syntax - Addressing modes – Assembly e, Operation – Block Diagram of DSP starter kit – Ap me signals.	langua plicati em: In	age Ins on Pro	tructi ogram	9 ons - s for 9 DSP
modes in a UNIT II Architectu Pipeline s processing UNIT II Architectu Starter Ki	P-DSPs I S Ire – As structure g real tir I I Ire of th t Suppo Fools – A	 SPECIAL FUNCTIONS ssembly language syntax - Addressing modes – Assembly e, Operation – Block Diagram of DSP starter kit – Appme signals. LINEAR PROGRAMMING me C6x Processor - Instruction Set - DSP Development System ort Tools- Code Composer Studio - Support Files - Program 	langua plicati em: In	age Ins on Pro	tructi ogram	9 ons - s for 9 DSP
modes in a UNIT II Architectu Pipeline s processing UNIT II Architectu Starter Ki the DSK 7 UNIT IV Architectu	P-DSPs I S Ire – As structure g real tir I I Ire of th t Suppo Fools – A V I Ire of A	 SPECIAL FUNCTIONS ssembly language syntax - Addressing modes – Assembly e, Operation – Block Diagram of DSP starter kit – Ap me signals. LINEAR PROGRAMMING me C6x Processor - Instruction Set - DSP Development Systemet Tools- Code Composer Studio - Support Files - Program Application Programs for processing real time signals. 	langua plicati em: In ming Addre	age Ins on Pro troduct Examp	tructi ogram ion – les to	9 ons - s for 9 DSP Test 9
modes in a UNIT II Architectu Pipeline s processing UNIT II Architectu Starter Ki the DSK 7 UNIT IV Architectu	P-DSPs I S Ire – As structure g real tir I I Ire of th t Suppo Fools – A V I Ire of A languag	 SPECIAL FUNCTIONS ssembly language syntax - Addressing modes – Assembly e, Operation – Block Diagram of DSP starter kit – Appme signals. LINEAR PROGRAMMING the C6x Processor - Instruction Set - DSP Development System for trools- Code Composer Studio - Support Files - Program Application Programs for processing real time signals. LINEAR PROGRAMMING ADSP-21XX and ADSP-210XX series of DSP processors- 	langua plicati em: In ming Addre	age Ins on Pro troduct Examp	tructi ogram ion – les to	9 ons - s for 9 DSP Test 9
modes in a UNIT II Architectu Pipeline s processing UNIT II Architectu Starter Ki the DSK 7 UNIT IV Architectu assembly UNIT V Architectu	P-DSPs I = As structure g real tir I = I ure of th t Suppo Fools - A V = I ure of A languag A ure of A languag A C G X - A	 SPECIAL FUNCTIONS ssembly language syntax - Addressing modes – Assembly e, Operation – Block Diagram of DSP starter kit – Appme signals. LINEAR PROGRAMMING ne C6x Processor - Instruction Set - DSP Development Systemet Tools- Code Composer Studio - Support Files - Program Application Programs for processing real time signals. LINEAR PROGRAMMING ADSP-21XX and ADSP-210XX series of DSP processors-ge instructions – Application programs –Filter design, FFT care 	langua plicati em: In ming Addre alculat	age Ins on Pro troduct Examp essing 1 ion.	tructiogram	9 ons - s for 9 DSP Test 9 s and 9 re of

OUTC	OMES:
•	Learn the architecture details and instruction sets of DSP.
•	Understand the special functions of DSP architecture and programming.
•	Interfacing of programmable DSP devices for system implementation.
•	Create application programs.
•	Evaluate features of DSP family processors.
REFE	RENCES:
1.	A.Singh and S. Srinivasan, "Digital Signal Processing – Implementations using DSP Microprocessors with Examples from TMS320C54xx", Cengage Learning India Private Limited Delhi, 2012.
2.	B.Venkataramani and M.Bhaskar, "Digital Signal Processors – Architecture, Programming and Applications" – Tata McGraw – Hill Publishing Company Limited. New Delhi, Second Edition, 2010.
3.	RulphChassaing, D.S.Reay, "Digital Signal Processing and Applications with the TMS320C6713 and TMS320C6416 DSK", A JOHN WILEY & SONS, INC., PUBLICATION, Second Edition, 2011.
4.	User guides Texas Instrumentation, Analog Devices, Motorola.

17AEPE10				RF	SYS'	ГЕМ	1 DE	SIGN			L	Τ	P	С
											3	0	0	3
OBJEC	CTIVE	S:								•				
•		troduce rtant blo					n and	design p	orinciples	associ	ated	with th	e	
٠	To de	esign RI	F ampli	fier.										
٠	To st	udy abo	out the o	charact	eristics	ofos	scillat	ors, mix	ers.					
•								the appr with the	opriate di RFEs.	gital c	comm	unicati	ion re	elated
٠	To st	udy abo	out the o	charact	eristics	of P	LL ar	d freque	ncy synth	esizer	s.		-	
UNIT I	[S PHY ARCH		,		SCEI	VER S	PECIF	[CAT	TON	NS		9
theory, over a c	Noise I commur	Figure,	THD, I link,	IP2, IP Homo	P3, Sens dyne R	sitivi Receiv	ty, SI ver, H	FDR, Ph Heterody	ker, popc ase noise ne Recei tep upcon	- Spe ver, I	ecifica mage	ation d reject	istrib , Lo	outior
UNIT I	Ι	IMPE	EDAN	CE M	[ATC]	HIN	G A	ND AN	IPLIFII	ERS				9
Gate, Co	ommon quency	Source amplif	Ampli ier des	fiers, C ign, Po	DC Tim ower m	ne co natch	nstan and	ts in bar Noise n	edance ma dwidth ea hatch, Sir As.	stimati	ion a	nd enh	ance	ment
UNIT I	II	FEED	DBAC	K SY	STEM	IS A	IS AND POWER AMPLIFIERS						9	
domain c	consider mplifier	ations,	Compe	ensation	n, Gene	eral n	nodel	– Class	ocus techr A, AB, F g technic	3, C, I	, Е	and F a	ampli	ifiers
UNIT I	V	MIXE	ERS A	ND C	SCIL	LLA	TOR	S						9
balanced	and do	uble bal	lanced	mixers	, subsar	mplin	ng miz	kers, Osc	rs, Multip illators de scillators,	escribi	ng Fi	unction	-	
UNIT V	V	PLL A	AND I	FREQ	QUEN	CY	SYN	THES	ZERS					9
Linearise frequenc								-	s and Cha	arge pi	umps	, Intege	er-N	
1														

OUTC	OUTCOMES:		
•	Understand the specifications and architecture design of transceivers.		
•	Knowledge of impedance matching networks and design of high frequency amplifiers.		
•	Design of feedback systems and power amplifiers.		
•	Knowledge of mixers and oscillators.		
•	Design of PLL and Frequency synthesizers.		
REFEI	RENCES:		
1.	B.Razavi, "Design of Analog CMOS Integrated Circuits", McGraw Hill, Second Edition, 2017.		
2.	B.Razavi, "RF Microelectronics", Pearson Education, Second Edition, 2012.		
3.	J.Crols, M.Steyaert, "CMOS Wireless Transceiver Design", Kluwer Academic Publishers, 1997.		
4.	Recorded lectures and notes available at . http://www.ee.iitm.ac.in/~ani/ee6240/		
5.	T.Lee, "The Design of CMOS Radio Frequency Integrated Circuits", Cambridge University Press, Second Edition, 2004.		

			3	0	0	3
OBJEC	ΓΙν	ES:				
•	To study basic concepts of processing speech signals.					
•	To s	tudy and analyse various M-band filter-banks for audio coding	g.			
•	To u	nderstand audio coding based on transform coders.				
•	To s	tudy time and frequency domain speech processing methods				
•	To u	nderstand predictive analysis of speech.				
UNIT I		MECHANICS OF SPEECH AND AUDIO				9
of Hearin Masking- versus obj	g - (Non-s jectiv	emes – Phonetic and Phonemic alphabets – Articulatory featu Critical Bands- Simultaneous Masking, Masking-Asymmet simultaneous Masking - Perceptual Entropy - Basic measuring e perceptual testing - The perceptual audio quality measuring audio quality.	ry, and philos e (PAC	d the ophy - QM) -	Sprea Subje	nd of ective nitive
UNIT II		TIME-FREQUENCY ANALYSIS: FILTER BAI TRANSFORMS	NKS A	AND		9
Coding: I Structured Cosine M Transform	Introduction - Analysis-Synthesis Framework for M-band Filter Banks- Filter Banks for Aud Coding: Design Considerations - Quadrature Mirror and Conjugate Quadrature Filters - Tree Structured QMF and CQF M-band Banks - Cosine Modulated "Pseudo QMF" M-band Banks Cosine Modulated Perfect Reconstruction (PR) M-band Banks and the Modified Discrete Cosi Transform (MDCT) - Discrete Fourier and Discrete Cosine Transform - Pre-echo Distortion- Pre- echo Control Strategies.					Tree- nks - osine
UNIT II	Ι	AUDIO CODING AND TRANSFORM CODERS	5			9
Coding - Q Johnston H Audio Co	Lossless Audio Coding – Lossy Audio Coding - ISO-MPEG-1A, 2A, 2A-Advaned, 4A Audio Coding - Optimum Coding in the Frequency Domain - Perceptual Transform Coder –Brandenburg - Johnston Hybrid Coder - CNET Coders - Adaptive Spectral Entropy Coding –Differential Perceptual Audio Coder - DFT Noise Substitution -DCT with Vector Quantization -MDCT with Vector Quantization.					
UNIT IV	7	TIME AND FREQUENCY DOMAIN METHOD SPEECH PROCESSING	S FO	R		9
Magnitude analysis -	e – Ze - For phic	arameters of Speech signal – Methods for extracting the parameters of Speech signal – Methods for extracting the parameter crossing Rate – Silence Discrimination using ZCR and end mant extraction – Pitch Extraction using time and freque Speech Analysis: Cepstral analysis of Speech – Formant Vocoders.	ergy Sh	ort Tiı domair	ne Fo n me	ourier thods
		62				

SPEECH SIGNAL PROCESSING

17AEPE11

P

С

Т

L

UNIT V	V	PREDICTIVE ANALYSIS OF SH	PEECH	9	
method – algorithm	Formulation of Linear Prediction problem in Time Domain – Basic Principle – Auto correlati method – Covariance method – Solution of LPC equations – Cholesky method – Durbin''s Recursi algorithm – lattice formation and solutions – Comparison of different methods – Application of LI parameters – Pitch detection using LPC parameters – Formant analysis – VELP – CELP.				
			TOTAL: 45 PERIODS		
OUTCO	OME	S:			
•	Abili	ty to understand the mechanism of speech s	signal processing.		
•	Analy	ysis of filter banks and transforms in time d	omain.		
•	Evalu	ate audio coding and transform coders.			
•	Discu	ass time and frequency domain methods for	speech processing.		
•	• Ability to analyze predictive analysis of speech.				
REFER	REFERENCES:				
1.	1. B.Gold and N.Morgan, "Speech and Audio Signal Processing", Wiley and Sons, Second Edition, 2011.		Second		
2.	L.R.Rabiner and R.W.Schaffer, "Digital Processing of Speech Signals", Prentice Hall, 1979.				
3.	<i>3. M.Kahrs, K.Brandenburg, "Applications of Digital Signal Processing to Audio And Acoustics", Kluwer Academic Publishers, 1998.</i>				
4.	U.Zöl	zer, "Digital Audio Signal Processing", John W	Viley& sons Ltd , Second Edition, 20	08.	

17AEPE12		SOLID STATE DEVICE MODELLING AND SIMULATION	L	Т	Р	С
			3	0	0	3
OBJEC	CTIVE	S:	·			
٠	To stu	udy physics of MOSFET devices.				
٠	To un	derstand the concept of device modelling.				
٠	To lea	arn multistep method.				
٠	To stu	dy mathematical techniques of device simulations.				
•	To stu	dy device simulations.				
UNIT I	[]	MOSFET DEVICE PHYSICS MOSFET				9
transistor transistor	rs, Equiv	operation, Basic modeling, Advanced MOSFET modeling valent circuit representation of MOS transistor, High frequ .C small signal modeling, model parameter extraction, in itors, Inductors.	uency t	ehavio	r of	MOS
UNIT II DEVICE MODELLING						
UNITI		DEVICE MODELLING				9
Prime im analysis	portance equatior	e of circuit and device simulations in VLSI; Nodal, mesh, m ns. Solution of network equations: Sparse matrix technique n Newton-Raphson technique, convergence and stability.				ybrid
Prime im analysis	aportance equatior through	e of circuit and device simulations in VLSI; Nodal, mesh, m as. Solution of network equations: Sparse matrix technique				•
Prime im analysis networks UNIT I Solution	aportance equation s through (II) of stiff	e of circuit and device simulations in VLSI; Nodal, mesh, m ns. Solution of network equations: Sparse matrix technique n Newton-Raphson technique, convergence and stability.	es, solu	tion of	non	ybrid linear 9
Prime im analysis networks UNIT I Solution	nportance equation s through (II) of stiff s, genera (V)	e of circuit and device simulations in VLSI; Nodal, mesh, m ns. Solution of network equations: Sparse matrix technique in Newton-Raphson technique, convergence and stability. MULTISTEP METHODS systems of equations, adaptation of multistep methods to the	es, solu	tion of	non	ybrid linear 9 etrical
Prime im analysis networks UNIT I Solution networks UNIT I Poisson o	aportance equation s through of stiff s, genera V equation s, trap	e of circuit and device simulations in VLSI; Nodal, mesh, m ns. Solution of network equations: Sparse matrix technique in Newton-Raphson technique, convergence and stability. MULTISTEP METHODS systems of equations, adaptation of multistep methods to a l purpose circuit simulators. MATHEMATICAL TECHNIQUES DEVICE	es, solu the solu equation	ation of	f elec	ybrid linear 9 etrical 9
Prime im analysis networks UNIT I Solution networks UNIT I Poisson e equations	aportance equation s through (II) of stiff s, genera (V) equation s, trap on.	e of circuit and device simulations in VLSI; Nodal, mesh, m as. Solution of network equations: Sparse matrix technique in Newton-Raphson technique, convergence and stability. MULTISTEP METHODS systems of equations, adaptation of multistep methods to a l purpose circuit simulators. MATHEMATICAL TECHNIQUES DEVICE SIMULATIONS , continuity equation, drift-diffusion equation, Schrodinger	es, solu the solu equation	ation of	f elec	ybrid linear 9 etrical 9
Prime im analysis networks UNIT I Solution networks UNIT I Poisson of equations generation	aportance equation s through of stiff s, genera (V equation s, trap on. V	e of circuit and device simulations in VLSI; Nodal, mesh, m ns. Solution of network equations: Sparse matrix technique in Newton-Raphson technique, convergence and stability. MULTISTEP METHODS systems of equations, adaptation of multistep methods to a l purpose circuit simulators. MATHEMATICAL TECHNIQUES DEVICE SIMULATIONS , continuity equation, drift-diffusion equation, Schrodinger rate, finite difference solutions to these equations in 1 SIMULATION OF DEVICES characteristics of simple devices like p-n junction, MOS of	es, solu the solu equatic D and	ation of ution of on, hydr 2D sj	f elec	ybrid linear 9 etrical 9 namic grid 9

OUTC	OUTCOMES:			
•	Able to understand the importance of MOS Capacitor and Small signal modelling.			
•	Apply and determine the drift diffusion equation and stiff system equation.			
•	Analyze circuits using parasitic BJT parameters and Newton Raphson method.			
•	Modelling of MOS transistor using Schrodinger equation and Multistep methods.			
•	Ability to do simulation to compute the characteristics of MOSFET devices.			
REFE	RENCES:			
1.	Arora, N., "MOSFET Modelling for VLSI Simulation", Cadence Design Systems, 2007.			
2.	Chua, L.O. and Lin, P.M., "Computer-Aided Analysis of Electronic Circuits: Algorithms and Computational Techniques", Prentice-Hall., 1975.			
3.	<i>Fjeldly, T., Yetterdal, T. and Shur, M., "Introduction to Device Modelling and Circuit Simulation", Wiley-Interscience., 1997.</i>			
4.	Grasser, T., "Advanced Device Modelling and Simulation", World Scientific Publishing Company., 2003.			
5.	Selberherr, S., "Analysis and Simulation of Semiconductor Devices", Springer- Verlag., 1984.			
6.	T.Ytterdal, Y.Cheng and Tor A. FjeldlyWayne Wolf, "Device Modelling for Analog and RF CMOS Circuit Design", John Wiley & Sons Ltd, 2003.			

SEMESTER- III

ELECTIVE IV

17AEPE13

ADVANCED MICROPROCESSOR AND MICROCONTROLLER ARCHITECTURES

L	Т	Р	С
3	0	0	3

OBJECTIVES:

•	To familiarize about the features, specification and features of modern microprocessors.
•	To gain knowledge about the architecture of Intel 32 and 64 bit microprocessors and salient features associated with them.
•	To familiarize about the features, specification and features of modern microcontrollers.
•	To gain knowledge about the 32 bit microcontrollers based on ARM and PIC32 architectures.
•	To study interfacing of microprocessor/microcontroller with the external peripheral.

UNIT I

FEATURES OF MODERN MICROPROCESSORS

9

Evolution of microprocessors - Data and Address buses - clock speed - memory interface - multicore architectures - cache memory hierarchy - operating modes - super scaler execution - dynamic execution - over clocking - integrated graphics processing - performance benchmarks.

UNIT II HIGH PERFORMANCE CISC ARCHITECTURES

9

9

Introduction to IA 32 bit architecture – Intel Pentium Processors family tree – Memory Management – Branch prediction logic - Superscalar architecture – Hyper threading technology – 64 bit extension technology – Intel 64 bit architecture - Intel Core processor family tree – Turbo boost technology – Smart cache - features of Nehalem microarchitecture

UNIT III HIGH PERFORMANCE RISC ARCHITECTURE – ARM

RISC architecture merits and demerits – The programmer's model of ARM Architecture – 3- stage pipeline ARM organization - ARM instruction execution – Salient features of ARM instruction set - ARM architecture profiles (A, R and M profiles)

UNIT IV FEATURES OF MODERN MICROCONTROLLER

9

Introduction to microcontrollers – microcontroller vs microprocessors – microcontroller architecture - Processor Core – Memory interfaces– Communication interfaces (SPI,I2C, USB and CAN) – ADC - PWM – Watchdog timers – Interrupts – Debugging interfaces .

UNIT V HIGH PERFORMANCE MICROCONTROLLER ARCHITECTURES

Introduction to the Cortex-M Processor Family - ARM 'Cortex-M3' architecture for microcontrollers – Thumb 2 instruction technology – Internal Registers - Nested Vectored Interrupt controller -Memory map - Interrupts and exception handling – Applications of Cotex-M3 architecture

TOTAL : 45 PERIODS

OUTCO	OUTCOMES:				
•	To explain the features and important specifications of modern microprocessors.				
•	To explain the salient features CISC microprocessors based on IA-32 bit and IA-64 bit architectures.				
•	To explain the salient features RISC processors based on ARM architecture and different application profiles of ARM core.				
•	To explain the features and important specifications of modern microcontrollers.				
•	To explain about ARM – M3 architecture and its salient features.				
REFER	ENCES:				
1.	Barry. B. Breg," The Intel Microprocessors", PHI,2008.				
2.	Gene .H.Miller ." Micro Computer Engineering," Pearson Education, 2003.				
3.	Intel Inc, "Intel 64 and IA-32 Architectures Developer"s Manual", Volume-I, 2016				
4.	J. Yiu, "The Definitive Guide to the ARM ® Cortex-M3", Newnes, 2010.				
5.	S.Mueller, "Upgrading and Repairing PCs", 20th edition, Que.				
6.	S.Furber, "" ARM System –On –Chip architecture "Addision Wesley , 2000.				
7.	T. Martin, "The Designer"s Guide to the Cortex-M Processor Family", Newnes, 2013.				

17AEPE14		SYSTEM ON CHIP DESIGN	[L	Т	P	С
				3	0	0	3
OBJEC	CTIVE	S:				<u> </u>	
•	To u	derstand what SOC is and what the difference bet	ween SOC	and E	nbedde	ed sys	stem.
٠	To understand system design methodology in SOC.						
•	To co	ver the basics of SOC design, hardware software	co design a	nd syn	thesis.		
•	To st	ady different levels of SOC verification.					
•	To st	udy testing of SOC.					
UNIT I		INTRODUCTION					9
embedded power So	l OS, m C Desig						Low
UNIT I	I	SYSTEM LEVEL MODELLING					9
		ew, Data types, modules, notion of time, dynami- orts and interfaces, Design with examples.	c process,	basic c	channels	s, stru	icture
UNIT I	II	HARDWARE AND SOFTWARE CO -DESIGN					9
•	nd pow	oning, high level optimisations, real-time scheduler management; Virtual platform models, co-simums.	-				-
UNIT I	V	SYNTHESIS					9
mapping, communic	platforr cation; l	: Transaction Level Modelling (TLM) based desin a synthesis; software synthesis: code generation, multi Hardware synthesis: RTL architecture, Input models, ning and scheduling.	i task synth	esis, in	ternal a	nd ex	ternal
UNIT V	V	SOC VERIFICATION AND TESTING					9
system le	vel ver	ration, Verification: Verification technology options, fication, physical verification, hardware/software co C design for testability - System modeling, test power	o-verification	n; Test	require	ement	s and
		ΤΟΤΑ	L: 45 I	PERI	ODS		
OUTCO	OMES	:					
•	Analyse algorithms and architecture of hardware software in order to optimise the systemeters of the systeme						/stem
• Analyse algorithms and architecture of hardware software in order to optimise the sy based on requirements and implementation constraints.							
•		and specify systems at high level of abstraction.					

•	Understand hardware, software and interface synthesis.
•	Appreciate the co-design approach and virtual platform models.
•	Ability to do SOC verification and testing.
REFE	RENCES:
1.	D. Black, J. Donovan, "SystemC: From the Ground Up", Springer, Second Edition, 2010.
2.	D. Gajski, S. Abdi, A. Gerstlauer, G. Schirner, "Embedded System Design: Modeling, Synthesis, Verification", Springer, 2009
3.	H.Zhou, "The Internet of Things in the Cloud: A Middleware Perspective", CRC Press, 2012.
4.	J.Ho [•] ller, V.Tsiatsis, C.Mulligan, Stamatis, Karnouskos, S.Avesand. D.Boyle, "From Machine-to- Machine to the Internet of Things - Introduction to a New Age of Intelligence", Elsevier, 2014.
5.	O.Hersent, D.Boswarthick, O.Elloumi, "The Internet of Things – Key applications and Protocols", Wiley, Second Edition, 2012.
6.	Hoi-junyoo, K.Lee, J.Kyoungkim, "Low power NoC for high performance SoC design", CRC press, 2008.
7.	M. L. Bushnell and V.D. Agrawal, "Essentials of Electronic Testing for Digital Memory and Mixed Signal VLSI Circuits", Springer, 2005
8.	M. Abramovici, M. Breuer, and A. Friedman, "Digital System Testing and Testable Design", IEEE Press, 1994.
9.	P. Marwedel, G. De Micheli, "Synthesis and Optimization of Digital Circuits" Springer, 2003.
10.	P.Rashinkar, P.Paterson and L.Singh, "System-on-a chip verification: Methodology and techniques", Kluwer Academic Publishers, 2002.
11.	T. Noergaard, "Embedded Systems Architecture: A Comprehensive Guide for Engineers and Programmers", Newnes, Second Edition, 2012.
12.	V.K. Madisetti, C.Arpikanondt, "A Platform-Centric Approach to System-on-Chip (SOC) Design", Springer, 2005.
13.	Y.L Steve, Lin, "Essential Issues in SOC Design Designing Complex Systems-on-Chip", Springer, 2006.

17AEPE15		ROBOTICS	L	Т	Р	С
			3	0	0	3
OBJEC	CTIVE	S:			1 1	
•	To ur	derstand robot locomotion and mobile robot kinematics.				
٠	To ur	derstand perception in robotics.				
•	To ur	derstand mobile robot localization.				
•	To ur	derstand mobile robot mapping.				
•	To ur	derstand robot planning and navigation.				
UNIT I	[LOCOMOTION AND KINEMATICS				9
		botics – key issues in robot locomotion – legged robots – wheele roduction to kinematics – kinematics models and constraints – robo				aeria
UNIT I	Ι	ROBOT PERCEPTION				9
		robots – vision for robotics – cameras – image formation – structur ical flow – color tracking – place recognition – range data	re fror	n sterec	o – stru	icture
	ion – opt		re fror	n stered	o – stru	
from moti UNIT I Introducti map repre	ion – opt III ion to loo esentatio	ical flow – color tracking – place recognition – range data	ı – beli EKF 1	ef repre	esenta	9 tion –
from moti UNIT I Introducti map repre	ion – opt II Ion to locesentatio on – Grid	ical flow – color tracking – place recognition – range data MOBILE ROBOT LOCALIZATION alization – challenges in localization – localization and navigation n – probabilistic map-based localization – Markov localization – 1	ı – beli EKF 1	ef repre	esenta	9 tion – UKF
from moti UNIT I Introducti map represented localization UNIT I Autonomo	ion – opt II ion to locesentatio on – Gric IV ous map Filter SL	ical flow – color tracking – place recognition – range data MOBILE ROBOT LOCALIZATION alization – challenges in localization – localization and navigation n – probabilistic map-based localization – Markov localization – 1 localization – Monte Carlo localization – localization in dynamic e	ı – beli EKF 1 enviror	lef repro ocaliza nments SLAM	esenta tion –	9 tion – UKF 9 ended
from moti UNIT I Introducti map repre- localizatio UNIT I Autonomo Kalman F	ion – opt II ion to locesentatio on – Grid V ous map Filter SL gorithm.	A color tracking – place recognition – range data MOBILE ROBOT LOCALIZATION Palization – challenges in localization – localization and navigation A probabilistic map-based localization – Markov localization – 1 Iocalization – Monte Carlo localization – localization in dynamic e MOBILE ROBOT MAPPING building – occupancy grip mapping – MAP occupancy mapping	ı – beli EKF 1 enviror	lef repro ocaliza nments SLAM	esenta tion –	9 tion – UKF 9 ended
from moti UNIT I Introducti map represented localization UNIT I Autonomotic Kalman F SLAM algo UNIT V Introduct	ion – opt III ion to locesentatio ion – Grid IV ous map Filter SL gorithm.	MOBILE ROBOT LOCALIZATION alization – challenges in localization – localization and navigation n – probabilistic map-based localization – Markov localization – T localization – Monte Carlo localization – localization in dynamic e MOBILE ROBOT MAPPING building – occupancy grip mapping – MAP occupancy mapping AM – graph-based SLAM – particle filter SLAM – sparse extended	i – beli EKF l enviroi ing – d infor	ef repro ocaliza nments SLAM mation	esenta tion –	9 tion – UKF 9 endec – fast
from moti UNIT I Introducti map repre- localizatio UNIT I Autonomo Kalman F SLAM alg UNIT V Introduct	ion – opt III ion to locesentatio ion – Grid IV ous map Filter SL gorithm.	A color tracking – place recognition – range data MOBILE ROBOT LOCALIZATION alization – challenges in localization – localization and navigation a probabilistic map-based localization – Markov localization – illocalization – Monte Carlo localization – localization in dynamic e MOBILE ROBOT MAPPING building – occupancy grip mapping – MAP occupancy mapping AM – graph-based SLAM – particle filter SLAM – sparse extended PLANNING AND NAVIGATION lanning and navigation – planning and reacting – path planning	i – beli EKF 1 environ ing – d infor	ef repro ocaliza nments SLAM mation	esenta tion –	9 tion - UKF 9 endec – fas
from moti UNIT I Introducti map repre- localizatio UNIT I Autonomo Kalman F SLAM alg UNIT V Introduct	ion – opt III ion to locesentatio on – Grid V ous map Filter SL gorithm. V tion to p es – nav	Antical flow – color tracking – place recognition – range data MOBILE ROBOT LOCALIZATION alization – challenges in localization – localization and navigation h – probabilistic map-based localization – Markov localization – flocalization – Monte Carlo localization – localization in dynamic e MOBILE ROBOT MAPPING building – occupancy grip mapping – MAP occupancy mapping M – graph-based SLAM – particle filter SLAM – sparse extended PLANNING AND NAVIGATION lanning and navigation – planning and reacting – path planning igation architectures – basic exploration algorithms. TOTAL : 45 P	i – beli EKF 1 environ ing – d infor	ef repro ocaliza nments SLAM mation	esenta tion –	9 tion - UKF 9 endec – fas
from moti UNIT I Introducti map repre- localizatio UNIT I Autonome Kalman F SLAM alg UNIT V Introduct technique	ion – opt III Ion to locesentatio fon – Grid V ous map Filter SL gorithm. V tion to p es – nav	Antical flow – color tracking – place recognition – range data MOBILE ROBOT LOCALIZATION alization – challenges in localization – localization and navigation h – probabilistic map-based localization – Markov localization – flocalization – Monte Carlo localization – localization in dynamic e MOBILE ROBOT MAPPING building – occupancy grip mapping – MAP occupancy mapping M – graph-based SLAM – particle filter SLAM – sparse extended PLANNING AND NAVIGATION lanning and navigation – planning and reacting – path planning igation architectures – basic exploration algorithms. TOTAL : 45 P	i – beli EKF 1 environ ing – d infor	ef repro ocaliza nments SLAM mation	esenta tion –	9 tion - UKF 9 endec – fas
from moti UNIT I Introducti map repre- localizatio UNIT I Autonomo Kalman F SLAM alg UNIT V Introduct technique	ion – opt II ion to locesentatio on – Grid V ous map Filter SL gorithm. V tion to p es – nav	Antical flow – color tracking – place recognition – range data MOBILE ROBOT LOCALIZATION alization – challenges in localization – localization and navigation n – probabilistic map-based localization – Markov localization – To localization – Monte Carlo localization – localization in dynamic e MOBILE ROBOT MAPPING building – occupancy grip mapping – MAP occupancy mapping M – graph-based SLAM – particle filter SLAM – sparse extended PLANNING AND NAVIGATION lanning and navigation – planning and reacting – path planning igation architectures – basic exploration algorithms. TOTAL : 45 P. :	i – beli EKF 1 environ ing – d infor	ef repro ocaliza nments SLAM mation	esenta tion –	9 tion – UKF 9 endec – fast

•	Implement robot localization techniques.
•	Implement robot mapping techniques.
•	Implement SLAM algorithms.
•	Understand the algorithms for planning and navigation in robotics.
REFE	RENCES:
1.	G.Dudek, M.Jenkin, "Computational Principles of Mobile Robotics", Cambridge University Press, Second Edition, 2014.
2.	H.Choset et al., "Principles of Robot Motion: Theory, Algorithms, and Implementations", A Bradford Book, 2005.
3.	M.J. Mataric, "The Robotics Primer", MIT Press, 2007.
4.	R.Seigwart, I.R.Nourbakhsh, and D.Scaramuzza, "Introduction to autonomous mobile robots", Second Edition, MIT Press, 2011.
5.	S.Thrun, W.Burgard, and D.Fox, "Probabilistic Robotics", MIT Press, 2005.

P (Т	L	RCUITS	EPE16 PHYSICAL DESIGN OF VLSI CIRCUI	EPE16	17AF
0 3	0	3				
1				CTIVES:	ECTIVES	OBJE(
layou	straction	cuit abs	out rules, circ	To introduce the physical design concepts such as layout rule methodologies and packaging.		•
			ch.	To study placement of design using top down approach.	To stud	٠
				To study different approaches of routing.	To stud	٠
				To study performance issues in circuit layout.	To stud	٠
				To study 1D compaction and 2D compaction.	To stud	٠
			OLOGY	I INTRODUCTION TO VLSI TECHNOLOG	I I	UNIT I
	program	, field p	nd sea of gates	Rules-Circuit abstraction Cell generation using programmable logic rrays and gate matrices-layout of standard cells gate arrays and sea o GA)-layout methodologies Packaging-Computational Complexity - A	arrays and ga	Berger ar
						UNIT I
simulat simulat	pproach- nent by	ic Ratio hical ap placen	n-Lin Heuristi anning hierarc cted method- e network –	ing: Approximation of Hyper Graphs with Graphs, Kernighan-Lin H and i/o constrants. Floor planning: Rectangular dual floor planning l g- Floor plan sizing Placement: Cost function- force directed m g partitioning placement- module placement on a resistive network.	ning: Approx y and i/o con ng- Floor pl ng partitionin ent.	Partitionin capacity a annealing annealing placemen
simulat simulat ent line oaches oproac	pproach- nent by placen tial Apj ne Step	ic Ratio hical ap placen regular Sequent ting- O	n-Lin Heuristi anning hierarc cted method- e network – ROACH pal Routing: S	ing: Approximation of Hyper Graphs with Graphs, Kernighan-Lin H and i/o constrants. Floor planning: Rectangular dual floor planning l g- Floor plan sizing Placement: Cost function- force directed m g partitioning placement- module placement on a resistive network.	ning: Approx y and i/o con ng- Floor pl ng partitionin ent. TIII R nentals: Maz hial approach	Partitionin capacity a annealing annealing placemen UNIT I Fundamen hierarchia
simulat simulat ent line oaches oproac	pproach- nent by placen tial Apj ne Step	ic Ratio hical ap placen regular Sequent ting- O	n-Lin Heuristi anning hierarc cted method- e network – ROACH pal Routing: S	ing: Approximation of Hyper Graphs with Graphs, Kernighan-Lin H and i/o constrants. Floor planning: Rectangular dual floor planning l g- Floor plan sizing Placement: Cost function- force directed m g partitioning placement- module placement on a resistive netwo nt. III ROUTING USING TOP DOWN APPROAC entals: Maze Running- line searching- Steiner trees Global Rou al approaches - multi commodity flow based techniques - Randomise	ning: Approx y and i/o con ng- Floor pl ng partitionin ent. TIII R nentals: Maz hial approach Linear Prog.	Partitionin capacity a annealing placemen UNIT I Fundamen hierarchia Integer L
simulat simulat ent line oaches oproac	pproach- nent by placen tial Apj ne Step	ic Ratio hical ap placen regular Sequent ting- Or puting. I	n-Lin Heuristi anning hierarc cted method- e network – ROACH pal Routing: S ndomised Rou Switch box ro	ing: Approximation of Hyper Graphs with Graphs, Kernighan-Lin H and i/o constrants. Floor planning: Rectangular dual floor planning I g- Floor plan sizing Placement: Cost function- force directed ma g partitioning placement- module placement on a resistive network. III ROUTING USING TOP DOWN APPROAC entals: Maze Running- line searching- Steiner trees Global Rou al approaches - multi commodity flow based techniques - Randomise Linear Programming Detailed Routing: Channel Routing - Switch is sed FPGA- Row based FPGAs.	ning: Approx y and i/o con ng- Floor pl ng partitionin ent. CIIII R nentals: Maz hial approach Linear Prog- pased FPGA-	Partitionin capacity a annealing placemen UNIT I Fundamen hierarchia Integer L
simulat simulat ent line oaches pproac n FPG – Driv ng rivi	pproach- nent by placen tial App ne Step Routing	ic Ratio hical ap placen regular Sequent ting- Or outing. I UT C trees. g Appro	n-Lin Heuristi anning hierarc cted method- e network – ROACH bal Routing: S adomised Rou Switch box ro IT LAYO y- Delay in Re Programming k Trees. Mini	ing: Approximation of Hyper Graphs with Graphs, Kernighan-Lin H and i/o constrants. Floor planning: Rectangular dual floor planning I g- Floor plan sizing Placement: Cost function- force directed ma g partitioning placement- module placement on a resistive network. III ROUTING USING TOP DOWN APPROAC entals: Maze Running- line searching- Steiner trees Global Rou al approaches - multi commodity flow based techniques - Randomise Linear Programming Detailed Routing: Channel Routing - Switch is sed FPGA- Row based FPGAs.	ning: Approx y and i/o con ng- Floor pl ng partitionin ent. TIII R nentals: Maz hial approach Linear Prog based FPGA- TIV P. Models: Gate ent: Zero Sta g: Delay Mir	Partitionin capacity a annealing placemen UNIT 1 Fundamen hierarchia Integer L Array bas UNIT 1 Delay Mo Placemen Routing:
simulat simulat ent line oaches pproac n FPG – Driv ng rivi	pproach- nent by placen tial App ne Step Routing	ic Ratio hical ap placen regular Sequent ting- Op outing. I UT C trees g Appro mizatio	n-Lin Heuristi anning hierarc cted method- e network – ROACH bal Routing: S adomised Rou Switch box ro IT LAYO y- Delay in Re Programming k Trees. Mini zation.	ing: Approximation of Hyper Graphs with Graphs, Kernighan-Lin H and i/o constrants. Floor planning: Rectangular dual floor planning I g- Floor plan sizing Placement: Cost function- force directed m g partitioning placement- module placement on a resistive network. III ROUTING USING TOP DOWN APPROAC entals: Maze Running- line searching- Steiner trees Global Rou al approaches - multi commodity flow based techniques - Randomise Linear Programming Detailed Routing: Channel Routing - Switch sed FPGA- Row based FPGAs. IV PERFORMANCE ISSUES IN CIRCUIT LA fodels: Gate Delay Models- Models for interconnected Delay- Delay nt: Zero Stack Algorithm- Weight based placement- Linear Program Delay Minimization- Click Skew Problem- Buffered Clock Trees ation unconstrained via Minimization- Other issues in minimization.	ning: Approx y and i/o con ng- Floor pl ng partitionin ent. TIII R mentals: Maz hial approach Linear Prog- based FPGA- TIV P Models: Gate ent: Zero Sta g: Delay Mir zation uncons	Partitionin capacity a annealing placemen UNIT 1 Fundamen hierarchia Integer L Array bas UNIT 1 Delay Mo Placemen Routing:
simulat simulat nt line oaches oproac n FPG – Driv ng rivi ained v	pproach- nent by placen tial Ap ne Step Routing . Timing ach Tin on: cons d Rout g Mult	ic Ratio hical ap placen regular Sequent ting- Oputing. I Outing. I UT C trees. Appro mizatio `ION detailed Routing	n-Lin Heuristi anning hierarc cted method- e network – ROACH bal Routing: 3 ndomised Rou Switch box ro IT LAYOU y- Delay in Ru Programming k Trees. Mini zation. GENERAT ingle Layer ell (OTC) H	ing: Approximation of Hyper Graphs with Graphs, Kernighan-Lin H and i/o constrants. Floor planning: Rectangular dual floor planning I g- Floor plan sizing Placement: Cost function- force directed m g partitioning placement- module placement on a resistive network. III ROUTING USING TOP DOWN APPROAC entals: Maze Running- line searching- Steiner trees Global Rou al approaches - multi commodity flow based techniques - Randomise Linear Programming Detailed Routing: Channel Routing - Switch sed FPGA- Row based FPGAs. IV PERFORMANCE ISSUES IN CIRCUIT LA fodels: Gate Delay Models- Models for interconnected Delay- Delay nt: Zero Stack Algorithm- Weight based placement- Linear Program Delay Minimization- Click Skew Problem- Buffered Clock Trees ation unconstrained via Minimization- Other issues in minimization.	ning: Approx y and i/o con ng- Floor pl ng partitionin ent. TIII R nentals: Maz hial approach Linear Prog based FPGA- TIV P Models: Gate ent: Zero Sta g: Delay Min zation uncons TV SI A subset prot and bend es(MCM)- J	Partitionin capacity a annealing annealing placemen UNIT I Fundamen hierarchia Integer L Array bas UNIT I Delay Mo Placemen Routing: Minimiza UNIT V Planar su length a modules
simulat simulat nt line oaches oproac n FPG – Driv ng rivi ained v	pproach- nent by placen tial App ne Step Routing . Timing bach Tin on: cons d Rout g Mult ger Arra	ic Ratio hical ap placen regular Sequent ting- On outing. I UT C trees Appro mizatio YION detailed Routing n Burg	n-Lin Heuristi anning hierarc cted method- e network – ROACH bal Routing: 5 ndomised Rou Switch box ro IT LAYOU y- Delay in Re Programming k Trees. Mini zation. GENERAT ingle Layer ell (OTC) F aining- Weir	ing: Approximation of Hyper Graphs with Graphs, Kernighan-Lin H and i/o constrants. Floor planning: Rectangular dual floor planning I g- Floor plan sizing Placement: Cost function- force directed me g partitioning placement- module placement on a resistive networt. III ROUTING USING TOP DOWN APPROAC entals: Maze Running- line searching- Steiner trees Global Rou al approaches - multi commodity flow based techniques - Randomise Linear Programming Detailed Routing: Channel Routing - Switch sed FPGA- Row based FPGAs. IV PERFORMANCE ISSUES IN CIRCUIT LA fodels: Gate Delay Models- Models for interconnected Delay- Delay nt: Zero Stack Algorithm- Weight based placement- Linear Program Delay Minimization- Click Skew Problem- Buffered Clock Trees ation unconstrained via Minimization- Other issues in minimization. V SINGLE LAYER ROUTING, CELL GENE AND COMPACTION subset problem(PSP)- Single Layer Global Routing- Single I and bend minimization technique – Over The Cell (Of G(MCM)- programmable Logic Arrays- Transistor chaining-	ning: Approx y and i/o con ng- Floor pl ng partitionin ent. TIII R nentals: Maz hial approach Linear Prog based FPGA- TIV P Models: Gate ent: Zero Sta g: Delay Min zation uncons TV SI A subset prot and bend es(MCM)- J	Partitionin capacity a annealing annealing placemen UNIT I Fundamen hierarchia Integer L Array bas UNIT I Delay Mo Placemen Routing: Minimiza UNIT V Planar su length a modules

OUTC	OMES:
•	Exposure to the layout design methodologies.
•	Analyze placement and routing techniques.
•	Analyze performance issues in circuit layout.
•	Analyze techniques of single layer routing, cell generation and compaction.
•	Outline 1D compaction and 2D compaction.
REFER	RENCES:
1.	P.M. Lorenzatti, "Physical Design and Automation of VLSI systems", The Benjamin Cummins Publishers, 1998.
2.	Sarafzadeh, C.K. Wong, "An Introduction to VLSI Physical Design", McGraw Hill Int. Edition, 1995
3.	Michael S. Smith, "Application Specific Integrated Circuits", Addison-Wesley, 1997.
4.	S.H. Gerez, "Algorithms for VLSI Design Automation", John Wiley & Sons, 2002.

			-			
•]	WES.		3	0	0	3
	IVE5:			1		
•]	To deve	op a comprehensive understanding of multimedia networ	·ks.			
	To study	the types of VPN and tunnelling protocols for security.				
•]	To learn	about network security in many layers and network mana	agemen	t.		
•]	To study	advanced network concepts.				
•]	To discu	ss traffic modelling.				
UNIT I	IN	TRODUCTION				9
		CP/IP; Multiplexing, Modes of Communication, Switch DN – BISDN, ATM.	ing, Ro	outing.	SON	ЕТ –
UNIT II	Μ	ULTIMEDIA NETWORKING APPLICATIO	ONS			9
UNIT III	erentiate	ond best effort – scheduling and policing mechanism d services.	– integ	grated		- ces
	unneling	ss VPN, site-to-site VPN, Tunneling to PPP, Security in and use of FEC, Traffic Engineering, and MPLS based			-	
UNIT IV	TI	RAFFIC MODELLING				9
		Need for modeling, Poisson modeling and its failure, ce evaluation.	Non-	poisso	n mo	odels,
UNIT V	N	ETWORK SECURITY AND MANAGEMENT	Г			9
control and	fire wa mageme	graphy – Authentication – integrity – key distribution an Ils – attacks and counter measures – security in many la nt – The internet standard management framework – SM - ASN.1	ayers.	Infrast	ructur	re for
		TOTAL : 45	PERI	ODS		
OUTCON	MES:					
	Analyze pplicatio	scheduling and policing mechanism and protocols forms.	or real	time	intera	ctive
• D	Discuss a	dvanced networks concepts.				

•	Outline traffic modelling.
•	Evaluate network security and management.
•	Evaluate network performance.
REFE	RENCES:
1.	A.Kumar, D. M Anjunath, J.Kuri, "Communication Networking", Morgan Kaufmann Publishers, 1st edition, 2004.
2.	F.Halsall and L.G Kulkarni, "Computer Networking and the Internet", fifth edition, Pearson education 2006.
3.	H.Gurle & Petit, "IP Telephony, packet Pored Multimedia communication Systems", Pearson education 2003.
4.	J.F. Kurose & K.W. Ross, "Computer Networking- A top down approach featuring the internet", Pearson, 2nd edition, 2003.
5.	L.l.Peterson & B.S.David, "Computer Networks: A System Approach", Morgan Kaufmann Publishers, Fifth Edition, 2011.
6.	LEOM-GarCIA, WIDJAJA, "Communication networks", TMH, Second Edition, 2004.
7.	N.F.Mir, "Computer and Communication Networks", Second Edition, Prentice Hall of India, 2014.
8.	WJ. Varatya, "High performance communication network", Morgan Kauffman – Harcourt Asia Pvt. Ltd, 2nd Edition, 2000.

SEMESTER- III

ELECTIVE V

17AEPE	18	PATTERN RECOGNITION	L	Т	Р	C
			3	0	0	3
OBJECT	TIVE	S:		1	1	
•	To lea	arn about supervised and unsupervised pattern classifiers				
•	To lea	arn about different clustering methods.				
•	To fa	miliarize about different feature extraction techniques				
•	To ex	plore the role of Hidden Marko model and SVM in pattern reco	ogni	ion		
•	To un	derstand the application of Fuzzy logic and genetic algorithms	for _l	patte	rn cl	assifier
UNIT I		PATTERN CLASSIFIER				9
estimation	– Ma	attern recognition – Discriminant functions – Supervised Eximum Likelihood Estimation – Bayesian parameter Estimat - Pattern classification by distance functions – Minimum distan	ion	- P1	oble	ms with
UNIT II		CLUSTERING				9
-		nsupervised learning and classification–Clustering concept – Content of the tering – Graph theoretic approach to pattern Clustering – Valid			-	
UNIT III	[FEATURE EXTRACTION AND STRUCTURAL PATTERN RECOGNITION	,			9
÷ .	ivers	ds, Addressing Modes, Stack and Buffer Overflow, FIFO a and OS Security; Secure Design Principles, Trusted Operati s				
UNIT IV	r	HIDDEN MARKOV MODELS AND SUPPORT VECTOR MACHINE				9
State Mach Feature Sel		- Hidden Markov Models – Training – Classification – Suppon.	ort v	vecto	or Ma	achine –
UNIT V		RECENT ADVANCES				9
		uzzy Pattern Classifiers – Pattern Classification using Geneti zy Pattern Classifiers and Perception.	c Al	gori	thms	s – Case

	TOTAL : 45 PERIODS
OUTC	OMES:
•	Differentiate between supervised and unsupervised classifiers
•	Classify the data and identify the patterns.
•	Apply the concepts of clustering
•	Extract feature set and select the features from given data set.
•	Apply fuzzy logic and genetic algorithms for classification problems
REFE	RENCES:
1.	Andrew Webb, "Stastical Pattern Recognition", Arnold publishers, London, 1999
2.	C.M.Bishop, "Pattern Recognition and Machine Learning", Springer, 2006.
3.	M. Narasimha Murthy and V. Susheela Devi, "Pattern Recognition", Springer 2011.
4.	Menahem Friedman, Abraham Kandel, "Introduction to Pattern Recognition Statistical, Structural, Neural and Fuzzy Logic Approaches", World Scientific publishing Co. Ltd, 2000.
5.	Robert J.Schalkoff, "Pattern Recognition Statistical, Structural and Neural Approaches", John Wiley & Sons Inc., New York, 1992.
6.	R.O.Duda, P.E.Hart and D.G.Stork, "Pattern Classification", John Wiley, 2001
7.	S. Theodoridis and K. Koutroumbas, "Pattern Recognition", 4th Ed., Academic Press. 2009.

17AEP	E19	SECURE COMPUTING SYSTEMS L		Т	Р	C
		3	(0	0	3
OBJE	CTIVE	ZS:				
٠	To le	arn different computer security mechanism and management techni	iqı	ues		
•	To ga	ain knowledge about computer hardware security.				
٠	To ap	pply programming knowledge in hardware.				
٠	To le	arn advanced computer architecture.				
•	To le	arn the equation and theory those are used in network security.				
UNIT I	[COMPUTER SECURITY AND MANAGEMENT				9
Security	Manag	mputer Security, Threats, Malware, Vulnerabilities, Authentication gement Models, Security Management Practices, Protection Me ty, Ethical Hacking.				
	UNIT II HARDWARF SECURITY			9		
Interface,	Hardwa CPU;	HARDWARE SECURITY are Security, Computer Memory and storage, Bus and Interconnection, Side channel Analysis: Power Analysis Attack, Timing Atta of Side Channel Attack Secure Hardware Intellectual Properties Phy	ıck	z,]	Fault	attack.
Need for Interface, Counterm	Hardwa CPU; neasures s(PUFs),	re Security, Computer Memory and storage, Bus and Interconnection,	ıck	z,]	Fault	Network attack. aclonable
Need for Interface, Counterm Functions	Hardwa CPU; neasures s(PUFs),	are Security, Computer Memory and storage, Bus and Interconnection, Side channel Analysis: Power Analysis Attack, Timing Atta of Side Channel Attack, Secure Hardware Intellectual Properties, Phy Secure PUF.	ıck	z,]	Fault	Network attack. aclonable
Need for Interface, Counterm Functions UNIT I Opcode,	Hardwa CPU; neasures s(PUFs), III Operar Drivers	are Security, Computer Memory and storage, Bus and Interconnection, Side channel Analysis: Power Analysis Attack, Timing Atta of Side Channel Attack, Secure Hardware Intellectual Properties, Phy Secure PUF. ASSEMBLY AND OPERATING SYSTEMS SECURITY ands, Addressing Modes, Stack and Buffer Overflow, FIFO and and OS Security; Secure Design Principles, Trusted Operating	ick /sid	r, 1 call	Fault y Ur	Network attack. aclonable 9 Problem,
Need for Interface, Counterm Functions UNIT I Opcode, Kernel,	Hardwa CPU; neasures s(PUFs), III Operar Drivers Functior	are Security, Computer Memory and storage, Bus and Interconnection, Side channel Analysis: Power Analysis Attack, Timing Atta of Side Channel Attack, Secure Hardware Intellectual Properties, Phy Secure PUF. ASSEMBLY AND OPERATING SYSTEMS SECURITY ands, Addressing Modes, Stack and Buffer Overflow, FIFO and and OS Security; Secure Design Principles, Trusted Operating	ick /sid	r, 1 call	Fault y Ur	Network attack. Inclonable 9 Problem,
Need for Interface, Counterm Functions UNIT I Opcode, Kernel, System F UNIT I Security	Hardwa CPU; neasures s(PUFs), III Operar Drivers Functior IV aspects	are Security, Computer Memory and storage, Bus and Interconnection, Side channel Analysis: Power Analysis Attack, Timing Atta of Side Channel Attack, Secure Hardware Intellectual Properties, Phy Secure PUF. ASSEMBLY AND OPERATING SYSTEMS SECURITY ands, Addressing Modes, Stack and Buffer Overflow, FIFO and and OS Security; Secure Design Principles, Trusted Operating as	M Sy	s,] call I/M yste	Fault y Ur //1 F ems,	Network attack. aclonable 9 Problem, Trusted 9
Need for Interface, Counterm Functions UNIT I Opcode, Kernel, System F UNIT I Security	Hardwa CPU; neasures s(PUFs), III Operar Drivers Functior IV aspects mputing	Are Security, Computer Memory and storage, Bus and Interconnection, Side channel Analysis: Power Analysis Attack, Timing Atta of Side Channel Attack, Secure Hardware Intellectual Properties, Phy Secure PUF. ASSEMBLY AND OPERATING SYSTEMS SECURITY ands, Addressing Modes, Stack and Buffer Overflow, FIFO and and OS Security; Secure Design Principles, Trusted Operating assecurity and Computer Architecture ADVANCED COMPUTER ARCHITECTURE : Multiprocessors, parallel processing, Ubiquitous computing, Grid	M Sy	s,] call I/M yste	Fault y Ur //1 F ems,	Network attack. Inclonable 9 Problem, Trusted 9 uted and
Need for Interface, Countern Functions UNIT 1 Opcode, Kernel, 2 System F UNIT 1 Security cloud co UNIT 1 Atomic 3 Equation	Hardwa CPU; heasures s(PUFs), III Operar Drivers Function IV aspects mputing V Structur h and W	Assembly And Operating Systems Assembly And Operating Systems Secure PUF. Assembly And Operating Systems Secure PUF. Assembly And Operating Systems Security and os Security; Secure Design Principles, Trusted Operating Advanced Computer Architecture : Multiprocessors, parallel processing, Ubiquitous computing, Grid g, Internet computing, Virtualization	M Sy d,	a, 1 call I/M yste Dis cs: an	Fault y Ur [/1 F ems, stribu	Network attack. helonable 9 Problem, Trusted 9 uted and 9 uted and 9

OUTCOM	ES:
•	Aware of Security aspects
•	Able to appreciate security in hardware, OS and it future need
•	Learn security issues in various types of computing networks
•	Learn advanced computer architecture.
•	Outline the equation and theory which are used in web security.
REFEREN	ICES:
1.	Charles B. Pfleeger, Shari Lawrence Pfleeger, "Security in Computing", Fourth Edition, Pearson Education, 2007
2.	Debdeep Mukhopadhyay, Rajat Subhra Chakraborty, "Hardware Security - Design Threats and Safeguards", CRC Press, 2015
3.	Michael Whitman, Herbert J. Mattord, "Management of Information Security", Third Edition, Course Technology, 2010
4.	Shuangbao Wang, Robert S.Ledley, Computer Architecture and Security, Wiley, 2013
5.	William Stallings, "Network Security Essentials, Applications and Standards", Dorling Kindersley I P Ltd, Delhi, 2008.
6.	Charles B. Pfleeger, Shari Lawrence Pfleeger, "Security in Computing", Fourth Edition, Pearson Education, 2007
7.	Debdeep Mukhopadhyay, Rajat Subhra Chakraborty, "Hardware Security - Design Threats and Safeguards", CRC Press, 2015

	E20 SI	17AEP
3 0 0 3		
	CTIVES:	OBJEC
its.	To identify s	•
ion characteristics	To introduce	•
	To learn non	•
oscillators.	To gain know	•
	To analyze th	٠
SION LINES	[SIGN	UNIT I
	line Reflection	and stripl into a trai
JINES AND	I MUL' CROS	UNIT I
ength parameters ,Near and far-en Differential signalling, termination		cross-talk
	III NON-	UNIT I
sitions , Parasitic inductance an parasitic, Common-mode curren	U U	capacitan
M DESIGN	IV POW	UNIT I
ecoupling , Logic families, powe speed Package types and parasitions of link-path components , Ey	otion, and syste	consump ,SPICE,
; analysis	, jitter, inter s	ulagrams
s analysis		

	TOTAL : 45 PERIODS
OUTC	OMES:
٠	Ability to identify sources affecting the speed of digital circuits
•	Able to improve the signal transmission characteristics.
•	Understand clock distribution and clock oscillators.
•	Learn Multi-conductor transmission line and crosstalk.
•	Learn Power consideration and system design for high speed design.
REFE	RENCES:
1.	Douglas Brooks, Signal Integrity Issues and Printed Circuit Board Design, Prentice Hall PTR, 2003
2.	Eric Bogatin, Signal Integrity – Simplified, Prentice Hall PTR, 2003.
3.	H. W. Johnson and M. Graham, High-Speed Digital Design: A Handbook of Black Magic, Prentice Hall, 1993.
4.	S. Hall, G. Hall, and J. McCall, High-Speed Digital System Design: A Handbook of Interconnect Theory and Design Practices, Wiley-Interscience, 2000.

17AEPE	21 WIRELESS ADHOC AND SENSOR NETWORKS	L	T	Р	С
		3	0	0	3
OBJEC	TIVES:				<u>.</u>
•	To study the ADHOC networks and its protocols				

UNIT I	MAC & TCD IN AD HOC NETWODKS	0
•	To explore the sensor networks and operating systems	
•	To study the sensor networks and MAC protocols	
•	To study the Challenges in QOS and power management schemes	
•	To implement the designing of multicast routing and security	
	To study the ribitoe networks and its protocols	

MAC & TCP IN AD HOC NETWORKS

9

Fundamentals of WLANs - IEEE 802.11 Architecture - Self configuration and Auto configuration-Issues in Ad-Hoc Wireless Networks - MAC Protocols for Ad-Hoc Wireless Networks - Contention Based Protocols - TCP over Ad-Hoc networks-TCP protocol overview - TCP and MANETs -Solutions for TCP over Ad-Hoc Networks.

UNIT II

ROUTING IN AD HOC NETWORKS

9

Routing in Ad-Hoc Networks- Introduction-Topology based versus Position based Approaches-Proactive, Reactive, Hybrid Routing Approach-Principles and issues – Location services - DREAM - Quorums based location service - Grid - Forwarding strategies - Greedy packet forwarding -Restricted directional flooding- Hierarchical Routing- Issues and Challenges in providing QoS.

UNIT III

MAC, ROUTING & OOS IN WIRELESS SENSOR **NETWORKS**

9

9

Introduction - Architecture - Single node architecture - Sensor network design considerations -Energy Efficient Design principles for WSNs - Protocols for WSN - Physical Layer : Transceiver Design considerations - MAC Layer Protocols - IEEE 802.15.4 Zigbee - Link Layer and Error Control issues - Routing Protocols – Mobile Nodes and Mobile Robots - Data Centric & Contention Based Networking - Transport Protocols & QOS - Congestion Control issues - Application Layer support.

UNIT IV SENSOR MANAGEMENT

Sensor Management - Topology Control Protocols and Sensing Mode Selection Protocols - Time synchronization - Localization and positioning - Operating systems and Sensor Network programming - Sensor Network Simulators.

UNIT V	SECURITY IN AD HOC AND SENSOR NETWORKS
Anti-tamper tee Adhoc routing	-Hoc and Sensor networks – Key Distribution and Management – Software base chniques – water marking techniques – Defence against routing attacks - Secur protocols – Broadcast authentication WSN protocols – TESLA – Biba – Senso ity Protocols – SPINS.
	TOTAL : 45 PERIODS
OUTCOME	S:
• Ide	ntify different issues in wireless ad hoc and sensor networks.
• An	alyze protocols developed for ad hoc and sensor networks.
• Ou	tline different routing techniques and challenges in providing Qos.
• Ide	entify and address the security threats in ad hoc and sensor networks.
• Est	ablish a Sensor network environment for different type of applications.
REFERENC	CES:
	arlos De Morais Cordeiro, Dharma Prakash Agrawal "Ad Hoc and Sensc etworks: Theory and Applications (2nd Edition), World Scientific Publishing, 2011
	Siva Ram Murthy and B.S.Manoj, "Ad Hoc Wireless Networks – Architectures an otocols", Pearson Education, 2004.
3. С.	K.Toh, "Ad Hoc Mobile Wireless Networks", Pearson Education, 2002.
	dal Çayırcı , Chunming Rong, "Security in Wireless Ad Hoc and Sensor Networks", Joh iley and Sons, 2009.
	olger Karl, Andreas willig, Protocols and Architectures for Wireless Sensor Networks, Joh iley & Sons, Inc .2005.
	bir Kumar Sarkar, T G Basavaraju, C Puttamadappa, "Ad Hoc Mobile Wireless Networks verbach Publications, 2008.
	altenegus Dargie, Christian Poellabauer, "Fundamentals of Wireless Sensor Network eory and Practice", John Wiley and Sons, 2010.