GOVERNMENT COLLEGE OF ENGINEERING

(An Autonomous Institution Affiliated to Anna University) BARGUR - 635 104

Curriculum for

MECHANICAL ENGINEERING

(Full Time)

I TO VIII SEMESTERS

2020

Regulation

For the students admitted

AY 2020-21 onwards

Dated:09.05.2021

OFFICE OF CONTROLLER OF EXAMINATIONS GOVERNMENT COLLEGE OF ENGINEERING BARGUR - 635 104

Website: www.gcebargur.ac.in

	PROGRAM SPECIFIC OUTCOMES (PSOs):
1	Acquire basic knowledge and expertise necessary for professional practice in Mechanical Engineering for higher studies and research.
2	Attain and practice technical skills to identify, analyze, innovate and interact with industry
	to solve complex problems related to Mechanical Engineering.
3	Possess a professional attitude as an individual or a team member with consideration for
	society, professional ethics, environmental factors and motivation for lifelong learning.
	PROGRAM OUTCOMES (POs)
1	Engineering Knowledge: Apply the knowledge of mathematics, science, engineering
	problems.
2	Problem Analysis: Identify, formulate, research literature, and analyze complex
	engineering problems reaching substantiated conclusions using first principles of
	mathematics, natural sciences, and engineering sciences.
3	Design/development of Solutions: Design solutions for complex engineering problems and
	design system components or processes that meet the specified needs with appropriate
	consideration for the public health and safety, and the cultural, societal, and environmental
	considerations.
4	Conduct Investigations of Complex Problems: Use research-based knowledge and
	research methods including design of experiments, analysis and interpretation of data, and
	synthesis of the information to provide valid conclusions.
5	Modern Tool usage: Create, select, and apply appropriate techniques, resources, and
	modern engineering and IT tools including prediction and modelling to complex
	engineering activities with an understanding of the limitations.
6	The Engineer and Society: Apply reasoning informed by the contextual knowledge to
	assess societal, health, safety, legal and cultural issues and the consequent responsibilities
7	Ethics A new sthice bringing and commit to professional othics and responsibilities and
/	porms of the engineering practice
8	Environment and Sustainability: Understand the impact of the professional engineering
0	solutions in societal and environmental contexts, and demonstrate the knowledge of and
	need for sustainable development
9	Individual and Team Work: Function effectively as an individual, and as a member or
	leader in diverse teams, and in multidisciplinary settings.
10	Communication: Communicate effectively on complex engineering activities with the
	engineering community and with society at large, such as, being able to comprehend and
	write effective reports and design documentation, make effective presentations, and give and
	receive clear instructions.
11	Project Management and Finance: Demonstrate knowledge and understanding of the
	engineering and management principles and apply these to one's own work, as a member
	and leader in a team, to manage projects and in multidisciplinary environments.
12	Life-long Learning: Recognize the need for, and have the preparation and ability to engage
	in independent and life-long learning in the broadest context of technological change

MECHANICAL ENGINEERING (UG) CURRICULUM DESIGN

CREDIT SUMMARY

Name of the UG Programme: **B.E - MECHANICAL ENGINEERING**

S. No	Sub. Area	Credits per Semester								Credits Total	% of Total Credits	Total no. of Courses	Breakup of Credits AICTE (Total 160)*
		Ι	Π	III	IV	V	VI	VII	VIII				
1	HSMC		3		3		1.5			7.5	5	4	12
2	BSC	8.5	11.5	4						24	15	8	25
3	ESC	7.5	7.5	7						22	13.5	8	24
4	PCC			13.5	17	17.5	14	8		70	43.5	25	48
5	PEC					3	3	6	6	18	11	6	18
6	OEC						3	3	3	09	5.5	3	18
7	PROJ					1.5		3	6	10.5	6.5	3	15
8	MC	0	0		0					0	0	3	
	Total	16	22	24.5	20	22	21.5	20	15	161	100	60	160*

STUDENTS ARE ENCOURAGED TO SELECT ELECTIVES FROM SWAYAM / NPTEL / MOOC

GOVERNMENT COLLEGE OF ENGINEERING, BARGUR

(An Autonomous Institution Affiliated to Anna University) B.E MECHANICAL ENGINEERING 2020 REGULATIONS

Induction Program

Induction program(mandatory)	3 Weeks Duration
Induction program for students to be	Physical activity
Offered right at the start of the first	Creative Arts
year.	Universal Human Values
	• Literary
	Proficiency Modules
	Lectures by Eminent People
	Visits to local Areas
	• Familiarization to Dept./Branch & Innovations

FIRST SEMESTER

S. No	Subject Code	Course Title	CAT	CONTACT PERIODS	L	Т	Р	С
THEO	RY							
1	20ZBS101	Engineering Mathematics I	BSC	4	3	1	0	4
2	20ZBS102	Engineering Physics	BSC	3	3	0	0	3
3	20ZES103	Engineering Graphics	ESC	5	1	0	4	3
4	20MES104	Basic Electrical Engineering	ESC	3	2	1	0	3
		PRACTICAL						
6	20MES109	Basic Electrical Engineering Laboratory	ESC	3	0	0	3	1.5
7	20ZBS110	Physics Laboratory	BSC	3	0	0	3	1.5
		TOTAL		21	9	2	10	16

SECOND SEMESTER

SLNo	Subject Code	Course Title	САТ	CONTACT PERIODS	L	Т	Р	С
THEO	RY			TLINODS	1	-	-	•
1	20ZBS201	Engineering Mathematics - II	BSC	4	3	1	0	4
2	20MBS202	Applied Physics	BSC	3	3	0	0	3
3	20MBS203	Applied Chemistry	BSC	3	3	0	0	3
4	20ZHS204	Technical English	HSMC	2	2	0	0	2
5	20ZMC205	Constitution of India	MC	1	1	0	0	0
6	20MES206	Programming in Python	ESC	3	3	0	0	3
PRAC	ΓICAL			II			1	
7	20MES208	Programming in Python Laboratory	ESC	3	0	0	3	1.5
8	20ZBS209	Chemistry Laboratory	BSC	3	0	0	3	1.5
9	20ZES210	Workshop Practice	ESC	5	1	0	4	3
10	20ZHS211	Communication English	HSMC	2	0	0	2	1
		Laboratory						
		TOTAL		29	16	1	12	22

THIRD SEMESTER

SL. NO	COURSE CODE	COURSE TITLE	CAT	CONTACT PERIODS	L	Т	Р	С
THEO	RY			·				
1	20ZBS301	Transforms and Partial Differential Equations	BSC	4	3	1	0	4
2	20MES302	Engineering Mechanics	ESC	4	3	1	0	4
3	20MPC303	Manufacturing Technology I	PCC	3	3	0	0	3
4	20MPC304	Engineering Thermodynamics	PCC	4	3	1	0	4
5	20MPC305	Fluid Mechanics and Fluid Machinery	PCC	3	3	0	0	3
6	20MES306	Basic Electronics Engineering	ESC	3	3	0	0	3
PRAC	CTICAL					•		
7	20MPC308	Fluid Mechanics and Fluid Machinery Laboratory	PCC	3	0	0	3	1.5
8	20MPC309	Machine Drawing	PCC	4	0	0	4	2.0
		TOTAL		28	18	3	7	24.5

FOURTH SEMESTER

SL. NO.	COURSE CODE	COURSE TITLE	CAT	CONTACT PERIODS	L	Т	Р	С				
THEC	THEORY											
1	20MPC401	Thermal Engineering	PCC	3	3	0	0	3				
2	20MHS402	Human Values and Professional Ethics	HSMC	3	3	0	0	3				
3	20MPC403	Strength of Materials	PCC	4	3	1	0	4				
4	20MPC404	Engineering Materials and Metallurgy	PCC	3	3	0	0	3				
5	20MPC405	Kinematics of Machines	PCC	4	3	1	0	4				
6	20ZMC406	Environmental Science and Engineering	MC	1	1	0	0	0				
PRAC	CTICAL											
7	20MPC408	Strength of Materials Laboratory	PCC	3	0	0	3	1.5				
8	20MPC409	Thermal Engineering Laboratory	PCC	3	0	0	3	1.5				
		TOTAL		24	16	2	6	20.0				

FIFTH SEMESTER

Sl. No	COURSE CODE	COURSE TITLE	САТ	CONTACT PERIODS	L	Т	Р	С
THE	DRY						•	
1	20MPC501	Design of Machine Elements	PCC	4	3	1	0	4
2	20MPC502	Heat and Mass Transfer	PCC	4	3	1	0	4
3	20MPC503	Manufacturing Technology - II	PCC	3	3	0	0	3
4	20MPC504	Metrology and Measurements	PCC	3	3	0	0	3
5		Professional Elective - I	PEC	3	3	0	0	3
PRAC	CTICAL							
6	20MPC508	Manufacturing Processes and Metrology Laboratory	PCC	4	0	0	4	2
7	20MPC509	Heat and Mass Transfer Laboratory	PCC	3	0	0	3	1.5
8	20MPR510	Project - I	PROJ	3	0	0	3	1.5
		TOTAL		27	15	2	10	22

SIXTH SEMESTER

Sl. No	COURSE CODE	COURSE TITLE	САТ	CONTACT PERIODS	L	Т	Р	С
THE	DRY			•				
1	20MPC601	Dynamics of Machinery	PCC	4	3	1	0	4
2	20MPC602	Finite Element Analysis	PCC	4	3	1	0	4
3	20MPC603	Additive Manufacturing	PCC	3	3	0	0	3
4		Professional Elective - II	PEC	3	3	0	0	3
5		Open Elective I	OEC	3	3	0	0	3
PRAC	CTICAL							
6	20MPC608	Simulation Laboratory	PCC	3	0	0	3	1.5
7	20MPC609	Dynamics of Machinery Laboratory	PCC	3	0	0	3	1.5
8	20MHS610	Soft skills and Personality Development Laboratory	HSMC	3	0	0	3	1.5
		TOTAL		26	15	2	9	21.5

SEVENTH SEMESTER

SI. No	COURSE CODE	COURSE TITLE	САТ	CONTACT PERIODS	L	Т	Р	С
THEO	RY							
1	20MPC701	Automation in Manufacturing	PCC	3	3	0	0	3
2	20MPC702	Design of Transmission systems	PCC	3	3	0	0	3
3		Professional Elective - III	PEC	3	3	0	0	3
4		Professional Elective - IV	PEC	3	3	0	0	3
5		Open Elective - II	OEC	3	3	0	0	3
PRAC	CTICAL							
6	20MPC708	CAD/CAM and Mechatronics Laboratory	PCC	4	0	0	4	2
7	20MPR709	Project - II	PROJ	6	0	0	6	3
		TOTAL		25	15	0	10	20

EIGHTH SEMESTER

SI. No	Course Code	COURSE TITLE	САТ	CONTACT PERIODS	L	Т	Р	С		
THE	ΓΗΕΟRΥ									
1		Professional Elective - V	PEC	3	3	0	0	3		
2		Professional Elective - VI	PEC	3	3	0	0	3		
3		Open Elective - III	OEC	3	3	0	0	3		
PRAC	CTICAL						. <u> </u>			
5	20MPR808	Project III	PROJ	12	0	0	12	6		
		TOTAL		21	9		12	15		

TOTAL NO. OF CREDITS: 161

Value Added Courses

The students can undergo **Internship** in Government / Government Recognized industries / Organizations, for the period of 4 to 6 weeks.

This will be indicated in the Grade Sheet under the head, "Value Added Courses".

PROFESSIONAL ELECTIVES

S.No	Subject Code	Course Title	CAT	L	Т	Р	С
1	20MPE001	Internal Combustion Engines	PEC	3	0	0	3
2	20MPE002	Mechatronic Systems	PEC	3	0	0	3
3	20MPE003	Microprocessors in Automation	PEC	3	0	0	3
4	20MPE004	Processing of Composite Materials	PEC	3	0	0	3
5	20MPE005	Computer Aided Design	PEC	3	0	0	3
6	20MPE006	Operations Research	PEC	3	0	0	3
7	20MPE007	Theory of Metal cutting	PEC	3	0	0	3
8	20MPE008	Welding Technology	PEC	3	0	0	3
9	20MPE009	Refrigeration and Air Conditioning	PEC	3	0	0	3
10	20MPE010	Power Plant Engineering	PEC	3	0	0	3
11	20MPE011	Gas Dynamics and Jet Propulsion	PEC	3	0	0	3
12	20MPE012	Process Planning and Cost Estimation	PEC	3	0	0	3
13	20MPE013	Lean Manufacturing	PEC	3	0	0	3
14	20MPE014	Design of Jigs, Fixtures and Press Tools	PEC	3	0	0	3
15	20MPE015	Mechanical Vibrations	PEC	3	0	0	3
16	20MPE016	Principles of Management	PEC	3	0	0	3
17	20MPE017	Automobile Engineering	PEC	3	0	0	3
18	20MPE018	Energy Conservation and Management	PEC	3	0	0	3
19	20MPE019	Industrial Robotics	PEC	3	0	0	3
20	20MPE020	Computational Fluid Dynamics	PEC	3	0	0	3
21	20MPE021	Design for Manufacture, Assembly and Environments	PEC	3	0	0	3
22	20MPE022	Nanotechnology	PEC	3	0	0	3
23	20MPE023	Total Quality Management	PEC	3	0	0	3
24	20MPE024	Optimization Techniques	PEC	3	0	0	3

LIST OF OPEN ELECTIVES (OFFERED TO OTHER DEPARTMENT STUDENTS) Autonomous Regulation 2020

Sl.No	Subject Code	Course Title	CAT	L	Т	Р	С
1	20MOE001	Engineering Economics	OEC	3	0	0	3
2	20MOE002	Industrial Engineering	OEC	3	0	0	3
3	20MOE003	Entrepreneurship Development	OEC	3	0	0	3
4	20MOE004	Elements of Project Management	OEC	3	0	0	3
5	20MOE005	Non Destructive Testing	Jon Destructive Testing OEC		0	0	3
6	20MOE006	Introduction to Automobile Engineering	OEC	3	0	0	3
7	20MOE007	Industrial Automation	OEC	3	0	0	3
8	20MOE008	Introduction to Composite Materials.	OEC	3	0	0	3
9	20MOE009	Industrial Refrigeration and Air Conditioning	OEC	3	0	0	3
10	20MOE010	Renewable Energy Sources	OEC	3	0	0	3
11	20MOE011	Industrial Safety Engineering	OEC	3	0	0	3
12	20MOE012	Rapid Prototyping and Tooling	OEC	3	0	0	3
13	20MOE013	Welding Technology	OEC	3	0	0	3
14	20MOE014	Heating, Ventilation and Air Conditioning	OEC	3	0	0	3

Open Elective courses offered by EEE Department

SI No	Course Code	Course Name	Course Category	L	Т	Р	С
1	20EOE01	MATLAB Programming	OEC	2	1	0	3
2	20EOE02	Renewable Energy Sources	OEC	3	0	0	3
3	20EOE03	Energy Management and Auditing	OEC	3	0	0	3
4	20EOE04	Reliability Engineering	OEC	2	1	0	3
5	20EOE05	Disaster Management and Mitigation	OEC	3	0	0	3
6	20EOE06	Power Electronics and Drives	OEC	3	0	0	3

SI No	Course Code	Course Name	Course Category	L	Т	Р	С
1	20LOE001	Real Time Systems	OEC	2	1	0	3
2	20LOE002	Wireless Sensor Networks	Vireless Sensor Networks OEC		0	0	3
3	20LOE003	ndustrial Automation and OEC obotics		3	0	0	3
4	20LOE004	Principles of VLSI Design OEC		2	1	0	3
5	20LOE005	Applied Electronics	OEC	3	0	0	3
6	20LOE006	Fundamentals of Wireless Networks	OEC	3	0	0	3
7	20LOE007	Fundamentals of IoT OEC		3	0	0	3
8	20LOE008	Soft Computing	OEC	3	0	0	3

Open Elective courses offered by ECE Department

Open Elective courses offered by CSE Department

Sl.No	Subject Code	Course Title	CAT	L	Т	Р	С
1	18SOE001	Programing in C++	OEC	3	0	0	3
2	18SOE002	Java Programing	OEC	3	0	0	3
3	18SOE003	Data base Concepts	OEC	3	0	0	3
4	18SOE004	Web Designing	OEC	3	0	0	3
5	18SOE005	Android Application Development	OEC	3	0	0	3
6	18SOE006	Computer Architecture	OEC	3	0	0	3
7	18SOE007	Fundamentals of Computer Network	OEC	3	0	0	3
8	18SOE008	Linux and RTOS	OEC	3	0	0	3
9	18SOE009	Problem solving and Python Programming	OEC	3	0	0	3
10	18SOE010	Introduction to Data Analytics	OEC	3	0	0	3

LIST OF MANDATORY COURSES (MC)

S. No	Subject	Course Title	САТ	L	Т	Р	С
1		Induction Program	MC	3weeks			
2	20ZMC205	Constitution of India	MC	1	0	0	0
3	20ZMC406 Environmental Science and Engineering		МС	1	0	0	0

LIST OF BASIC SCIENCE (BS) COURSES

S.No	Subject	Course Title	CAT	Contact Periods	L	Т	Р	С
		Engineering Mathematics I	DSC	1	2	1	0	1
1	20ZBS101	Engineering Wathematics I	DSC	4	5	1	0	4
2	20ZBS102	Engineering Physics	BSC	3	3	0	0	3
3	20ZBS110	Physics Laboratory	BSC	3	0	0	3	1.5
4	20ZBS201	Engineering Mathematics II	BSC	4	3	1	0	4
5	20MBS202	Applied Physics	BSC	3	3	0	0	3
6	20MBS203	Applied Chemistry	BSC	3	3	0	0	3
7	20ZBS209	Chemistry Laboratory	BSC	3	0	0	3	1.5
8	20ZBS301	Transforms and Partial Differential Equations	BSC	4	3	1	0	4

S.No	Subject Code	Course Title	CAT	Contact Periods	L	Т	Р	С
1	20ZES103	Engineering Graphics	ESC	5	1	0	4	3
2	20MES104	Basic Electrical Engineering	ESC	3	2	1	0	3
3	20MES109	Basic Electrical Engineering Laboratory	ESC	3	0	0	3	1. 5
4	20MES206	Programming in Python	ESC	3	3	0	0	3
5	20MES208	Programming in Python Laboratory	ESC	3	0	0	3	1.5
6	20ZES210	Workshop Practice	ESC	5	1	0	4	3
7	20MES302	Engineering Mechanics	ESC	4	3	1	0	4
8	20MES306	Basic Electronics Engineering	ESC	3	3	0	0	3

LIST OF ENGINEERING SCIENCE (ES) COURSES

LIST OF HUMANITIES AND MANAGEMENT SCIENCE COURSES

S.No	Subject Code	Course Title	CAT	Contact Periods	L	Т	Р	С
1	20ZHS204	Technical English	HSMC	2	2	0	0	2
2	20ZHS211	Communication English Laboratory	HSMC	2	0	0	2	1
3	20MHS402	Human Values and Professional Ethics	HSMC	3	3	0	0	3
4	20MHS610	Soft skills and Personality Development Laboratory	HSMC	3	0	0	3	1.5

LIST OF PROFESSIONAL CORE (PC)COURSES

S.No	Subject Code	Course Title	CAT	Contact Periods	L	Т	Р	C
1.	20MPC303	Manufacturing Technology - I	PCC	3	3	0	0	3
2.	20MPC304	Engineering Thermodynamics	PCC	4	3	1	0	4
3.	20MPC305	Fluid Mechanics and Fluid Machinery	PCC	3	3	0	0	3
4.	20MPC308	Fluid Mechanics and Fluid Machinery Laboratory	PCC	3	0	0	3	1.5
5.	20MPC309	Machine Drawing	PCC	4	0	0	4	2.0
6.	20MPC401	Thermal Engineering	PCC	3	3	0	0	3
7.	20MPC403	Strength of Materials	PCC	4	3	1	0	4
8.	20MPC404	Engineering Materials and Metallurgy	PCC	3	3	0	0	3
9.	20MPC405	Kinematics of Machines	PCC	4	3	1	0	4
10.	20MPC408	Strength of Materials Laboratory	PCC	3	0	0	3	1.5
11.	20MPC409	Thermal Engineering Laboratory	PCC 3		0	0	3	1.5
12.	20MPC501	Design of Machine Elements	PCC 4		3	1	0	4
13.	20MPC502	Heat and Mass Transfer	PCC	4	3	1	0	4
14.	20MPC503	Manufacturing Technology - II	PCC	3	3	0	0	3
15.	20MPC504	Metrology and Measurements	PCC	3	3	0	0	3
16.	20MPC508	Manufacturing Processes and Metrology Laboratory	PCC	4	0	0	4	2
17.	20MPC509	Heat and Mass	PCC	3	0	0	3	1.5
18.	20MPC601	Dynamics of Machinery	PCC	4	3	1	0	4
19.	20MPC602	Finite Element Analysis	PCC	4	3	1	0	4
20.	20MPC603	Additive Manufacturing	PCC	3	3	0	0	3
21.	20MPC608	Simulation Laboratory	PCC	3	0	0	3	1.5
22.	20MPC609	Dynamics of Machinery Laboratory	PCC	3	0	0	3	1.5
23.	20MPC701	Automation in Manufacturing	PCC	3	3	0	0	3
24.	20MPC702	Design of Transmission systems	PCC	3	3	0	0	3
25.	20MPC708	CAD/CAM and Mechatronics Laboratory	PCC	4	0	0	4	2

EVALUATION SCHEME :: 2020 REGULATIONS

Sl. No	Category of course	Continuous Assessment	End-Semester Examinations
1.	Theory Courses	50 Marks	50 Marks
2.	Laboratory Courses	50 Marks	50 Marks
3.	Project Work	50 Marks	50 Marks
4.	All other EEC Courses (Non theory)	100 Marks	-
5.	Mandatory Courses		100 Marks (Internal Evaluation)

Each course shall be evaluated for a maximum of **100 marks** as shown below:

Continuous Assessment Mark the following guidelines are to be followed.

Sl. No.	Category Details	CA Marks	Weightage
1.	Test (3 Nos.) {each test is to be conducted for 50 Marks}	30 Marks	60%
2.	Assignment (3 Nos.)	20 Marks	40%
	TOTAL	50 Marks	100%

Marks for **Mini Project & Project Work and the Viva-Voce Examination** will be distributed as indicated below:

Contin	uous As	sessment: 50 N	/ larks	End Semester Examination: 50 Marks				
Review I (25 Marks)		Review II (25 Marks)		Report Evaluation (20 Marks)	Viva- (30 M	Voce (arks)		
Review Committee (Excluding Guide)	Guide	Review Committee (Excluding Guide)	Guide	External Examiner	External Examiner	Internal Examiner **		
15	10	15	10	20	15	15		

**Guide will be the internal

ATTENDANCE

A student has to **secure minimum of 75% attendance** for appearing end semester examination. If a student secures <u>65% to 75% attendance</u> in the Current Semester due to medical reasons (hospitalization / accident / specific illness) or due to participation in the College / University / State / National / International Level Sports events with prior permission from the Head of the Department concerned, the student shall apply for **condonation**. Condonation can be allowed only two semesters during the entire course of study (i.e Only two

condonations during the entire course of study).

Students who secure <u>less than 65% attendance</u> will <u>not be permitted</u> to write the End-Semester Examination.

<u>SPECIAL NOTE</u>: All the students should **undergo Internship** (4 to 6 weeks duration) as a value added course. This will be indicated in the Grade Sheet under the head, "**Value Added Course**

20	DZBS10	1	ENGINEERING MATHEMATICS-I	L	Т	Р	С					
				3	1	0	4					
OBJ	ECTIV		1, 1									
•	Matrix a	Igebra	and techniques and using them in engineering application	s.								
•	The con- limitatio modellir	cept of ons of u ng.	infinite series and their convergence so that they will be f using infinite series approximations for solutions arising in	amilia math	r wi emat	th ical						
•	Differen	tial and	d integral calculus and their applications in various engine	ering	appli	icati	ons.					
UNI	TI	MAT	RICES				9+3					
Eigenvalues and Eigenvectors of a real matrix – Characteristic equation – Properties eigenvalues and eigenvectors – Statement and applications of Cayley-Hamilton Theorem Diagonalization of matrices – Reduction of a quadratic form to canonical form by orthogo transformation – Nature of quadratic forms.												
UNI	ТII	SEQU	UENCES AND SERIES				9+3					
Sequences: Definition and examples – Series: Types and Convergence – Series of positive terms Tests of convergence: Comparison test, Integral test and D,,Alembert,,s ratio test – Alternating series – Leibnitz,,s test – Series of positive and negative terms – Absolute and conditional convergence.												
UNI	T III	APPI	LICATIONS OF DIFFERENTIAL CALCULUS				9+3					
Curva Evolu	ature in C ites – Env	Cartesia velopes	n co-ordinates – Centre and radius of curvature – Circ - Evolute as envelope of normals.	le of	curv	ature	; –					
UNI	ТIV	FUN	CTIONS OF SEVERAL VARIABLES				9+3					
Limit functi minin	s and Co ons – Jac na of func	ontinui cobian ctions c	ty – Partial derivatives – Total derivative – Differer and properties – Taylors series for functions of two varia of two variables – Lagranges method of undetermined mult	ntiatio bles – tiplier	n of - Ma s.	im im	plicit a and					
UNI	ТV	MUL	TIPLE INTEGRALS									
enclos Triple	Double sed by pla integrals	integra ane cur s – Vol	als in cartesian and polar coordinates – Change of order of ves – Change of variables in double integrals – Area of a cume of Solids.	integ curvec	ratio l suri	n – A face	Area -					
			LECTURE: 45 TUTORIAL: 15 TOTAL	: 60	PE]	RIC	DS					
OUT	COME	S: C	In completion of this course, students will be able to									
1.	solve j in the	probler field of	ns on matrices and to apply concepts of matrix theory whe f engineering.	enever	app	licat	ole					
2.	solve j engine	probler ering f	ns using convergence tests on sequences and series and to rield appropriately.	apply	ther	n in						
3.	solve j	probler ations i	ns on differential and integral calculus and will be exposed in engineering	d to th	eir							
TEX	T BOO	KS:										
1.	Bali N Laxmi	. P and Public	Manish Goyal, "A Text book of Engineering Mathematics", Eighth Edition,									
2.	Grewa Delhi,	l. B.S. 2011.	, "Higher Engineering Mathematics", 41 st Edition, Kh	anna	Publ	licati	ons,					
REF	ERENG	CES:										

1.	Dass, H.K., and Er. Rajnish Verma, "Higher Engineering Mathematics", S. Chand Private
	Ltd., 2011.
2.	Glyn James, "Advanced Modern Engineering Mathematics", 3rd Edition, Pearson
	Education, 2012.
3.	Peter V.O Neil, "Advanced Engineering Mathematics", 7th Edition, Cengage learning,
	2012.
4.	Ramana B.V, "Higher Engineering Mathematics", Tata McGraw Hill Publishing
	Company, New Delhi, 2008.
5.	Sivarama Krishna Das P. and Rukmangadachari E., "Engineering Mathematics", Volume
	I, Second Edition, PEARSON Publishing, 2011.

Mapping of	Mapping of COs, POs and PSOs:															
	POs												PSOs			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	2	1		1			1	1	2		2	3	2		
CO2	3	2	1		1			1	1	2		2	3	2		
CO3	3	2	1		1			1	1	2		2	3	2		
Average	3	2	1		1			1	1	2		2	3	2		
Round off	3	2	1		1			1	1	2		2	3	2		
3- Strong C	orre	lation	n; 2 - I	Mediu	m Co	rrela	tion;	1 - Lc	ow Co	rrelat	ion				•	

		1			<u> </u>							
20ZBS	102		ENGINEERING PHYSICS	L	Τ	Р	С					
		1	Common to MECH, EEE, ECE & CSE	3	0	0	3					
OBJEC	TIVI	ES:										
•	To d	evelop	knowledge on properties of solids									
•	To u	To understand the thermal properties of materials and their relevant applications.										
•	To apply principles of quantum physics in the engineering field											
•	To k	To know about the fundamentals of LASER										
•	To k	To know about the fundamental's fibre optics and its applications										
		1										
UNIT I		PRO	PERTIES OF MATTER			9						
Elasticity Modulus Iastic cor of a Bean nodulus –	– Ho – Rig nstants n – D - Unif	ooke's l idity M s and P Depression form and	aw – Stress – Types of Stresses – Strain- Types of Iodulus – Bulk Modulus –Poisson's ratio – Relations bisson's ratio – Factors affecting elasticity of materials on of cantilever (Theory and Experiment) – Determined non-uniform bending (Theory and Experiment).	Stra hip - Be natio	ain - betw ndin on of	Yo Yeen g mc f Yo	ung's three omen ung's					
J NIT II		THE	RMAL PHYSICS			9						
Transfer of trips - the onductivity ompound	of hea nerma ity - l medi	t energy l condu Forbe's ia (serie	y - thermal expansion of solids and liquids - expansion action, convection and radiation - heat conductions in and Lee's disc method: theory and experiment - co and parallel) - thermal insulation	joir n so ondı	ıts - lids ıctio	bime - the n the	etallio erma cougl					
UNIT II	Ι	QUA	NTUM PHYSICS			9						
Blackbody derivation	y radi n) – D	iation - eductio	- Wien's displacement law – Rayleigh-Jean's law n of Wien's displacement law and Rayleigh-Jean's law –	- Pl - Ma	anck anck	c's the wave	heory s					

– De-Broglie's Hypothesis – Properties of matter waves - Wave-particle duality – Wavefunction and its physical Significance – Schrodinger wave equation – Time-dependent and timeindependent – Application of Schrodinger wave equation: Particle in a 1 D box.

UNIT IV LASERS

LASER – Interaction of light radiation with materials – Einstein's A and B coefficient derivation – Concept of LASER – Population inversion – Pumping action – Methods for pumping action – Characteristics of LASER – Principle, construction and working of Nd-YAG – Industrial and medical applications of lasers.

UNIT V FIBRE OPTICS

Structure of Optical Fibre – Guiding mechanism – Total internal reflection – Critical Angle – Conditions for total internal reflection – Principle and Propagation of light in Optical Fibres – Numerical aperture and acceptance angle – Types of optical fibres (Material, refractive index and mode) – their characteristics and applications.

TOTAL: 45 PERIODS

9

9

OUTCOMES:

At the end of the course	the student will be able	
At the chu of the course,	the student will be able	

1	To explain about three types of elastic moduli and able to calculate them for different materials
2	To apply concepts of thermal properties of materials and their applications inexpansion joints and heat exchangers
3	To understand the quantum nature of materials and apply fundamental principles of quantum physics to the engineering field
4	To understand the working principles of lasers and their types
5	To know about fibre optics and mechanism of propagation of light through them

TEXTBOOKS:

1.	P. Mani, "Engineering Physics I and Engineering Physics II", Shri Dhanam Publishers, 2016
2.	D.K. Bhattacharya & T. Poonam. "Engineering Physics". Oxford University Press, 2015.
3.	R.K. Gaur & S.L. Gupta. "Engineering physics". Dhanpat Rai Publishers, 2012.
4.	A. Marikani, "Engineering Physics", PHI Learning Pvt., India 2009
5.	B.K. Pandey & S. Chaturvedi. "Engineering Physics". Cengage Learning India, 2012

REFERENCES:

NET EKENC	
1.	D. Haliday, R. Resnick and J. Walker. "Principles of Physics". Wiley, 2015
2.	M. N. Avadhanulu and P. G. Kshirsagar, "A textbook of engineering physics", S. Chand and Company Ltd, New Delhi, 2005.
3.	K. Rajagopal, "Engineering Physics", PHI, New Delhi, 2011.
4.	R.A. Serway & J.W. Jewett. "Physics for Scientist and Engineers". Cengage Learning, 2010.
5.	M. Arumugam, "Engineering physics", Anuradha publishers

Mapping of COs, POs and PSOs:																
		POs											PSOs			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	2	1										3	2		
CO2	3	2	1										3	2		
CO3	3	2	1										3	2		
CO4	3	2	1										3	2		
CO5	3	2	1										3	2		
Average	3	2	1										3	2		
Round off	3	2	1										3	2		
3- Strong C	orrel	ation	; 2 - N	lediu	m Coi	relat	ion; 1	-Lo	w Cor	relati	ion					

20ZES1	.03	ENGINEERING GRAPHICS	L	Т	Р	С					
		(Common to MECH, EEE, ECE & CSE)	1	0	4	3					
COURS	E O	BJECTIVES:									
•	Thi dra and	s course aims to introduce the concept of graphic communi wing skills for communicating concepts, ideas and designs of e to expose them to existing national standards related to technica	catio ngin al dr	on, d leeri awir	devel ng pr ngs	op the oducts					
•	То	draw the projection of simple solids like prisms, pyramids, cylin	der	etc.							
•	To pre	draw the development of surfaces to estimate the sheet metal rec pare sectional views of solids.	quire	emer	it and	l to					
•	To dra	develop skills in three-dimensional visualization of engineering w isometric views of simple solids.	com	pon	ents a	and to					
CONCE	PTS	AND CONVENTIONS (Not for Examination)									
Important conventio dimension	Importance of graphics in engineering applications – use of drafting instruments – BIS / ISO conventions and specifications – size, layout and folding of drawing sheets – lettering and dimensioning										
UNIT I		PLANE CURVES AND FREE-HAND SKETCHING				6+9					
Basic geo parabola curves. V three dim views of c	Basic geometrical constructions, curves used in engineering. Conics – construction of ellipse, parabola and hyperbola by eccentricity method – drawing of tangents and normal to the above curves. Visualization concepts and free hand sketching: visualization principles –representation of three dimensional objects – layout of views- freehand sketching of multiple views from pictorial views of objects.										
UNIT II		PROJECTION OF POINTS, LINES AND PLANE SURFA	CES	5		6+9					
Orthograp points - F lengths ar circular su	phic Proje nd tru urfac	projection – Principles-principal planes - First angle project ction of straight lines inclined to both the principal planes - de ue inclinations by rotating line method - traces. Projection of play (res) inclined to both the principal planes by rotating object method	ion eterr anes od.	- Pı nina (po	oject tion lygor	ion of of true nal and					
UNIT III		PROJECTION OF SOLIDS				6+9					
Projectior axis is inc	n of s cline	simple solids like prisms, pyramids, cylinder, cone and truncated d to both the principal planes by rotating object method.	l soli	ids, v	when	the					
UNIT IV		PROJECTION OF SECTIONED SOLIDS AND DEVELOR OF SURFACES	PMI	ENT	1	6+9					
Sectioning plane is in shape of pyramids	g of nclin sect cylin	prisms, pyramids, cylinders and cones in simple vertical positived to the one of the principal planes and perpendicular to the ot ion. Development of lateral surfaces of simple and sectioned and cones.	on v her ed s	vhen – ob olids	the tainin 5 – I	cutting ng true prisms,					
UNIT V	V ISOMETRIC PROJECTION AND OVERVIEW OF COMPUTER 6- GRAPHICS 6-										
Principles truncated vertical po Properties System), 1 applicable during CA	GRAPHICSPrinciples of isometric projection – isometric scale –isometric projections of simple solids and truncated solids - prisms, pyramids, cylinders, cones- combination of two solid objects in simple vertical positions – Introduction to CAD - The Menu System, Toolbars (Standard, Object Properties, Draw, Modify and Dimension), Drawing Area (Background, Crosshairs, Coordinate System), Dialog boxes and windows, Shortcut menus (Button Bars), The Command Line (where applicable), The Status Bar, Different methods of zoom as used in CAD- (CAD – evaluation during CA only)										

L	ecture: 15 Peri	iods Tutorial: 0 Periods	Practical: 60 Periods	Total: 75 Periods							
OU	FCOMES:	On completion of this cour	rse, students will be able to								
1	Familiarize wit sketching of m	th the fundamentals, standard ultiple views of basic geome	ds of Engineering graphics a trical constructions.	and Perform freehand							
2	Draw orthograp	phic projections of points, lin	nes and plane surfaces.								
3	Draw projection	ons of simple solids.									
4	Visualize and draw sectioned solids and development of surfaces.										
5	Visualize and draw isometric views of simple solids and appreciate the use of computers in drawing and modelling of simple objects.										
TEX	XT BOOKS:										
1	Natrajan K. V Chennai, 2016	7., "A text book of Engineer 6.	ring Graphics ", Dhanalaks	hmi Publishers,							
2	Venugopal K. and Prabhu Raja V., " Engineering Graphics ", New Age International (P) Limited, 2016.										
3	Shah, M. B. an Pearson Educa	nd Rana B. C. "Engineerin g ation, 2010	g Drawing and Computer	Graphics",							
REF	TERENCES:										
1	N S Parthasar New Delhi, 20	rathy and Vela Murali, " Enş 015.	gineering Graphics ", Oxfor	rd University, Press,							
2	Gopalakrishn publications, I	a K.R., "Engineering D Bangalore, 2014.	rawing" (Vol. I&II con	nbined), Subhas							
3	Basant Agraw Company Lim	val and Agrawal C.M., " Eng iited, New Delhi, 2013.	t ineering Drawing ", Tata M	AcGraw Hill Publishing							
4	Luzzader, Wa introduction Economy Edit	rren J. and Duff John M., ' to Interactive Computer (tion, Prentice Hall of India P	'Fundamentals of Enginee Graphics for Design and Pvt. Ltd, New Delhi, 2005	rring Drawing with an Production ", Eastern							
5	Bhatt N. D. ar Edition, 2014.	nd Panchal V. M., "Enginee	ring Drawing", Charotar H	Publishing House, 53 rd							

MAPPING	MAPPING OF COs, POs AND PSOs:															
		POs											PSOs			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	2	2		3		3			3			3	2	2	
CO2	3	2	2		3		3			3			3	2	2	
CO3	3	2	2		3		3			3			3	2	2	
CO4	3	2	2		3		3			3			3	2	2	
CO5	3	2	2		3		3			3			3	2	2	
Average	3	2	2		3		3			3			3	2	2	
Round off	3	2	2		3		3			3			3	2	2	
3- Strong C	orrel	ation;	; 2 - N	Iediui	n Coi	rrelat	ion; 1	-Lo	w Coi	relati	on					

20MES104

BASIC ELECTRICAL ENGINEERING

L	Т	Р	С
2	1	0	3

OBJEC	TIVES:									
•	To introduc	e electric	circui	its and	theore	ems.				
•	To understa	and the ba	usics o	of AC ci	ircuits	5				
•	To study the	e Basics	of Tra	nsform	er					
•	To understa	and the co	oncept	of elec	ctrical	machi	nes			
•	To study ab	oout the e	lectric	al insta	llatio	ns				
UNIT I	DC C	CIRCUI	TS							9

Electrical circuit elements (R, L and C), voltage and current sources, Kirchhoff's current and voltage laws, analysis of simple circuits with DC excitation, star delta transformation. Superposition, Thevenin and Norton Theorems. Time-domain analysis of first-order RL and RC circuits.

UNIT II AC CIRCUITS

Representation of sinusoidal waveforms, peak and RMS values, phasor representation, real power, reactive power, apparent power, power factor. Time domain Analysis of single-phase ac circuits consisting of R, L, C, RL, RC, RLC combinations (series and parallel), resonance. Three-phase balanced circuits, voltage and current relations in star and delta connections.

UNIT III

TRANSFORMERS

Magnetic materials, BH characteristics, ideal and practical transformer, equivalent circuit, losses in transformers, regulation and efficiency. Auto-transformer and three-phase transformer connections.

UNIT IV ELECTRICAL MACHINES

Generation of rotating magnetic fields, Construction and working of a three-phase induction motor, Significance of torque-slip characteristic. Loss components and efficiency, starting and speed control of induction motor. Single-phase induction motor. Construction, working, torque-speed characteristic and speed control of dc motor. Construction and working of synchronous generators[Elementary Analysis only]

UNIT V POWER CONVERTERS AND ELECTRICAL INSTALLATIONS

9

TOTAL · 45 PERIODS

9

9

9

DC-DC buck and boost converters, duty ratio control. Single-phase and three-phase voltage source inverters; sinusoidal modulation. Components of LT Switchgear: Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Types of Wires and Cables, Earthing. Types of Batteries, Important Characteristics for Batteries. Elementary calculations for energy consumption, power factor improvement and battery Backup.

			IOTHE + STERIODS
OUTC	OMES:	At the end of this course, students will able to	
1.	Understand a	nd analyze basic Electric and magnetic circuits.	

2.	Study the working principles of Electrical Machines.
3.	Understand the Power Converters and the components of low-voltage electrical installations.
TEXT	BOOKS:
1.	D. P. Kothari and I. J. Nagrath, "Basic Electrical Engineering", Tata McGraw Hill, 2010.
2.	D. C. Kulshreshtha, "Basic Electrical Engineering", McGraw Hill, 2009.
3.	L. S. Bobrow, "Fundamentals of Electrical Engineering", Oxford University Press, 2011
REFER	RENCES:
1.	E. Hughes, "Electrical and Electronics Technology", Pearson, 2010.
2.	V. D. Toro, "Electrical Engineering Fundamentals", Prentice Hall India, 1989.

MAPPING	OF C	COs,	POs .	AND	PSC)s:									
						P	Os							PSOs	5
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	2		3					3			3	2	1
CO2	3	2	2		3					3			3	2	1
CO3	3	2	2		3					3			3	2	1
Average	3	2	2		3					3			3	2	1
Round off	3	2	2		3					3			3	2	1
3- Strong Cor	relatio	on; 2 ·	- Med	ium (Correl	ation	; 1 – I	Low (Correl	ation					

20ME	S109	BA LA	SIC ELECTRI BORATORY	CAL ENGIN	EERING	L	Т	Р	С	
						0	0	3	1.5	
OBJEC	CTIVE	S:								
•	To intr	odu	basic electrical me	easuring Instrum	ients.					
•	To obta	ain t	nsient and steady s	state characterist	ics of electrical ci	rcuits	•			
•	To obta	ain c	ferent electrical m	achines and tran	sformer basic cha	racter	istics.			
•	To intr	odu	basic power conv	erters.						
LIST O	F EXI	PEF	MENTS :							
1.	(a) Stu (b) M	idy o leasu	Electrical basic sate	fety precautions. urrent, Power in	resistive loads.					
2.	(a) M (b) Id	easu entif	ement of waveform ation and calculati	s parameters usi on of resistors, i	ng CRO nductors and Cap	acitor	s value	es.		
3.	a) Stea a Step b) Sir and ve c) Ob	ady-s o inp nuso erific serv	ate and transient tin voltage using a ste al steady state resp tion. ion of phase difference in R-L-C circuit	me-response of H prage oscilloscop ponse of R-L, and ences between c	R-L, R-C, and R-I pe. d R-C circuits – in urrent and voltage	C cin npeda e.	rcuits t	to Ilculat	ulation	
4.	(a) Ob (b) Lo	serv	ion of the no-load est on Single phase	current wavefor Transformer.	m Transformer or	n an os	scillos	cope.		
5.	Measurement of three phase power in a balanced three phase circuits.									
6.	Demo (a) DO arrang cage r	onstr C ma geme rotor	ion of cut-out secti hine (commutator- t) (b)Induction ma	ons of machines brush chine (squirrel	3					
	(c) syn (d) Sin	nchr ngle	nous machine (field whase induction ma	d winging – slip chine.	ring arrangement)				
7.	Torqu	ie Sp	ed Characteristics	of DC Shunt mo	tor.	_				

8	(a)Synchr (b)Directi	onous speed of two and four-pole, three-phase induction mo on reversal by change of phase-sequence of connections.	otors.
0.	(c) Torque	-Slip Characteristics of an induction motor.	
	(d) Genera	tor operation of an induction machine driven at super-synch	ronous speed.
	Demonstr	ation of	
0	(a) dc-dc	converters	
9.	(b) dc-ac	converters – PWM waveform	
	(c) the use	e of dc-ac converter for speed control of an induction motor	
	(d) Comp	onents of LT switchgear.	
		TOTAL PERIODS	45
OUTC	OMES:	After the course, the student will be able to	
	1.	Identify common electrical components and their ratings	
	2.	Make electrical connections by wires of appropriate rating	S.
	3.	Understand the usage of common electrical measuring inst	ruments.
	4.	Understand the basic characteristics of transformers machines.	s and electrical
	5.	Understand the working of power electronic converters.	

MAPPING	OF (COs, I	POs A	ND P	SOs:										
						P	Os							PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C01	3	2	2		3					3			3	2	1
CO2	3	2	2		3					3			3	2	1
CO3	3	2	2		3					3			3	2	1
CO4	3	2	2		3					3			3	2	1
CO5	3	2	2		3					3			3	2	1
Average	3	2	2		3					3			3	2	1
Round off	3	2	2		3					3			3	2	1
3- Strong C	orrel	ation	; 2 - N	lediu	m Co	rrelat	ion; 1	- Lo	w Coi	rrelati	ion				

20ZBS1	10	PHYSICS LABORATORY	L	Т	Р	С				
		(Common to MECH, EEE, ECE & CSE)	0	0	3	1.5				
OBJECT	IVES	ES								
•	To int applie	roduce different experiments to test basic understanding of ed in optics, thermal physics, properties of matter and liquid	phys s	sics	conce	epts				
LIST OF EXPERIN	EXP MEN	PERIMENTS : PHYSICS LABORATORY (ANY TS)	Y 5							
1.	Deter	mination of rigidity modulus by Torsion Pendulum								
2.	Deter	mination of Young's modulus by non-uniform bending method								
3.	Deter	mination of Young's modulus by uniform bending method								
4.	(a) I	Determination of wave length and particle size using LASEI	R							
	(b) I	Determination of acceptance angle in an optical fibre								
5.	Dete meth	ermination of thermal conductivity of a bad conductor – Lee nod	e's D	isc						
6.	Dete inter	ermination of velocity of sound and compressibility of fluid ferometer	- U	ltras	onic					
7.	Dete	ermination of wavelength of mercury spectrum – Spectrome	eter g	rati	ng					
8.	Dete	Determination of band gap of a semiconductor								
	Total: 45 Periods									
OUTCOM	MES	On completion of this course, students will be able to								
1. to a app	apply principles of elasticity, optical and thermal properties for engineering oplications									

Mapping of	COs	s, POs	and	PSOs :											
						P	Os							PSOs	5
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	1		1			1	1	2		2	3	2	
Average	3	2	1		1			1	1	2		2	3	2	
Round off	3	2	1		1			1	1	2		2	3	2	
3- Strong C	orrel	ation	; 2 - N	Iediu	m Coi	rrelati	ion; 1	– Lo	w Co	rrelati	on				

20ZBS	201	ENGINEERING MATHEMATICS- II	L	Т	Р	С			
		(Common to MECH, EEE, ECE & CSE)	3	1	0	4			
OBJEC	TIVES	6							
•	Vector	calculus and their uses in various field theoretic subjects.							
•	Higher solutio	r order and special type of linear differential equations and me ons.	thods	to fi	nd				
•	Laplac	place transforms and properties and their applications in engineering.							
•	Constr comple	ruction of analytic functions and concepts of concepts of confe ex integration and series solutions.	ormal	map	ping	,			
UNIT I	V	ECTOR CALCULUS			ļ	9+3			
Gradient, Vector int (excluding	divergen egration g proofs	nce and curl – Directional derivative – Irrotational and solenoi – Green,,s theorem in a plane, Gauss divergence theorem and) – Simple applications involving cubes and rectangular parall	idal ve l Stok elopip	ector es,, t beds.	fielc heor	ls – em			
UNIT II	0	ORDINARY DIFFERENTIAL EQUATIONS9+							
Higher ord parameter with const	der linea s – Cauc ant coef	r differential equations with constant coefficients – Method o chy,,s and Legendre,,s linear equations – Simultaneous first or fficients.	f varia der lir	ation near o	of equa	tions			
UNIT II	I L	APLACE TRANSFORMS				9+3			
Laplace tr Basic prop of transfor functions. theorems - transformation	ransforn perties – rms - T Inverse – Solution ation tec	n – Sufficient condition for existence – Transform of elen - Transforms of derivatives and integrals of functions - Deriv ransforms of unit step function and impulse functions – Tra- - Laplace transform -Statement of Convolution theorem – In- on of linear ODE of second order with constant coefficients us chniques.	nentar atives ansfor itial a sing L	y fu and m of nd fi apla	nctio inte per nal ce	ons – grals iodic value			
UNIT IV	V A	NALYTIC FUNCTIONS				9+3			
Functions equations analytic fu mapping:	of a con and suff inction - w = z+k	nplex variable – Analytic functions: Necessary conditions – C ficient conditions (excluding proofs) – Harmonic and orthogon – Harmonic conjugate – Construction of analytic functions – C x, kz, $1/z$, z^2 , e^z and bilinear transformation.	Cauchy nal pro Confoi	v-Rie opert rmal	man ies c	n)f			
UNIT V	V COMPLEX INTEGRATION 9+								
Complex integral for Cauchy,,s circle and	Complex integration – Statement and applications of Cauchy,,s integral theorem and Cauchy,, integral formula – Taylor,,s and Laurent,,s series expansions – Singular points – Residues Cauchy,,s residue theorem – Evaluation of real definite integrals as contour integrals around unit circle and semi-circle (excluding poles on the real axis).								
		LECTURE: 45 TUTORIAL: 15 TOTAL :	60 P	ER]	[OD)S			
OUTCO	MES:	On completion of this course, students will be able to							

1.	Solve problems on vector calculus and to apply them in any other field theory related
	subjects.
2	Solve differential equations and will be exposed to their applications in various fields of
۷.	Solve unreferitial equations and will be exposed to their applications in various fields of
	engineering.
3.	Solve problems on Laplace transforms and will be able to use Laplace transform in
	finding solutions of differential and integral equations and other engineering applications.
4	Solve complex integration much lange and will be expected to verify applications of
4.	Solve complex integration problems and will be exposed to various applications of
	analytic functions and conformal mapping in engineering.
ТЕХТ	BOOKS:
1	Deli N. Den d Menich Correl 64 Terret bash of Englisher Metham the 2 Eistel
1.	Ball N. P and Manish Goyal, "A lext book of Engineering Mathematics", Eighth
	Edition, Laxmi Publications Pvt Ltd., 2011.
2.	Grewal, B.S. "Higher Engineering Mathematics", 41 st Edition, Khanna Publications,
	Delhi 2011
REFE	RENCES
1.	Dass, H.K., and Er. Rainish Verma, "Higher Engineering Mathematics", S. Chand
	Private I td _ 2011
2	
2.	Glyn James, "Advanced Modern Engineering Mathematics", 3rd Edition, Pearson
	Education, 2012.
3.	Peter V. O., Neil, "Advanced Engineering Mathematics", 7th Edition, Cengage learning,
	2012
4	
4.	Ramana B.V, "Higher Engineering Mathematics", Tata McGraw Hill Publishing
	Company, New Delhi, 2008.
5.	Sivarama Krishna Das P. and Rukmangadachari E., " Engineering Mathematics "
	Volume II Second Edition PEARSON Publishing 2011

MAPPING 0	MAPPING OF COs, POs AND PSOs:															
						P	Os							PSOs		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	2	2		3					3			3	2	1	
CO2	3	2	2		3					3			3	2	1	
CO3	3	2	2		3					3			3	2	1	
CO4	3	2	2		3					3			3	2	1	
Average	3	2	2		3					3			3	2	1	
Round off	3	2	2		3					3			3	2	1	
3- Strong Co	orrelat	tion; 2	2 - Me	edium	l Cori	relatio	on; 1 -	- Low	Corr	relatio	n					

20MBS2	20MBS202APPLIED PHYSICSL						
	I.	Mechanical Engineering	3	0	0	3	
OBJECTIVES:							
•	To becom	e proficient in basics of crystals, their structures and defec	ts in	crys	stals		
•	To unders	stand the fundamentals of nuclear forces, models and classic	fica	tion	of m	atter	
•	To learn t	he fundamentals of magnetic, dielectric and superconducti	ng n	nater	ials		
•	To unders	tand the fundamentals of acoustics and vibrations					
•	To know	the basics of advanced materials and their applications					
UNIT I	CR	YSTALLOGRAPHY			9	1	
systems, Bra crystal imper deformation.	vais lattic rfections: Bragg's l	es, directions and planes in a crystal, Miller indices – inter point defects, line defects - Burger vectors – role of imper aw of X-ray diffraction – powder crystal method.	r-pla erfec	nar of the second secon	distar s in p	ices – plastic	
UNIT II	NU	CLEAR AND PARTICLE PHYSICS			9		
Nuclear prop types and ha matter - quar	perties and lf-life - St k models	forces - Nuclear models - Shell model - Nuclear reaction ellar nucleosynthesis. Fundamental forces - Particle physic - neutrino properties and their detection.	on - :s - c	Rad	ioacti ificat	vity - ion of	
UNIT III	MA SU	AGNETIC, DIELECTRIC AND PERCONDUCTING MATERIALS			9	1	
Classification hysteresis – l Langevin-De materials – F and their pro	n of mag hard and s bye equat Ferroelectr perties.	netic materials– ferromagnetism – domain theory – to oft magnetic materials – ferrites - dielectric materials – typ ion – frequency effects on polarization - dielectric break ic materials - superconducting materials – type-I and type	ypes es o cdov e-II	s of f pol vn – supe	ene ariza insu rcono	rgy – tion – lating luctoi	
UNIT IV	AC	OUSTICS & VIBRATIONS			9	I	
Introduction to Acoustics -reverberation – reverberation time – Sabine's formula – acoustics buildings – ultrasonics – production of ultrasonics using piezoelectric method –magnetostriction method-applications. Fundamentals of vibrations:Simple harmonic motion, combination of two simple harmonic motion beats.						ics of iction	
UNIT V	AL	VANCED MATERIALS			9)	
Nanomateria applications. deposition- a	ls: introdu Carbon na opplication	ction and properties – synthesis – chemical vapour deposit anotubes: structure and properties – synthesis– arc method s.	ion – pu	– bal Ilsed	ll mil lasei	ling – r	

Shape memory alloys (SMA): One way and two-way memory effect- pseudoelasticity – Ni-Ti alloy - applications.

TOTAL:45 PERIODS

OUT	COMES:
٠	Students will understand the basics of crystals, their structures and defects in crystals
•	Students will be able to experience the behaviour of matter at atomic scale, role of nuclear and particle physics in applications like radioactivity and nuclear reactions.
•	Students will also acquire various materials knowledge like magnetic, dielectric and superconducting.
•	Students will understand the acoustics of building, ultrasonics and vibration.
•	Students will also get an exposure to nanomaterials synthesis, carbon nano tubes and shape memory alloys.
TEXT	BOOKS:
1.	A. Marikani, "Engineering Physics", PHI Learning Pvt., India, 2009.
2.	S. Mani Naidu, "Applied Physics", Pearson Publisher, India, 2010.
3.	Uma Mukherji, "Engineering Physics", Alpha Science International Ltd., Oxford, U.K.
4.	K. Rajagopal, "Engineering Physics", PHI, New Delhi, 2011.
5.	P. Mani, "Engineering physics", Dhanam Publications, 2017
REFE	RENCES:
1.	Concepts of Modern Physics. Arthur Beiser, Tata McGraw-Hill, New Delhi (2010)
2.	Introduction to Nanotechnology, C.P. Poole and F.J. Owens, Wiley, New Delhi (2007).
3.	Fundamentals of Physics II, R. Shankar, Yale University Press, New Haven and London
	(2016).
4.	Fundamentals of Physics, 6th Edition, D. Halliday, R. Resnick and J. Walker, John Wiley and Sons,
	New York (2001).
5.	Callister's materials Science and Engineering, R. Balasubramaniam, Wiley India Pvt. Ltd.,
	2014
6.	Nuclear Physics, S.N. Ghoshal, Chand & Company Ltd., New Delhi, 1994.

MAPPING	OF C	COs, I	POs A	ND P	SOs:										
						P	Os						PSOs		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	2										3	2	
CO2	3	2	2										3	2	
CO3	3	2	2										3	2	
CO4	3	2	2										3	2	
CO5	3	2	2										3	2	
Average	3	2	2										3	2	
Round off	3	2	2										3	2	
3- Strong C	Correl	ation	; 2 - N	lediu	m Co	rrelat	ion; 1	-Lo	w Coi	rrelati	ion				

20MBS203

OBJEC	TIVES:	-
•	To make students conversant with water parameters, boilers, need for water treatment	and
	acquire basic knowledge in spectroscopy and its applications.	
•	Students ought to be aware of fundamental principles behind different electrochemical	
	reactions, corrosion of materials, methods to prevent corrosion and industrial important	ice of
	alloys.	
•	To learn the chemistry behind polymers, synthesis, merits, demerits and its application	is in
	various field.	
•	To acquire basic knowledge in non-conventional energy resources and the chemical re	actions
	involved in cell, batteries and function of lubricants.	
•	To learn the chemistry behind fuels and combustion.	
UNIT I	WATER TECHNOLOGY AND ANALYTICAL TECHNIQUES	9
Water Tec and estima disadvanta Foaming, O Deminerali Analytical spectroscop UNIT II Electroche of EMF – f hydrogen e Corrosion (galvanic, j – sacrificia	chnology: Characteristics – alkalinity and its significance – hardness (problems) tion by EDTA method – potable water treatment – boiler feed water - required ges of using hard water in boilers (Scales & Sludge, Boiler corrosion, Pri Caustic embrittlement) – water treatment – Internal treatment – external treatation process – desalination – reverse osmosis. Techniques: Electromagnetic spectrum – Beer-Lambert's law - Fundame by – (Instrumentation) of UV-Visible, AAS, Flame photometry. ELECTROCHEMISTRY, CORROSION AND ALLOYS emistry: Electrochemical cells – reversible and irreversible cells – EMF – means single electrode potential – Nernst equation (Problems) – reference electrode – lectrochemical series and its applications. : Corrosion – Pilling Bedworth rule - dry corrosion - electrochemical corrosion pitting, differential aeration) – factors influencing corrosion – corrosion control anode method – impressed current cathodic method – protective coatings – functioner and the protective coatings – functioner) - types ements – iming & atment – entals of 9 surement standard n – types methods paints –
	s – functions – metanic coarings – electroplating (Cu) and electro less plating (N	1).
	POLYMERS AND COMPOSITES	9
Polymers: types (add thermoplas (PVC, TEI application polymers - Composite	Definition – classification – functionality – polymerization – degree of polymer lition, condensation, copolymerization) – mechanism (free radical) – pl tics and thermosetting plastics – preparation, properties and uses of individual p FLON, Nylon-6,6, Nylon-6, PET, epoxy resin) – rubber - vulcanization of s - Biopolymers – Properties and its applications (Polylactic acid) – Co Properties and its applications (Polyacetylene) es: definition – types - polymer matrix composites – Fibre Reinforced Pol	astics – astics – oolymers rubber – nducting ymers –
application	s - advanced composite materials - physical and chemical properties - applicati	ons.
UNIT IV	NON-CONVENTIONAL ENERGY SOURCES AND STORAGE DEVICES - LUBRICANTS	9
Nuclear er breeder rea – lead–acid application Lubricant (viscosity i synthetic h	hergy – fission fusion reactions – light water nuclear reactor for power generator – solar energy conversion – solar cells – wind energy – batteries: alkaline d accumulator, Ni-Cd ,and Li-ion batteries – fuel cells – H_2 -O ₂ fuel cell - princes – advantages and disadvantages. s: Lubricants - mechanism of lubrication, classification and properties of landex, flash and fire points, cloud and pour points, oilyness), Additives for lubricants, Greases – Preparation & properties (consistency, drop point) and uses.	eration – batteries iples and ubricants bricants,
UNIT V	FUELS AND COMBUSTION	9

Classification - Calorific value – coal – analysis of coal (Proximate and Ultimate) – metallurgical coke – manufacture by Otto-Hoffmann method – petroleum – manufacture of synthetic petrol (Bergius method) – Knocking –octane number – diesel oil – cetane number – Power alcohol - natural gas - compressed natural gas (CNG) – Liquefied petroleum gas (LPG) – Producer gas – water gas.

Combustion of fuels: theoretical calculation of calorific value – calculation of stoichiometry of fuel and air ratio – ignition temperature – explosive range – flue gas analysis (ORSAT apparatus)

TOTAL :	45 PERIODS
---------	------------

COURSI	E OUTCOMES						
On comple	etion of the course the student will be able to,						
1.	apply the knowledge of basic science in identifying, to formulate and to solve the						
	engineering problems.						
2.	analyze water borne problems faced in boilers, water treatment methods and analytical						
	techniques and its applications.						
3.	understand polymerization reactions and electrochemical reactions and its applications.						
4.	Obtain knowledge in various renewable energy resources, Batteries, fuel cells, lubricants and						
	its applications.						
5.	acquire in-depth knowledge in fuels and combustion.						
TEXT B	OOKS:						
1	Vairam S, Kalyani P and SubaRamesh., "Engineering Chemistry"., Wiley India						
	PvtLtd.,New Delhi., 2011						
2	Dara S.S, UmareS.S. "Engineering Chemistry", S. Chand & Company Ltd., New Delhi,						
	2010						
REFERI	ENCES:						
1.	Pahari A and Chauhan B., "Engineering Chemistry"., Firewall Media., New Delhi.,						
	2010.						
2.	Jain and jain, 16 th editin, "Engineering Chemistry" Dhanpat Rqai Publishing Co.						
3.	Foster R., Ghassemi M., Cota A., "Solar Energy", CRC Press, 2010.						
4.	Physical Chemistry, P.W. Atkin (ELBS, Oxford Press).						
5.	Sivasankar B, "Engineering Chemistry", Tata Mc Graw-Hill Publishing Company Ltd,						
	New Delhi, 2008.						

Mapping of COs, POs and PSOs:															
						PO	Ds							PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2		2		1			1			1	1			
CO2	2	1	3		1			1	1		2	1			
CO3	2		1		1			1	1		2	1	2		1
CO4	2		3		2			1	1		2	1	1		1
CO5	2		1		2			1	1		2	1	1		1
Average	2		2		1			1			1	1			
Round off	2	1	3		1			1	1		2	1			
3- Strong Corr	elatio	n; 2 -	Medi	um C	orrela	ntion;	1 – L	ow C	orrela	tion					

20ZHS20	0ZHS204 TECHNICAL ENGLISH L T H						
		(Common to MECH, EEE, ECE & CSE)	2	0	0	2	
OBJEC	TIVES	:					
•	To be a	ble to acquire vocabulary by way of reading skills.					
•	To be a	ble to write iterative as well as recursive programs.					
•	To be a program	ble to represent data in arrays, strings and structures and man.	nipulat	e them	thro	ugh a	
•	To be a structur	ble to declare pointers of different types and use them in de es.	fining s	elf- ref	erent	ial	
•	To be a	ble to create, read and write to and from simple text files.					
UNIT I	V	OCABULARY BUILDING				6	
The conce Acquainta Synonyms	ept of W ince with s, antony	Yord Formation - Root words from foreign languages and a prefixes and suffixes from foreign languages in Englishms, and standard abbreviations	d their h to fo	use in rm der	Eng ivati	lish - ves	
UNIT II	E	BASIC WRITING SKILLS				6	
Sentence S Creating c precisely	Structure	s - Use of phrases and clauses in sentences - Importance of e - Organizing principles of paragraphs in documents - Tech	proper	punctua for wri	ation ting	-	
UNIT II	I II	DENTIFYING COMMON ERRORS IN WRITI	NG			6	
Subject-ve Redundan	erb agree cies - Cli	ment - Noun-pronoun agreement - Misplaced modifiers - A	rticles -	- Prepo	sitior	18 -	
UNIT IV	V N	ATURE AND STYLE OF SENSIBLE WRITIN	G			6	
Describing conclusion	g - Defini 1	ing - Classifying - Providing examples or evidence - Writin	g introc	luction	and		
UNIT V	UNIT V WRITING PRACTICES					6	
Comprehe	ension - P	Précis Writing - Essay Writing					
		TOTAL: 30 P	ERIO	DS			
OUTCOMES: At the end of the course , the students will be able to							
1.	1. Acquire basic proficiency in English including reading and listening comprehension, writing and speaking skills.						

2.	Participate effectively in formal and informal conversations; introduce themselves and express their opinions in English.
3.	Comprehend conversations and deliver short talks in English.
4.	Write essays and descriptions of any kind in English.
5.	Prepare reports, graph presentation and Technical writing.

TEXT BOOKS:

1.	On Writing Well. William Zinsser. Harper Resource Book. 2001
2.	Study Writing. Liz Hamp-Lyons and Ben Heasly. Cambridge University Press. 2006.
3.	Communication Skills. Sanjay Kumar and PushpLata. Oxford University Press. 2011.

REFERENCES:

1.	Richards, C. Jack .Interchange Students' Book-2 New Delhi: CUP, 2015.
2.	Bailey ,Stephen. Academic Writing: A Practical guide for students .New York: Rutledge, 2011.
3.	Seely, John. The Oxford guide to writing & Speaking. New York. 1998.
4.	Bhatia M.P , A Handbook of APPLIED GRAMMAR , M.I Publications, AGRA, Sixth Edition

MAPPING OF COs, POs AND PSOs:

		POs									PSOs				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1					3				3						1
CO2					3				3						1
CO3					3				3						1
CO4					3				3						1
CO5					3				3						1
Average					3				3						1
Round off					3				3						1
3- Strong Correlation; 2 - Medium Correlation; 1 – Low Correlation															

20ZMC	1C205 CC					NSTITUTION OF INDIA						L	Т	P	С	
(Co			(Co	ommon to all Branches)						1	0	0	0			
OBJECTIVES:																
0. To provide understanding of basic concepts of Indian Constitution and various organs created by the constitution including their functions.																
UNIT I	INTRODUCTION										5					
Constitution" Definition and Classification - Constitutional Organs - Indian Constitution: Sources a constitutional history, Salient features of Indian Constitution - Citizenship, Preamble, Fundamen Rights and Duties, Directive Principles of State Policy Rule of Law - Separation of power Constitution - Doctrine of Basic Structure.										and ental wers						
UNIT II UNION GOVERNMENT & STATE GOVERNMENT AND THEIR ADMINISTRATION									5							
Distribution of Powers between Center and States Structure of the Indian Union: Federalism, Centre- State -relationship, President: Role, power and position, PM and Council of ministers, Cabinet and Central Secretariat, Lok Sabha, Rajya Sabha. Governor: Role and Position, CM and Council of ministers, State Secretariat; Organisation, Structure and Functions											ntre- and il of					
UNIT II	I	L	OCAI	L ADI	MINI	STRA	TIO	N AND) ELE	CTI	ON CC)MM	ISSIC	DN		5
District's Administration head: Role and Importance, Municipalities: Introduction, Mayor and role of Elected Representative, CEO of Municipal Corporation, Pachayati raj: Introduction, PRI: Zila Pachayat, Elected officials and their roles, CEO Zila Pachayat: Position and role, Block level: Organizational Hierarchy (Different departments), Village level: Role of Elected and Appointed officials, Importance of grass root democracy Emergency Provisions - Amendment of Election Commission: Role and Functioning, Chief Election Commissioner and Election Commission: Role and Functioning, Institute and Bodies for the welfare of SC/ST/OBC and																
												Т	OTAI	. : 15	PERI	ODS
COURS	E OUT	CON	MES			On con	nplet	ion of t	his co	urse,	studen	ts wil	l be al	ole to		
1.	Unders constit	stand ution	the b inclu	asic c ding t	oncep their f	ots of In Functio	ndian ns.	Consti	tution	and	various	orga	ns crea	ated b	y the	
TEXT F	BOOKS	:														
1.	V.N. S	hukl	a, "Co	onstit	ution	of Inc	lia", I	EBC, 1	3th E	dition	, 2017.					
2.	M.P. J	ain, '	'India	n Co	nstitı	itional	l Law	", Lex	isNex	is, 8th	editic	on, 20	18.			
3 H.M.Seervai, "Constitution of India", LexisNexis, Second edition, 2014.																
REFERENCES:																
1 DD Basu's, "Shorter Constitution of India", Lexisnexis, 14 th Edition, 2016																
2 https://www.india.gov.in/my-government/constitution-india/constitution-india-full-text																
MAPPING OF COs, POs AND PSOs:																
	POs PSOs PSOs								PSOs							
<u>CO1</u>		1	2	3	4	5	b	7	8	9	10	1	12		2	3
Average	<u>,</u>			1		1	3			1	2	1	2		2	1
Round	off			1	1	1	3			1	2	1	2		2	1
3- Stron	g Corre	elatio	on; 2 -	Med	ium (Correl	ation	; 1 – L	ow C	orrela	ation					

20MES206

PROGRAMMING IN PYTHON

 L
 T
 P
 C

 3
 0
 0
 3

					3	JU	,	3				
OBJECTIVES:												
•	• To know the basics of algorithmic problem solving											
•	To read	To read and write simple Python programs.										
•	To dev	To develop Python programs with conditionals and loops.										
•	To defi	To define Python functions and call them.										
•	To use	To use Python data structures – lists, tuples, dictionaries.										
•	To do i	To do input/output with files in Python.										
UNIT I	ALGO	ALGORITHMIC PROBLEM SOLVING										
Algorithms, building blocks of algorithms (statements, state, control flow, functions), notation (pseudo code, flow chart, programming language), algorithmic problem solving, simple strategies for developing algorithms (iteration, recursion). Illustrative problems: find minimum in a list, insert a card in a list of sorted cards, and guess an integer number in a range, Towers of Hanoi												
UNIT II	DATA	, EXPRESS	SIONS, STAT	FEMENTS				9				
Python interpreter and interactive mode; values and types: int, float, boolean, string, and list; variables, expressions, statements, tuple assignment, precedence of operators, comments; modules and functions, function definition and use, flow of execution, parameters and arguments; Illustrative programs: exchange the values of two variables, circulate the values of n variables, distance between two points.9UNIT IIICONTROL FLOW, FUNCTIONS9												
(if-elif-else); Iteration: state, while, for, break, continue, pass; Fruitful functions: return values, parameters, local and global scope, function composition, recursion; Strings: string slices, immutability, string functions and methods, string module; Lists as arrays. Illustrative programs: square root, gcd, exponentiation, sum an array of numbers, linear search,												
UNIT IV	LISTS	, TUPLES,	DICTIONA	RIES		T		9				
Lists: list operations, list slices, list methods, list loop, mutability, aliasing, cloning lists, list parameters; Tuples: tuple assignment, tuple as return value; Dictionaries: operations and methods; advanced list processing - list comprehension; Illustrative programs: selection sort, insertion sort, mergesort, histogram.												
UNIT V	IT V FILES, MODULES, PACKAGES											
Files and exception: text files, reading and writing files, format operator; command line arguments, errors and exceptions, handling exceptions, modules, packages; Illustrative programs: word count, copy file.												
				TOTAL: 45 PER	lod	S						
OUTCOMI	ES:	On completion	on of this course	, students will be able to)							
1.	Develop algo	rithmic solution	ons to simple co	mputational problems.								
2.	Read, write,	execute by har	nd simple Pytho	n programs.								
3.	Structure simple Python programs for solving problems and Read and write data from/to files in Python Programs.											
----	---											
4.	Decompose a Python program into functions.											
5.	Represent compound data using Python lists, tuples, and dictionaries.											

TEXT BOOKS:

1.	Allen B. Downey, "Think Python: How to Think Like a Computer Scientist", 2 nd													
	edition, Updated for Python 3, Shroff/O,,Reilly Publishers, 2016													
	(http://greenteapress.com/wp/think- python/).													
2.	Guido van Rossum and Fred L. Drake Jr, "An Introduction to Python – Revised and													
	updated for Python 3.2", Network Theory Ltd., 2011.													
3.	Dr.A.Kannan, Dr.L.Sairamesh, "Problem Solving and Python programming", United													
	Global Publishers Pvt. Ltd., 2017.													
REFEREN	CES:													

REFERENCES:

1.	Robert Sedgewick, Kevin Wayne, Robert Dondero, "Introduction to Programming
	in Python: An Inter-disciplinary Approach", Pearson India Education Services Pvt.
	Ltd., 2016.
2.	Timothy A. Budd, "Exploring Python", Mc-Graw Hill Education (India) Private
	Ltd., 2015.
3.	Kenneth A. Lambert, "Fundamentals of Python: First Programs", CENGAGE
	Learning, 2012.

MAPPING O	MAPPING OF COs, POs AND PSOs:															
						P	Os						PSOs			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	2	2		3					3			3	2	1	
CO2	3	2	2		3					3			3	2	1	
CO3	3	2	2		3					3			3	2	1	
CO4	3	2	2		3					3			3	2	1	
CO5	3	2	2		3					3			3	2	1	
Average	3	2	2		3					3			3	2	1	
Round off	3	2	2		3					3			3	2	1	
3- Strong Con	3- Strong Correlation; 2 - Medium Correlation; 1 – Low Correlation															

20MES208			PR		L	Τ	P	С							
					LAB	BORA	ATO	RY							
												0	0	3	1.5
OBJECTIV	/ES:														
•	Т	o writ	e, test	, and	debug	simpl	le Pytl	hon pr	ogran	18.					
•	Т	o imp	lemen	t Pyth	on pro	ogram	s with	n cond	itiona	ls and	loops				
•	U	se fur	nctions	s for s	tructu	ring P	ython	progr	ams.						
•	Represent compound data using Python lists, tuples, and dictionaries.														
•	R	ead a	nd wri	te dat	a from	n/to fil	es in	Pythor	n.						
LIST OF E	LIST OF EXPERIMENTS:														
 Compute the GCD of two numbers. Find the square root of a number (Newton,,s method). Exponentiation (power of a number). Find the maximum of a list of numbers. Linear search and Binary search. Selection sort, Insertion sort. Merge sort. First n prime numbers. Multiply matrices. Programs that take command line arguments (word count). Find the most frequent words in a text read from a file. Simulate elliptical orbits in Pygame. Simulate bouncing ball using Pygame. PLATFORM NEEDED Python 3 interpreter for Windows/Linux 															
	na			1		6.1.)5		
	LD:	tost s	Un c	omple	$\frac{1000}{2000}$	or this	cours	e, stud	ients v	vill be	able	$\frac{10}{10}$	aditi -	mala	and
	oops.	icsi, d		ug sil	mpie f	ymon	i prog	1 ams 2	uiu III	ihieim	unt wi	ui col	iuiti(JII a 18	anu
2. D	evelo	p pyth	non pr	ogram	is step	-wise	by de	fining	funct	ions a	nd cal	lling t	hem.		
3. U	lse pyt	thon li	ists, tu	ples,	diction	naries	for re	preser	nting o	compo	ound d	lata ar	nd rea	ad an	d
COURSE AF	RTICI		TON	MAT	$\frac{\mathbf{R}}{\mathbf{R}}$	011.									
MAPPING C	OF CC)s, PC	os AN	D PS	Os:										
				-	-	P	Os	-	-	-	-	-		PS	Os
~~~	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2	3		2								2	1	3
	2	2	3	2									2	1	3
	2	2	ະ ເ	2	1								2	1	3
Round off	1.3	2 2	ว ว	.07 1	1.3 1								1.3 1	1	2
3- Strong Co	rrelat	ion: 2	- Me	dium	Corre	elation	n: 1 –	Low	L Corre	latio	1 1	l	<b>–</b>		<b>_</b>
5 Strong CO	ul		1110	414111	2011		··· · · ·	<b>L</b> U !!	20110						

20ZBS20	9		CHI	EMIST	<b>FRY I</b>	LABC	)RAT	ORY		L	T	P	C
		((	Commor	n to ME	ECH, I	EEE,	ECE o	& CSE	)	0	0	3	1.5
OBJEC	TIVES:												
1.	To m	nake stu	dents con	nversant	with ha	ands or	n watei	parame	ter analys	is.			
2.	To m	ake the	student to a	acquire p	oractical	l skills	in the c	orrosion	in metals.				
3.	To ac by O	cquaint stwald	the studer viscomete	ents with er.	the det	termina	ation o	f molect	ılar weigh	t of a	a pol	ymei	ſ
4.	To m	To make the student acquire practical skills in analytical instruments.											
LIST O	F EXPEF	RIME	NTS:										
1. De	etermination	n of tota	l hardnes	ss of give	en wate	er samj	ple by i	EDTA n	nethod.				
2. De	etermination	n of alk	alinity in	given wa	ater sa	mple.							
3. De	etermination	n of mo	lecular we	veight of	polyvi	inyl alc	ohol us	sing Ost	wald visc	omet	er.		
4. Co	onductomet	ric titra	tion using	g mixture	e of aci	ids and	strong	base.					
5. De	etermination	n of stre	ength of ir	n given ł	hydrocl	hloric a	acid us	ing pH 1	neter.				
6. Es	timation of	sodium	ı present i	in water	using	flame p	photom	eter.					
7. Es	timation of	Zn pres	sent in eff	fluent us	sing At	tomic A	Absorpt	ion Spe	ctroscopy	(AA	5)		
8. Co	prrosion exp	perimen	t – weigh	ht loss me	ethod								
9. Es	timation of	iron co	ntent of th	the given	n soluti	ion usir	ng pote	ntiomet	er meter.				
10. Es me	timation of ethod).	iron co	ntent of th	the given	ı sampl	le using	g Spect	ro photo	ometer (th	iocya	anate	•	
(Note: A provide the second se	minimum of nents for a photometer ng balance tivity mete d viscomete Absorption apparatus celain tiles,	of SIX of batch of - 5 nos - 5 nos r ; Poter er - 30 n n Spectr c: Pipett droppe	experime of 30 stud ntiometer os cophotome e, Burette r, reagent	ents shal dents r; pH met neter - 1 r e, Buretto t bottles,	ll be of ter- 9 r no. glass r	ffered) nos eac d, Stand rod, bea	List h. lard vo aker, w	lumetrio ash bott	c flask, fui le, test tu	nnel, be (3	Con 0 no	iical s eac	h)
COURS	E OUTC	OME	S	At the	end of	f the co	ourse s	tudents	should b	e ab	le to		
1.	The stude: quantitativ heavy met	nts will ve chem tal analy	be outfitt iical analy ysis, etc.	ted with ysis of w	hands- vater qu	-on kno uality r	owledg elated	e in the paramet	qualitative ers, corros	e and sion :	studi	es,	

REFER	ENCES:											
1.	Furniss B.S. Hann practical organic	<pre>Irniss B.S. Hannaford A.J, Smith P.W.G and Tatchel A.R., "Vogel's Textbook of actical organic chemistry", LBS Singapore 1994.</pre>										
2.	Jeffery G.H., Bass analysis chemica Singapore, 1996.	<i>Jeffery G.H., Bassett J., Mendham J.and Denny vogel's R.C, "Text book of quantitative analysis chemical analysis", ELBS 5th Edn. Longman, Singapore publishers, Singapore, 1996.</i>										
3.	Kolthoff I.M., San 1980.	dell E.B. et al. <b>"Quantitative chemical analysis",</b> Mcmillan, Madras										
4.	Daniel R. Pallero York 2001.	s, <b>"Experimental organic chemistry"</b> John Wiley & Sons, Inc., New										

Mapping of COs, POs and PSOs:																	
	POs													PSOs			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
CO1	1	2	1		1			2	1		1	1	1	1	1		
Average	1	2	1		1			2	1		1	1	1	1	1		
Round off	1	2	1		1			2	1		1	1	1	1	1		
<b>3-</b> Strong Correlation; <b>2 -</b> Medium Correlation; <b>1 –</b> Low Correlation																	

20LES2	10			WO	RKS	HOP	PRA	ACTI	CES			L	Т	Р	С
		(Cor	nmon	to MI	ECH,	EEE,	ECE	and C	SE Bra	anche	s)	1	0	4	3
COURSE	E OBJI	ECTIV	VES:												
•	To ma joint, l	ke var Dove t	ious b ail joi	asic p nt, Mo	rototy ortise	pes in & Ten	the c on jo	arpent int and	ry tra l Cros	de suc s-Lap	h as L joint	.ap joi	nt, L	ар Те	e
•	To ma and Co	ke var orner j	ious w oint.	veldin	g join	ts sucl	h as L	ap joii	nt, Laj	p Tee	joint,	Edge j	joint,	, Butt	joint
LIST OF	LIST OF EXPERIMENTS:														
<ol> <li>Introduction to use of tools and equipment in Carpentry, weiding, Foundry and Sneet metal</li> <li>Safety aspects in Welding, Carpentry and Foundry</li> <li>Half lap Joint and Dovetail Joint in Carpentry</li> <li>Welding of Lap joint, Butt joint and T-joint</li> <li>Preparation of Sand mold for cube, conical bush, pipes and V pulley</li> <li>Fabrication of parts like tray, frustum of cone and square box in sheet metal</li> <li>Electrical wiring – simple house wiring</li> <li>Plumbing</li> <li>CNC Machines demonstration and lecture on working principle.</li> <li>Lecture: 15 Periods Tutorial: 0 Periods Practical: 60 Periods Total: 75 Periods</li> </ol>															
COURSE	OUT	COMI	ES:	on co	omple	tion of	f this	course	, stud	ents w	ill be	able to	0		
1	Use to	ols and	d equi	pment	used	in Ca	rpenti	y, We	lding,	Foun	dry ar	d She	et m	etal.	
2.	Make T-join	half la t	p join	t dove	tail jo	int in	carpe	ntry ai	nd we	lded la	ap joir	nt, butt	t join	it and	
3	Prepar	e sand	moul	d for o	cube,	conica	al busl	h, pipe	es and	V pul	ley.				
4	Fabric	ate par	ts like	e tray,	frustu	im of	cone	and sq	uare b	ox in	sheet	metal			
5	Carry	out mi	nor w	orks/r	epair	related	d to el	ectrica	al wiri	ng an	d plun	nbing.			
	0.01	20.	<u> </u>		<u></u>										
MAPPIN	GOF	CUS, I	YUS A	ND P	5Us:	D	Oc					[		DCO	G
	1	2	3	Δ	5	гч 6	7	8	Q	10	11	12	1	$\frac{150}{2}$	י <u>ס</u> ר
CO1	3	2	2		3	U	/	0	,	3	11	14	3	2	1
CO2	3	2	2		3					3			$\frac{3}{3}$	2	1
CO3	3	2	2		3					3			3	2	1
CO4	3	2	2		3					3			3	2	1
CO5	3	2	2		3					3			3	2	1
Average	3	2	2		3			ł		3			3	2	1

20ZHS2	211	COMMUNICATION ENGLISH LABORATORY	L	Т	Р	С						
		(Common to MECH & CSE)	0	0	2	1						
OBJEC	TIVES	:										
•	To dev	elop their communicative competency in English with spec g and listening.	ific ref	erence	to the	eir						
•	To enh	ance their ability to communicate effectively in interviews,	Group	Discus	sion	and						
•	To con	prehend a different types of accent and use them in their co	ommun	ication								
UNIT I	P	RONUNCIATTION PRACTICE				6						
Verbal A Various l	erbal Ability, Articulation of sounds- Intonation-Stress and Rhythm-Conversation practice-listent arious lectures											
UNIT I	I COMMUNICATION AT WORKPLACE											
Creative abstracts-	eative writing. Writing job applications - cover letter- resume- e-mails- memos- reports. Writing											
UNIT I	II E	NGLISH FOR NATIONAL AND INTERNATI XAMINATIONS AND PLACEMENTS	[ONA]	L		6						
Internation (TOEFL)	onal Engl - Civil Se	sh Language Testing System (IELTS)- Test of English as a ervice(Language related part) –English for competitive examples	a Foreig minatio	gn Lang ons	guage	\$						
UNIT I	V I	NTERVIEW SKILLS			6							
Different Body lang	types of guages.	Interview format- answering questions- offering information	on- moc	k inter	view	S-						
UNIT V	7 <b>S</b>	OFT SKILLS				6						
Motivation leadership	on- emoti o straits-	onal intelligence-Multiple intelligences- managing changes team work- career planning- creative and critical thinking	- time 1	manage	men	t-						
	r	TOTAL HOURS 3	80 Hrs									
OUTCO	<b>DMES:</b>	At the end of the course, the students will be able	to									
6.	Face interviews, group discussions and other language parameters in the job market											
7.	Write an	y competitive examinations which cover language part in i	t.									
8.	Take pa	rt in any English conversations of any kind in English. Flav	vlessly	withou	t feai	and						
9.	Write articles for newspapers and magazines or any write-up in English without grammar mistakes.											

10.	Come out with leadership qualities, team work and career planning and will also possess critical and creative thinking.
TEXT	BOOKS:
1.	Communication Skills for Engineers and Scientists, PHI Learning PVT.LTD, Delhi, 2014.
2.	Communication Skills and Soft Skills An Integrated Approach, Dorling Kindersley (INDIA) PVT.LTD, New Delhi, 2012.
3.	Soft Skills, MJP Publishers, Chennai, 2010.
REFEF	RENCES:
5.	Craven, Miles. Listening Extra-A resource book of multi-level skills activities. Cambridge University Press, 2004.
6.	Seely, John. The Oxford guide to writing & Speaking. New Delhi: Oxford University Press,20
7.	Comfort, Jeremy, et al. Speaking Effectively: Developing speaking skills for Business English. Cambridge University Press, Cambridge: Reprint 2011.
8.	Dutt P. Kiranmai and RajeevanGeetha. Basic Communication Skills, Foundation Books:2013

MAPPING	MAPPING OF COs, POs AND PSOs:															
						P	Os							PSOs		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1					3				3						1	
CO2					3				3						1	
CO3					3				3						1	
CO4					3				3						1	
CO5					3				3						1	
Average					3				3						1	
Round off					3				3						1	
3- Strong C	<b>3-</b> Strong Correlation; <b>2 -</b> Medium Correlation; <b>1 –</b> Low Correlation															

20ZBS301

#### TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS

L	Т	Р	С
3	1	0	4

#### **OBJECTIVES**

•	To introduce Fourier series analysis which is central to many applications in engineering apart from its use in solving boundary value problems.
•	To acquaint the student with Fourier transform techniques used in wide variety of situations.
•	To introduce the effective mathematical tools for the solutions of partial differential equations that model several physical processes and to develop Z transform techniques for discrete time systems.

#### UNIT I PARTIAL DIFFERENTIAL EQUATIONS

9+3

9+3

9+3

9+3

9+3

Formation of partial differential equations – Singular integrals -- Solutions of standard types of first order partial differential equations - Lagrange's linear equation -- Linear partial differential equations of second and higher order with constant coefficients of both homogeneous and non-homogeneous types.

#### UNIT II FOURIER SERIES

Dirichlet's conditions – General Fourier series – Odd and even functions – Half range sine series – Half range cosine series – Complex form of Fourier series – Parseval's identity – Harmonic analysis.

# UNIT III APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS

Classification of PDE – Method of separation of variables - Solutions of one dimensional wave equation – One dimensional equation of heat conduction – Steady state solution of two dimensional equation of heat conduction (excluding insulated edges).

# UNIT IV FOURIER TRANSFORMS

Statement of Fourier integral theorem – Fourier transform pair – Fourier sine and cosine transforms – Properties – Transforms of simple functions – Convolution theorem – Parseval's identity.

# UNIT V Z - TRANSFORMS AND DIFFERENCE EQUATIONS

Z- transforms - Elementary properties – Inverse Z - transform (using partial fraction and residues) – Convolution theorem - Formation of difference equations – Solution of difference equations using Z - transform

		LECTURE: 45 TUTORIAL: 15 TOTAL : 60 PERIODS
OUT	COMES:	On completion of this course, students will be able to
1.	The under equations problems of	standing of the mathematical principles on transforms and partial differential would provide them the ability to formulate and solve some of the physical of engineering.

TEXT BOOKS:																
1.	Veera Educa	arajan ation [	T., " Pvt. I	Transf Ltd., N	orms a ew De	and Pa elhi, 3	artial l rd Edit	Differention, 2	ential 016	Equat	ions",	Tata	McGr	aw Hi	11	
2.	Grew 2017.	al B.S	5., "H	ligher l	Engine	eering	Math	emati	cs", 4	4 th Ed	ition,	Khanı	na Put	olisher	rs, De	lhi,
3.	Naray Engir	yanan neerin	S., N g Stu	Ianica dents"	vachag Vol. 1	gom P II & II	'illay.' I, S.V	Г.К ar ⁷ iswar	nd Rai nathan	manai Publi	ah.G ' shers	'Adva Pvt L	nced I td., 19	Mathe 98.	matic	s for
REF	EREN	ICES	5:													
1.	Bali. N.P and Manish Goyal, "A Textbook of Engineering Mathematics", Laxmi Publications Pvt Ltd, 9 th Edition 2016.															
2.	Ramana. B.V., "Higher Engineering Mathematics", Tata McGraw Hill Publishing Company Limited, New Delhi, 2018.															
3.	Glyn James, "Advanced Modern Engineering Mathematics", 4 th Edition, Pearson Education, 2016															
4.	Erwin	ı Krey	yszig	, "Adv	anced	Engir	neerin	g Mat	hemat	tics", 1	$10^{\text{th}} \text{Ee}$	dition,	Wile	y Indi	a, 201	1.
5.	Ray V McGi	Wylie raw H	C an Iill Eo	d Barr ducatio	ett .L. on Pvt	C, "A Ltd, N	dvanc New E	ed En Delhi, 2	gineeı 2012.	ring M	lathen	natics	', 6 th E	Editio	n, Tata	a
MAP	PING	OF	COs	s, POs	S AN	D PS	Os:									
	POs							PSOs	;							
		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO	1	3	2	1		1			1	1	2		2	3	2	
<u> </u>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								2							
CO	3	3	2	1		1			1	1	2		2	5	2	
Avera	age	3	2			1					2		2	5	2	
Kound		5	2				ala4'-		I I ar				Z	3	Z	
3- Stro	ng Col	rrelat	ion;	2 - Me	aium	Corr	elatio	n; 1 –	LOW	Corr	elatio	[]				

20MES302 ENGINEERING MECHANICS L T P										
			3	1	0	4				
OBJECT	ΓΙν	ES								
•	To and	make the students to apply static equilibrium of rigid bodies both also in three dimensions.	ı in tw	vo di	mens	sions				
•	То	comprehend the effect of friction on equilibrium.								
•	То	understand the geometrical properties of surfaces and solids								
•	То	understand various terms involved in Projectiles.								
•	То	apply dynamic equilibrium of particles in solving basic problems	5.							
UNIT	I	INTRODUCTION TO MECHANICS AND FORCE CONCEPTS	E		ç	9+3				
Principles resolution of moment addition of	and and t –V f con	Concepts – Laws of mechanics – system of forces – resultant composition of forces –Lami's theorem – moment of a force – p arignon's theorem – resolution of a force into force and couple current force in space – equilibrium of a particle in space.	of a t ohysic e fo	force al si orce i	syst gnifi n sp	tem – cance bace –				
UNIT II     BASIC STRUCTURAL ANALYSIS ANDFRICTION     9										
resistance angle of re rough incl friction-vir	– cla epose ined rtual	assification of friction – laws of friction – coefficient of friction e – cone of friction –free body diagram – advantages – equilibric plane – non- concurrent force system – ladder friction – rop work method.	– ang rium ( pe fri	gle of of a ction	f fric body – v	tion - on a wedge				
UNIT I	II	GEOMETRICAL PROPERTIES OF SECTION				9+3				
Centroids product of inertia of s	– de iner impl	termination by integration – moment of inertia – theorems of t tia – principal moment of inertia of plane areas – radius of gyra e solids.	mome ation-	ent o Mas	f ine s mo	ertia – oment				
UNIT I	V	BASICS OF DYNAMICS - KINEMATICS				9+3				
Kinematics rectilinear motion cu projectiles bodies.	s an mot irves – ai	d kinetics – displacements, velocity and acceleration – equ ion of a particle with uniform velocity, uniform acceleration, va – motion under gravity –relative motion – curvilinear mo- ngle of projection – range – time of flight and maximum height	ations rying otion z-kine	of acce of p matio	mot elerat eartic es of	ion – tion – cles – f rigid				
UNIT V	V	BASICS OF DYNAMICS - KINETICS				9+3				

				L	ЕСТ	URF	E <b>: 45</b>	TUI	ORI	[AL:	15 T	ОТА	L:6	50 PE	RIO	DS
OUT	COMI	ES:	On c	omple	tion c	f this	cours	e, stuc	lents v	will be	able	to				
1.	Expla with f	in the	e diffe 3.	rent p	rincip	les of	mech	anics	and to	o solve	engir	neering	g prob	olems	dealin	ıg
2.	Apply	y the	conce	pts of	frictio	on to s	olve v	various	s prob	lems o	dealing	g with	fricti	on		
3.	Expla	in the	e diffe	rent g	eomet	rical p	proper	ties o	f vario	ous see	ctions.					
4.	Solve	prob	lems i	n rigio	d body	y dyna	mics	(kiner	natic s	systen	ns).					
5.	Solve	prob	lems i	n rigio	d body	y dyna	mics	(kinet	ic sys	tems).						
TEX	T BO	OKS	S:													
1.	Beer I and I	F.P an <b>Dyna</b> n	nd Joh mics"	nston , 11 th I	Jr. E. Editio	R., " <b>V</b> n, Tat	⁷ ector a McC	<b>Mec</b> l Graw-]	h <b>anic</b> s Hill Pi	<b>s for I</b> ublish	E <b>ngin</b> ing co	eers (l mpan	I <b>n SI</b> y, Nev	Units) w Del	): <b>Sta</b> hi (20	<b>tics</b> 15).
2.	Bhavi Intern	ikatti nation	S. S. a al (P)	and Ra Limit	ajashe ed Pu	karapj blishe	pa, K. rs, 20	G., <b>"I</b> 17.	Engin	eering	g Mec	hanic	s", Ne	w Ag	e	
3.	Natesan, S.C., "Engineering Mechanics", Umesh publications, New Delhi, 2002															
REF	EREN	ICE	S:													
1.	Hibbeller, R.C and Ashok Gupta, "Engineering Mechanics: Statics and Dynamics", 11th Edition, Pearson Education 2010.															
2.	Irving <b>Dyna</b>	g H. S <b>mics</b>	Shame. ", 4th	s and . Editio	Krish n, Peo	na Mo arson .	hanal Educc	Rao. C ation 2	5., " <b>E</b> l 2006.	ngine	ering .	Mech	anics	– Stat	ics an	ıd
3.	Meria Volui	ım J. <b>ne 2'</b>	L. and ", 4 th E	l Krai Edition	ge L. , Johr	G., <b>"E</b> 1 Wile	E <b>ngine</b> y & S	eering	• <b>Mecl</b> 996.	hanics	s- Stat	ics - V	olum	e 1, D	ynam	ics-
4.	Rajas <b>Dyna</b>	ekard <b>mics</b>	an S. a ",3 rd E	nd Sa Edition	nkara , Vika	subra s Pub	mania lishin	ın G., g Hou	<b>"Eng</b> ise Pvi	<b>ineeri</b> t. Ltd.	ng Ma , 2009	echan	ics Sta	atics a	nd	
5.	Kuma Publi	ır, K shing	K.L., comp	<b>"Eng</b> any, N	i <b>neeri</b> Jew D	<b>ng M</b> elhi 2	<b>1echa</b> 008.	nics",	, 3 rd 1	Revise	d Ea	lition,	Tate	а Мс	Graw	-Hill
MAPI	PING	OF	COs	, POs	S AN	D PS	Os:									
	POs PSOs															
	.1	1	2	3	4	5	6	7	8	<b>9</b>	10	11	12	1	2	3
	2	3	$\frac{2}{2}$	1		1			1 1	1 1	2		2	3 3	2	
	3	3	2	1		1			1	1	2		2	3	2	
CO	-	3	2	1		1			1	1	2		2	3	2	
CO	95	3	2	1		1			1	1	2		2	3	2	
Aver	age	3	2	1		1			1	1	2		2	3	2	
Round	d off	3	2	1		1			1	1	2		2	3	2	
3- Stro	ng Coi	rrelat	tion; 2	2 - Me	dium	Corr	elatio	n; 1 –	Low	Corr	elatio	n				

20MPC30	20MPC303 MANUFACTURING TECHNOLOGY I L T P C												
			3	0	0	3							
OBJECT	IVE	8											
• To he	elp stu	dents to acquire knowledge about different metal casting processes	•										
• To ac	quire	knowledge on various joining processes like welding, brazing, solo	lering	g, etc									
• To en etc.	able t	hem to understand various bulk deformation processes like forging	, roll	ing, e	extru	sion,							
• To un	dersta	and various operations performed in sheet metals.											
• To pr	ovide	knowledge about various manufacturing techniques to fabricate pl	astic	comp	poner	nts.							
UNIT I	M	ETAL CASTING PROCESSES			9								
problems- special cast sand casting	moule moule ing p defe	ding machines – types of moulding machines - melting furn rocesses: shell-investment-pressure die casting-centrifugal cas cts	, sim aces- sting-	prin prin co ₂	nciple proce	es of ess –							
UNIT II	JO	INING PROCESSES			9								
rusion weld and flux ma resistance w cored – sub brazing, sol-	ting p iterial veldin omerg dering	s - arc welding equipments - electrodes – coating and specificating – spot/butt, friction welding and friction stir welding – percussed arc welding – electro slag and gas welding – TIG welding and adhesive bonding-weld defects.	aracterions - sion - ling-l	eristi – pri weld MIG	cs – ncipl ing – wel	filler es of flux ding-							
UNIT III	BU	<b>ILK DEFORMATION PROCESSES</b>			9								
Hot workin of forging r flat strip rol – hot and co	g and nachi ling – old ex	cold working of metals – forging processes – open and close nes – typical forging operations – rolling of metals, simple num types of rolling mills – tube piercing – principles of extrusion – trusion – principle of rod and wire drawing.	die fe meric - type	orgin al pr s of	ıg – roble extru	types ms – ision							
UNIT IV	SH	EET METAL PROCESSES			9								
Sheet meta operations– and applicat forming, ma	l cha form tions agneti	aracteristics – shearing, bending and drawing operations ability of sheet metal – test methods –special forming processes – hydro forming – rubber pad forming – metal spinning– introd c pulse forming, peen forming.	– sti s-woi uctio	retch king n of	for prin expl	ming ciple osive							
UNIT V	PC PL	WDER METALLURGY AND MANUFACTURE ( ASTIC COMPONENTS	OF		9								
Introduction sintering an thermoplast plunger and	n to nd ho ics ar screv	powder metallurgy- Production of powders – mixing, bler t pressing - applications. Types and characteristics of plast d thermosets – working principles and typical applications – in v machines – compression moulding, transfer moulding –thermo	iding ics – jectio	, co mo on m ning.	mpao uldir ould	cting, ng of ing –							
		ΤΟΤΑΙ ·	45 1	DED		าต							

0	UTCO	ME	S:	On co	mplet	ion of	this c	ourse,	stude	nts wil	l be at	ole to				
1.	Apply the principles of metal casting for engineering applications.															
2.	Select	suita	ıble j	oining	proces	ss for 1	real tir	ne app	olicatio	ons.						
3.	Apply	ing b	ulk d	leforma	tion p	roces	ses acc	cording	g to in	dustri	al need	ls.				
4.	Explain and use appropriate metal forming operations in industries.															
5.	Explo	re po	wer 1	netallu	rgy te	chniqu	ie and	conce	pts of	plasti	c com	ponent	t manu	ifactu	ring.	
ТЕ	TEXT BOOKS:															
1.	. Sharma P.C., "A Text book of Production Technology", S. Chand and Co. Ltd., 2009.															
2.	2. Kalpakjian S., <b>"Manufacturing Engineering and Technology"</b> , Pearson Education India 7 th Edition, 2013.															
3.	3. HajraChoudhary S.K and HajraChoudhury. AK., "Elements of workshop Technology",volume I and II, Media promoters and Publishers Private Ltd, Mumbai, 1997															
RF	REFERENCE:															
1.	1. <i>R.K. Rajput, "A Text Book of Manufacturing Technology", Laxmi Publication Pvt Ltd 2nd Edition, 2017.</i>															
2.	2. <i>Roy. A. Lindberg, "Processes and Materials of Manufacture", PHI / Pearson Education, 4th Edition, 2008.</i>															
3.	Gowri 2008.	P. H	Iarih	aran, A	.Sures	shBab	и, "Ме	anufac	cturin	g Tecl	inolog	y I", 1	Pearso	on Edi	ication	',
4.	M. Ad 2003.	ithan	and	A.B.Gı	ıpta, ʻ	'Manı	ufactu	ring T	<b>Techn</b> a	ology"	, New	Age Iı	nterna	tional	Pvt Li	ŀd,
5.	P. N. I Hill 3'	Rao, ^{'d} Edi	" <b>Ma</b> ition,	nufacti 2009.	uring	Techn	ology	Foun	dry, F	ormin	ng and	Weld	ing", i	Tata N	AcGra	W
MA	PPIN	G C	<b>)F C</b>	COs, P	Os A	ND I	PSOs	•								
		-				-	F	POs		0	10	11	10	-	PSOs	;
- (	<u>'01</u>	1	2	3	4	5	<b>6</b>	7	<b>8</b>	<b>9</b> 1	10	11	12	1 2	$\frac{2}{2}$	3
	$\frac{101}{202}$	3	1	1		1	1		1	1	2		1	2	2	
0	CO3	3	1	1		1	1		1	1	2		1	2	2	
0	CO4	3	1	1		1	1		1	1	2		1	2	2	
C	CO5	3	1	1		1	1		1	1	2		1	2	2	
Av	erage	3	1	1		1	1		1	1	2		1	2	2	
Ro	Round off         3         1         1         1         1         1         2         1         2         2															
3- S	trong (	Corre	elatio	on; 2 - 1	Mediu	ım Co	orrelat	tion; 1	– Lo	w Cor	relati	on				

3 1 0 4         OBJECTIVES         •       To enable students to understand the basic principles of classical thermodynamics and prepare them to apply basic conversion principles of mass and energy to closed and open systems.       •         •       To understand second law of thermodynamics and apply it to various systems.       •         •       To understand second law of thermodynamics and apply it to various systems.       •         •       To make them aware of various gas laws and thermodynamic relations.       •         •       To explore various laws of gas mixtures.       •         UNIT I       CONCEPT OF THERMODYNAMICS       9+3         Basic definitions, microscopic and macroscopic approach, types of systems – thermodynamic processes – point and path functions – thermodynamics – applications to closed and open systems – steady flow processes – applications.       9+3         UNIT II       SECOND LAW OF THERMODYNAMICS AND ENTROPY       9+3         Second law of thermodynamics – Kelvin-Plank and Clausius statements-Carnot cycle – heat engines – refrigerators – heat pumps – efficiency and COP – entropy – principle of increase in entropy – availability- reversibility and irreversibility – applications.       9+3         Properties of ideal gas- ideal and real gas comparison – equations of state for ideal and real gases-reduced properties, compressibility factor– generalised compressibility chart and its use – Maxwell relations, difference and ratio of heat capacities, energy equation, Joule-Thomos – officient, Clausius Clapeyro	20MPC	PC304 ENGINEERING THERMODYNAMICS L T P C												
OBJECTIVES         •       To enable students to understand the basic principles of classical thermodynamics and prepare them to apply basic conversion principles of mass and energy to closed and open systems.         •       To understand second law of thermodynamics and apply it to various systems.         •       To make them aware of various gas laws and thermodynamic relations.         •       To impart knowledge on properties of pure substances and to analyse various vapour power cycles.         •       To explore various laws of gas mixtures.         UNIT I       CONCEPT OF THERMODYNAMICS       9+3         Basic definitions, microscopic and macroscopic approach, types of systems – thermodynamics processes – point and path functions – thermodynamic equilibrium – quasi-static process. Heat and work – zeroth law – first law of thermodynamics – applications to closed and open systems – steady flow processes – applications.       9+3         Second law of thermodynamics – Kelvin-Plank and Clausius statements-Carnot cycle – heat engines – refrigerators – heat pumps – efficiency and COP – entropy – principle of increase in entropy – availability- reversibility and irreversibility – applications.       9+3         Properties of ideal gas- ideal and real gas comparison- equations of state for ideal and real gases-reduced properties. compressibility factor– generalised compressibility chart and its use – Maxwell relations, Tdi sequations, difference and ratio of heat capacities, energy equation, Joule-Thomson coefficient, Clausius Clapeyron equation, phase change processes. Simple calculations.       9+3         Properties of ideal gas- ide				3	1	0	4							
•       To enable students to understand the basic principles of classical thermodynamics and prepare them to apply basic conversion principles of mass and energy to closed and open systems.         •       To understand second law of thermodynamics and apply it to various systems.         •       To make them aware of various gas laws and thermodynamic relations.         •       To impart knowledge on properties of pure substances and to analyse various vapour power cycles.         •       To explore various laws of gas mixtures.         UNIT I       CONCEPT OF THERMODYNAMICS       9+3         Basic definitions, microscopic and macroscopic approach, types of systems – thermodynamics processes – point and path functions – thermodynamic equilibrium – quasi-static process. Heat and work – zeroth law – first law of thermodynamics – applications to closed and open systems – steady flow processes – applications.       9+3         Second law of thermodynamics – Kelvin-Plank and Clausius statements-Carnot cycle – heat engines – refrigerators – heat pumps- efficiency and COP – entropy – principle of increase in entropy – availability reversibility and irreversibility – applications.       9+3         Properties of ideal gas- ideal and real gas comparison - equations of state for ideal and real gase-metuded properties. Gifference and ratio of heat capacities, energy equation, Joule-Thomson coefficient, Clausius Clapeyron equation, phase change processes. Simple calculations.       9+3         Properties of steam – use of steam tables and Mollier chart – dryness fraction calculations. Basic Rankine cycle – Rankine cycle with reheating and regeneration – application of bina	OBJEC	CTIV	<b>TES</b>											
•       To understand second law of thermodynamics and apply it to various systems.         •       To make them aware of various gas laws and thermodynamic relations.         •       To impart knowledge on properties of pure substances and to analyse various vapour power cycles.         •       To explore various laws of gas mixtures.       9+3         Basic definitions, microscopic and macroscopic approach, types of systems – thermodynamic processes – point and path functions – thermodynamic equilibrium – quasi-static process. Heat and work – zeroth law – first law of thermodynamics – applications to closed and open systems – steady flow processes – applications.       9+3         UNIT II       SECOND LAW OF THERMODYNAMICS AND entropy – principle of increase in entropy – availability- reversibility and irreversibility – applications.       9+3         Second law of thermodynamics – Kelvin-Plank and Clausius statements-Carnot cycle – heat engines – refrigerators – heat pumps- efficiency and COP – entropy – principle of increase in entropy – availability- reversibility and irreversibility – applications.       9+3         Properties of ideal gas- ideal and real gas comparison- equations of state for ideal and real gases-reduced properties. Compressibility factor – generalised compressibility chart and its use – Maxwell relations. Tds equations, difference and ratio of heat capacities, energy equation, Joule-Thomson coefficient, Clausius Clapeyron equation, phase change processes. Simple calculations.       9+3         Properties of steam – use of steam tables and Mollier chart – dryness fraction calculations. Basic Rankine cycle – Rankine cycle with reheating and regeneration – applicatio	•	To en prepa open	hable students to understand the basic principles of classical the are them to apply basic conversion principles of mass and en systems.	erm ergy	odyı v to	nami close	cs and ed and							
•       To make them aware of various gas laws and thermodynamic relations.         •       To impart knowledge on properties of pure substances and to analyse various vapour power cycles.         •       To explore various laws of gas mixtures.       9+3         Basic definitions, microscopic and macroscopic approach, types of systems – thermodynamic processes – point and path functions – thermodynamic equilibrium – quasi-static process. Heat and work – zeroth law – first law of thermodynamics – applications to closed and open systems – steady flow processes – applications.       9+3         UNIT II       SECOND LAW OF THERMODYNAMICS AND ENTROPY       9+3         Second law of thermodynamics – Kelvin-Plank and Clausius statements-Carnot cycle – heat engines – refrigerators – heat pumps- efficiency and COP – entropy – principle of increase in entropy – availability- reversibility and irreversibility – applications.       9+3         Properties of ideal gas- ideal and real gas comparison- equations of state for ideal and real gases-reduced properties- compressibility factor – generalised compressibility chair and its use – Maxwell relations, difference and ratio of heat capacities, energy equation, Joule-Thomson coefficient, Clausius Clapeyron equation, phase change processes. Simple calculations.       9+3         Properties of steam – use of steam tables and Mollier chart – dryness fraction calculations. Basic Rankine cycle – Rankine cycle with reheating and regeneration – application of binary vapour cycle.       9+3         Mole and mass fraction, Dalton's and Amagat's Law. Properties of gas mixture – molar mass, gas constant, density, and change in internal energy, enthalpy, entropy a	•	To ui	nderstand second law of thermodynamics and apply it to various	s sys	tem	s.								
•       To impart knowledge on properties of pure substances and to analyse various vapour power cycles.         •       To explore various laws of gas mixtures.         UNIT I       CONCEPT OF THERMODYNAMICS       9+3         Basic definitions, microscopic and macroscopic approach, types of systems – thermodynamic processes – point and path functions – thermodynamic equilibrium – quasi-static process. Heat and work – zeroth law – first law of thermodynamics – applications to closed and open systems – steady flow processes – applications.       9+3         UNIT II       SECOND LAW OF THERMODYNAMICS AND ENTROPY       9+3         Second law of thermodynamics – Kelvin-Plank and Clausius statements-Carnot cycle – heat engines – refrigerators – heat pumps – efficiency and COP – entropy – principle of increase in entropy – availability - reversibility and irreversibility – applications.       9+3         Properties of ideal gas- ideal and real gas comparison- equations of state for ideal and real gases-reduced properties - compressibility factor – generalised compressibility chart and its use – Maxwell relations, Tds equations, difference and ratio of heat capacities, energy equation, Joule-Thomson – coefficient, Clausius Clapeyron equation, phase change processes. Simple calculations.       9+3         Properties of steam – use of steam tables and Mollier chart – dryness fraction calculations. Basic Rankine cycle – Rankine cycle with reheating and regeneration – application of binary vapour cycle.       9+3         WINT IV       GAS MIXTURES       9+3         Mole and mass fraction, Dalton's and Amagat's Law. Properties of gas mixture – molar mass, g	•	To m	ake them aware of various gas laws and thermodynamic relation	ns.										
•       To explore various laws of gas mixtures.       9+3         UNIT I       CONCEPT OF THERMODYNAMICS       9+3         Basic definitions, microscopic and macroscopic approach, types of systems – thermodynamic processes – point and path functions – thermodynamic equilibrium – quasi-static process. Heat and work – zeroth law – first law of thermodynamics – applications to closed and open systems – steady flow processes – applications.       9+3         UNIT II       SECOND LAW OF THERMODYNAMICS AND ENTROPY       9+3         Second law of thermodynamics – Kelvin-Plank and Clausius statements-Carnot cycle – heat engines – refrigerators – heat pumps- efficiency and COP – entropy – principle of increase in entropy – availability- reversibility and irreversibility – applications.       9+3         UNIT III       IDEAL AND REAL GASES, THERMODYNAMIC RELATIONS       9+3         Properties of ideal gas- ideal and real gas comparison- equations of state for ideal and real gases-reduced properties.       9+3         UNIT IV       IDEAL AND REAL GASES, THERMODYNAMIC Properties.       9+3         Properties of ideal gas- ideal and real gas comparison- equations of state for ideal and real gases-reduced properties.       9+3         UNIT IV       PROPERTIES OF STEAM AND VAPOUR POWER POWER POWER POWER CYCLE       9+3         Properties of steam – use of steam tables and Mollier chart – dryness fraction calculations. Basic Rankine cycle – Rankine cycle with reheating and regeneration – application of binary vapour cycle.       9+3         Mole and mass fraction,	•	To in powe	npart knowledge on properties of pure substances and to analyse r cycles.	e vai	rious	vap	our							
UNIT ICONCEPT OF THERMODYNAMICS9+3Basic definitions, microscopic and macroscopic approach, types of systems – thermodynamic processes – point and path functions – thermodynamic equilibrium – quasi-static process. Heat and work – zeroth law – first law of thermodynamics – applications to closed and open systems – steady flow processes – applications.9+3UNIT IISECOND LAW OF THERMODYNAMICS AND ENTROPY9+3Second law of thermodynamics – Kelvin-Plank and Clausius statements-Carnot cycle – heat engines – refrigerators – heat pumps- efficiency and COP – entropy – principle of increase in entropy – availability- reversibility and irreversibility – applications.9+3UNIT IIIIDEAL AND REAL GASES, THERMODYNAMIC RELATIONS9+3Properties of ideal gas- ideal and real gas comparison- equations of state for ideal and real gases- reduced properties- compressibility factor – generalised compressibility chart and its use – Maxwell relations, Tds equations, difference and ratio of heat capacities, energy equation, Joule- calculations.9+3UNIT IVPROPERTIES OF STEAM AND VAPOUR POWER CYCLE9+3Properties of steam – use of steam tables and Mollier chart – dryness fraction calculations. Basic Rankine cycle – Rankine cycle with reheating and regeneration – application of binary vapour cycle.9+3Mole and mass fraction, Dalton's and Amagat's Law. Properties of gas mixture – molar mass, gas constant, density, and change in internal energy, enthalpy, entropy and Gibbs function.9+3	•	To ex	plore various laws of gas mixtures.											
Basic definitions, microscopic and macroscopic approach, types of systems – thermodynamic processes – point and path functions – thermodynamic equilibrium – quasi-static process. Heat and work – zeroth law – first law of thermodynamics – applications to closed and open systems – steady flow processes – applications.       9+3         UNIT II       SECOND LAW OF THERMODYNAMICS AND ENTROPY       9+3         Second law of thermodynamics – Kelvin-Plank and Clausius statements-Carnot cycle – heat engines – refrigerators – heat pumps- efficiency and COP – entropy – principle of increase in entropy – availability- reversibility and irreversibility – applications.       9+3         UNIT III       IDEAL AND REAL GASES, THERMODYNAMIC RELATIONS       9+3         Properties of ideal gas- ideal and real gas comparison- equations of state for ideal and real gases-reduced properties- compressibility factor– generalised compressibility chart and its use - Maxwell relations, Tds equations, difference and ratio of heat capacities, energy equation, Joule-Thomson coefficient, Clausius Clapeyron equation, phase change processes. Simple calculations.       9+3         Properties of steam – use of steam tables and Mollier chart – dryness fraction calculations. Basic Rankine cycle – Rankine cycle with reheating and regeneration – application of binary vapour cycle.       9+3         WITT V       GAS MIXTURES       9+3         Mole and mass fraction, Dalton's and Amagat's Law. Properties of gas mixture – molar mass, gas constant, density, and change in internal energy, enthalpy, entropy and Gibbs function.	UNIT	Ι	CONCEPT OF THERMODYNAMICS				9+3							
UNIT II       SECOND LAW OF THERMODYNAMICS AND ENTROPY       9+3         Second law of thermodynamics – Kelvin-Plank and Clausius statements-Carnot cycle – heat engines – refrigerators – heat pumps- efficiency and COP – entropy – principle of increase in entropy – availability- reversibility and irreversibility – applications.       9+3         UNIT III       IDEAL AND REAL GASES, THERMODYNAMIC RELATIONS       9+3         Properties of ideal gas- ideal and real gas comparison- equations of state for ideal and real gases- reduced properties- compressibility factor– generalised compressibility chart and its use – Maxwell relations, Tds equations, difference and ratio of heat capacities, energy equation, Joule- Thomson coefficient, Clausius Clapeyron equation, phase change processes. Simple calculations.       9+3         UNIT IV       PROPERTIES OF STEAM AND VAPOUR POWER CYCLE       9+3         Properties of steam – use of steam tables and Mollier chart – dryness fraction calculations. Basic Rankine cycle – Rankine cycle with reheating and regeneration – application of binary vapour cycle.       9+3         Mole and mass fraction, Dalton's and Amagat's Law. Properties of gas mixture – molar mass, gas constant, density, and change in internal energy, enthalpy, entropy and Gibbs function.       9+3         LECTURE: 45 TUTORIAL: 15       TOTAL : 60 PERIODS	Basic deprocesses and work – steady	finitions – po s – zer flow j	ons, microscopic and macroscopic approach, types of systems oint and path functions – thermodynamic equilibrium – quasi- roth law – first law of thermodynamics – applications to closed processes – applications.	s – t statio and	therr c pro opei	nody ocess 1 sys	namic Heat tems							
Second law of thermodynamics – Kelvin-Plank and Clausius statements-Carnot cycle – heat engines – refrigerators – heat pumps- efficiency and COP – entropy – principle of increase in entropy – availability- reversibility and irreversibility – applications.         UNIT III       IDEAL AND REAL GASES, THERMODYNAMIC RELATIONS       9+3         Properties of ideal gas- ideal and real gas comparison- equations of state for ideal and real gases-reduced properties- compressibility factor– generalised compressibility chart and its use – Maxwell relations, Tds equations, difference and ratio of heat capacities, energy equation, Joule-Thomson coefficient, Clausius Clapeyron equation, phase change processes. Simple calculations.       9+3         UNIT IV       PROPERTIES OF STEAM AND VAPOUR POWER CYCLE       9+3         Properties of steam – use of steam tables and Mollier chart – dryness fraction calculations. Basic Rankine cycle – Rankine cycle with reheating and regeneration – application of binary vapour cycle.       9+3         Mole and mass fraction, Dalton's and Amagat's Law. Properties of gas mixture – molar mass, gas constant, density, and change in internal energy, enthalpy, entropy and Gibbs function.       9+3         LECTURE: 45 TUTORIAL: 15       TOTAL : 60 PERIODS	UNIT	JNIT II SECOND LAW OF THERMODYNAMICS AND ENTROPY 9+3												
UNIT IIIIDEAL AND REAL GASES, THERMODYNAMIC RELATIONS9+3Properties of ideal gas- ideal and real gas comparison- equations of state for ideal and real gases- reduced properties- compressibility factor- generalised compressibility chart and its use - Maxwell relations, Tds equations, difference and ratio of heat capacities, energy equation, Joule- Thomson coefficient, Clausius Clapeyron equation, phase change processes. Simple calculations.9+3UNIT IVPROPERTIES OF STEAM AND VAPOUR POWER CYCLE9+3Properties of steam - use of steam tables and Mollier chart - dryness fraction calculations.9+3UNIT VGAS MIXTURES9+3Mole and mass fraction, Dalton's and Amagat's Law. Properties of gas mixture - molar mass, gas constant, density, and change in internal energy, enthalpy, entropy and Gibbs function.9+3LECTURE: 45 TUTORIAL: 15TOTAL : 60 PERIODS	Second 1 engines - entropy -	aw o – refr - avai	f thermodynamics – Kelvin-Plank and Clausius statements-C igerators – heat pumps- efficiency and COP – entropy – prin- lability- reversibility and irreversibility – applications.	Carno ciple	ot cy e of	vcle incre	– heat ease in							
Properties of ideal gas- ideal and real gas comparison- equations of state for ideal and real gases-reduced properties- compressibility factor– generalised compressibility chart and its use - Maxwell relations, Tds equations, difference and ratio of heat capacities, energy equation, Joule-Thomson coefficient, Clausius Clapeyron equation, phase change processes. Simple calculations.         UNIT IV       PROPERTIES OF STEAM AND VAPOUR POWER CYCLE       9+3         Properties of steam – use of steam tables and Mollier chart – dryness fraction calculations. Basic Rankine cycle – Rankine cycle with reheating and regeneration – application of binary vapour cycle.       9+3         Mole and mass fraction, Dalton's and Amagat's Law. Properties of gas mixture – molar mass, gas constant, density, and change in internal energy, enthalpy, entropy and Gibbs function.       9+3         LECTURE: 45 TUTORIAL: 15       TOTAL : 60 PERIODS	UNIT	III	IDEAL AND REAL GASES, THERMODYNAMIC RELATIONS	C			9+3							
UNIT IVPROPERTIES OF STEAM AND VAPOUR POWER CYCLE9+3Properties of steam – use of steam tables and Mollier chart – dryness fraction calculations. Basic Rankine cycle – Rankine cycle with reheating and regeneration – application of binary vapour cycle.9+3UNIT VGAS MIXTURES9+3Mole and mass fraction, Dalton's and Amagat's Law. Properties of gas mixture – molar mass, gas constant, density, and change in internal energy, enthalpy, entropy and Gibbs function.9+3LECTURE: 45 TUTORIAL: 15TOTAL : 60 PERIODS	Propertie reduced Maxwell Thomson calculatio	es of i prope relation coe ons.	deal gas- ideal and real gas comparison- equations of state for iderties- compressibility factor– generalised compressibility cons, Tds equations, difference and ratio of heat capacities, energefficient, Clausius Clapeyron equation, phase change	deal hart gy e proc	and and equatesse	real its tion, s.	gases- use - Joule- Simple							
Properties of steam – use of steam tables and Mollier chart – dryness fraction calculations. Basic Rankine cycle – Rankine cycle with reheating and regeneration – application of binary vapour cycle.         UNIT V       GAS MIXTURES       9+3         Mole and mass fraction, Dalton's and Amagat's Law. Properties of gas mixture – molar mass, gas constant, density, and change in internal energy, enthalpy, entropy and Gibbs function.       Image: LECTURE: 45 TUTORIAL: 15         TOTAL : 60 PERIODS	UNIT	IV	PROPERTIES OF STEAM AND VAPOUR POWI CYCLE	ER			9+3							
UNIT VGAS MIXTURES9+3Mole and mass fraction, Dalton's and Amagat's Law. Properties of gas mixture – molar mass, gas constant, density, and change in internal energy, enthalpy, entropy and Gibbs function.9+3LECTURE: 45 TUTORIAL: 15TOTAL : 60 PERIODS	Propertie Rankine cycle.	es of s cycle	team – use of steam tables and Mollier chart – dryness fraction – Rankine cycle with reheating and regeneration – applicatio	calon of	culat È bin	ions ary	Basic vapour							
Mole and mass fraction, Dalton's and Amagat's Law. Properties of gas mixture – molar mass, gas constant, density, and change in internal energy, enthalpy, entropy and Gibbs function. LECTURE: 45 TUTORIAL: 15 TOTAL : 60 PERIODS	UNIT V	V	GAS MIXTURES				9+3							
LECTURE: 45 TUTORIAL: 15 TOTAL : 60 PERIODS	Mole and gas const	l mas tant, c	s fraction, Dalton's and Amagat's Law. Properties of gas mixture lensity, and change in internal energy, enthalpy, entropy and Gi	re – bbs	mola func	ar m tion.	ass,							
			LECTURE: 45 TUTORIAL: 15 TOTAL	: 60	PI	ERI	ODS							

OUT	COMES:	On completion of this course, students will be able to									
1.	Apply the first conditions.	law of thermodynamics for simple open and closed systems under steady									
2.	Apply second la availability.	Apply second law of thermodynamics to open and closed systems and calculate entropy and availability.									
3.	Explain the cha real gases.	aracteristics of gases and derive simple thermodynamic relations of ideal and									
4.	Apply Rankine cycle to steam power plant and compare few cycle improvement methods.										
5.	Explain the ch mixtures.	aracteristics of gas mixtures and calculate the various properties of gas									
TEXT	<b>F BOOKS:</b>										
1.	Nag P.K., " <b>En</b> 2017.	gineering Thermodynamics", 6 th Ed., Tata McGraw - Hill, Delhi,									
2.	Yunus Cengel	, " <b>Thermodynamic</b> s" Tata McGraw - Hill Company, 8 th Edition, 2014.									
3.	Holman J.P., "	<b>Thermodynamics</b> " Tata McGraw - Hill Company, 2000.									
REFE	ERENCES:										
1.	Kothandarama	an C.P., <b>"Thermal Engineering",</b> DhanpatRai& Sons, 2013.									
2.	Arora C.P, " <b>T</b>	hermodynamics", Tata McGraw-Hill, New Delhi, 2007.									
3.	Rajput R.K. "Thermal Engineering" Laxmi Publications 8 th Edition. 2010.										
4.	Ballaney P.L., "Thermal Engineering", Khanna Publisher. 1996.										
5.	Mahesh. M. Rathore, " <b>Thermal Engineering</b> ", Tata McGraw - Hill Education Private Limited 1 st edition, 2010.										

MAPPING	MAPPING OF COs, POs AND PSOs:														
		POs									PSOs				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	2										3	2	
CO2	3	3	2										3	2	
CO3	3	3	2										3	2	
CO4	3	3	2										3	2	
CO5	3	3	2										3	2	
Average	3	3	2										3	2	
Round off	3	3	2										3	2	
3- Strong Correlation; 2 - Medium Correlation; 1 – Low Correlation															

## FLUID MECHANICS AND FLUID MACHINERY

9

9

9

9

9

#### **OBJECTIVES**

•	To enable students to understand the basic principles of fluid mechanics and basic fluid properties.
٠	To understand and analyse fluid kinematics and dynamic problems.
•	To get knowledge on flow through pipes and to know the importance of dimensional analysis.
•	To conduct the performance study and selection of pumps for different applications
•	To analyse various types of hydraulic turbines.

# UNIT I FLUID PROPERTIES

Units and dimensions – fluid properties – density, specific gravity, viscosity, surface tension, capillarity, compressibility and bulk modulus – Pascal's Law – pressure measurements – manometers - Fluid statics - Total pressure and centre of pressure on submerged surfaces.

#### UNIT II FLUID KINEMATICS AND DYNAMICS

Types of fluid flow and flow lines – control volume – continuity equation in one-dimension and three dimension – velocity potential and stream function -energy equation – Euler and Bernoulli's equations – applications of energy equations- flow meters.

# UNIT III FLOW THROUGH PIPES AND DIMENSIONAL ANALYSIS

Laminar flow through circular conduits and circular annuli-boundary layer concepts – types of boundary layer thickness – Darcy Weisbach equation –friction factor- Moody diagram- commercial pipes- minor losses – flow through pipes in series and parallel- hydraulic and energy gradient – methods of dimensional analysis – dimensionless parameters- application of dimensionless parameters – model analysis.

# UNIT IV PUMPS

working principle - discharge, work done and efficiencies – gear, centrifugal and reciprocating pumps - work done and efficiencies - negative slip - flow separation conditions - air vessels - indicator diagram and its variation - savings in work done.

# UNIT V HYDRAULIC TURBINE

Classification – construction, working principles and design of Pelton wheel, Francis and Kaplan turbines - head, losses, work done and efficiency - specific speed - operating characteristics - governing of turbines.

			TOTAL: 45 PERIODS
OUTC	<b>OMES:</b>	On completion of this course, students will be a	ble to
1.	Explain diff	erent fluid properties and apply mathematical knowle	dge to predict the properties and

	characteristics of a fluid at rest.															
2.	Identify typ involved in	e of fl fluid f	uid flo flow a	w patt nd ana	erns, d lyze a	escribe variety	e conti / of pra	nuity e actical	quatio fluid f	n and low an	other f d mea	undam suring	ental e device	quatio s.	ns	·
3.	Explain bou in piping ne	ındary twork	layer s and j	concep perforr	ots, ana n dime	alyse an ension	nd calo al ana	culate r dysis.	najor a	and mi	nor los	ses ass	sociate	d with	pipe f	ow
4.	Analyse the pumps for	e perfo differ	rmanc ent ap	e para plicat	meters ions.	of a gi	ven ce	entrifug	gal and	recipr	ocating	g pump	o and s	selecti	ion of	
5.	Select and a conduct the	nalyz e perf	e an ap òrman	propri ce tes	ate tur t on d	bine w ifferer	ith ref	erence es of tu	to give arbines	en situ s.	ation i	n powe	er plant	ts and	to	
TEX	KT BOOF	KS:														
1.	Rajput R. New Dell	K., " ni, 201	<b>A tex</b> 15.	t Bool	k of F	luid N	<b>1echa</b>	nics a	nd Ma	achin	ery",	S. Cha	and an	d Cor	npany	,
2.	RamamruthamS. <b>"Hydraulics, Fluid Mechanics and Fluid Machines"</b> , Dhanpat Rai Publishing House (P) Ltd, New Delhi, 2012.															
3.	3.Modi P. N. and Seth S. M., "Hydraulics and Fluid Mechanics including Hydraulic Machines", Standard book house, Delhi, 2004.															
REI	EFERENCES:															
1.	Streeter V.L. and Wylie E. B., "Fluid Mechanics", McGraw Hill Publishing Co. 2017.															
2.	Kumar K. L., " <b>Engineering Fluid Mechanics</b> ", Eurasia Publishing House(p) Ltd., New Delhi,2010															
3.	<i>R.K Bansal "A Textbook of Fluid Mechanics and Hydraulic Machines",Laxmi Publications</i> ( <i>p</i> ) <i>Ltd.,2017</i>															
4.	Robert W.Fox, Alan T. McDonald, Philip J.Pritchard, "Fluid Mechanics and Machinery", 2011.															
5.	Graebel V	W.P, '	'Engir	neerin	g Flu	id Me	chani	<b>cs</b> ", Ta	aylor d	& Fra	ncis, I	ndian	Repri	nt, 20	11.	
MAPP	ING OF	COs,	POs	ANI	D PS	Os:										
							P	Os							PSOs	5
		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C	01	3	3	2										3	2	
C	02	3	3	2										3	2	
C	03	3	3	2										3	2	
C	04	3	3	2										3	2	
C	05	3	3	2										3	2	
Avera	age	3	3	2										3	2	
Round	l off	3	3	2										3	2	
3- Stron	g Correlati	ion; 2	- Me	dium	Corre	elation	n; 1 –	Low (	Corre	lation						

#### **BASIC ELECTRONICS ENGINEERING**

L	Т	Р	С
3	0	0	3

#### **OBJECTIVES:** To understand the principles of different diodes. To study about the methods of biasing of BJTs, and the basic applications of operational amplifiers To introduce the methods of implementing Boolean expression using gates, and the concepts of transducers. 9 **UNIT I** SEMICONDUCTOR DIODE PN junction diode, Diode approximations and applications, half-wave rectifier, Two-diode Full wave rectifier, Bridge rectifier, Capacitor filter circuit, Zener diode-Voltage regulators, LASER diode, LDR, LED, LCD, Photo Transistor, Opto Coupler. **UNIT II BIPOLAR JUNCTION TRANSISTORS** 9 BJT operation, Common Base, Common Emitter and Common Collector Characteristics, DC Load line and Bias Point, Fixed Bias, Collector to base bias, Voltage divider Bias, Stability factor, BJT as switch and amplifier, MOSFET. **UNIT III INTRODUCTION TO OPERATIONAL AMPLIFIERS** 9 Ideal OPAMP, Inverting and non-inverting OPAMP circuits, OPAMP applications: Voltage follower, addition, subtraction, Integration, differentiation, Comparators, Schmitt trigger, Precision rectifier, Peak detector, Clipper and Clamper. **UNIT IV** DIGITAL ELECTRONICS 9 Logic Gates: AND, OR, NOT, NAND, NOR, Exclusive-OR and Exclusive-NOR. Algebraic simplification, NOR implementations, NAND implementations. Half Adder, Full adder. **UNIT V** TRANSDUCERS 9 Introduction, Passive Electrical Transducers, Resistive Transducers, Resistance thermometers, Thermistor. Linear Variable Differential Transformer (LVDT). Active Electrical transducers, Piezoelectric Transducer. Photoelectric Transducer. **TOTAL : 45 PERIODS COURSE OUTCOMES:** Upon Completion of the course the students will

1.	App	Apply the concept of diode in rectifiers, filter circuits.													
2.	Exp	lain th	e con	cept of	f BJT	in am	plifie	rs.							
3.	Desi	gn sin	nple e	lectro	nic cii	rcuits	using	OPAN	MPS.						
4.	Desi	gn an	d imp	lemen	t simp	ole log	gic fun	ction	using	basic	unive	rsal ga	ates.		
5.	Exp	Explain the basic principles of different types of transducers.													
TEXT BOO	TEXT BOOKS:														
1.	David A.Bell, "Electronic Devices and Circuits", Oxford University Press,5 th Edition,2008.														
2.	R.S. Char	R.S.Sedha, "A Textbook of Electronic Devices and Circuits", 2 nd Edition, S. Chand Publishing, 2008.													
REFERENCES:															
1.	Robert L. Boylestad and Louis Nashelsky, "Electronic Devices and Circuit Theory", 9th Edition, Pearson Education, 2007.														
2.	D.P.K Priva	D.P.Kothari, I.J. Nagrath, "Basic Electronics", McGraw Hill Education (India) Private Limited,2014.													
3.	D.Sch	D.Schilling and C.Belove, "Electonic Circuits", 3 rd Edition,McGraw Hill,1989.													
4.	Anwa	Anwar A. Khan and Kanchan K. Dey, "A First Course on Electronics", PHI, 2006.													
5.	Singh Circu	, B. H its", F	P, and Pearso	Rekho n Edu	a Sin cation	ngh, n, 200	"Elect 6.	tronic		Devic	es		and	Integ	grated
MAPPING	GOF	COs,	POs	ANI	) PS	Os:									
						P	Os			-				PSO	5
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	2	2								3	3		1
CO2	3	1		1								2	2		1
CO3	3	2	3	2								2	2		2
C04	3	2	3	2								2	2		2
	3	$\begin{array}{c c c c c c c c c c c c c c c c c c c $											1		
Average	3	1.0	1.0	1.0								2.2	2.2		1.4
3- Strong Co	) orrelat	<u></u> ion: 2	- Me	dium	Corre	elatio	 n: 1 –	Low	 Corre	latio	 N	2	2		1
5 Strong Ct	, i cial	.on, 2	1010			ciatio.	, 1 -	101	-011		•				

#### FLUID MECHANICS AND FLUID MACHINERY LABORATORY

L	Т	Р	С
0	0	3	1.5

#### **OBJECTIVES**

- To help the students in finding the various flow properties of fluids.
- To estimate the flow measurements using flow measuring equipment's.
- To conduct performance tests on pumps and turbines and draw the performance curves.

### LIST OF EXPERIMENTS:

- 1. Determination of Darcy's friction factor.
- 2. Determination of the Coefficient of discharge of given Orifice meter.
- 3. Determination of the Coefficient of discharge of given Venturi meter.
- 4. Calculation of the rate of flow using Rota meter.
- 5. Performance study on Gear oil Pump.

3

**Round off** 

2

2

6. Conducting experiments and drawing the characteristic curves of centrifugal pump/ submersible pump.

- 7. Conducting experiments and drawing the characteristic curves of reciprocating pump.
- 8. Conducting experiments and drawing the characteristic curves of Pelton wheel.
- 9. Conducting experiments and drawing the characteristics curves of Francis turbine.
- 10. Conducting experiments and drawing the characteristic curves of Kaplan turbine.

													TOTAL:45 PERIODS							
OUTO	COM	IES:	(	On completion of this course, students will be able to																
1.	Conc like f	onduct tests on various fluid flow devices which are used for calculating flow properties te friction factor, coefficient of discharge and flow rate.																		
2.	Conc perfo	onduct performance tests on gear oil, centrifugal and reciprocating pumps draw the erformance curves.																		
3.	Conduct performance tests on Pelton, Francis and Kaplan turbines and draw the performance curves.																			
MAPPING OF COs, POs AND PSOs:																				
							P	Os							PSOs					
		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3				
CO1		3	2	2						3				3	3	1				
CO2		3	2	2						3				3	3	1				
<b>CO3</b> 3 2				2						3				3	3	1				
Averag	e	3	2	2						3				3	3	1				

3

**3-** Strong Correlation; **2** - Medium Correlation; **1** – Low Correlation

3

3

1

#### **MACHINE DRAWING**

 L
 T
 P
 C

 0
 0
 4
 2

#### **OBJECTIVES**

•	To help the students to get knowledge on Limits, Fits, Tolerances, Geometric Dimensioning and Tolerancing.
---	------------------------------------------------------------------------------------------------------------

- To develop sectional views of fasteners, joints and couplings and various machine elements
  - To draw assembly of machine parts using Computer Aided Drawing software's.

#### LIST OF EXERCISES:

- 1. Introduction to "Limits, Fits, Tolerances, Geometric Dimensioning and Tolerancing" and corresponding symbols.
- 2. Preparation of drawing for keys, keyways and cotter joints.
- 3. Preparation of drawing for knuckle joints and threaded fasteners.
- 4. Preparation of drawing foot step ball bearing, foot step journal bearing.
- 5. Preparation of assembly drawing for screw jack.
- 6. Preparation of drawing of stop valve –safety valve.
- 7. Preparation of drawing of tailstock tool head of shaper machine vice –connecting rod.
- 8. Preparation of drawing for flange and universal coupling (using any CAD software).
- 9. Preparation of part and assembly drawing for Plummer block (using any CAD software).

			TOTAL:60 PERIODS
OUT	COMES:	On completion of this course, students will	be able to
1.	Explain limits and assembly	, fits, tolerances, geometric dimensioning and , identify the symbols associated and follow t	d tolerancing for machine parts the drawing standards.
2.	Draw assemb screw jack, sa	ly drawings of machine parts like cotter joint afety vale and tails stock.	t, knuckle joint, footstep bearing,
3.	Draw assemb	ly drawings of machine parts using Compute	er Aided Drawing software's.

#### MAPPING OF COs, POs AND PSOs:

		POs											PSOs			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	2		2		2	2			2	2	2		3	2	1	
CO2	2		2		2	2			2	2	2		3	2	1	
CO3	2		2		2	2			2	2	2		3	2	1	
Average	2		2		2	2			2	2	2		2	2	1	
Round off	2		2		2	2			2	2	2		2	2	1	
3- Strong Con	rrelati	ion; 2	- Me	dium	Corre	elation	n; 1 –	Low	Corre	elatior	1					

# THERMALENGINEERING

 L
 T
 P
 C

 3
 0
 0
 3

				U	v	v	v
OBJEC	TIV	ES					
•	То	apply the	thermodynamic concepts into various thermodynamic	cycles	3.		
•	То	understar	nd the principles and working of IC engines.				
•	То	apply the	thermodynamic concepts into steam nozzles and turbin	es.			
•	То	apply the	thermodynamic concepts into air compressors				
•	To Mo	analyse r llier Chai	efrigeration and air-conditioning systems. Learn to use s rt, Compressibility Chart and Psychrometric Chart.	Steam	ı Tab	ole,	
UNIT	Ί	THER	RMODYNAMIC CYCLES				9
Air stand effective	ard cy press	vcles – Ot ure – P-V	tto, Diesel, Dual and Brayton cycles – air standard efficient of the s	iency	– me	ean	
UNIT	II	I.C. E	NGINES				9
I.C engin and lubri rating of performa	e - 2 cation f fuel nce cl	stroke and 1 system ls – cor naracteris	d 4 stroke engines – valve and port timing diagrams. Fu for spark ignition and compression ignition engines - nbustion, knocking and detonation, scavenging and stics of I.C. engines.	iel igr Cetan d sup	nitior ne an perch	1, co d Oo argii	oling ctane 1g –
UNIT	III	STEA	M NOZZLES AND TURBINES				9
Flow thro flow. Imp	ough 1 oulse a	nozzles, s and react	hape of nozzle, effect of friction, critical pressure ratio a ion turbines – compounding, velocity diagrams for sing	and su le stag	ipers ge tui	atura rbine	ated s.
UNIT	IV	AIR C	OMPRESSOR				9
Reciprocation and perfe	ating ct int	compress er-cooling	ors – effect of clearance – multi stage – optimum intern g – rotary, centrifugal and axial flow compressors.	nediat	te pre	essur	e
UNIT	V	REFR	IGERATION AND AIR CONDITIONING				9
Air refrig heating. system - mixtures heating a	geratio Vapo Psyc by us nd co	on cycles ur absorp chometric sing char oling, hui	, simple vapour compression refrigeration cycle – sub ption system. Principles of air conditioning – types c properties, psychometric charts, Property calculati t and expressions– Psychometric process – adiabatic midification, dehumidification, evaporative cooling and	of air of air ons o satura adiab	ing a con of ai ation, oatic	und s iditic r va , sen mixi	super oning ipour isible ing.
			TOTAL:4	5 PH	ERI	OD:	5
OUT	CON	IES:	On completion of this course, students will be able to				
1.	Appl probl	y thermod ems	lynamic concepts to different air standard cycles, analyze and	l comp	bare, s	solve	;
2.	Outl perfo	ine 2 st ormance o	roke and 4 stroke engines, valve and port timing characteristics of I.C. engines	g diag	gram	s. E	xplain
3.	Asse the f	ss the fun unctionin	ctioning of steam nozzle and the effect of friction- prob g of steam turbines and compounding.	lem s	olvin	ıg. A	ssess
4.	Com	pare single ne and sol	e and multistage reciprocating air compressor and explain the lve problems. Explain the working principle of rotary, ce	effec ntrifu	t of c gal a	leara nd a	nce xial

	flow co	mpres	ssors.												
5.	Explair air con	the v dition	workir ing sy	ng prin /stem,	nciples calcu	s of v ilate tl	apour he pro	comp perties	oressions of n	on and noist a	l abso ir and	rption its us	refrig se in	geratio psycho	on and metric
теут		zs.													
	BUUI	19:													
1.	Rajput	R.K. '	"Ther	mal E	ngine	eering	" Lax	mi Pu	blicat	ions (l	P) Ltd	., 201′	7.		
2.	Domku New D	ndwa elhi, 2	randK 2010.	othand	daram	an C.I	P."Th	ermal	Engi	ineeri	ng" K	hanna	l Publi	ishers,	
3.	Mahesh	n M R	athore	, "The	ermal	Engi	neeri	ng"Ta	taMc	Graw	Hill, N	New D	elhi,2	010.	
REFE	RENC	ES:													
1.	Rudran	noorth	ny R. "	Thern	nal Er	nginee	ering'	<b>'</b> Tata I	McGr	aw-Hi	ill, Ne	w Dell	hi,201	7.	
2.	Sarkar	B. K.	"Theri	nal E	ngine	ering	<b>"</b> Tata	McG	raw-E	Iill, N	ew De	lhi, 20	) <i>17</i> .		
3.	Ganesa, V. "Internal Combustion Engines" Tata McGraw-Hill, New Delhi, 2017.														
4.	Ramalingam K.K. <b>"Thermal Engineering</b> " SCITECH Publications (India) Pvt. Ltd., 2009.														
5.	Arora C.P. " <b>Refrigeration and Air Conditioning</b> "Tata McGraw-Hill Publishers, 2017.														
MAPP	ING O	F CC	)s, P(	)s Al	ND P	SOs:									
						P	Os							PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	2									2	3	2	
CO2	3	3	2									2	3	2	
CO3	3	3	2									2	2	2	
CO4	3	3	2									2	2	2	
CO5	3	3	2									2	3	2	
Averag	e 3	3	2									2	3	2	
Round o	off 3	3	2									2	3	2	
3- Strong	g Correl	ation	; 2 - N	lediu	m Cor	rrelati	ion; 1	- Lov	w Col	relati	on				

20MHS402	HUMAN VALUES AND PROFESSION ETHICS	IAL	L	Τ	P	C
			3	0	0	3
OBJECTIV	ES:			•		
• To und the cr	derstand the capacity of making value judgments in real lij sis of values encountered in everyday life.	^s e situatio	ons an	d to	overa	come
UNIT I	HUMAN VALUES					9
Morals, Values Others – Living Commitment –	and Ethics – Integrity – Work Ethic – Service Learning – Peacefully – caring – Sharing – Honesty – Courage – Val Empathy – Self-Confidence – Character – Spirituality	Civic Vir uing Tim	tue – le – C	Resp o-op	erati	ior on –
UNIT II	ENGINEERING ETHICS					9
Senses of 'Engi autonomy - Kol Roles - theories	neering Ethics' - variety of moral issued - types of inqu ilberg's theory - Gilligan's theory - consensus and controv about right action - Self-interest - customs and religion - u	iry - mor ersy – Me ses of eth	al dil odels ical t	emm of P heori	as - rofes es.	moral ssional
	ENGINEERING AS SOCIAL EXPERIMEN	IAHO	1			9
Engineering as outlook on law	experimentation - engineers as responsible experimenters - the challenger case study	codes of	ethic	s - a	balar	nced
UNIT IV	SAFETY, RESPONSIBILITIES AND RIGH	ГS				9
Safety and risk island and cherr - confidentiality Intellectual Prop	- assessment of safety and risk - risk benefit analysis and nobyl case studies. Collegiality and loyalty - respect for au - conflicts of interest - occupational crime - profession perty Rights (IPR) - discrimination.	reducing thority - hal rights	; risk collec - em	- the ctive ploy	thre barg ee ri	e mile aining ights -
	GLOBAL ISSUES		1	.1.		9
institute of Ma (IETE), India.	anagers-consulting engineers-engineers as expert with le code of Ethics like ASME, ASCE, IEEE, Institution of terials Management, Institution of electronics and tel	- weapon esses and of Engine ecommur	adv d adv ers (I nicatio	risors ndia) on e	), Inc	oral Jian eers
	TO	TAL :	45 P	ER	IOI	<b>)S</b>
OUTCOME	<b>S:</b> On completion of this course, students will be able	to				
1. Develo	p an ethical behavior under all situations					
2. Estima	te the impact of self and organization's actions on the stak	eholders (	and s	ociet	<i>y</i> .	
3. Discuss	the ethical issues related to engineering					
4. <i>Realize</i>	the responsibilities and rights in the society					
5. <i>Apply e</i>						
TEXT BOO	DKS:					
<i>Mike N</i> 1. 1996.	lartin and Roland Schinzinger, <b>"Ethics in Engineering"</b> , I	McGraw-	Hill, I	New	York	;
2. Govina India, I	arajan M, Natarajan S, Senthil Kumar V. S, <b>"Engineering</b> New Delhi, 2004.	g Ethics",	, Pren	tice	Hall	of

3.	Trip	athi A	N, " <b>I</b>	Humar	ı valu	<b>es</b> ", N	Vew Ag	ge inte	rnatio	nal Pi	vt. Ltd.	, New	Delhi,	2002		
REF	ERE	NCE	ES:													
	Chai	rles D	). Flea	lderma	nn, "I	Engine	ering	Ethics	", Pea	arson .	Educa	tion / I	Prentic	ce Hal	l, New	,
1.	Jersey, 2004 4. 2. Charles E Harris, Michael S. Protchard and Michael J Rabins, "Engineering Ethics –															
2.	2. C	harles	s E Ha	ırris, N	lichae	el S. Pi	rotcha	rd and	Mich	ael J I	Rabins	, "Eng	gineeri	ng Eth	hics –	
	Con	cepts	and C	ases",	Wads	worth	Thom	pson L	earnii	ng, Ur	ited S	tates,	2000.			
3.	<i>S. John K Boarright, Ethics and the Conduct of Business , Pearson Education, New Delhi, 2003.</i> <i>Edmund G Seebauer and Robert L Barry, "Fundamentals of Ethics for Scientists and</i>															
4.	<i>Edmund G Seebauer and Robert L Barry, "Fundamentals of Ethics for Scientists and Engineers", Oxford University Press, Oxford, 2001.</i>															
MAPI	PIN(	G OF	, 04) F <b>CO</b>	s, PO	s AN		<b>SOs:</b>	yoru, .	2001.							
		POs PSOs														
		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO	l	2												1		
CO2	2	2												1		
COS	3	2												1		
CO4	1	2												1		
COS	5	2												1		
Avera	ige	2												1		
Round	off	2												1		
3- Stro	ng Co	orrela	ation;	2 - M	ediur	n Cor	relati	on; 1	- Low	v Cor	relatio	n				

**OBJECTIVES** 

## **STRENGTH OF MATERIALS**

Т Р C L 3

1 0 4

#### To Summarize the concepts of stress and strain due to gradual load, suddenly applied • load and impact load To draw shear force and bending moment diagrams for different types of beams under • different types of loads. To apply theory of bending and to evaluate principle stresses for complex stress . condition To evaluate slope and deflection for different types of beams and to apply Rankine . formula for columns. To evaluate stresses and strain energy induced in the shafts & helical springs due to . torsion. **UNIT I** STRESS AND STRAIN 9+3 Stress and strain at a point-tension, compression, shear stresses - Hooke's law - compound bars lateral strain - Poisson's ratio -volumetric strain - bulk modulus - relationship among elastic constants - stress strain diagrams for mild steel, cast iron-ultimate stress - yield stress-factor of safety - thermal stresses - thin cylinders - strain energy due to axial force - resilience- stress due to gradual load, suddenly applied load and impact load. **UNIT II** SHEAR FORCE AND BENDING MOMENT 9+3 Beams – types of beams - types of loads, supports - shear force – bending moment – shear forces and bending moment diagrams for cantilever, simply supported and over hanging beams with concentrated, uniformly distributed and uniformly varying load-relationship between rate of loading, shear force, bending moment- point of contra flexure. **UNIT III** THEORY OF BENDING AND COMPLEX STRESSES 9+3 Theory of bending-bending equation-section modulus-stress distribution at a cross section due to bending moment and shear force for cantilever, simply supported beams with point, UDL loads (rectangular, circular, I & T sections only) -combined direct and bending stresses, kernel of section (rectangular, circular sections only). 2D state of stress – 2D normal and shear stresses on any plane-principal stresses and principal planes-principal strains and direction-Mohr's circle of stress. **DEFLECTION OF BEAMS AND THEORY OF LONG UNIT IV** 9+3 **COLUMNS** Determinations of deflection curve - relation between slope, deflection and radius of curvature slope and deflection of beam at any section by double integration, Moment Area and Macaulay's method - concept of conjugate beam method (theory only)- Euler's theory of long columnsexpression of crippling load for various end conditions-effective length-slenderness ratiolimitations of Euler equation - Rankine formula for columns. **UNIT V THEORY OF TORSION** 9+3 Torsion of shafts - torsion equation - polar modulus- stresses in solid and hollow circular shafts torsional rigidity - power transmitted by the shaft – importance of angle of twist - strain energy due to torsion - modulus of rupture -torsional resilience - combined bending and torsion- stresses in helical springs - deflection of helical spring.

				L	ЕСТ	URE	: 45 '	TUT	ORL	AL:	15 T	OTA	L:6	60 PE	ERIO	DS
OU'	тсо	ME	S:	On co	omplet	tion of	f this c	course	, stud	ents w	ill be	able t	0			
1.	Ana	lyze I	Hook	e's law	v stres	s strai	n diag	grams	and el	lastic	consta	ants fo	r diffe	rent r	nateria	als.
2.	Drav load	v shea ing co ling m	ar for ondition	ce and ons and nt.	bendi d anal	ng mo yze re	oment elation	diagr ship b	ams fo etwee	or diff en rate	erent of lo	beams ading,	under shear	r diffe force	erent and	
3.	Dete distr	ermine ibutio	e com on at c	plex st lifferer	tresses	s in be s sect	ams u ions d	inder of lue to	differe bendi	ent loa ng mo	ding oment	condit and sl	ions a near fo	nalyze orce.	e the s	tress
4.	Eval for c	uate t olum	he slo ns.	ope and	d defle	ection	for di	fferen	it type	s of b	eams	and ap	oply R	ankin	e's the	eory
5.	App & he	ly the elical	conc spring	epts of gs due	torsic to tors	on and sion	l evalu	iate st	resses	and s	strain	energy	y indu	ced in	the sh	nafts
TEX	T BO	OOK	S:													
1.	Bansal R.K., "Strength of Materials", Laxmi Publications (P) Ltd., 2018     Bansar P. "Strength of Materials", Dhannat Pai and Song Naw Dalbi															
2.	2. Ramamrutham S and Narayan R, "Strength of Materials", Dhanpat Rai and Sons, New Delhi, 2000.															
REF	REFERENCES:															
1.	ALT ENERGES.         1.       Hibbeler R.C., "Mechanics of Materials", Pearson Education, Low Price Edition, 2007															
2.	Jindal U C, "Textbook on Strength of Materials", Asian Books Pvt. Ltd.,															
	Learning India, 2013.															
3.	<ol> <li><i>EgorP.Popov</i> "Engineering Mechanics of Solids" Prentice Hall of India, New Delhi, 2001</li> </ol>															
4.	Subr Educ	raman cation	ian R Serie	2., " <b>Str</b> es,	ength	of Ma	aterial	ls", O.	xford	Unive	rsity l	Press,	Oxfor	d Hig	her	
5.	Sadh	nu Sin	gh, ",	Streng	th of .	Mater	rials",	Khani	na Pul	blishe	rs, Ne	w Del	hi, 20	16		
MAP	PIN	G OI	F CC	)s, PC	)s Al	ND P	SOs:									
							P	Os							PSOs	
		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO	1	3	3	1										3		1
CO	02	3	2	2										3		1
CO	3	3		3		2								3	3	1
CO	94	3		3		1								3	3	1
CO	95	3		2		2								3	3	1
Aver	age	3	1	2.2		1								3	1.8	1
Round	d off	3	1	2		1								3	2	1
3- Stre	ong C	orrel	ation	; 2 - M	Iediui	n Coi	rrelati	ion; 1	- Lo	w Col	relat	ion				

20MPC404	ENGINEERING MATERIALS AND METALLURGY	L	Т	Р	С								
		3	0	0	3								
OBJECTIVI	ES												
• To iden summar	tify and select suitable materials for various engineering applic ize phase evaluations and Interpret the different phase diagram	atio 1s	ns a	nd									
• To sum transfor	marize various heat treatments and surface treatment processes mation diagrams	and	l Inte	erpre	t the								
• To class and star	sify ferrous and non-ferrous metals and provide outline of mate adards.	rial	spec	cifica	tion								
• To class	sify nonmetallic materials, composites and smart materials.												
• To cate metallu	gorize mechanical properties for engineering applications and srgy.	sumi	mari	ze w	elding								
UNIT I	CONSTITUTION OF ALLOYS AND PHASE DIA	<b>4</b> G]	RA]	MS	9								
Constitution of diagrams, isom carbide equilib application	alloys – solid solutions, substitutional and interstitial -crystorphous, eutectic, peritectic, eutectoid and peritectoid reading rium diagram. Classification of steel and cast Iron microstruction	tal p ctior cture	ohys ns, i c, pr	ics – ron operti	phase – iron es and								
UNIT II	HEAT TREATMENT AND SURFACE TREATM	(EN	T		9								
Definition – fu normalising, ha transformation hardenability, . carbonitriding—	Definition – full annealing, process annealing, stress relief, recrystallisation - spheroidizing – normalising, hardening and tempering of steels – austempering, martempering - isothermal transformation diagrams – cooling curves superimposed on I.T diagram- TTT, CCR - hardenability, Jominy end quench test - case hardening, carburising, nitriding, cyaniding, carbonitriding–flame and induction hardening.												
UNIT III	FERROUS AND NON-FERROUS METALS				9								
Plain carbon ste properties of ste cast irons – he important alloy standards.	els – alloy steels - effect of alloying elements (Mn, Si, Cr, Mo, eel - stainless and tool steels – gray, white, malleable, sphero eat resistant steels and die steels. Copper, aluminium, mag s - their composition, properties and applications - materia	V, idal gnesi il st	Ni, grap ium, becif	Ti& ohite tita icatio	W) on - alloy 1ium - 2n and								
UNIT IV	NON-METALLIC MATERIALS & SMART MAT	ГЕI	RIA	LS	9								
Polymers – type of various therr PI, PAI, PPO, Ceramics – Prop	es of polymer, commodity and engineering polymers – Propert nosetting and thermoplastic polymers (PP, PS, PVC, PMMA, PPS, PEEK, PTFE, Polymers – Urea and Phenol formalder perties and applications of Al2O3, SiC, Si3N4, PSZ and SIAL0	ies a PET iyde ON.	and a Γ,PC s)- 1	appli 2, PA Engir	cations , ABS, leering								
Composites-Cla smart materials	ssifications- Metal Matrix and FRP - Applications of Compos – classifications - smart sensors and actuators – applications	ites.	Inti	oduc	tion to								
UNIT V	UNIT VMECHANICAL PROPERTIES AND DEFORMATION9MECHANISMS AND WELDING METALLURGY												
Introduction to Testing of mat Vickers and Re failure mechani	Mechanisms of plastic deformation, slip and twinning – ferials under tension, compression and shear loads – Hard ockwell), hardness tests, Impact test - IZOD and CHARPY sms.	Гуре Iness , fat	es of s tes tigue	f frac sts (I e and	cture – Brinell, creep								

Weldability – heat distribution during welding and thermal effects on parent metals – HAZ – factors affecting HAZ

											TO	ΓAL	: 45	PER	RIOD	S
OU	TCC	<b>)ME</b>	S:	On o	compl	etion	of this	cours	se, stu	dents	will b	e able	to			
1.	Expl	ain al	loys a	nd ph	ase dia	agram	, Iron	-Iron (	carbor	n diag	ram ai	nd stee	el clas	sificat	tion	
2.	Expl treat	ain is ment j	otherr proces	nal tra sses	insfor	matio	n, con	tinuou	IS COO	ling di	iagran	ns and	diffe	rent h	eat	
3.	Expl effec	ain th t of a	e proj lloyin	perties g elen	of fernents of	rous a	and no rous a	onferro nd not	ous m n-ferre	aterial ous m	s and etals	their a	applic	ation.	Clarit	fy the
4.	Sum mate	mariz rials.	e the j	propei	ties a	nd app	olicati	ons of	non 1	netall	ic mat	erials	, com	posite	s and a	smart
5.	Expl	ain th	e testi	ing of	mecha	anical	prope	erties a	and Su	umma	rize th	e wel	ding n	netallı	urgy.	
TEX	KT BO	OOK	S:													
1.	V. Raghavan <b>"Materials Science And Engineering"</b> , Fifth Edition, PHI learning 2011. Sydney H Ayner <b>"Introduction to Physical Metallurgy"</b> Tata McGraw Hill Book															
2.	Sydney H.Avner, <b>"Introduction to Physical Metallurgy"</b> , Tata McGraw Hill Book Company, 1994.															
3.	Inderjit Chopra, <b>"Smart Structures Theory</b> " Cambridge University press 2014.															
REF	EFERENCES:															
1.	O.P.Khanna, "Material Science And Metallurgy", DhanpatRai Publication, 2011															
2.	William D Callister "Material Science and Engineering", Wiley India pvt Ltd 2007.															
3.	Kenneth G.Budinski and Michael K.Budinski "Engineering Materials" Prentice-Hall of India Private Limited, 4 th Indian Reprint, 2002.															
4.	India Private Limited, 4 ^m Indian Reprint, 2002.Lakhtin Yu., "Engineering Physical Metallurgy and Heat Treatment", Mir Publisher, 1985.															
5.	Higg	ins R.	.A., <b>"E</b>	Engine	ering	Meta	llurgy	<b>,",</b> 5th	editio	on, EI	bs,198	3 <i>3</i> .				
6.	Sind	o Kou	"We	lding	Metal	lurgy	", Wil	ey Ind	ia pvt	Ltd 2	003.					
MAP	PIN	GOF	F CO	s, PC	)s AN	ND P	SOs:									
							P	Os							PSOs	
		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO	1	3	2		3									3	2	
CO	2	3	2	2	3	2						2		3	2	
CO	3	3	2		2									3	2	
CO	4	3	3	3	3	2								3	2	
<u> </u>	5	3	2	-	1	2						2		3	2	
Avera	age	3.0	2.2	5.0	2.4	1.2						0.8		3.0	2.0	
Kound	1 OII	5 2 64-	2	L Correct	2	ן יי גי	Made.	C -	male	tion	<b>ј</b> Т.		nnolo4	3 Hor	2	
		<b>3- 3</b> U	rong	corre	iation	; <b>2 -</b> I	viediu	um Co	orrela	uon;	1 – L(	W CO	rrelat	uon		

20MP	C405	KIN	MATICS OF M	ACHINES		L	Т	Р	С	
						3	1	0	4	
OBJE	CTIV	ES								
•	To ma	ke the st	ents to understand t	he basics of mechan	isms.					
•	To dra	w the ve	city and acceleration	n diagram for simple	mechanisms.					
•	To con	struct ca	profile for given for	llower motion.						
•	To und	lerstand	sics of gear and to a	levelop gear trains fo	or required appl	licati	on.			
•	To get	knowled	e to select appropria	te type of friction dr	rives for a speci	fic a	pplic	ation		
UNI	IT I	BASI	<b>5 OF MECHAN</b>	ISMS					9+3	
Classif mobilit barchai descrip	ication y – Kut in and s tion of s	of mech zbach cr lider cra some con	isms – basic kiner rion, Gruebler's cri chains – limit pos non mechanisms –	natic concepts and terion – Grashof's L tions – mechanical quick return mechan	definitions – d aw – kinematic advantage – tra isms- solving o	legre inve ansm f sim	e of ersio issio ple p	freed ns of on ang proble	dom, four gle – ems.	
UNIT II     KINEMATIC ANALYSIS     9+.										
Displacement, velocity and acceleration analysis on simple mechanisms – graphical and analytical techniques- instantaneous center of velocity – Coriolis component – Klein's construction for slider crank chain.										
UNI	ГШ	KINE	IATICS OF CA	M MECHANIS	MS				9+3	
Classif uniform motion pressur	ication n veloci s – layo e angle	of cams ity, para ut of pla and und	and followers – te blic, simple harmon cam profiles – spe cutting – sizing of c	minology and definite and cycloidal mic and cycloidal mic and cified contour cams arms.	nitions – displ notions – deriv – circular arc a	acent ative and ta	nent es of ange	diag folle nt ca	rams ower ms –	
UNI	ΓΙ	GEAI	S AND GEAR T	RAINS					9+3	
Law of definiti Gear tr	f toothe ons–gea ains – S	ed gearin ar tooth peed rat	<ul> <li>involutes and c</li> <li>tion – contact ratio</li> <li>train value – parall</li> </ul>	ycloidal tooth prof — interference and el axis gear trains —	iles –spur gea l undercut. Hel epicyclic gear T	r teri ical, Frain	minc bevo s.	ology el, w	and orm.	
UNI	ΤV	FRIC	ION DRIVES						9+3	
Belt an effect of bearing internal	d rope c of centri g - fricti l expanc	lrive – o fugal for on cluto ling bral	n and cross belt drive – condition for mages – single plate – only.	ve – belt materials – ximum power – fric multi plate – cone	creep and slip - tion in journal clutches-brakes	ratio beari 5 - sł	o of t ing - noe l	tensic flat porake	ons – pivot and	
			LECTURE:	45 TUTORIAL	: 15 TOTAI	.:6	0 Pl	ERI	ODS	
OUT	COME	S:	n completion of thi	s course, students wi	ill be able to					
1.	Explain designi	i various ng a simj	minologies of kinem mechanism for prac	atic mechanism, calcu tical applications.	late mobility of	given	mec	hanis	m and	
2.	Analyze accelera	e position ation diag	velocity and acceleration with a construction with a construction of the construction	tion kinematics of manisms.	echanisms and	drawi	ing v	elocit	y and	
3.	Draw of motions	lisplacents of a foll	t diagram and cam	profile diagram for n profile for given for	different type ollower motion.	of co	onfigu	uratio	n and	
4.	Select a	ı gear dep	ding on a need and c	evelop gear trains fo	or required appl	icatio	on.			

5. Examine friction in machine elements, Select the appropriate type of friction drives for a specific application.

TEX	Г BOOKS:	
1.	Rattan S. S, "7	Theory of Machines", Tata McGraw -Hill Publishers, New Delhi, 2014.
2.	Thomas Bevar	n, "Theory of Machines", Pearson Education Limited, 2010
3.	John J Uicker, Mechanisms"	Gordan R Penncok& Joseph E Shigley, <b>"Theory of Machines and</b> , Mcgraw Hill Inc,2010.
REFE	<b>RENCES:</b>	

- 1. V.P.Singh, "Theory of Machines", Dhanapatrai and Sons, 2017
  - 2. George H.Maritn, "Kinematics and Dynamics of Machines", Waveland PrInc, 2002.
  - 3. *R L Norton, "Kinematics and Dynamics of Machinery", McGraw-Hill, 2017.*
- 4. *C. E. Wilson, P. Sadler, "Kinematics and Dynamics of Machinery", 3rd ed. , Pearson, 2014.* 
  - 5. *Khurmi, R.S., "Theory of Machines", 14th Edition, S Chand Publications, 2005*

#### MAPPING OF COs, POs AND PSOs:

						PO	Os							PSOs	5	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
C01	3	3	2	1									3	3		
CO2	3	3     3     2     1     3     3       2     2     2     1     2     3     3														
CO3	3	3	2	1									3	3		
CO4	3	3	2	1									3	3		
CO5	3	3	2	1									3	3		
Average	3.0	3.0	2.0	1.0									3.0	3.0		
Round off	3	3	2	1									3	3		
3- Strong C	orrel	ation	; 2 - N	lediu	n Coi	relati	ion; 1	– Lo	w Coi	relati	ion					

20Z	MC406	E E	IVIRONMENTAL SCIENCE A IGINEERING	ND	L	Т	Р	C
			(ECE/EEE/CSE/MECH)		1	0	0	0
OBJ	ECTIV	'ES:			•			<u>.</u>
•	To find environ	ing and mental	implementing scientific, technological, problems.	economic and p	olitic	cal sol	utions	to
•	To stud	y the in	errelationship between living organism	and environme	nt.			
•	To stud waste m	y the in nanagen	egrated themes and biodiversity, natura ent.	l resources, pol	lutior	n conti	rol and	1
UNI	ΤΙ	ENV (CO-a	RONMENT, ECOSYSTEMS A a &b)	ND BIODIV	ERS	SITY		7
decor aquat – eco and consu diver wildl biodi birds. <b>Field</b>	spt of an nposers- ic ecosys logical su ecosyster imptive to sity nation ife, man- versity: In study of	types tems (p accession n diver use, pro- pn – ho wildlife n-situ as	end – structure and function of an ecosystem (forest ecosystem, grasponds, streams, lakes, rivers, oceans, esturn processes –types – Introduction to besity – bio-geographical classification ductive use, social, ethical, aesthetic a t-spots of biodiversity – threats to be conflicts – endangered and endemiced ex-situ conservation of biodiversity. ecosystems – pond, river, hill slopes,	ssland ecosystem – proc ssland ecosyste aries) - energy odiversity define of India – v nd option value odiversity: hab species of In Field study of co etc.	flow flow nitior value es – vitat 1 dia – omm	in the in the of t India loss, j - cons on pla	ecosy ecosy etic, sp piodive as a poachi servati unts, ir	s and /stem, ystem pecies ersity: mega- ing of ion of nsects,
UNI	TII	ENV	IRONMENTAL POLLUTION	(CO-a &c)				3
Defin pollu waste <b>Field</b>	ition – ca tion (d) N manager study of	auses, e Aarine _] ment: ca	ffects and control measures of: (a) Air ollution (e) Noise pollution (f) Therma uses, effects and control measures .	pollution (b) W l pollution (g) l al / Agricultur	/ater Nucle al.	pollut ear ha	tion (c zards–	:) Soil - solid
UNI	T III	NAT	URAL RESOURCES (CO-a &d					5
Fores overu envir probl pestic altern and d	t resour atilization onmental ems, char tide prob ate energ esertifica	ces: U of s effects nges ca blems– gy source tion – r	se and over-exploitation, deforestat inface and ground water– Mineral of extracting and using mineral reso used by agriculture and overgrazing, ef Energy resources: renewable and not es.– Land resources- land degradation ble of an individual in conservation of n	ion – Water resources: U urces – Food 1 fects of modern n renewable er man induced 1 atural resources	resou Ise a resou agri hergy ands s.	ources and e rces: cultur sour lides,	: Use exploit World e, fert ces, u soil er	and tation, l food ilizer- ise of rosion
rield	study OI	iocal a	ica to uocument environmental asset		ι/gr	assial		<u>ה</u> חשכ
COI		ПТС	MES	101	AL 3	131		003
Ent			71411712	1 11				
L LIIVII	· · · · · · · · · · · · · · · · · · ·	Doll+	on or problems connet he seleved here		nont: -	inati -	nin	

1. Ability to apply the knowledge of environmental science in identifying, to formulate and to

	solve the	he env	iro	nmental	probl	ems.										
2.	Public	aware	enes	s of env	ironn	nental	functi	on is	at infa	ant sta	ge.					
3.	Ignora	nce an	ıd ir	comple	te kno	owled	ge has	led to	o misc	concep	otions.					
4.	Develo	pmen	t an	d impro	veme	nt in s	std. of	living	g has l	ed to	serious	s envi	ronme	ental d	isaste	rs.
TEX	T BOO	OKS	:													
1.	Gilbert Pearso	t M.M on Edu	aste icat	ers, "Inti ion, 200	roduc 4.	tion to	o Envii	ronme	ental E	Engine	ering a	and Se	cience	'', 2na	l editio	on,
2.	Benny Joseph, "Environmental Science and Engineering", Tata McGraw-Hill, New Delhi, 2006.															
REF	REFERENCES:															
1	1 Cunningham, W.P. Cooper, T.H. Gorhani, <b>"Environmental Encyclopedia"</b> , Jaico Publ., House, Mumbai, 2001.															
2	<ul> <li>2 Rajagopalan, R, "Environmental Studies-From Crisis to Cure", Oxford University Press 2005.</li> </ul>															
MAP	MAPPING OF COs, POs AND PSOs:															
							P	Os							PSO	5
		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1				1		1	3			1	2	1	2		2	1
CO2				1		1	3			1	2	1	2		2	1
CO3				1		1	3			1	2	1	2		2	1
CO4				1		1	3			1	2	1	2	1	2	1
Avera	age		1	1		1	3			1	2	1	2		2	1
Roun	d off		1	1		1	3			1	2	1	2		2	1
3- Str	rong Co	rrelat	ion	; 2 - Me	dium	Corr	elatio	on; 1 -	- Low	v Cori	elatio	n				

20MP0	C <b>40</b> 8	8	STI	REN	GTH	OF I	MAT	ERL	ALS	LAB	ORA	TOR	<b>Y</b>	L	Т	Р	С
													(	0	0	3	1.5
OBJE	CTI	VE	S										<u>.</u>				
•	To	dem	onstra	ate vai	rious d	estruc	tive te	esting	metho	ds lik	e Tens	sion, co	ompre	essi	on, i	mpa	ct test,
•	To	dete	rmine	mech	anical	Prope	erties	of var	ious m	ateria	ls like	Mild	Steel,	Br	ass,	Copr	ber
	and	Alı	ıminiu	ım etc		1							,		,	11	
●	То	dem	onstra	ate the	tensio	on and	comp	pressio	on test	on sp	rings.						
LIST (	OF I	EXI	PERI	[ME]	NTS												
1. Tens	sion 7	Test	on ste	eel roo	ls usin	g Uni	versal	Testi	ng Ma	chine.							
2. Bend	ling	Test	on ro	olled s	teel Jo	ist Be	am.										
3. Dou	ble sl	hear	test o	n mile	d steel	rod.											
4. TOPS	ion i	and	On Mi Comp	na sie	el rou n Test	on Sr	ringe										
6 Defl	Election test on simply supported aluminium beam																
<ol> <li>Den</li> <li>There</li> </ol>	ardness tests on metals like Mild Steel, Brass, Copper and Aluminium																
8. Bend	<ol> <li>Hardness tests on metals like Mild Steel, Brass, Copper and Aluminium</li> <li>Bend Test on Steel rod</li> </ol>																
9. Com	<ol> <li>Bend Test on Steel rod</li> <li>Compression Test</li> </ol>																
10. Impa	9. Compression rest       10. Impact test-Izod and Charpy																
											TC	)TAL	. : 45	5 P	ER	IOD	S
OUT	<b>CO</b>	M	ES:	Or	n comp	letion	of thi	s cou	rse, stu	idents	will b	e able	to				
1.	Der	mon	strate	vario	us dest	ructiv	e testi	ing me	ethods	like to	ension	, comp	oressi	on,	imp	act te	est, etc
2.	Exp	plore	e the d	leflect	ion an	d ben	ding b	ehavi	our of	differ	ent typ	pes of l	beams	s.			
3.	Exa	amir	ne the	Mech	anical	Prope	erties of	of diff	erent r	nateri	als and	d chara	cteriz	ze r	nate	rials	based
	the	ir te	st resu	ılts.		1											
MAPP	INC	<b>G O</b>	F CC	)s, P	Os Al	ND P	SOs	•									
							Р	Os							]	PSOs	
		1	2	3	4	5	6	7	8	9	10	11	12		1	2	3
CO1		3		2	3				2	2	2	2	2		3	2	2
CO2		3		2	2				2	2	2	2	2		3	2	3
CO3	3     2     2     2     2     2     2												2		3	2	2
Averag	ge	3		2	2.3				2	2	2	2	2		3	2	2.3
Round o	off	3		2	2				2	2	2	2	2		3	2	2
3- Stron	ig Co	orre	lation	i; 2 - I	Mediu	m Co	rrelat	ion; 1	– Lo	w Cor	relati	on					

**3- Strong Correlation; 2 - Medium Correlation; 1 – Low Correlation** 

20MP	C40	9 ′	THE	RMA	AL E	NGI	NEE	RIN	G LA	BOI	RAT	ORY	L	Τ	Р	С
													0	0	3	1.5
OBJE	CTI	VES	5:											1	I	
•	To stu	ıdy th	e valu	e timir	ng and	port t	iming	diagra	m of I	C Eng	ines					
•	To stu metho	study the performance of IC engines (2/4 stroke, diesel/petrol with various loading												g		
• ]	To stu	udy the performance of reciprocating air compressor (single and multi stage)														
• 7	lo stu	udy the performance of steam generator and steam turbine														
• 7	lo stu	tudy the performance of refrigeration and air conditioning system														
LIST	OF ]	EXP	PERI	MEN	NTS:											
<ol> <li>Peri</li> <li>Peri</li> <li>Peri</li> <li>Peri</li> <li>Hea</li> <li>Ret</li> <li>Moi</li> <li>Peri</li> </ol>	forma forma forma ardati rse te forma forma forma ermir forma	ance t ance t ance t ance t ion te st on ance a ance t nation nation	test or test or test of test of multi and er and er test or n of C n of C	A strong A s	oke di oke d oke d iction der pe balanc balanc e and a vap air – our at	esel e iesel o iesel o al pov etrol e ce test ce test twin oour co condit	ngine engine engine ver of ngine on a on sta stage r ompre ioning ion re	with the second state and the second state and the the second state and the the second state and the s	mecha electri hydra sel eng gener urbine ocatin refrig em. ation	unical rical lo ulic lo gine. rator. g air o eration system	loading bading bading compr n syst	ng. g. g. eessor. em.	1.45		RIO	
OUT	CON	/ES	: 0	n com	pletic	on of t	his co	urse, s	studer	ıts wil	l be al	ole to				
1.	Con	duct	tests (	on two	and t	four s	troke	engine	e and a	analyz	e port	timin	g and	valve	e timi	ng
2	Con	duct	tests of	on IC	engin	es and	l evalu	ate th	e perf	ormar	nce (2/	4 stro	ke, di	esel/p	etrol	with
2.	vari	ous n	netho	ls of l	oadin	g)			•	6					•	•
3.	Con com	duct	exper sors, r	iment efrige	s and rator a	evalua	ate the	e perfo litione	orman er.	ce of s	steam	boiler	, stear	n turt	onne, a	aır
MAP	PIN(	G OI	F CC	)s, P(	Os ar	nd PS	SOs:									
		POs										PSOs				
	F	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1		3	3	2									2	3	2	
CO2		3	3	2									2	3	2	
CO3		3	3	2									2	3	2	
Average		3	3	2									2	3	2	
Round off		3	3	2									2	3	2	

3- Strong Correlation; 2 - Medium Correlation; 1 – Low Correlation

20MPC501			<b>DESIGN OF MACHINE ELEMENTS</b>	L	Т	Р	C			
(Use o	(Use of PSG Design data book is permitted) 3 1						4			
OBJECTIVES										
●	• To make the students to apply the Design methodology for machine elements.									
●	To Design shafts and couplings for power transmission.									
•	To Design the threaded fasteners, bolted joints and welded joints for pressure vessels and structures.									
•	To I cons	To Design the various types of springs like helical, leaf springs and Flywheels under constant loads and varying loads.								
•	To Design various types of bearings like Rolling contact and Sliding contact bearings.									
UNI	VIT I INTRODUCTION TO MACHINE DESIGN									
Introduction to the Design process – Factors influencing machine design – selection of materials based on mechanical properties - preferred numbers – Limits, Fits, tolerances - Principal stresses - Theories of failure – Factor of safety –stress concentration – Direct , Bending and Torsional loading – Design for variable loading.										
UNI	ΓII	D	ESIGN OF SHAFTS AND COUPLINGS			9	<del>)</del> +3			
Design of solid and hollow shafts based on strength, rigidity - critical speed – Keys, keyways and splines - Rigid and flexible couplings.										
UNIT III		DESIGN OF TEMPORARY AND PERMANENT JOINTS								
Threaded fasteners - Bolted joints subjected to eccentric loading, Knuckle joints, Cotter joints – Design of welded joints, Riveted joints for structures.										
UNIT IV		DESIGN OF ENERGY STORING ELEMENTS								
Design of various types of springs, optimization of helical springs - rubber springs - Design of flywheels considering stresses in rims and arms, for engines and punching machines.										
UNI	ΓV DESIGN OF BEARINGS		9	<del>)</del> +3						
Sliding Equatio bearing	contact n. Som s.	an Ime	d rolling contact bearings - Design of hydrodynamic journal erfield Number, Raimondi & Boyd graphs, - Selection of	beari bf Ro	ngs, lling	McK Cor	Lee's ntact			
			LECTURE: 45 TUTORIAL : 15 TOTAL	. : 60	PE	RIO	DS			
OUTO	COME	S:	On completion of this course, students will be able to							
1.	1. Apply the principles of design to solve problems dealing with static and variable loads.									
2.	Design shafts and couplings for various industrial applications.									
3.	Estimate the load carrying capacity of threads, welds and rivet joints.									
4.	Select and Design Springs and flywheels for various applications.									
5.	Apply the concept of selection and design rolling and sliding contact bearings.									
TEX	T BOOKS:									
------------	--------------------------------------------------------------------------------------------------------------------	--------------------------------------------------------------------------------------------------	--	--	--	--	--	--	--	
1.	Bhandari V.B, Co, 2017.	<b>"Design of Machine Elements"</b> , Fourth Edition, Tata McGraw-Hill Book								
2.	Shigley J.E and Mischke C. R., <b>"Mechanical Engineering Design"</b> , Eleventh Edition, Tata McGraw-Hill , 2020.									
3.	Robert C. Juvin edition, Wiley,	nall and Kurt M. Marshek, <b>"Fundamentals of Machine Design"</b> , 7 th 2017								
<b>REF</b>	ERENCES:									
1.	Sundararajamo Chennai, 2018	oorthy T. V. Shanmugam.N., "Machine Design", Anuradha Publications,								
2.	Orthwein W., '	'Machine Component Design", Jaico Publishing Co, 2003								
3.	, Terry E. Shou Printice Hall, 2	up and Lee E. Hornberger, <b>"Design of Machine Elements"</b> 8 th Edition, 2003.								
4.	Alfred Hall, Ho BookCo.(Schat	alowenko, A and Laughlin, H., <b>"Machine Design"</b> , Tata McGraw-Hill um's Outline), 2010.								
5.	Robert L. Northeducation, 202	on, <b>"Machine design An integrated approach"</b> , Sixth edition , Pearson 0.								

MAPPIN	MAPPING OF COs, POs AND PSOs:																
	POs														PSOs		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
CO1	2	2	3					1		1			3	2			
CO2	2	2	3					1		1			3	2			
CO3	2	2	3					1		1			3	2			
CO4	2	2	3					1		1			3	2			
CO5	2	2	3					1		1			3	2			
Average	2	2	3					1		1			3	2			
Round off	2	2	3					1		1			3	2			
3- Strong C	orrel	ation;	2 - N	lediu	m Co	rrelat	ion; 1	- Lo	w Coi	rrelati	ion	1					

20MPC	2502	HEAT AND MASS TRANSFER	L	Т	P	С
(use of a	approv	red HMT data book is permitted)	3	1	0	4
OBJEC	TIVE	S				
•	To un detern exten	iderstand the mechanisms conduction heat transfer under steady and nine resistance and heat transfer rate. To understand the concepts of ded surfaces	transie heat tr	nt coi ansfei	nditio r thro	ns, 1gh
•	To ur	derstand the concept of convective heat transfer under steady state c	onditio	ons,		
•	To un of rad	derstand the mechanism and laws of radiative heat transfer to deter- diation heat exchange between surfaces.	mine t	he an	nount	
•	To a	nalyse the phase change heat transfer and sizing of heat exchan	ger.			
•	To ev	valuate the mass transfer through diffusion and convection mec	hanisı	n.		
UNIT	'I (	CONDUCTION			9	+3
General Dimensio Internal F	Differe onal Ste Ieat Ge	ntial equation of Heat Conduction– Cartesian and Polar ady State Heat Conduction — plane and Composite Systems neration – Extended Surfaces – Unsteady Heat Conduction.	Coord - Co	inate nduc	s –	One with
UNIT	II	CONVECTION			9	9+3
empirical	relatio	ons for free convection flows – horizontal cylinders, horizo	ntal p	lates	, ver	ical
empirical planes, in	relation clined	ons for free convection flows – horizontal cylinders, horizo surfaces and enclosed spaces.	ntal p	lates	, ver	ical
empirical planes, in UNIT	relatic clined : III ] f therma dy radia	ns for free convection flows – horizontal cylinders, horizo surfaces and enclosed spaces. <b>RADIATION</b> al radiation – radiation intensity – relation to emission, irradia- ation – loss of radiation – emissivity – surface emission – Ki- factor – radiation exchange between black surfaces – radiation	ntal p	nd ra	, vert g diosi w – g	ical <b>+3</b> ty – gray
empirical planes, in <b>UNIT</b> Nature of black bod surface – gray surfa	relationaclinedIIIIfthermadyradiaviewfaces	ns for free convection flows – horizontal cylinders, horizo surfaces and enclosed spaces. <b>RADIATION</b> al radiation – radiation intensity – relation to emission, irradia ation – loss of radiation – emissivity – surface emission – Ka actor – radiation exchange between black surfaces – radiation electrical analogy – radiation shields.	ntal p ition a irchoff n exch	lates nd ra rs la ange	, vert diosi w – ; betw	ical 0+3 ty – gray veen
empirical planes, in UNIT I Nature of black bod surface – gray surfa	relation in the second	ns for free convection flows – horizontal cylinders, horizo surfaces and enclosed spaces. <b>RADIATION</b> al radiation – radiation intensity – relation to emission, irradia ation – loss of radiation – emissivity – surface emission – K factor – radiation exchange between black surfaces – radiation electrical analogy – radiation shields. <b>CONDENSATION, BOILING AND HEAT EXCH</b>	ntal p ation a irchoff n exch	lates nd ra ?'s la ange	, vert diosi w – g betw	ical +3 ty – gray veen +3
empirical planes, in UNIT I Nature of black boc surface – gray surfa UNIT I Condensa vertical p Heat Trai method.	relation         iclined         iclined         illi         if         thermatically         idy radia         view f         acces – e         idy radia         view f         acces – e         idy radia         idy radia         view f         acces – e         idy radia         idy radia <td>Ans for free convection flows – horizontal cylinders, horizon surfaces and enclosed spaces. <b>RADIATION</b> al radiation – radiation intensity – relation to emission, irradiation – loss of radiation – emissivity – surface emission – Karactor – radiation exchange between black surfaces – radiation electrical analogy – radiation shields. <b>CONDENSATION, BOILLING AND HEAT EXCH</b> and Boiling – Film wise and drop wise condensation – Film Regimes of Boiling – Forced convection boiling- Heat Exchant Coefficient – Fouling Factors –Heat transfer Analysis: LM</td> <td>ntal p tion a irchoff n exch ANG cond ger T TD m</td> <td>lates nd ra "s la ange ERS ensat ypes ethoc</td> <td>, vert diosi w - y betw S - y ion c - Ove 1 - N</td> <td><b>P+3 P+3 P+3 P+3 P+3 P+3 P+3 P+3 P+3 P+3 P-1</b></td>	Ans for free convection flows – horizontal cylinders, horizon surfaces and enclosed spaces. <b>RADIATION</b> al radiation – radiation intensity – relation to emission, irradiation – loss of radiation – emissivity – surface emission – Karactor – radiation exchange between black surfaces – radiation electrical analogy – radiation shields. <b>CONDENSATION, BOILLING AND HEAT EXCH</b> and Boiling – Film wise and drop wise condensation – Film Regimes of Boiling – Forced convection boiling- Heat Exchant Coefficient – Fouling Factors –Heat transfer Analysis: LM	ntal p tion a irchoff n exch ANG cond ger T TD m	lates nd ra "s la ange ERS ensat ypes ethoc	, vert diosi w - y betw S - y ion c - Ove 1 - N	<b>P+3 P+3 P+3 P+3 P+3 P+3 P+3 P+3 P+3 P+3 P-1</b>
empirical planes, in UNIT I Nature of black boc surface – gray surfa UNIT I Condensa vertical p Heat Trai method. UNIT	relation       iclined	ons for free convection flows – horizontal cylinders, horizons surfaces and enclosed spaces. <b>RADIATION</b> al radiation – radiation intensity – relation to emission, irradiation – loss of radiation – emissivity – surface emission – Karactor – radiation exchange between black surfaces – radiation electrical analogy – radiation shields. <b>CONDENSATION, BOILLING AND HEAT EXCH</b> and Boiling – Film wise and drop wise condensation – Film Regimes of Boiling – Forced convection boiling- Heat Exchance Coefficient – Fouling Factors –Heat transfer Analysis: LMT <b>MASS TRANSFER</b>	ntal p ation a irchoff n exch ANG cond ger T TD m	lates nd ra "s la ange ERS ensat ypes ethoc	, vert diosi w - z betw S - y ion c - Ove 1 - N	p+3 ty - gray y-een p+3 p-3 p-3 tTU tTU p-3
empirical planes, in UNIT 1 Nature of black boc surface – gray surfa UNIT 1 Condensa vertical p Heat Trai method. UNIT Basic Con Diffusion Convectiv	relation         iclined         iclined <t< td=""><td>ons for free convection flows – horizontal cylinders, horizons surfaces and enclosed spaces. <b>RADIATION</b> al radiation – radiation intensity – relation to emission, irradiation – loss of radiation – emissivity – surface emission – Kitactor – radiation exchange between black surfaces – radiation bectrical analogy – radiation shields. <b>CONDENSATION, BOILING AND HEAT EXCH</b> and Boiling – Film wise and drop wise condensation – Film Regimes of Boiling – Forced convection boiling- Heat Exchant Coefficient – Fouling Factors –Heat transfer Analysis: LM <b>MASS TRANSFER</b> – Diffusion Mass Transfer – Fick's Law of Diffusion – Stenvective Mass Transfer – Momentum, Heat and Mass Taster Correlations.</td><td>ntal p ttion a irchoff n exch cond ger T fD m ady st ransfe</td><td>and ra ange ERS ensat ypes ethoc ate N er Ar</td><td>, vert diosi w – y betw 5 9 ion c - Ove 1 - N 1 - N folec halog</td><td>p+3 ty - gray y een p+3 p+3 p+3 TU TU p+3 ular y - ular</td></t<>	ons for free convection flows – horizontal cylinders, horizons surfaces and enclosed spaces. <b>RADIATION</b> al radiation – radiation intensity – relation to emission, irradiation – loss of radiation – emissivity – surface emission – Kitactor – radiation exchange between black surfaces – radiation bectrical analogy – radiation shields. <b>CONDENSATION, BOILING AND HEAT EXCH</b> and Boiling – Film wise and drop wise condensation – Film Regimes of Boiling – Forced convection boiling- Heat Exchant Coefficient – Fouling Factors –Heat transfer Analysis: LM <b>MASS TRANSFER</b> – Diffusion Mass Transfer – Fick's Law of Diffusion – Stenvective Mass Transfer – Momentum, Heat and Mass Taster Correlations.	ntal p ttion a irchoff n exch cond ger T fD m ady st ransfe	and ra ange ERS ensat ypes ethoc ate N er Ar	, vert diosi w – y betw 5 9 ion c - Ove 1 - N 1 - N folec halog	p+3 ty - gray y een p+3 p+3 p+3 TU TU p+3 ular y - ular
empirical planes, in UNIT I Nature of black bod surface – gray surfa UNIT I Condensa vertical pi Heat Train method. UNIT Basic Con Diffusion Convectiv	relation         iclined         iclined <t< td=""><td>Ins for free convection flows – horizontal cylinders, horizons surfaces and enclosed spaces. RADIATION Interpretent and a radiation – radiation intensity – relation to emission, irradiation – loss of radiation – emissivity – surface emission – Karactor – radiation exchange between black surfaces – radiation electrical analogy – radiation shields. CONDENSATION, BOILING AND HEAT EXCH Ind Boiling – Film wise and drop wise condensation – Film Regimes of Boiling – Forced convection boiling- Heat Exchant Coefficient – Fouling Factors –Heat transfer Analysis: LM MASS TRANSFER – Diffusion Mass Transfer – Fick's Law of Diffusion – Ste nvective Mass Transfer – Momentum, Heat and Mass Taransfer Correlations. LECTURE: 45 TUTORIAL: 15 TOTAI</td><td>ntal p ttion a irchoff n exch cond ger T TD m ady st ransfe</td><td>and ra ange ERS ensat ypes ethoc ate M er Ar</td><td>diosi w – y betw S 9 ion c - Ovc I - N folec nalog</td><td>p+3 ty - gray y een p+3 p+3 p+3 tTU p+3 tTU p+3 ular y - b DS</td></t<>	Ins for free convection flows – horizontal cylinders, horizons surfaces and enclosed spaces. RADIATION Interpretent and a radiation – radiation intensity – relation to emission, irradiation – loss of radiation – emissivity – surface emission – Karactor – radiation exchange between black surfaces – radiation electrical analogy – radiation shields. CONDENSATION, BOILING AND HEAT EXCH Ind Boiling – Film wise and drop wise condensation – Film Regimes of Boiling – Forced convection boiling- Heat Exchant Coefficient – Fouling Factors –Heat transfer Analysis: LM MASS TRANSFER – Diffusion Mass Transfer – Fick's Law of Diffusion – Ste nvective Mass Transfer – Momentum, Heat and Mass Taransfer Correlations. LECTURE: 45 TUTORIAL: 15 TOTAI	ntal p ttion a irchoff n exch cond ger T TD m ady st ransfe	and ra ange ERS ensat ypes ethoc ate M er Ar	diosi w – y betw S 9 ion c - Ovc I - N folec nalog	p+3 ty - gray y een p+3 p+3 p+3 tTU p+3 tTU p+3 ular y - b DS
empirical planes, in UNIT I Nature of black bod surface – gray surfa UNIT I Condensa vertical p Heat Train method. UNIT Basic Con Diffusion Convectiv	relation         iclined         iclined <t< td=""><td>ADDIATION Al radiation – radiation intensity – relation to emission, irradia ation – loss of radiation – emissivity – surface emission – Ki actor – radiation exchange between black surfaces – radiation electrical analogy – radiation shields. CONDENSATION, BOILING AND HEAT EXCH ad Boiling – Film wise and drop wise condensation – Film Regimes of Boiling – Forced convection boiling- Heat Exchan Coefficient – Fouling Factors –Heat transfer Analysis: LM MASS TRANSFER – Diffusion Mass Transfer – Fick's Law of Diffusion – Ste nvective Mass Transfer – Momentum, Heat and Mass T s Transfer Correlations. LECTURE: 45 TUTORIAL: 15 TOTAI On completion of this course, students will be able to</td><td>ntal p ntal p ntion a irchoff n exch cond ger T TD m ady st ransfe 2 : 60</td><td>and ra ange ERS ensat ypes ethoc ate Mer An</td><td>diosi w – y betw S 9 ion c - Ovo I - N folec nalog</td><td>p+3 ty - gray p+3 p+3 p+3 p+3 tTU tTU p+3 ular y - DS</td></t<>	ADDIATION Al radiation – radiation intensity – relation to emission, irradia ation – loss of radiation – emissivity – surface emission – Ki actor – radiation exchange between black surfaces – radiation electrical analogy – radiation shields. CONDENSATION, BOILING AND HEAT EXCH ad Boiling – Film wise and drop wise condensation – Film Regimes of Boiling – Forced convection boiling- Heat Exchan Coefficient – Fouling Factors –Heat transfer Analysis: LM MASS TRANSFER – Diffusion Mass Transfer – Fick's Law of Diffusion – Ste nvective Mass Transfer – Momentum, Heat and Mass T s Transfer Correlations. LECTURE: 45 TUTORIAL: 15 TOTAI On completion of this course, students will be able to	ntal p ntal p ntion a irchoff n exch cond ger T TD m ady st ransfe 2 : 60	and ra ange ERS ensat ypes ethoc ate Mer An	diosi w – y betw S 9 ion c - Ovo I - N folec nalog	p+3 ty - gray p+3 p+3 p+3 p+3 tTU tTU p+3 ular y - DS
empirical planes, in UNIT   Nature of black bod surface – gray surfa UNIT   Condensa vertical p Heat Trai method. UNIT Basic Con Diffusion Convective 1.    P s	relation         iclined         iclined         iclined         iiii         iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	Ins for free convection flows – horizontal cylinders, horizo surfaces and enclosed spaces. <b>RADIATION</b> In radiation – radiation intensity – relation to emission, irradia ation – loss of radiation – emissivity – surface emission – K: factor – radiation exchange between black surfaces – radiation electrical analogy – radiation shields. <b>CONDENSATION, BOILING AND HEAT EXCH</b> Ind Boiling – Film wise and drop wise condensation – Film Regimes of Boiling – Forced convection boiling- Heat Exchan Coefficient – Fouling Factors –Heat transfer Analysis: LM <b>MASS TRANSFER</b> – Diffusion Mass Transfer – Fick's Law of Diffusion – Ste nvective Mass Transfer – Momentum, Heat and Mass T is Transfer Correlations. <b>LECTURE: 45 TUTORIAL: 15 TOTAI Concompletion of this course, students will be able to</b> ne the resistance and steady state conduction heat transfer rate pordinates for different surface configurations and thermal analysis	ntal p ttion a irchoff n exch cond ger T; TD m ady st ransfe L : 60 in Car	lates nd ra ange ERS ensat ypes ethoc ate M or An pE	, vert diosi w – ; betw 5 9 ion c - Ove 1 - N folec nalog <b>RIO</b> n and ed	p+3 ty - gray p+3 p+3 p+3 p+3 tTU p+3 ular y - DS

	throu	ugh/ov	er var	ious sı	urface	config	uratior	ns and	solve p	proble	ms.					
3.	Expl diffe	lain ba erent ty	sic lav	vs for 1 f surfac	Radiat ces wit	ion an h and	d apply withou	y these it radia	princi tive sł	ples to nields	o radia to solv	tive he ve prob	at tran lems	sfer be	etween	
4.	Expl anal	lain the ysis to	e phen differ	omena ent typ	of bo bes of h	iling a neat ex	nd con chang	densat er cont	ion, ap figurat	oply Li ions a	MTD and solv	and N7 ve prot	TU met olems.	hods o	of ther	mal
5.	Explain Fick's Law of Diffusion and apply diffusive and convective mass transfer equations and correlations to solve problems for different applications															
TEX	T B(	OOK	<b>S:</b>			<u>, 101 a</u>		<u>e uppn</u>		<u> </u>						
1.	P. K. Nag, <b>"Heat Transfer"</b> Tata McGraw Hill Publishing Company Limited. 3 rd edition 2011.															
2.	C. P. Kothandaraman and S. Subramanyan, <b>"Heat and Mass Transfer Data Book"</b> ,8 th Edition, New Age International Publishers 2014.															
REF	FERENCES:															
1.	Yunus A. Cengel, " <b>Heat Transfer-A Practical Approach</b> " Tata McGraw Hill Publishing Company Limited. 3 rd edition. 2007.															
2.	<i>Frank P. Incropera and David P. Dewitt, "Fundamentals of Heat and Mass Transfer",</i> 8 th Edition, John Wiley & Sons 2016.															
З.	<i>Y. V</i>	. C. R	ao, "	Heat 'I	Fransj	fer", I	First E	dition	, Univ	versiti	es Pre	ess (In	dia) L	imited	l, 200	1.
4.	Sari	t K. D	<b>D</b> as, "	Proces	ss Hea	t Tra	nsfer'	", Nar	osa Pi	ublish	ing H	ouse,	2009.			
5.	S. P. 2004	. Venk 4.	katesh	an, "I	First (	Course	e in H	eat Ti	ransfe	<b>r"</b> , 6 ^{tl}	¹ editio	on, An	e Boo	ks Pu	blishe	rs,
MAP	PIN	G OI	F CO	s, PO	Os Al	ND P	SOs:									
							P	Os							PSOs	;
		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO	1	3	3	2										3	3	
CO	2	3	3	2										3	3	
CO	3	3	3	2										3	3	
CO	94	3	3	2										3	3	
CO	95	3	3	2										3	3	
Aver	age	3	3	2										3	3	
Round	d off	3	3	2										3	3	
3- Stro	ong C	orrel	ation	; 2 - N	lediu	m Co	rrelat	ion; 1	- Lov	w Coi	relati	ion				

### MANUFACTURING TECHNOLOGY II

L	Τ	Р	С
3	0	0	3

### **OBJECTIVES**

UNIT I THEORY OF METAL CUTTING											
	• To provide knowledge about various Modern manufacturing process.										
	•	To understand principle and working of Milling and Gear generation machines.									
	•	To enable them to understand the principles and operations of Drilling, Broaching and Grinding machines.									
	•	To acquire knowledge on Lathes, Shaping and planning machines.									
	•	To help students to acquire knowledge about the theory of metal cutting process.									

Mechanism of metal cutting – types – cutting force – chip formation – Merchant's circle diagram – calculations – tool geometry – machinability-thermal aspects – tool wear – tool life – cutting tool materials – cutting fluids – types.

### UNIT II AUTOMATS, SHAPING AND PLANING MACHINES

9

Lathe, Capstan and turret lathes – construction - indexing mechanism - operations - working principle of single and multi - spindle automats – shaping and planning machines – types – construction - mechanism – principle of operation – different shaping operations - work holding devices.

### UNIT IIIDRILLING, BROACHING AND GRINDING MACHINES9

Drilling machines – specifications, types - feed mechanism, operations – drill tool nomenclature – broaching – specifications, types, tool nomenclature, broaching operations – grinding – types of grinding machines – grinding wheels, specifications – bonds – mounting and reconditioning of grinding wheels.

### UNIT IV MILLING AND GEAR GENERATING MACHINES

9

9

Milling – specifications – types - cutter nomenclature – types of cutters – milling processes – indexing – gear forming in milling – gear generation - gear shaping and gear hobbing – specifications - cutters-coated tools & inserts- cutting spur and helical gears - bevel gear generators – gear finishing methods.

### UNIT V NC,CNC AND RPT

Numerical Control (NC) machine tools – CNC types, constructional details, special features, machining centre, part programming fundamentals CNC – manual part programming– Introduction to RPT.

		IOTAL: 45 PERIODS
<b>OUTCOMES:</b>	On completion of this course, s	tudents will be able to

1.	Apply the theory of metal cutting in real life machining.											
2.	Explore the operating mechanisms of lathe, shaping and planning machine.											
3.	Compare the working principles of drilling, boring and grinding machines.											
4.	Understand the principles, operation and working of milling and gear generating machine.											
5.	Explain the concept of NC,CNC and RPT.											
TEX	BOOKS:											
1.	HajraChoudhry S. K. and Bose S. K., <b>"Workshop Technology Vol II"</b> , Media Promoters and Publishers Pvt. Ltd., Bombay, 2004											
2.	P.N. Rao, " <b>Manufacturing Technology Foundry, Forming and Welding"</b> , Tata McGraw - Hill 3 rd Edition, 2009											
REFI	RENCES:											
1.	SeropeKalpakjian and Steven R. Schmid, " <b>Manufacturing Engineering and Technology</b> " 7 th edition, Prentice Hall, 2013.	, ,										
2.	Jain R. K. and Gupta S. C., " <b>Production Technology</b> ", Khanna Publishers, New Delhi, 1999.											
3.	Richerd R Kibbe, John E. Neely, Roland O. Merges and Warren J.White, <b>"Machine Tool</b> <b>Practices"</b> , 8 th Edition,Pearson, 2005.											
4.	Roy. A. Lindberg, " <b>Process and Materials of Manufacture"</b> , Fourth Edition, PHI / Pearson Education 2006.											
5.	Sharma P.C., "A Text Book of Production Technology", S.Chand& Company Ltd., New Delhi, 10 th revised edition, 2010											

	MAPPING OF COs, POs AND PSOs:																
	POs													PSOs			
	1	1         2         3         4         5         6         7         8         9         10         11         12												2	3		
CO1	2	1	1			1		1			2	1	2	2	1		
CO2	2	1	1			1		1			2	1	2	1	1		
CO3	1	1	1			1		1			2	1	2	2	1		
CO4	1	2	1			1		1			2	1	2	2	1		
CO5	1	1	1			1		1			1	1	1	1			
Average	1.4	1.2	1			1		1			1.8	1	1.8	1.6	0.8		
Round off	1	1	1			1		1			2	1	1	2	1		
3- Strong Cor	relati	on; 2	- Med	lium	Corre	lation	; 1 –	Low (	Corre	lation	l		•				

20MP	C <b>504</b>	METROLOGY AND MEASUREMENTS	L	T	P	С
	3	0	0	3		
OBJE	CTIVE	S				
٠	To m	ake the students to explain the basics of metrology.				
٠	To ex	plore different types of linear and angular measuring instrum	ents.			
•	To ex	plain the various form measurement techniques.				
•	To ex	plain various power, flow and temperature measurements.				
•	То р	ovide them the latest advances in metrology.				
UNI	ΓΙ Ι	BASICS OF METROLOGY				9
UNIT	ity.	IS - Infoduction to interferometry - Kenability and Canoran	<u> </u>			9
Projecto UNIT	r. <b>' III</b>	ANGULAR AND FORM MEASUREMENTS				9
Angle n dekkor - measure Applicat	neasurin - Applic ment, g tions – L	g instruments - Bevel protractor, Spirit level, Sine bar, Autions. Principles and Methods of straightness – Flatness measurement, surface finish measurement, Roundne imit gauges.	itocolli asuren ss me	imato nent easur	or, A – Tł reme	ngle read nt –
UNIT		MEASUREMENT OF POWER, FLOW AND TEMPERATURE				9
Force, to Venturi Electrica	orque, po meter, C al resista	wer - mechanical, Pneumatic, Hydraulic and Electrical type. I rifice meter, rota meter, pitot tube – Temperature: bimetallic nce thermometer – Pressure measurement.	Flow m strip, th	ieasu iermo	reme ocou	ent: ples,
UNI	Γ <b>V</b>	ADVANCES IN METROLOGY				9
Tool m Automa measure	aker's 1 tic and n ment sys	nicroscope - Computer controlled CMM - Universal m ultidimensional inspection machine - Computer aided inspec tem -Laser interferometer – Introduction to Clean room.	easurin tion -N	ig n Iachi	nachi ine v	ne - ision
		ТОТА	L : 45	5 PE	RIC	DDS
OUTC	OMES	: On completion of this course, students will be able to				
1.	Interpre	the need, errors and types of measurement.				
2.	Identify	and compare various linear and angular measuring instrumen	s.			

3.	Identify and compare various form measurement techniques.										
4.	Explain the prir	nciple of measuring power, flow and temperature.									
5.	Explain the reco	ent advances in metrology.									
TEX	T BOOKS:										
1.	Jain.R.K., <b>"Engineering Metrology"</b> , 21 st edition, Khanna Publishers, Delhi, 2018.										
2.	Gupta. I.C., "E	ngineering Metrology", Dhanpatrai Publications, 2018									
3.	Mikell Groove Manufacturing	er "Automation, Production Systems, and Computer-integrated g" Pearson, edition four, 2016.									
REF	ERENCES:										
1.	Charles Regina EMEA, 1990.	ld Shotbolt, "Metrology for Engineers", 5th edition, Cengage Learning									
2.	Gayler G. N. ar	nd Shotbolt C. R., "Metrology for Engineers", ELBS 2000.									
3.	Thomas G. H Mesurements",	Beckwith, Roy D, Marangoni, John H.Lienhard V., <b>"Mechanical</b> Addison WeleyPublishing Company, 2004.									
4.	W. Whyte, "Cle second edition,	an Room Technology, Fundamental of Design, Testing and Operation " 2010.									
5.	Herbert Freema INC, 1989.	an, "Machine Vision for Inspection and Measurement", Academic Press,									

MAPPIN	G OI	F CO	s, PC	)s A	ND P	SOs:									
						P	Os							PSOs	1
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	1	1								1		2	1	
CO2	2	1	1								1		2	1	
CO3	2	1	1								1		2	1	
CO4	2	1	1								1		2	1	
CO5	2		1		2						1		2	1	
Average	2	0.8	1		0.4						1		2	1	
Round off	2	1	1		0						1		2	1	
3- Strong C	orrel	ation;	; 2 - N	Iediu	m Co	rrelati	ion; 1	- Lov	w Coi	relati	on	-		·	

### MANUFACTURING PROCESSES AND METROLOGY LABORATORY

TOTAL 45 DEDIODO

### **OBJECTIVES**

•	To practice t machines.	he vario	ous ope	erations	that	can be	e performed	l in lathe	e, drillii	ng, millin	g an	d shaj	ping	
	<b>T</b> 1 <b>C</b>	•						•	0			~ .		

- To do Gear cutting using milling and hobbing machines and to perform operations in Grinding machines.
- To familiarize the students on the working of various measuring instruments and to perform measurements of parts to check the quality.

### LISTOFEXPERIMENTS:

### MANUFACTURING LABORATORY

- 1. Facing, plain, step and taper turning.
- 2. Knurling and chamfering and thread cutting (external).
- 3. Counter sinking ,drilling and boring
- 4. Contour milling using vertical milling machine.
- 5. Spur gear cutting in milling machine.
- 6. Gear generation in Hobbing machine.
- 7. Plain Surface grinding.

### METROLOGY LABORATORY

- 1. Tool Maker's Microscope
- 2. Comparator
- 3. Sine Bar
- 4. Gear Tooth Vernier Caliper
- 5. Surface Finish Measuring Equipment
- 6. Vernier Height Gauge
- 7. Temperature, Force and torque Measurement
- 8. Machine Vision Measurement systems

											10	JIA	L:43	PER		3
O	UTCOME	S:	On	comp	letion	of this	s cour	se, stu	idents	will b	be able	e to				
1	Demonstrat	te and	fabrio	cate di	ifferer	nt type	es of c	ompo	nents	using	the m	achine	e tools			
2	2 Set up machines like lathe shaper, grinding and milling machine for various applications.															
3	3 Handle different measurement instrument and to perform measurements to check quality of parts.															
MAPPING OF COs, POs AND PSOs:																
		POs PSOs														
		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	CO1	2	1	2	1				2	2		1	1	2	2	1
	CO2	2	1	2	1				2	2		1	1	2	2	1
	CO3	2	1	2	1				2	2		1	1	2	2	1
A	Average 2			2	1				2	2		1	1	2	2	1
Ro	Round off         2         1         2         1         1								2	2	1					
	3- Strong Correlation; 2 - Medium Correlation; 1 – Low Correlation															

### HEAT AND MASS TRANSFER LABORATORY

L	Т	Р	С
0	0	3	1.5

### **OBJECTIVES**

•	To study the heat transfer phenomena, predict the relevant coefficient using implementation
•	To study the performance of heat exchanger
•	To study the performance of HC refrigeration system, fluidized bed cooling tower and thermal collectors.

### LIST OF EXPERIMENTS:

### HEAT TRANSFER EXPERIMENTS:

- 1. Thermal conductivity measurement using guarded plate apparatus.
- 2. Thermal conductivity measurement of pipe insulation using lagged pipe apparatus.
- 3. Determination of heat transfer coefficient under natural convection from a vertical cylinder.
- 4. Determination of heat transfer coefficient under forced convection from a tube.
- 5. Determination of Thermal conductivity of composite wall.
- 6. Determination of Thermal conductivity of insulating powder.
- 7. Heat transfer from pin-fin apparatus (natural & forced convection modes).
- 8. Determination of Stefan Boltzmann constant.
- 9. Determination of emissivity of a grey surface.
- 10. Effectiveness of Parallel/counter flow heat exchanger.

### **REFRIGERATION AND AIR CONDITIONING EXPERIMENTS:**

- 1. Performance test in a HC Refrigeration System.
- 2. Performance test in a Fluidized Bed Cooling Tower
- 3. Devices for thermal collectors and storage

			TOTAL: 45 PERIODS							
OUI	COMES:	On completion of this course, students wi	ll be able to							
1.	Conduct tests materials	Conduct tests on heat conduction apparatus and evaluate thermal conductivity of materials								
2.	Conduct tests on natural and forced convective heat transfer apparatus and evaluate convective heat transfer coefficient.									
3.	Conduct tests on radiative heat transfer apparatus and evaluate Stefan Boltzmann constant and emissivity.									
4.	Conduct tests to apparatus and t	o evaluate the performance of parallel/coun hermal collectors	ter flow heat exchanger							
5.	Conduct tests to Cooling Tower	o evaluate the performance of HC Refrigera	ation System and Fluidized Bed							

MAPPING OF COs, POs AND PSOs:																		
		POs													PSOs			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3			
CO1	2	2	2						3		2		2	2	1			
CO2	2	2	2						3		2		2	2	1			
CO3	2	2	2						3		2		2	2	1			
CO4	2	2	2						3		2		2	2	1			
CO5	2	2	2						3		2		2	2	1			
Average	2	2	2						3		2		2	2	1			
Round off	2	2	2						3		2		2	2	1			
3- Strong C	orrel	ation;	; 2 - N	lediu	m Co	rrelati	ion; 1	- Lov	w Coi	relati	on							

20MPR510	<b>PROJECT I / WINTER INTERNSHIP</b>	L	Τ	Р	С
		0	0	3	1.5
ODIECTIVI	78				

# OBJECTIVES

•	To provide opportunity to explore a problem or issue of particular personal or professional interest.
•	To address the problem or issue through focused study and applied research under the direction of a faculty member.
•	To synthesize and apply the knowledge and skills acquired in his/her academic program to real-world issues and problems.
•	To improve ability to think critically and creatively, to solve practical problems,
•	To make reasoned and ethical decisions, and to communicate effectively.

The students in a group of 3 to 4 works on a topic approved by the head of the department under the guidance of a faculty member and prepare a comprehensive project report after completing the work to the satisfaction of the supervisor. The progress of the project is evaluated based on a minimum of three reviews in that any one review will be conducted with external examiner.

The review committee may be constituted by the Head of the Department. A project report is required at the end of the semester. The project work is evaluated based on oral presentation and the project report jointly by external and internal examiners constituted by the Head of the Department.

(or)

A Minimum of 2 weeks internship in reputed organization during summer vacation

			TOTAL : 45 PERIODS					
OU	<b>FCOMES:</b>	On completion of this course, students will be able to						
1	Identify the rea	ll time Engineering problems in their d	ay to day life.					
2	Apply the knowledge and skills acquired in their courses to a specific problem or issue							
3	Think critically and creatively to address and help solve these professional or social issues and to further development.							
4	Refine research skills and demonstrate their proficiency in written and oral communication skills.							
5	Take on the challenges of teamwork, prepare a presentation in a professional manner, and document all aspects of design work.							

MAPPIN	MAPPING OF COs, POs AND PSOs:																	
		POs													PSOs			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3			
CO1	3	3	2	3	1	1	2	3	3	2	3	2	3	3	2			
CO2	3	3	3	3	1	1	2	3	3	2	3	2	3	3	2			
CO3	3	3	3	3	2	2	2	3	3	3	3	2	3	3	2			
CO4	3	3	3	3	2	2	2	3	3	3	3	2	3	3	2			
CO5	2	2	2	1	2	2	3	3	3	2	3	2	3	3	2			
Average	2.8	2.8	2.6	2.6	1.6	1.6	2.2	3	3	2.4	3	2	3	3	2			
Round off	3	3	3	3	2	2	2	3	3	2	3	2	3	3	2			
3- Strong C	orrela	ation;	2 - M	lediur	n Cor	relati	on; 1	– Lov	v Cor	relati	on	•						

201/ID	C601
	CONT

### **DYNAMICS OF MACHINERY**

9+3

9+3

9+3

9+3

### **OBJECTIVES**

•	To provide insight on gyroscope effect							
•	To understand the governor mechanism for speed control of machines.							
•	To explain the Vibration isolation and vibration measurement and analyses the effect of free and forced vibration							
•	To determine the balancing mass of rotating and reciprocating systems.							
•	To explain the force-motion relationship in components subjected to external analysis of standard mechanisms	forces and						

Dynamic force analysis – Inertia force and Inertia torque– D Alembert's principle –Dynamic Analysis in reciprocating engines – Gas forces – Inertia effect of connecting rod– Bearing loads – Crank shaft torque – Turning moment diagrams –Fly Wheels.

### UNIT II BALANCING

Static and dynamic balancing – balancing of rotating masses–Balancing of Reciprocating masses -Primary and secondary unbalanced forces-partial balancing of unbalanced primary force-partial balancing of Locomotives-Variation of tractive force, Swaying couple and Hammer blow.

### UNIT III FREE VIBRATION

Basic features of vibratory systems –degrees of freedom– free vibration – equations of motion – natural frequency – types of damping – damped vibration - critical speeds of simple shaft – Torsional systems: single, two rotor systems.

### UNIT IV FORCED VIBRATION

Response of one degree of freedom systems to periodic forcing – Harmonic disturbances – Disturbance caused by unbalance – Support motion –transmissibility – Vibration isolation vibration measurement.

### UNIT V MECHANISMS FOR CONTROL

Governors – Types – Centrifugal governors – Gravity controlled and spring controlled centrifugal governors – Characteristics – Effect of friction – Controlling force curves. Gyroscopes – Gyroscopic forces and torques – Gyroscopic stabilization – Gyroscopic effects in Automobiles, ships and airplanes.

Introduction to ADAMS – solving basic dynamics problems using ADAMS

### **LECTURE: 45 TUTORIAL : 15 TOTAL : 60 PERIODS**

OUT	COMES:	On completion of this course, students will be able to
1.	Calculate s	tatic and dynamic forces of mechanisms
2.	Calculate the	he balancing masses and their locations of reciprocating and rotating masses.
3.	Compute th	ne frequency of free vibration

4.	Compute the free	equency of forced vibration and damping coefficient.									
5.	Calculate the sp automobiles, shi	eed and lift of the governor and estimate the gyroscopic effect on ps and airplanes.									
TEX	T BOOKS:										
1.	Rattan, S.S, "T	heory of Machines", 3 rd Edition, Tata McGraw-Hill, 2009.									
2.	Uicker, J.J., Pennock G.R and Shigley, J.E., <b>"Theory of Machines and Mechanisms"</b> , 3 rd Edition, Oxford University Press, 2009.										
3.	Thomas Bevan, <b>"Theory of Machines"</b> , 3 rd Ed., CBS Publishers and Distributors, 2005										
<b>REF</b>	ERENCES:										
1.	Ghosh. A and M West Pvt. Ltd.,	Iallick, A.K., <b>"Theory of Mechanisms and Machines"</b> , Affiliated East- New Delhi, 1988.									
2.	V.Ramamurthi,	"Mechanics of Machines", Narosa Publishing House, 2002									
3.	Khurmi, R.S., "	Theory of Machines", 14th Edition, S Chand Publications, 2005.									
4.	Cleghorn. W. L	, "Mechanisms of Machines", 2 nd Edition, Oxford University Press, 2015									
5.	Robert L. Norto Hill, 2012.	on, "Kinematics and Dynamics of Machinery", 5 th Edition, Tata McGraw-									

MAPPING	MAPPING OF COs, POs AND PSOs:														
		POs											PSOs		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	2		1						1		3	2	
CO2	3	3	1		2						1		3	1	
CO3	3	3	2		1						1		3	3	
CO4	3	3	1		1						1		3	3	
CO5	3	3	2		3						1		3	3	1
Average	3.0	3.0	1.6		1.6						1.0		3.0	2.4	0.2
Round off	3	3	2		2						1		3	2	0
3- Strong Co	orrela	tion; 2	2 - Me	edium	Cori	relatio	on; 1 -	- Low	^v Corr	elatio	n				

201	<b>AD</b>	1607
<b>2</b> UN	IF U	/UU/

### FINITE ELEMENT ANALYSIS

										v	-	v	-
OBJE	CTIV	ES											
٠	То	make the	students t	o unders	stand the	e basics	concept	s of fini	te elen	ient ai	nalys	is.	
•	To pro	provide th plems.	nem in dej	pth know	wledge i	in approx	kimate n	nethods	in stru	ctural	mec	hani	ics
٠	То	understan	d one dim	nensiona	l finite e	element	analysis	with va	arious t	types of	of ele	me	nts.
•	To fini	get expos te elemen	ed to plan it analysis	e proble	ems in ei	ngineerii	ng analy	sis inclu	uding t	wo di	mens	sion	al
٠	То	understan	d the usag	ge of hig	ther orde	er eleme	nt in fin	ite elem	ent an	alysis.	•		
UNI	ΤΙ	INTRO	DUCT	ION									9+3
Historic refinem value p	cal back nent, co roblems	ground-b ivergence – simple	e requiren case stud	ept of F nents - g lies.	FEM – d gradient	discretiza and div	ation of ergence	1D, 2D theorem	) and 3 ms - b	3D Do ounda	omain ry ar	18, 1 1d i1	mesh nitial
UNIT II CHARACTERISTIC MATRICES AND LOAD VECTORS							9+3						
One dir variatio coordin	One dimensional governing equations - structural and heat transfer problems - variational method- variation calculus – weighted residual methods - Galerkin's method - Ritz method - generalized coordinate's approach - principle of minimization of potential energy - simple case studies.										hod- lized		
UNI	ΓIII	ONE D	DIMENS	SIONA	L PRO	OBLEN	AS						9+3
Derivat function walls a studies.	ion of s n charac and fins	hape func teristics - - Gauss	ctions, Stir - problems s eliminat	ffness m s in axia tion and	natrices a al load m l Choles	and force nembers, sky'smet	e vector , trusses thods o	rs - Asse , heat tr f solvir	embly ansfer ng equ	of Ma throug ations	trices gh co s-sim	3 - s omp ple	hape osite case
UNI	ΓΙ	TWO	DIMEN	SIONA	AL PR	OBLE	MS						9+3
Derivat matrice symme case stu	ion of es and f try. Stru udies.	shape fur orce vect ctural an	nctions fo tors-Pasca d heat tra	or CST a l's trian nsfer app	and LST ngle- co plication	T triang oncept of on -introd	ular and f plane luction t	l rectan stress a to coupl	gular and pla ed fiel	eleme ain str d anal	nts, rain lysis	Stiff and - si	fness axi- mple
UNI	ΤV	HIGH	ER ORI	DER EI	LEME	ENTS							9+3
Natural element element	co-oro ts – Or ts – Nur	inate system e and two nerical in	stems – vo dimens tegration	Isoparan sions – - Matrix	netric e Jacobia solution	elements an transf on technic	o – Sha Formatio que - sin	ape fun n - Ser nple cas	ctions endipi e studi	for i ty and ies.	isopa d La	ram gran	etric ngian
			LEC	TURE	: 45 T	<b>TUTOR</b>	RIAL :	15 TC	DTAL	:60	PEI	RIC	DDS
OUT	COME	S: On o	completio	n of this	course,	, students	s will be	e able to	1				
1.	Explain analyze	the basic the vario	s of finite out to solve a sol	element f problem	formulati is which	ion, outlir can be so	ne the red olved using	quiremer ng finite	nts for c elemer	convergent analy	gence ysis.	anc	1
2.	Explain weigh	the nume ed residu	erical methods	ods invol s to solve	lved in F e enginee	Finite Eler ering prob	ment ana olems.	lysis and	l apply	Raylei	igh-R	itz,	
3.	Apply	inite elem	ent formul	lations to	solve or	ne dimens	sional Pr	oblems,	derive	shape f	functi	ons	and

	analyze linear 1D problems like bars, trusses and heat transfer through composite walls and										
	fins.										
4.	Apply finite element formulations to solve two dimensional Problems and solve linear 2D structural and heat transfer problems.										
5.	Apply finite element method to solve problems using iso parametric element.										
TEX	T BOOKS:										
1.	Tirupathi R. Chandrupatla and Ashok D. Belegundu,"Introduction to Finite Element in Engineering", PearsonEducation ,2003										
2.	Reddy. J.N., <b>"An Introduction to the Finite Element Method"</b> , 3 rd Edition, Tata McGraw-Hill,2005										
3.	Seshu, P, <b>"Text Book of Finite Element Analysis"</b> , Prentice-Hall of India Pvt. Ltd., New Delhi,2007.										
REF	ERENCES:										
1.	BhattiAsghar M, " <b>Fundamental Finite Element Analysis and Applications</b> ", John Wiley &Sons,2005 (Indian Reprint 2013)										
2.	Larry J. Segerlind, "Applied Finite element Analysis", 2 nd Ed, John Wiley & Sons, 1987										
3.	David V.Hutton" <b>Fundamentals of finite element Analysis</b> " McGraw Hill Inc, Newyork, 2004.										
4.	Robert D. Cook, David S. Malkus, Michael E. Plesha, Robert J. Witt, "Concepts and										
	Applications of Finite Element Analysis", 4th Edition, Wiley Student Edition, 2002.										
5.	Singiresu.S.Rao, <b>"The Finite Element Method in Engineering"</b> , ButterWorth Heinemann, 2001.										

MAPPIN	MAPPING OF COs, POs AND PSOs:															
		POs												PSOs		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	3	2	1									3	3		
CO2	3	3	2	1									3	3		
CO3	3	3	2	1									3	3		
CO4	3	3	2	1									3	3		
CO5	3	3	2	1									3	3		
Average	3.0	3.0	2.0	1.0									3.0	3.0		
Round off	3	3	2	1									3	3		
3- Strong C	orrel	ation	; 2 - N	lediu	m Coi	rrelat	ion; 1	-Lo	w Coi	relati	on					

201	ЛДС	ነራበ2
<b>2</b> UI	IFU	<i>.</i> UUJ

### **ADDITIVE MANUFACTURING**

### **OBJECTIVES:**

•	To su as env	Immarize the principle, methods, areas of usage, possibilities and limitations as vironmental effects of the Additive Manufacturing technologies.	well							
٠	To ex	aplain the characteristics of the different materials those are used in Additive								
	Manufacturing.									
•	To su	To summarize the Liquid based and Solid based additive manufacturing technologies.								
•	To summarize other additive manufacturing technologies like 3D printer, ballistic particle method, Shape deposition modelling, Reverse engineering.									
•	To ex techn	To explain with the post processing and tooling methods of additive manufacturing technologies.								
UNI	ГΙ	INTRODUCTION	9							
Overvie develop	w – Hi ment-N	story – Need-Classification -Additive Manufacturing Technology in product Materials for Additive Manufacturing Technology – Tooling - Applications.								
UNIT II CAD & REVERSE ENGINEERING										
Basic C Manufa	oncept	– Digitization techniques – Model Reconstruction – Data Processing for Ad Technology: CAD model preparation – Part Orientation and support generation	ditive tion –							

Basic Concept – Digitization techniques – Model Reconstruction – Data Processing for Additive Manufacturing Technology: CAD model preparation – Part Orientation and support generation – Model Slicing –Tool path Generation – Software's for Additive Manufacturing Technology: MIMICS, MAGICS.

# UNIT III LIQUID BASED AND SOLID BASED ADDITIVE MANUFACTURING SYSTEMS

9

Classification – Liquid based system – Stereo-lithography Apparatus (SLA)- Principle, process, advantages and applications - Solid based system –Fused Deposition Modelling - Principle, Process, Advantages and Applications, Laminated Object Manufacturing.

## UNIT IV

# POWDER BASED ADDITIVE MANUFACTURING SYSTEMS

9

Selective Laser Sintering – Principles of SLS process - Process, advantages and applications, 3D Printing - Principle, process, advantages and applications- Laser Engineered Net Shaping (LENS), Electron Beam Melting.

### UNIT V MEDICAL AND BIO-ADDITIVE MANUFACTURING

9

Customized implants and prosthesis: Design and production - Bio-Additive Manufacturing-Computer Aided Tissue Engineering (CATE) – Case studies.

			TOTAL : 45 PERIODS
OUT	COMES:	On completion of this course, students will b	e able to
1.	Compare d Manufactu	lifferent additive manufacturing methods and ring technologies.	explain the effects of the Additive

2.	Explain the applications of CAD in tool path generation.										
3.	Compare liquid and solid based additive manufacturing systems and summarize advantages and applications										
4.	Explain powder based additive manufacturing systems.										
5.	Explain the medical and bio additive manufacturing systems.										
TEX	TEXT BOOKS:										
1.	Chua C.K., Leong K.F., and Lim C.S., <b>"Rapid prototyping: Principles and applications"</b> , 3 rd Edition, World Scientific Publishers, 2010.										
2.	Gebhardt A., "Rapid prototyping", Hanser Gardener Publications, 2003.										
3.	Steinar Westhrin Kill <b>"Additive Manufacturing: Design, Methods, and Processes",</b> Pan Stanford Publishing Pte.Ltd.2017.										
<b>REF</b>	ERENCES:										
1.	<i>Liou L.W. and Liou F.W., "Rapid Prototyping and Engineering applications: A tool box forprototype development", CRC Press, 2007.</i>										
2.	Kamrani A.K. and Nasr E.A., "Rapid Prototyping: Theory and practice", Springer, 2006.										
3.	Hilton P.D. and Jacobs P.F., "Rapid Tooling: Technologies and Industrial Applications", CRCpress, 2000.										
4.	Ian Gibson, David Rosen, Brent Stuck, "Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing", Springer, 2015.										
5.	AmitBandyopadhyay, Susmita Bose, "Additive Manufacturing", CRC Press, 2015.										

MAPPING OF COs, POs AND PSOs:																
	POs													PSOs		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	2	2										3	2		
CO2	3	2	2										3	2		
CO3	3	2	2										3	2		
CO4	3	2	2										3	2		
CO5	3	2	2										3	2		
Average	3.0	2.0	2.0										3.0	2.0		
Round off	3	2	2										3	2		
3- Strong Co	rrelat	ion; 2	2 - Me	dium	Corr	elatio	n; 1 –	Low	Corr	elatio	n		•		L	

### SIMULATION LABORATORY

 L
 T
 P
 C

 0
 0
 3
 1.5

### **OBJECTIVES**

•	To make the students to analyse various structural problems using CAE software's.
---	-----------------------------------------------------------------------------------

- To analyse various thermal and heat transfer problems using CAE software's.
- To solve simple problems using Mat lab, CFD and Multi body dynamics software's.

### LISTOFEXPERIMENTS:

#### A. SIMULATION

- 1. MATLAB basics, Dealing with matrices, Graphing-Functions of one variable and two variables.
- 2. Use of Mat lab to solve simple problems in vibration.
- 3. Mechanism Simulation using Multi body Dynamic software.

### **B. ANALYSIS**

- 1. Force and Stress analysis using link elements in Trusses, cables etc.
- 2. Stress and deflection analysis in beams with different support conditions.
- 3. Stress analysis of flat plates and simple shells.
- 4. Stress analysis of axi symmetric components.
- 5. Thermal stress and heat transfer analysis of plates.
- 6. Thermal stress analysis of cylindrical shells.
- 7. Vibration analysis of spring-mass systems.
- 8. Model analysis of Beams.
- 9. Harmonic, transient and spectrum analysis of simple systems.
- 10. Buckling analysis of column.
- 11. Coupled thermal and structural analysis.
- 12. Simple CFD analysis problems.

### TOTAL:45 PERIODS

- **OUTCOMES:** On completion of this course, students will be able to
- 1. Simulate simple engineering problems using MATLAB and perform mechanism simulation using Multi body Dynamic software.
- 2. Analyze the stresses and strains induced in plates, brackets, trusses, cylindrical shells, beams and simulate heat transfer problems using software tools.
- 3. Analyze the natural frequency and mode shapes of 2D components and beams and carry out simple flow problems using simulation and analysis software's.

### MAPPING OF COs, POs AND PSOs:

				PSOs											
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	3	2	3				2				3	3	
CO2	3	3	3	2	3				2				3	3	
CO3	3	3	3	2	3				2				3	3	
Average	3.0	3.0	3.0	2	3				2.0				3.0	3.0	
Round off	3	3	3	2	3				2				3	3	

**3-** Strong Correlation; **2 -** Medium Correlation; **1 –** Low Correlation

### DYNAMICS OF MACHINERY LABORATORY

### **OBJECTIVES**

- To perform experiments on governors and gyroscope systems and able to analyse its efficiencies.
  - To explain the principles of vibrating system and to determine the performance of a vibrating system.

### LIST OF EXPERIMENTS

### Part A

1. a) Study of gear parameters.

b) Experimental study of velocity ratios of simple, compound, Epicyclic and differential gear trains.

2. a)Kinematics of Four Bar, Slider Crank, Crank Rocker, Double crank, Double rocker, Oscillating cylinder Mechanisms.

- b) Kinematics of single and double universal joints.
- 3. a) Determination of Mass moment of inertia of Fly wheel and Axle system.
  - b) Determination of Mass Moment of Inertia of axisymmetric bodies using Turn Table apparatus.
- c) Determination of Mass Moment of Inertia using bifilar suspension and compound pendulum.
- 4. Motorized gyroscope Study of gyroscopic effect and couple.

5. Governor - Determination of range sensitivity, effort etc., for Watts, Porter, Proell, and Hartnell Governors.

6. Cams – Cam profile drawing, Motion curves and study of jump phenomenon

### Part B

1. Single degree of freedom Spring Mass System – Determination of natural

Frequency and verification of Laws of springs – Damping coefficient determination.

2. Determination of torsional natural frequency of single and Double Rotor systems.

3. Whirling of shafts – Determination of critical speeds of shafts with concentrated loads.

4. (a)Balancing of rotating masses. (b) Balancing of reciprocating masses.

### Part C (Experiments in Vibration Measurement Kit)

1. Modal of Simply Supported Beam

2. Modal of Cantilever Beam

3. Natural Frequency and Modal of Disc

4. Damping Ratio of Simply Supported Beam (half-power bandwidth method & Attenuation method)

5. Nature Frequency of Simple Supported Beam (Method of Sine Wave Sweeping)

- 6. Nature Frequency of Cantilever Beam (Method of Sine Wave Sweep)
- 7. Active & Passive Vibration Isolation

8. Vibration with Single & Double Absorber

9. Vibration with Oil Damper

10. Natural Frequency and Mode Shape of Two & Multi degree of Freedom String

### Part D

Modeling and Analysis of Basic Dynamic Systems using ADAMS tool (Min 2 Models)

			TOTAL: 45 PERIODS									
OUT	COMES:	On completion of this course, students wil	l be able to									
1.	Demonstrate the principles of kinematics of machinery.											
2.	Demonstrate t	he principles of dynamics of machinery.										
3.	Measure dynamic parameters using Vibration measurement kit and create model of dynamic Systems											

MAPPING OF COs, POs AND PSOs:																
						P	Os						PSOs			
	1 2 3 4 5 6 7 8 9 10 11 12														3	
CO1	CO1         3         2         3         1         1         2         3         3         1															
CO2	3	2	3		1		1				2		3	3	1	
CO3	3	1	3	3	1		1				2		3	3	1	
Average	3.0	1.7	3.0	1.0	1.0		1.0				2.0		3.0	3.0	1.0	
Round off	3	2	3	1	1		1				2		3	3	1	
3- Strong Correlation; 2 - Medium Correlation; 1 – Low Correlation																

20MHS610		SOFT SKILLS AND PERSONALITY DEVELOPMENT LABORATORY	L	T	P	С								
		(BE - MECH)	0	0	3	1.5								
OBJECTIV	<b>'ES</b>													
•	To	help the students to improve the listening, speaking, reading an	d wri	ting s	skills	•								
•	To	make them prepare for national and international examinations	and p	lacer	nent	s.								
•	To	help them to face the interviews and to improve soft skills.												
UNIT I	I	ISTENING AND SPEAKING SKILLS			9									
Conversationa listening/watcl	l sk hing (	ills (formal and informal)-making effective presentation debates, documentaries. Listening to lectures, discussions from	ns u TV/1	sing Radio	con o/ Po	nputers, dcast.								
UNIT II	F	READING AND WRITING SKILLS		-	9									
Reading differ Applications a advertisement	Reading different genres of tests ranging from newspapers to creative writing. Writing different types of Applications and complaints- Writing reviews – film appreciation- thesis writing –posture making different-magazine preparation													
UNIT III	F	ENGLISH FOR NATIONAL AND INTERNATIO EXAMINATIONS AND PLACEMENTS	NAI		9									
International E	Englis	sh Language Testing System (IELTS) - Test of English as a For	reign	Lang	uage	;								
(TOEFL) - Civ	vil Se	rvice (Language related)- Verbal Ability.												
UNIT IV	S	OFTSKILLS			9									
Motivation- er thinking.	notio	nal intelligence-Multiple intelligences career planning -creat	ive ar	nd cri	tical									
UNIT V	E	MPLOYABILITY AND CORPORATE SKILLS			9									
Interview skill Discussion lea – causes and e	s – T dersh ffect-	ypes of interview, preparation for interview, mock interview. C hip and co-ordination. Time management and effective planning stress relief techniques	Broup g- Str	ess m	nanag	gement								
OUTCO	)MF	S: On completion of this course, students will be	able t	0	<b>D</b> B									
1		Make presentations and participate in group discussions.												
2		Take international examinations such as IELTS and TOEFL.												
3		Successfully answer questions in interviews.												
4		Create postures, advertisements and magazine making which writing skills.	are t	ne pa	rts o	f								
5 Write film – appreciation, book review and Thesis writing which are the part of analytical thinking and creative writing														

MAPPING OF COs, POs AND PSOs:																		
	POs														PSOs			
	1 2 3 4 5 6 7 8 9 10 11 12												1	2	3			
CO1         1         1         3         3         3															3			
CO2					1		1	3	3						3			
CO3					1		1	3	3						3			
Average					1.0		1.0	3.0	3.0						3.0			
Round off					1		1	3	3						3			
3- Strong Correlation; 2 - Medium Correlation; 1 – Low Correlation																		

<b>20MPC</b>	701	AUTOMATION IN MANUFACTURING	L	Т	Р	С								
			3	0	0	3								
OBJEC	TIVES													
•	To unders	tand the importance of automation in the of field machine tool ba	ased											
	Manufacturing.													
•	To get the knowledge of various elements of hydraulic system and designing new hydraulic systems.													
•	To explor	e pneumatic systems and designing fluid power circuits												
•	To progra	m programmable logic controllers.												
•	To design	simple mechatronics systems.												
UNIT	I INTI	RODUCTION TO AUTOMATION				8								
Pasia ao	noonts of	automated system. Flamonts of Automation. Advanced auto	moto	d fu	motic	ma								

Basic concepts of automated system -Elements of Automation - Advanced automated functions -Levels of automation - Current trends - Advantages and Limitations of Automation -CAD, CAM, CIM - Rigid automation: Part handling, Machine tools - Flexible automation: Computer control of Machine Tools and Machining Centers -Adaptive Control, Automated Material handling - Flexible fixturing -Low Cost Automation – Assembly Automation.

## UNIT II HYDRAULIC SYSTEMS

Industrial Hydraulics: Principles of hydraulics, Hydraulic fluids, Filtration technology, Hydraulic pumps, Hydraulic valves, and hydraulic actuators, Proportional valves. Hydraulic Systems: Design considerations for hydraulic circuit, Standards in circuit diagram representation, Power pack design layout, Basic hydraulic circuits such as regenerative circuits, sequencing circuit, meter in and meter out circuit, Design of reservoir based on heat transfer considerations, Design of accumulators and intensifiers, Selection of standard components for hydraulic circuits.

# UNIT III

### PNEUMATIC SYSTEMS AND DESIGN OF FLUID POWER CIRCUITS

10

9

9

9

Operational principles and application of pneumatic systems, air compressors, Pneumatic cylinders and air motors, Pneumatic valves, Design of pneumatic circuits, hydro-pneumatic, Control in pneumatic system. Design of Fluid Power Circuit: Design method consideration for sequential circuits - intuitive circuit design method - cascade method - sequential logic circuit design using KV method - compound circuit design -step counter design.

## UNIT IV PROGRAMMABLE LOGIC CONTROLLERS

PLC Hardware- Electrical Design and Construction - Logical Sensors - Presence detection-Continuous Sensor-continuous actuators- PLC operation - Latches, Timers, Counters, Internal relays, Shift Registers, Master and Jump Controls, Analog Inputs and Outputs – PLC- programming-Programming Methods - Programming the PLC using Ladder diagram - Design Cases.

### UNIT V MECHATRONICS SYSTEM DESIGN

Introduction and components of mechatronics, sensors, and actuators. Mechanical & Electro mechanical Systems, Pneumatics and Hydraulics, Mechatronics in Engineering Design, Traditional and mechatronics design, Applications - Pick and Place robots, Car park barriers, Bar code reader, Wind screen wiper wing stepper motor control– Traffic Control interface - IOT applications – Industry

4.0.Case studies: Coin counters, Robot walking machine.																
											ΤΟ	ГAL	: 45	PER	RIOD	S
OU	TCOMES	: C	n con	pletio	on of t	his co	ourse,	studer	ıts wil	l be a	ble to					
1.	Get a comp	rehei	nsive	picture	e of co	omput	er bas	ed au	tomati	on of	manu	factur	ing op	oeratio	ns	
	Explain the	e key	eleme	nts of	autor	nation	l.									
2.	Explain the	e vari	ous el	ement	s of h	ydrau	lic sys	stems	and de	esigni	ng nev	v hydi	raulic	power	circu	its
3.	Design flui	d pov	ver ci	rcuits												
4.	develop programs for PLC using ladder logic.															
5.	Design the mechatronics systems for various applications.															
TE	TEXT BOOKS:															
1.	Mikell P. Groover, "Automation, Production Systems, and Computer-integrated															
	Manufacturing", Pearson Education, 5 th Edition, 2018.															
2.	. Brian Morris, "Automatic Manufacturing Systems Actuators, Controls and Sensors", McGraw Hill, New York, 1994.															
3.	. Hugh Jack,"Automating Manufacturing Systems with PLCs", Free Software Foundation, 2005.															
RE	REFERENCES:															
1.	. W. Bolton, "Mechatronics: Electronic Control Systems in Mechanical and Electrical Engineering", Pearson, 2011.															
2.	David W. F York, 1990	Pessei	n, <b>"In</b>	dustri	al Au	tomat	ion C	ircuit	Desig	n ana	l Comj	ponen	nts", J	ohn W	Viley, 1	Vew
3.	Rajput R. K	K., " <b>R</b>	loboti	cs and	l Indu	strial	Auto	matio	<b>n"</b> , S.	Chan	d and	Comp	pany, 2	2008.		
4.	Rohner. P, New York,	<b>"Aut</b> 1996	tomati	on wi	th Pro	ogram	mabl	e Logi	ic Con	ntrolle	ers", N	lacmi	llan /N	McGra	ıw Hil	l,
5.	Mujumdar	S.R.,	"Oil	Hydra	ulic S	System	s: Pri	inciple	es and	l Mair	ntenan	ice",.	Tata l	McGra	aw-Hi	11
	Education,	2002		<u> </u>												
MA	PPING OF	f CC	Ds, P	Us A	ND H	<b>2</b> 50s	•							1		
	F		-	6	-		P	Us	-	-	[				PSOs	
		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	CO1	2	2	1		2	1					1	2	3	2	
	CO2	2	2	1		2	1					1	2	3	2	
	CO3	2	2	1		2	1					1	2	3	2	
	CO4	2	2	1		2	1					1	2	3	2	
	CO5	2	2	1		2	1					1	2	3	2	
A	verage	2	2	1		2	1					1	2	3	2	
Ro	ound off	2	2	1		2	1					1	2	3	2	
3- St	rong Correl	ation	; 2 - 1	Aediu	m Co	rrelat	tion; 1	1 – Lo	w Co	rrela	tion	•	•	•		·

20MPC	702	DESIGN OF TRANSMISSION SYSTEMS	L	Т	P	С							
(Use of	PSG D	esign data book is permitted)	3	0	0	3							
OBJEC	TIVES	5											
•	To ma	ke the students to design the flexible elements of a transmission	on sys	tem.									
•	To des	sign clutch and brake system.											
•	To des	sign spur and helical gears of transmission system.											
•	To des	sign bevel and worm gears.											
•	To des	sign gear box for different applications.											
UNIT	I D	I DESIGN OF FLEXIBLE ELEMENTS											
Design of ropes and	n of Flat belts and pulleys - Selection of V belts and pulleys – Selection of hoisting wire and pulleys – Design of Transmission chains and Sprockets.												
UNIT	II F	RICTION CLUTCHES AND BRAKES				9							
Design of brakes – I	n of plate clutches – axial clutches-cone clutches - Band and Block brakes - external shoe – Internal expanding shoe brakes.												
UNIT	IT III   SPUR AND HELICAL GEARS   9												
Speed rat strength - strength a helical ge	tios and Factor of and wea ar termin	number of teeth-Force analysis -Tooth stresses - Dynamic of safety - Gear materials – Design of straight tooth spur & he r considerations – Pressure angle in the normal and transve nology - estimating the size of the pair of crossed-helical gears	c effe lical g erse p s.	cts – ears lane	- Fat base - cro	tigue d on ossed							
UNIT	IV B	EVEL AND WORM GEARS				9							
Straight b estimating Terminole the worm	bevel ge g the di ogy. The gear pai	ar: Tooth terminology, tooth forces and stresses, equivalent mensions of pair of straight bevel gears. Worm Gear: Men ermal Capacity, Materials-forces and stresses, efficiency, est fr.	t nun rits an imatir	nber id de ng th	of te emer le siz	eeth, its – ze of							
UNIT	V G	EAR BOX				9							
Geometrie mesh and	c progre constan	ssion - standard step ratio - ray diagram, kinematic layout - de t mesh gear box - introduction to planetary gear box.	sign o	f slic	ling								
		TOTAL	: 45 1	PER	lOI	DS							
OUTCO	<b>TCOMES:</b> On completion of this course, students will be able to												
1. I	Design various flexible elements of a machine.												
2. A	Apply the	e concept of clutch and brake in new design.											
3. I	Design sp	our and helical gears for various applications.											
4. I	Design B	evel and worm gears of a transmission system.											
5. I	Develop	and design gear box for various applications.											

TEX	T BOOKS:	
1.	Bhandari V.B, Co, 2017.	"Design of Machine Elements", Fourth Edition, Tata McGraw-Hill Book
2.	Shigley J.E and Tata McGraw-	d Mischke C. R., <b>"Mechanical Engineering Design"</b> , Eleventh Edition, Hill , 2020.
3.	Md. Jalaludeer edition, Anurad	n , " <b>Machine Design, Volume II, Design of Transmission Systems"</b> , 4th ha Publications, 2014.
REF	ERENCES:	
1.	Sundararajamo Chennai, 2018	porthy T. V. Shanmugam.N., <b>"Machine Design"</b> , Anuradha Publications,
2.	Orthwein W, "	Machine Component Design", Jaico Publishing Co, 2003.
3.	Merhyle F. Spo <b>Elements"</b> 8th	otts, Terry E. Shoup and Lee E. Hornberger, <b>"Design of Machine</b> Edition, Printice Hall, 2003.
4.	Alfred Hall, Ha BookCo.(Schai	alowenko, A and Laughlin, H., <b>"Machine Design"</b> , Tata McGraw-Hill um's Outline), 2010.
5.	Robert L. Norte education, 202	on, <b>"Machine design An integrated approach"</b> , Sixth edition , Pearson 0.

MAPPING OF COs, POs AND PSOs:																
						P	Os						PSOs			
	1 2 3 4 5 6 7 8 9 10 11 12 1														3	
CO1	3	3	3	2									3	2		
CO2	3 3 3 2 3 2															
CO3	3	3	3	2									3	2		
CO4	3	3	3	2									3	2		
CO5	3	3	3	2									3	2		
Average	3	3	3	2									3	2		
Round off	3	3	3	2									3	2		
3- Strong C	orrel	ation	; 2 - N	lediu	m Co	rrelat	ion; 1	-Lo	w Co	rrelati	ion					

20MP	C708		CAD/CAM AND MECHATRONICS LABORATORY	L	Т	Р	С
				0	0	4	2
OBJE	CTIVES	5					
•	To help the software.	he stud	ents to develop 2D and 3D models of machine elem	ents usin	g mo	delli	ng
•	To prepar	e CNC	part programming and to perform manufacturing in	n CNC m	achii	nes.	
•	To apply problems	the fur	damental principles of programmable controllers to	the solu	tion (	of pra	actical
LIST	OF EXP	PERIN	<b>IENTS</b>				
3D GE	EOMET	RIC I	AODELING				
1.Introd	luction of	3D Mo	delling software				
Creatio	on of 3D a	ssemb	y model of following machine elements using 3D	Modelli	ng so	oftwa	ıre
2. Plum	mer Block	K					
3. Screv	v Jack						
4. Univ	ersal Joint						
5. Stuff	ing box						
6. Conn	ecting rod	l					
MAN	UAL PA	RT P	ROGRAMMING				
(i) Part	Program	ming ·	CNC Machining Centre				
a) Linea	ar Cutting.						
b) Circu	ılar cutting	g.					
c) Cutte	er Radius (	Compe	nsation.				
(ii) Par	t Progran	nming	- CNC Turning Centre				
a) Straig	ght, Taper	and Ra	adius Turning.				
b) Threa	ad Cutting	5.					
c) Roug	h and Fin	ish Tur	ning Cycle.				
MECI	HATRO	NICS					
1. Stepp	per motor	interfac	e.				
2. Speed	d control o	of DC 1	notor.				
3. Mod	elling and	analys	is of basic hydraulic, pneumatic and electrical circu	its.			
4. PLC	control of	electro	-pneumatic and electro-hydraulic systems.				
			ТО	TAL:6	) PE	CRI	ODS
OU	ГСОМЕ	S:	On completion of this course, students will be able	to	_		
1.	Develop	o 2D ar	d 3D models using modelling software.				
2.	Prepare	CNC p	part programming and perform manufacturing in CN	IC machi	nes.		
3.	Apply the problem	he func 1s.	amental principles of programmable controllers to t	he soluti	on of	f prac	tical

MAPPIN	G OI	F CO	s, PC	)s Al	ND P	SOs:									
						P	Os							PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	2	2	3	1		2	2	1	1	1	2	2	1
CO2	3	2	2	2	2	1		2	2	1	1	1	2	2	1
CO3	3	2	2	2	2	1		2	2	1	1	1	2	2	1
Average	3	2	2	2	2.3	1		2	2	1	1	1	2	2	1
Round off	3	2	2	2	2	1		2	2	1	1	1	2	2	1
3- Strong C	orrel	ation;	; 2 - N	lediu	m Coi	relati	ion; 1	- Lo	w Co	rrelati	ion				

20MPI	PR709 PROJECT II L T P												
			0	0	6	3							
OBJE	CTIVI	ES											
•	To pro profes	ovide opportunity to explore a problem or issue of particular p sional interest.	erson	al or									
•	To ado directi	lress the problem or issue through focused study and applied non of a faculty member.	esea	rch u	nder t	he							
•	To syr progra	thesize and apply the knowledge and skills acquired in his/he m to real-world issues and problems.	r aca	demi	c								
•	To im	prove ability to think critically and creatively, to solve practic	al pro	oblen	ns,								
•	To ma	ke reasoned and ethical decisions, and to communicate effect	vely.										

It is intended to start the project work early in the seventh semester and carry out both design and fabrication of a mechanical device whose working can be demonstrated. The design is expected to be completed in the seventh semester and the fabrication and demonstration will be carried out in the eighth semester.

The students in a group of 3 to 4 works on a topic approved by the head of the department under the guidance of a faculty member and prepare a comprehensive project report after completing the work to the satisfaction of the supervisor. The progress of the project is evaluated based on a minimum of three reviews in that any one review will be conducted with external examiner.

The review committee may be constituted by the Head of the Department. A project report is required at the end of the semester. The project work is evaluated based on oral presentation and the project report jointly by external and internal examiners constituted by the Head of the Department.

						ТОТА	<b>L</b> :	90 PEI	RIOI	DS
OU'	<b>FCOMES:</b>	On comp	oletion	of this course	e, stude	nts will be ab	le to	)		
1	Identify the rea	ıl time Eng	gineer	ing problems i	in their	day to day li	fe.			
2	Apply the know	wledge and	d skill	s acquired in t	heir co	urses to a spe	cific	c problem	or iss	sue
3	Think critically issues and to fu	/ and creat	tively elopm	to address and ent.	l help s	olve these pro	ofess	sional or s	social	
4	Refine research communication	1 skills 1 skills.	and	demonstrate	their	proficiency	in	written	and	oral
5	Take on the ch and document	allenges o all aspects	f team s of de	work, prepare sign work.	a prese	entation in a j	profe	essional r	nanne	r,

# MAPPING OF COs, POs AND PSOs:

						PO	Os							PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	2	3	1	1	2	3	3	2	3	2	3	3	2
CO2	3	3	3	3	1	1	2	3	3	2	3	2	3	3	2
CO3	3	3	3	3	2	2	2	3	3	3	3	2	3	3	2
CO4	3	3	3	3	2	2	2	3	3	3	3	2	3	3	2
CO5	2	2	2	1	2	2	3	3	3	2	3	2	3	3	2
Average	2.8	2.8	2.6	2.6	1.6	1.6	2.2	3	3	2.4	3	2	3	3	2
Round off	3	3	3	3	2	2	2	3	3	2	3	2	3	3	2
3- Strong C	orrela	ation;	2 - M	[ediur	n Cor	relati	on; 1	– Lov	v Cor	relati	on				

20MPI	R808	PROJECT III	L	С						
			0	0	12	6				
OBJE	CTIVI	ES								
•	To pro profes	ovide opportunity to explore a problem or issue of particular p sional interest.	erson	al or						
•	To add directi	dress the problem or issue through focused study and applied 1 on of a faculty member.	esea	rch u	nder t	he				
•	To syr progra	nthesize and apply the knowledge and skills acquired in his/he im to real-world issues and problems.	r aca	demi	c					
•	To im	To improve ability to think critically and creatively, to solve practical problems,								
•	To make reasoned and ethical decisions, and to communicate effectively.									

It is intended t

start the project work

early in the seventh semester and carry out both design and fabrication of a mechanical device whose working can be demonstrated. The design is expected to be completed in the seventh semester and the fabrication and demonstration will be carried out in the eighth semester.

The students in a group of 3 to 4 works on a topic approved by the head of the department under the guidance of a faculty member and prepare a comprehensive project report after completing the work to the satisfaction of the supervisor. The progress of the project is evaluated based on a minimum of three reviews in that any one review will be conducted with external examiner.

The review committee may be constituted by the Head of the Department. A project report is required at the end of the semester. The project work is evaluated based on oral presentation and the project report jointly by external and internal examiners constituted by the Head of the Department.

						TOTAI	[]:1	180 PE	RIO	DS
OU'.	<b>FCOMES:</b>	On comp	oletion	of this course	e, studer	nts will be ab	le to	)		
1	Identify the rea	ıl time En	gineer	ing problems i	in their	day to day li	fe.			
2	Apply the know	wledge an	d skill	s acquired in t	heir cou	urses to a spe	cific	e problem	or iss	sue
3	Think critically issues and to fu	and creater and creater	tively elopm	to address and ent.	l help so	olve these pro	ofess	sional or s	social	
4	Refine research communication	n skills 1 skills.	and	demonstrate	their	proficiency	in	written	and	oral
5	Take on the ch and document	allenges o all aspects	of team s of de	work, prepare sign work.	a prese	entation in a j	prof	essional n	nanne	r,

MAPPIN	IG O	F CO	Ds, P	Os A	ND I	PSOs	s:								
						P	Os							PSOs	
	1	1     2     3     4     5     6     7     8     9     10     11     12       2     2     2     1     1     2     2     2     2     2												2	3
CO1	3	3	2	3	1	1	2	3	3	2	3	2	3	3	2
CO2	3	3	3	3	1	1	2	3	3	2	3	2	3	3	2
CO3	3	3	3	3	2	2	2	3	3	3	3	2	3	3	2
CO4	3	3	3	3	2	2	2	3	3	3	3	2	3	3	2
CO5	2	2	2	1	2	2	3	3	3	2	3	2	3	3	2
Average	2.8	2.8	2.6	2.6	1.6	1.6	2.2	3	3	2.4	3	2	3	3	2
Round off	3	3	3	3	2	2	2	3	3	2	3	2	3	3	2
3- Strong	Corre	elatior	<b>n; 2 -</b> ]	Mediu	ım Co	orrela	tion;	1 – Lo	ow Co	orrela	tion				

<b>20M</b>	PE001	INTERNAL COMBUSTION ENGINES	L	Т	Р	С
			3	0	0	3
OBJE	CTIVE	5:				
•	To mak Engines	e the students to understand the underlying principles of operat and components.	tion of	f diff	eren	t IC
•	To unde	rstand the working of engine auxiliary systems.				
•	To anal	vse the combustion aspects of SI Engines.				
•	To unde	rstand the combustion aspects of CI Engines.				
●	To prov	ide knowledge on pollutant formation, control, alternate fuel et	tc.			
UNI	TI S	PARK IGNITION ENGINES				9
Mono p combus Chambe	point and stion - No ers.	Multipoint injection – Gasoline Direct Injection – Ignition rmal and Abnormal combustion-Knock - Factors affecting kr	Syste nock	ems-l - Co	Stage mbu	es of stion
UNI	T II C	COMPRESSION IGNITION ENGINES				9
	المحمد المحمد	tion Systems - Stages of combustion – Knocking – Hactors	otto			
Diesel Direct a structur	and Indire	y penetration – Air motion - Introduction to Turbocharging.	behav	viour	kno z - S	бок – Spray
Diesel Direct a structur UNIT	and Indire and spra <b>FIII</b>	ollution Systems - Stages of combustion - Knocking - Factors of injection systems - Combustion chambers - Fuel Spray y penetration - Air motion - Introduction to Turbocharging.	behav	viour	$\frac{\text{kno}}{1 - S}$	Spray 9
Diesel Direct structur <b>UNI</b> Pollutar Smoke Catalyti Driving	ruel Injec and Indire re and spra <b>F III F</b> nt – Sourc and Partic ic Reduct g cycles. E	<ul> <li>action systems - Stages of combustion - Knocking - Factors of injection systems - Combustion chambers - Fuel Spray y penetration - Air motion - Introduction to Turbocharging.</li> <li>OLLUTANT FORMATION AND CONTROL</li> <li>es - Formation of Carbon Monoxide, Unburnt hydrocarbon, Culate matter - Methods of controlling Emissions - Catalytic con and Particulate Traps - Methods of measurement - Er GR - Lean burning.</li> </ul>	Dxide onver nissic	s of ters,	Nitro Sele	9 9 ogen, ctive and
Diesel Direct structur UNIT Pollutar Smoke Catalyti Driving UNIT	Fuel Inject       and Indire       re and spra <b>F III F III F</b> and Partic       ic Reduct       g cycles. E <b>F IV</b>	<ul> <li>And Systems - Stages of combustion - Knocking - Factors of injection systems - Combustion chambers - Fuel Spray y penetration - Air motion - Introduction to Turbocharging.</li> <li>OLLUTANT FORMATION AND CONTROL es - Formation of Carbon Monoxide, Unburnt hydrocarbon, Culate matter - Methods of controlling Emissions - Catalytic con and Particulate Traps - Methods of measurement - Er GR - Lean burning.</li> <li>LTERNATIVE FUELS</li> </ul>	Dxide onver missic	s of ters,	Nitro Sele	9 9 ogen, ctive and 9
Diesel Direct structur <b>UNI</b> Pollutan Smoke Catalyti Driving <b>UNI</b> Alcohol Propert	Fuel Inject         and Indire         re and spra <b>r</b> III <b>F</b> nt – Source         and Partice         ic Reduct         g cycles. E <b>r</b> IV       A         1, Hydroge         ies, Suitat	<ul> <li>action Systems - Stages of combustion - Knocking - Factors of injection systems - Combustion chambers - Fuel Spray y penetration - Air motion - Introduction to Turbocharging.</li> <li>OLLUTANT FORMATION AND CONTROL</li> <li>es - Formation of Carbon Monoxide, Unburnt hydrocarbon, Culate matter - Methods of controlling Emissions - Catalytic con and Particulate Traps - Methods of measurement - Er GR - Lean burning.</li> <li>LTERNATIVE FUELS</li> <li>en, Compressed Natural Gas, Liquefied Petroleum Gas and Bio ility, Merits and Demerits - Engine Modifications.</li> </ul>	Dxide onver missic	s of ters, on no	Nitro Sele	9 9 ogen, ctive and 9
Diesel Direct structur UNIT Pollutan Smoke Catalyti Driving UNIT Alcohol Properti	Fuel Inject       and Indire       re and spra <b>F III F IV A</b> 1, Hydroge       ies, Suitat <b>T V F</b>	<ul> <li>And Systems - Stages of combustion - Knocking - Factors of injection systems - Combustion chambers - Fuel Spray y penetration - Air motion - Introduction to Turbocharging.</li> <li>OLLUTANT FORMATION AND CONTROL</li> <li>es - Formation of Carbon Monoxide, Unburnt hydrocarbon, Culate matter - Methods of controlling Emissions - Catalytic con and Particulate Traps - Methods of measurement - Er GR - Lean burning.</li> <li>LTERNATIVE FUELS</li> <li>en, Compressed Natural Gas, Liquefied Petroleum Gas and Bio ility, Merits and Demerits - Engine Modifications.</li> <li>ECENT TRENDS</li> </ul>	Dxide onver missic	s of ters, on no	Nitro Sele	9 9 9 9 9 9 9 9 9
Diesel Direct structur UNIT Pollutan Smoke Catalyti Driving UNIT Alcohol Properti UNIT Air ass Geomet NOx ad	Fuel Inject         and Indire         re and spra <b>F III F nt</b> – Source         and Partice         ic Reduct         g cycles. E <b>F IV A</b> 1, Hydroge         ies, Suitat <b>T V F</b> sisted Co         try turboce         lsorbers - O	<ul> <li>action Systems - Stages of combustion - Knocking - Factors et injection systems - Combustion chambers - Fuel Spray y penetration - Air motion - Introduction to Turbocharging.</li> <li><b>OLLUTANT FORMATION AND CONTROL</b></li> <li>es - Formation of Carbon Monoxide, Unburnt hydrocarbon, Culate matter - Methods of controlling Emissions - Catalytic con and Particulate Traps - Methods of measurement - Er GR - Lean burning.</li> <li><b>LTERNATIVE FUELS</b></li> <li>en, Compressed Natural Gas, Liquefied Petroleum Gas and Bioility, Merits and Demerits - Engine Modifications.</li> <li><b>ECENT TRENDS</b></li> <li>mbustion, Homogeneous Charge Compression Ignition Enhargers - Common Rail Direct Injection Systems - Hybrid I Diboard Diagnostics.</li> </ul>	Dxide Oxide onver missic	s of ters, on no	Nitro Sele orms	9 9 9 9 9 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1
Diesel Direct structur UNIT Pollutan Smoke Catalyti Driving UNIT Alcohol Properti UNIT Air ass Geomet NOx ad	Fuel Inject         and Indire         re and spra <b>F III F IV A</b> 1, Hydrog         ies, Suitat <b>T V F</b> sisted Co         try turboc         lsorbers - O	<ul> <li>action Systems - Stages of combustion - Knocking - Factors set injection systems - Combustion chambers - Fuel Spray y penetration - Air motion - Introduction to Turbocharging.</li> <li><b>OLLUTANT FORMATION AND CONTROL</b></li> <li>es - Formation of Carbon Monoxide, Unburnt hydrocarbon, Culate matter - Methods of controlling Emissions - Catalytic control and Particulate Traps - Methods of measurement - Er GR - Lean burning.</li> <li><b>LTERNATIVE FUELS</b></li> <li>en, Compressed Natural Gas, Liquefied Petroleum Gas and Bio ility, Merits and Demerits - Engine Modifications.</li> <li><b>ECENT TRENDS</b></li> <li>mbustion, Homogeneous Charge Compression Ignition Enhargers - Common Rail Direct Injection Systems - Hybrid I Suboard Diagnostics.</li> </ul>	Dxide Oxide onver missic O Dies ngine: Electr 45 I	s of ters, on ne sel - s – tic V	Nitro Sele orms Var ehic	9 9 9 9 9 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1
Diesel Direct structur UNIT Pollutan Smoke Catalyti Driving UNIT Alcohol Properti UNIT Air ass Geomet NOx ad	Fuel Inject         and Indire         re and spra <b>F III F</b> nt – Source         and Partice         ic Reduct         g cycles. E <b>F IV A</b> 1, Hydroge         ies, Suitab <b>T V F</b> sisted Co         try turboce         lsorbers -C <b>COMES</b>	action Systems - Stages of combustion - Knocking - Factors         action systems - Combustion - Evel Spray         y penetration - Air motion - Introduction to Turbocharging.         OLLUTANT FORMATION AND CONTROL         es - Formation of Carbon Monoxide, Unburnt hydrocarbon, C         ulate matter - Methods of controlling Emissions - Catalytic con         on and Particulate Traps - Methods of measurement - Er         GR - Lean burning.         LTERNATIVE FUELS         en, Compressed Natural Gas, Liquefied Petroleum Gas and Bio         ility, Merits and Demerits - Engine Modifications.         ECENT TRENDS         mbustion, Homogeneous Charge Compression Ignition En         hargers - Common Rail Direct Injection Systems - Hybrid I         Onboard Diagnostics.         TOTAL :	Dxide onver missic Dies ngine: Electr 45 I	s of ters, on no sel -	Var ehic	9 9 9 9 9 9 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1
Diesel Direct structur UNIT Pollutan Smoke Catalyti Driving UNIT Alcoho Properti UNIT Air ass Geomet NOx ad OUTC 1.	Fuel Injectand Indirere and sprat <b>F IIIFnt</b> – Sourceand Particeic Reductg cycles. E <b>F IVA</b> l, Hydrogies, Suitat <b>T VF</b> sisted Cotry turboclsorbers -C <b>COMES</b> Analyse	action Systems - Stages of combustion - Knocking - Factors         action systems - Combustion chambers - Fuel Spray         y penetration - Air motion - Introduction to Turbocharging. <b>OLLUTANT FORMATION AND CONTROL</b> es - Formation of Carbon Monoxide, Unburnt hydrocarbon, C         ulate matter - Methods of controlling Emissions - Catalytic co         on and Particulate Traps - Methods of measurement - Er         GR - Lean burning. <b>LTERNATIVE FUELS</b> en, Compressed Natural Gas, Liquefied Petroleum Gas and Bio         ility, Merits and Demerits - Engine Modifications. <b>ECENT TRENDS</b> mbustion, Homogeneous Charge Compression Ignition En         hargers - Common Rail Direct Injection Systems - Hybrid I         Onboard Diagnostics. <b>TOTAL :</b> On completion of this course, students will be able to         the combustion characteristics of SI engine.	Dxide onver missic Dies ngine: Electr 45 I	s of ters, on no sel - s – tic V	kno - S Nitro Sele orms 	9 9 9 9 9 9 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1
Diesel Direct structur UNIT Pollutan Smoke Catalyti Driving UNIT Alcoho Propert UNIT Air ass Geomet NOx ad OUTC 1. 2.	Fuel Injectand Indirere and sprat <b>F IIIF</b> nt – Sourceand Particeic Reductg cycles. <b>F IVA</b> l, Hydrogies, Suitat <b>T VF</b> sisted Cotry turboclsorbers -C <b>COMES</b> AnalyseEvaluate	Initial Systems - Stages of combustion - Knocking - Factors         Initial Systems - Combustion - Introduction to Turbocharging.         OLLUTANT FORMATION AND CONTROL         es - Formation of Carbon Monoxide, Unburnt hydrocarbon, Culate matter - Methods of controlling Emissions - Catalytic control and Particulate Traps - Methods of measurement - Er         GR - Lean burning.         LTERNATIVE FUELS         en, Compressed Natural Gas, Liquefied Petroleum Gas and Bio         ility, Merits and Demerits - Engine Modifications.         ECENT TRENDS         mbustion, Homogeneous Charge Compression Ignition Enhargers - Common Rail Direct Injection Systems - Hybrid I         Onboard Diagnostics.         TOTAL :         On completion of this course, students will be able to         the combustion characteristics of SI engine.         the combustion characteristics of CI engine.	Dxide onver missic Dies ngine: Electr 45 I	s of ters, on no sel - s - ic V	Nitro Sele orms Var ehic	9 9 9 9 9 9 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1
Diesel Direct structur UNI Pollutan Smoke Catalyti Driving UNI Alcoho Propert UNI Air ass Geomet NOx ad OUTC 1. 2. 3.	Fuel Injectand Indirere and sprat <b>F IIIF</b> nt – Sourceand Particeic Reductg cycles. E <b>F IVA</b> 1, Hydrogeies, Suitat <b>T VF</b> sisted Cotry turbocelsorbers - CCOMESAnalyseEvaluateUnderstat	action Systems - Stages of combustion - Knocking - Factors         ct injection systems - Combustion chambers - Fuel Spray         y penetration - Air motion - Introduction to Turbocharging. <b>OLLUTANT FORMATION AND CONTROL</b> es - Formation of Carbon Monoxide, Unburnt hydrocarbon, C         ulate matter - Methods of controlling Emissions - Catalytic co         on and Particulate Traps - Methods of measurement - Er         GR - Lean burning. <b>LTERNATIVE FUELS</b> en, Compressed Natural Gas, Liquefied Petroleum Gas and Bio         ility, Merits and Demerits - Engine Modifications. <b>ECENT TRENDS</b> mbustion, Homogeneous Charge Compression Ignition En         hargers - Common Rail Direct Injection Systems - Hybrid I         On completion of this course, students will be able to         the combustion characteristics of SI engine.         the combustion characteristics of CI engine.         nd the sources of pollutants and methods of controlling emission	Dxide onver missic Dies Dies Electr 45 I	s of ters, on no sel -	Nitro Sele orms	9 9 9 9 9 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1

5.	Apply the lates	t technologies of engine system.
TEX	T BOOKS:	
1.	V Ganesan, Int Pvt. Ltd, 2017	ernal Combustion Engines (Fourth Edition)Tata McGraw-Hill Education
2.	Ramalingam. Publications, 2	K.K., <b>"Internal Combustion Engine Fundamentals",</b> Scitech 002
3.	S. S. Thipse, "I	Internal Combustion Engines", Jaico Publishing House, 2010.
REFI	ERENCES:	
1.	Mathur. R.B. a. 2007.	nd R.P. Sharma, "Internal Combustion Engines", DhanpatRai& Sons
2.	Duffy Smith, "A	Auto Fuel Systems", The Good Heart Willcox Company, Inc., 1987.
3.	Eric Chowenitz	z, "Automobile Electronics", SAE Publications, 1995
4.	H. N. Gupta, <b>"I</b> Learning Pvt. I	F <b>undamentals of Internal Combustion Engines",</b> 2 nd Edition, PHI Ltd. Delhi, 2013.
5.	Shyam K. Agra	wal "Internal Combustion Engines", newagepublishers, 2006.

MAPPIN	G OI	F CO	s, PC	)s Al	ND P	SOs									
						P	Os							PSOs	;
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	2									1	2	2	
CO2	3	2	2									1	2	2	
CO3	3	2	2									1	2	2	
CO4	3	2	2									1	2	2	
CO5	3	2	2									1	2	2	
Average	3	2	2									1	2	2	
Round off	3	2	2									1	2	2	
3- Strong C	orrel	ation;	2 - N	lediu	m Co	rrelat	ion; 1	- Lo	w Coi	rrelati	on	•		•	

20MI	PE002	MECHATRONICS SYSTEMS	L	Т	P	С					
			3	0	0	3					
OBJE	CTIVE	S:									
•	To impa mechati	art knowledge about the various elements and techniques involution on the systems.	ved in	l							
•	To unde	erstand the working of 8085 microprocessor and 8051 microcol	ntrolle	er.							
•	To prov	ide knowledge on programmable peripheral interface.									
•	To unde	erstand the working of programmable logic controller.									
•	To prov applicat	ide knowledge on actuators and to design mechatronic systems ion.	s for a	give	en						
UNI	ΓΙ Ι	NTRODUCTION				9					
Introduc Mechatr Transdu sensors Sensors	tion to onics – cers: Sta – Strain	Mechatronics – Systems – Concepts of Mechatronics app Emerging areas of Mechatronics – Classification of Mechatr ic and dynamic Characteristics of Sensor, Potentiometers – L' gauges – Eddy current sensor – Hall effect sensor – Temperat	oroach onics VDT - ure se	– ] – Ca ensor	Need nsors pacit s – I	for and ance jght					
UNI	T II 🗍	MICROPROCESSOR AND MICROCONTROLL	ER			9					
Introduc Timing	ction – An diagram	chitecture of 8085 – Pin Configuration – Addressing Modes – of 8085 –introduction to 8051, Arduino, Case studies.	Instru	ction	set,						
UNIT	'III   I	PROGRAMMABLE PERIPHERAL INTERFACE				9					
Introduc DAC in	ction – An terface, T	chitecture of 8255, Keyboard interfacing, LED display –interfa emperature Control – Stepper Motor Control – Traffic Control	acing, inter	AD face.	C an	d					
UNIT	'IV   F	ROGRAMMABLE LOGIC CONTROLLER				9					
Introduc Timers,	ction – Ba counters	sic structure – Input and output processing – Programming – N and internal relays – Data handling – Selection of PLC.	Anem	onic	8 —						
UNI	<b>Γ V</b> Α	<b>CTUATORS AND MECHATRONIC SYSTEM D</b>	DESI	GN		9					
Types of Disadva concepts System	of Steppe ntages. I s – Case – Autom	er and Servo motors – Construction – Working Principle Design process-stages of design process – Traditional and M studies of Mechatronics systems – Pick and place Robot – E atic car park barrier.	<ul> <li>Ad</li> <li>Iechat</li> <li>Ingine</li> </ul>	vant ronic Mai	ages cs de nage	and esign ment					
		TOTAL :	45 P	ER	ΙΟΓ	)S					
OUTC	OMES	: On completion of this course, students will be able to									
1.	Identify Compute technolo	the interdisciplinary applications of Electronics, Electrica er Systems for the Control of Mechanical, Electronic Sy gy.	l, Me ystems	echar 5 an	nical d se	and ensor					
2.	Discuss Modes o	the architecture of Microprocessor and Microcontroller, Pin Di f Microprocessor and Microcontroller.	agran	n, Ad	dres	sing					
3.	Elucidate Programmable Peripheral Interface, Architecture of 8255 PPI, and various device interfacing.										
-----	-------------------------------------------------------------------------------------------------------------------------------------------------------------	--	--	--	--	--	--	--	--	--	--
4.	Explain the architecture, programming and application of programmable logic controllers to problems and challenges in the areas of Mechatronic engineering.										
5.	Distinguish various Actuators and Mechatronics system using the knowledge and skills acquired through the course and also from the given case studies.										
TEX	BOOKS:										
1.	Bolton, "Mechatronics", Printice Hall, 2008.										
2.	Ramesh S Gaonkar, <b>"Microprocessor Architecture, Programming, and Applications</b> with the 8085", 5th Edition, Prentice Hall, 2008.										
3.	Bradley D.A, Dawson D, Buru N.C and Loader A.J, "Mechatronics", Chapman and Hall, 1993.										
REF	RENCES:										
1.	Michael B.Histand and Davis G.Alciatore, <b>"Introduction to Mechatronics and</b> Measurement systems", McGraw Hill International edition, 2007.										
2.	Smaili.A and Mrad.F , "Mechatronics Integrated Technologies for Intelligent Machines", Oxford University Press, 2007.										
3.	DevadasShetty and Richard A. Kolk, "Mechatronics Systems Design", PWS publishing company, 2007.										
4.	Krishna Kant, "Microprocessors & Microcontrollers", Prentice Hall of India, 2007.										
5.	Clarence W, de Silva, "Mechatronics" CRC Press, First Indian Re-print, 2013.										

MAPPIN	G OI	F CO	s, PC	Ds Al	ND P	SOs									
			PSOs												
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	2									1	2	2	
CO2	3	2	2									1	2	2	
CO3	3	2	2									1	2	2	
CO4	3	2	2									1	2	2	
CO5	3	2	2									1	2	2	
Average	3	2	2									1	2	2	
Round off	3	2	2									1	2	2	
3- Strong C	orrel	ation;	; 2 - N	lediu	m Co	rrelat	ion; 1	- Lo	w Co	rrelati	ion				

	PE003	MICROPROCESSORS IN AUTOMAT	TION	L	Т	Р	С
				3	0	0	3
OBJE	CTIVES	:					
•	To help	he students to understand the fundamentals of micro	processor	s.			
٠	To learn	various cycles and interfacing methods.					
٠	To get k	owledge on assembly language programming.					
•	To Fami	iarise different types of convertors and data commu	nication m	netho	ds.		
٠	To explo	re digital control techniques.					
UNI	TI F	UNDAMENTALS OF MICROPROCESS	ORS				9
Number Sequent Diagran	r Systems, tial logic o n, Registe	codes, digital electronics: Logic Gates, combination ircuits design: Counters, Shift registers. Introductions, ALU, Bus systems, Timing and control signals.	al circuits on to 8085	s desig 5 Fun	gn, F ctior	'lip-f nal B	lops, Block
UNI	Г II С	YCLES AND INTERFACING					9
Machine interfact	e cycles, i ing.	struction cycle and timing states, instruction timing	diagrams,	, Men	nory		
UNIT	Γ III A	SSEMBLY LANGUAGE PROGRAMMIN	NG				9
Address	sing mode						
Interrup	ots, Interrot ot controlle	s, Instruction set, simple programs in 8085; Con pt structure, Multiple Interrupt requests and the ;; Interfacing peripherals: Programmable peripheral	cept of Interface (	nterru ng, F (8255	ipt, 1 Progr ).	Need	l for nable
Interrup interrup <b>UNIT</b>	ots, Interro ot controlle Γ ΙV C	s, Instruction set, simple programs in 8085; Con pt structure, Multiple Interrupt requests and the r; Interfacing peripherals: Programmable peripheral ONVERTORS AND DATA COMMUNIC	acept of International Interface (	nterru ng, F (8255	ipt, 1 Progr ).	Need amm	l for hable 9
Interrup interrup UNIT Interfac segment advance	sing filled         ots, Interrest         ot controlle <b>Γ IV C</b> sing Anale         ts LED of         nication         ed features	s, Instruction set, simple programs in 8085; Con pt structure, Multiple Interrupt requests and the r; Interfacing peripherals: Programmable peripheral <b>ONVERTORS AND DATA COMMUNIC</b> g to Digital Converter & Digital to Analog co isplay systems, Stepper Motor Control, Data C 8251), Programmable Timers (8253); 8086/808	cept of I eir handlin interface ( <b>ATION</b> onverter, 1 communica 8 Microp	nterru ng, F (8255 Multi ation: proces	ipt, 2 Progr ). plexe Ser	Need amm ed s rial and	f for hable 9 even Data its
Interrup Interrup UNIT Interfac segment advance UNIT	ing     Internet       ot controlle     It       Ing     Anale       ts     LED       nication     It       ed     features       It     V	s, Instruction set, simple programs in 8085; Con pt structure, Multiple Interrupt requests and the r; Interfacing peripherals: Programmable peripheral <b>ONVERTORS AND DATA COMMUNIC</b> g to Digital Converter & Digital to Analog co isplay systems, Stepper Motor Control, Data C 8251), Programmable Timers (8253); 8086/808 <b>IGITAL CONTROL</b>	cept of I eir handlin interface ( <b>ATION</b> onverter, 1 communica 8 Microp	nterru ng, F (8255 Multi ation: proces	ipt, 2 Progr ). plexe Ser	Need amm ed s rial and	f for nable 9 even Data its 9
Interrup interrup UNIT Interfac segmen advance UNIT Introduc Transfo	sing filleots, Interrestot controlle $\Gamma$ IV $\Gamma$ IV $\Gamma$ IV $\Gamma$ IV $\Gamma$ C $\Gamma$ IV	s, Instruction set, simple programs in 8085; Con pt structure, Multiple Interrupt requests and the r; Interfacing peripherals: Programmable peripheral <b>ONVERTORS AND DATA COMMUNIC</b> g to Digital Converter & Digital to Analog co isplay systems, Stepper Motor Control, Data C 8251), Programmable Timers (8253); 8086/808 <b>IGITAL CONTROL</b> gital Control: Sampling theorem, Signal conversion Filters, Implementation of Digital Algorithm.	and Proce	nterru ng, F (8255 Multi ation: proces	plexo ssor	Need amm ed s rial and	f for nable 9 even Data its 9
Interrup interrup UNIT Interfac segment commun advance UNIT Introduc Transfo	sing filledots, Interrestot controlled $\Gamma$ IV $\Gamma$ IV $\Gamma$ IV $\Gamma$ C $\Gamma$ C $\Gamma$ C $\Gamma$ V $\Gamma$ V $\Gamma$ D $\Gamma$ C $\Gamma$ D $\Gamma$ C $\Gamma$ D $\Gamma$	s, Instruction set, simple programs in 8085; Con pt structure, Multiple Interrupt requests and the r; Interfacing peripherals: Programmable peripheral <b>ONVERTORS AND DATA COMMUNIC</b> g to Digital Converter & Digital to Analog co isplay systems, Stepper Motor Control, Data C 8251), Programmable Timers (8253); 8086/808 <b>IGITAL CONTROL</b> gital Control: Sampling theorem, Signal conversion Filters, Implementation of Digital Algorithm.	and Proce	nterrung, F (8255 Multi ation: proces ssing 45 P	plexo ssor	Need amm ed s rial and	l for nable 9 even Data its 9
Interrup UNIT Interfac segment commun advance UNIT Introduc Transfo	sing filledots, Interrestot controlled $\Gamma$ IV $\Gamma$ IV<	s, Instruction set, simple programs in 8085; Con pt structure, Multiple Interrupt requests and the r; Interfacing peripherals: Programmable peripheral <b>ONVERTORS AND DATA COMMUNIC</b> g to Digital Converter & Digital to Analog co isplay systems, Stepper Motor Control, Data C 8251), Programmable Timers (8253); 8086/808 <b>IGITAL CONTROL</b> gital Control: Sampling theorem, Signal conversion Filters, Implementation of Digital Algorithm. To On completion of this course, students will be able	and Proce OTAL: e to	nterrung, F (8255 Multi ation: proces sssing 45 P	plexe ssor , Z	Need amm ed s rial and	l for nable 9 even Data its 9
Interrup UNIT Interfac segment commun advance UNIT Introduc Transfo 0UTC 1.	singinductionots,Internationot controlled $\Gamma$ IVCcingAnaletsLEDicationdedfeatures $\Gamma$ VDction to Diorm, DigitaCOMES:Understa	s, Instruction set, simple programs in 8085; Con pt structure, Multiple Interrupt requests and the r; Interfacing peripherals: Programmable peripheral <b>ONVERTORS AND DATA COMMUNIC</b> g to Digital Converter & Digital to Analog co isplay systems, Stepper Motor Control, Data C 8251), Programmable Timers (8253); 8086/808 <b>IGITAL CONTROL</b> gital Control: Sampling theorem, Signal conversion Filters, Implementation of Digital Algorithm. TO On completion of this course, students will be able d the fundamentals of microprocessors.	and Proce OTAL: e to	nterrung, F (8255 Multi ation: proces ssing 45 P	plexo ssor	Need amm ed s rial and	l for nable 9 even Data its 9
Interrup UNIT Interfac segment commun advance UNIT Introduc Transfo OUTC 1. 2.	Sing filledots, Interrestot controlled $\Gamma$ IV $\Gamma$ IV<	s, Instruction set, simple programs in 8085; Con pt structure, Multiple Interrupt requests and the r; Interfacing peripherals: Programmable peripheral <b>ONVERTORS AND DATA COMMUNIC</b> g to Digital Converter & Digital to Analog co isplay systems, Stepper Motor Control, Data C 8251), Programmable Timers (8253); 8086/808 <b>IGITAL CONTROL</b> gital Control: Sampling theorem, Signal conversion Filters, Implementation of Digital Algorithm. TO On completion of this course, students will be able d the fundamentals of microprocessors. arious cycles and interfacing methods.	and Proce OTAL: e to	nterrung, F (8255 Multi ation: proces ssing 45 P	plexo ssor	Need amm ed s rial and	l for nable 9 even Data its 9 S
Interrup Interrup UNIT Interfac segment commun advance UNIT Introduc Transfo OUTC 1. 2. 3.	Sing filledots, Interrestot controlled $\Gamma$ IV $\Gamma$ IV<	s, Instruction set, simple programs in 8085; Con pt structure, Multiple Interrupt requests and the r; Interfacing peripherals: Programmable peripheral <b>ONVERTORS AND DATA COMMUNIC</b> g to Digital Converter & Digital to Analog co isplay systems, Stepper Motor Control, Data C 8251), Programmable Timers (8253); 8086/808 <b>IGITAL CONTROL</b> gital Control: Sampling theorem, Signal conversion Filters, Implementation of Digital Algorithm. TO On completion of this course, students will be able d the fundamentals of microprocessors. arious cycles and interfacing methods. ssembly language programming.	and Proce OTAL: e to	nterrung, F (8255 Multiation: proces ssing 45 P	plexo ssor	Need amm ed s rial and	l for nable 9 even Data its 9 S
Interrup interrup UNIT Interfac segment commun advance UNIT Introduc Transfo 0UTC 1. 2. 3. 4.	sing filledots, Interrestot controlled $\Gamma$ IV $\Gamma$ IV<	s, Instruction set, simple programs in 8085; Con pt structure, Multiple Interrupt requests and the r; Interfacing peripherals: Programmable peripheral <b>ONVERTORS AND DATA COMMUNIC</b> g to Digital Converter & Digital to Analog co isplay systems, Stepper Motor Control, Data C 8251), Programmable Timers (8253); 8086/808 <b>IGITAL CONTROL</b> gital Control: Sampling theorem, Signal conversion Filters, Implementation of Digital Algorithm. <b>TO</b> On completion of this course, students will be able d the fundamentals of microprocessors. arious cycles and interfacing methods. ssembly language programming. Eferent types of convertors and data communication	and Proce OTAL: e to methods.	nterrung, F (8255 Multiation: proces ssing 45 P	plexo ssor	Need amm ed s rial and	l for nable 9 even Data its 9

TEX	T BOOKS:	
1.	Nagoorkani, "N Hill Educatinp	MICROPROCESSORS & MICROCONTROLLERS", Tata McGraw vt.Ltd. 2012.
2.	Godse A. P., "1 (2016)	Microprocessors & Microcontrollers", TECHNICAL PUBLICATION
3.	A K Guptha, "2013.	Industrial Automation and Robotics", Laxmi Publications-New Delhi,
4.	Bradley D.A, I 1993.	Dawson D, Buru N.C and Loader A.J, "Mechatronics", Chapman and Hall,
REF	ERENCES:	
1.	Michael B.Hist <b>Measurement</b>	tand and Davis G.Alciatore, <b>"Introduction to Mechatronics and</b> <b>systems"</b> , McGraw Hill International edition, 2007.
2.	DevadasShetty company, 2007	and Richard A. Kolk, <b>"Mechatronics Systems Design"</b> , PWS publishing 7.
3.	Krishna Kant,	"Microprocessors & Microcontrollers", Prentice Hall of India, 2013
4.	S. G. Tzafe Control",Sprin	estas, "Microprocessors in Signal Processing, Measurement and ager, 2011.
5.	John Crisp, <b>"In</b>	troduction to Microprocessors and Microcontrollers", Elsevier, 2004

MAPPIN	G OI	F CO	s, PO	)s Al	ND P	SOs:									
		POs													
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	2									1	2	2	
CO2	3	2	2									1	2	2	
CO3	3	2	2									1	2	2	
CO4	3	2	2									1	2	2	
CO5	3	2	2									1	2	2	
Average	3	2	2									1	2	2	
Round off	3	2	2									1	2	2	
3- Strong C	orrel	ation;	; 2 - N	lediu	m Coi	rrelati	ion; 1	- Lo	w Coi	rrelati	on				

#### PROCESSING OF COMPOSITE MATERIALS

#### **OBJECTIVES:**

•	To make the students to understand different processing methods and various types of
	composites.

- To get knowledge on processing of polymer matrix composites.
- To explore various types of metal matrix composites and their processing techniques.
- To familiarise ceramic matrix composites and special composites.
- To study the mechanics used to analyse the composites.

## UNIT I INTRODUCTION TO COMPOSITES

9

9

9

9

Fundamentals of composites – need for composites – enhancement of properties – classification of composites – Matrix-Polymer matrix composites (PMC), Metal matrix composites (MMC), Ceramic matrix composites (CMC) – Reinforcement – particle reinforced composites, Fibre reinforced composites. Applications of various types of composites. Fibber production techniques for glass, carbon and ceramic fibres. Introduction to Nano composites.

### UNIT II POLYMER MATRIX COMPOSITES

Polymer resins – thermosetting resins, thermoplastic resins – reinforcement fibres – rovings – woven fabrics – non woven random mats – various types of fibres. PMC processes – hand layup processes – spray up processes – compression moulding – reinforced reaction injection moulding – resin transfer moulding – Pultrusion – Filament winding – Injection moulding. Fibre reinforced plastics (FRP), Glass Fibre Reinforced Plastics (GFRP). Laminates- Balanced Laminates, Symmetric Laminates, Angle Ply Laminates, Cross Ply Laminates.-applications of PMC in aerospace, automotive industries.

# UNIT III METAL MATRIX COMPOSITES

Characteristics of MMC, various types of metal matrix composites, alloy vs. MMC, advantages of MMC, limitations of MMC, Reinforcements – particles – fibres. Effect of reinforcement – volume fraction – rule of mixtures. Processing of MMC – powder metallurgy process – diffusion bonding – stir casting – squeeze casting, a spray process, Liquid infiltration In-situ reactions-Interface-measurement of interface properties- applications of MMC in aerospace, automotive industries.

# UNIT IV CERAMIC MATRIX COMPOSITES AND SPECIAL COMPOSITES

Engineering ceramic materials – properties – advantages – limitations – monolithic ceramics – need for CMC – ceramic matrix – various types of ceramic matrix composites- oxide ceramics – non oxide ceramics – aluminium oxide – silicon nitride – reinforcements – particles- fibres-whiskers. Sintering – Hot pressing – Cold isostatic pressing (CIPing) – Hot isostatic pressing (HIPing). Applications of CMC in aerospace, automotive industries- Carbon /carbon composites – advantages of carbon matrix – limitations of carbon matrix carbon fibre – chemical vapour deposition of carbon on carbon fibre perform. Sol-gel technique- Processing of Ceramic Matrix composites.

UNI	ΤV	MEC	HANICS OF COMPOSITES		9
Lamina Hooke' Stiffnes Basic A Interact Lamina Quasi I	Consti s Law. I ss matrix Assumpti tions, B ttes. Lar sotropic	tutive H Reduction (Qij), ions of alanced ninate S Lamina	Equations: Lamina Assumptions – Macron to Homogeneous Orthotropic Lamina – Definition of stress and Moment Resultan Laminated anisotropic plates. Laminate C Laminates, Symmetric Laminates, Ar Structural Moduli. Evaluation of Lamina stresses with	roscopic Viewpoint. Gener - Isotropic limit case, Orthouts. Strain Displacement relations - Constitutive Equations - Congle Ply Laminates, Cross Properties from Laminate nin Laminates.	alized tropic ations. upling s Ply Tests.
				TOTAL : 45 PERIO	DS
OUT	COME	S: On	completion of this course, students will be	e able to	
1.	Unders limitati	stand dif	ferent techniques to process different types each process.	s of composites and know th	ne
2.	Learn t	he proc	essing techniques of polymer matrix comp	osites.	
3.	Unders	stand va	rious types of metal matrix composites and	l their processing technique	5.
4.	Get kno compo	owledge sites.	on processing techniques of ceramic matr	rix composites and special	
5.	Use of Lamina	Mathen ates.	natical techniques to predict the macroscop	pic properties of different	
TEX	T BOC	)KS:			
1.	M. Bal May 20	asubran 017).	nanian, "Composite Materials and Proce	ssing", CRC Press; 1 editio	n (16
2.	Chawla	a K. K.,	"Composite materials", Second Edition,	Springer – Verlag, 1998.	
3.	Mathey 1st Edi	ws F. L. tion, Ch	and Rawlings R. D., <b>"Composite Materi</b> apman and Hall, London, England, 1994.	als: Engineering and Scien	ıce",
REF	EREN	CES:			
1.	G. Piat (1978).	ti, "Adv	ances in composite materials", Applied	Science Publishers Ltd., Lo	ndon,
2.	Autar I Editior	K. Kaw, edition	<b>"Mechanics of Composite Materials",</b> 7 (2006).	Faylor & Francis- india; Sec	ond
3.	Sriniva	isan K.,	"Composite Material : Production Prop	erties Testing", Narosa (20	)09).
4.	V.V. V Elsevie	asiliev a er Sciene	and E.V. Morozov, <b>"Mechanics and Ana</b> l ce Ltd, (2001).	lysis of Composite Materia	ıls",
5.	K.K. C (1993).	'hawala,	"Ceramic matrix composites", Chapma	n & Hall, London, 1st ed.,	

MAPPIN	G OI	F CO	s, PO	)s Al	ND P	SOs:	:								
	POs														5
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	2									1	2	2	
CO2	3	2	2									1	2	2	
CO3	3	2	2									1	2	2	
CO4	3	2	2									1	2	2	
CO5	3	2	2									1	2	2	
Average	3	2	2									1	2	2	
Round off	3	2	2									1	2	2	
3- Strong C	orrel	ation;	; 2 - N	lediu	m Co	rrelat	ion; 1	- Lo	w Coi	relati	on	•	•	•	

20M	PE005			CON	MPU	UTE	ER A	AI	DEI	DES	SIG	N		L	T	P	С
		•												3	0	0	3
OBJE	CTIVE	S:													•		
٠	To m	ake the	e stude	ents to	o unc	dersta	tand f	fun	dame	entals	of co	mput	er grap	phics.			
٠	To ga	in kno	owledg	ge on g	geon	metric	ic mo	odel	lling	techni	ques	5.					
٠	To le	arn var	rious v	visual	reali	lism to	techr	niqu	ues a	nd alg	orith	ms.					
•	To fa	miliari	rise ass	embly	y mo	odelli	ling.										
•	To ur	ndersta	and var	rious c	cad s	stand	dards	s.									
UNI	TII	TUND	DAM	ENT	AL	S O	OF C	COI	MPU	JTE	R G	RAP	HICS	5			9
Product CAD sy homoge	cycle- D vstem arcl eneous co	esign p nitectur ordinat	proces ure- Co ates - L	s- seq mpute ine dr	quent ter gr rawii	tial an raphio ing -C	and co nics – Clipp	conc - co- ping	curren -ordin g- vie	nt enginate sy wing	ineen ysten trans	ring- ( ns- 2I sform	Compu D and 3 ation.	iter aid 3D tran	ed de sforr	esign natio	– ns
UNI	Г II 🛛	GEON	MET	RIC	MC	ODE	ELL	LIN	IG								9
Represe Technic surfaces	entation ques for s s. Solid m	of cur urface odelin	rves- e mode ng tech	Herm ling – inique	nite – sur es- C	curv rface	rve- e patc and H	Be ch- ( B-re	coon coon ep.	curve s and	- B bicu	-splir bic p	atches	ves-rat - Bezie	r anc	l cu	rves- pline
UNIT		<b>VISU</b>	AL R	REAL	LISI	M											9
Hidden	- Line-S	urface-	-Solid	remov	oval a	algori	rithm	ns –	- shad	ing –	colo	uring	- com	puter a	nima	tion.	
UNIT	IV A	ASSE	EMBI	YO	<b>F</b> P	PAR	RTS										9
Assemb property	oly model y calculat	ling – : ions –	interfe mech	erence anism	es of 1 sim	f posit nulatio	itions ion a	is an and i	nd ori inter	entation ference	on – e che	tolera ecking	ance ar g.	nalysis	mass	8	
UNI	ΓV	CAD S	STA	NDA	RD	<b>S</b>											9
Standar images- commu	ds for con Open Granication s	nputer aphics tandar	r grapł 5 Libra rds.	nics- C ry (Op	Grapl penG	ohical GL) -	al Ker - Data	ernel ta ez	l Syst xchai	em (C nge sta	GKS) andai	) - sta rds - 1	ndards GES, S	for exe STEP,	chang CAL	ge Setc	
												TC	<b>)TAL</b>	.:45	PEF	RIO	DS
OUTO	COMES	: On	n comp	oletion	n of t	this c	cours	se, s	stude	nts wi	ll be	able	to				
1.	Underst	and fur	ndame	entals o	com	nputer	er gra	aphi	ics.								
2.	Apply v	arious	geom	etric n	mode	elling	g tecl	chni	ques.								
3.	Learn vi	sual re	ealism	techni	nique	es and	nd hid	ddeı	n line	e, surfa	ace a	nd so	lid ren	noval a	lgori	thms	•
4.	Underst	and ass	sembly	y mod	lellin	ng tec	echnic	ique	es and	l tolera	ance	analy	vsis.				
5.	Explore	variou	us cad	standa	ards.	•											
TEX	T BOO	KS:															

1.	Zeid Ibrahim, "CAD/CAM Theory and Practices", 2 nd Edition, McGraw Hill International Edition, 2009.
2.	P. Radhakrishnan and S. Subramanyan, Raju. V., "CAD/CAM/CIM" New Age International(P) Ltd, New Delhi – 2002.
3.	Mikell P. Groover, Emory W. Zimmers, Jr. "CAD/CAM", 5 th Impression Pearson Education, New Delhi, 2008.
REFI	ERENCES:
1.	William M Neumann and Robert F.Sproul" <b>Principles of Computer Graphics",</b> McGraw HillBook Co. Singapore, 1989.
2.	Chris McMahon and Jimmie Browne "CAD/CAM Principles", "Practice and Manufacturing management "Second Edition, Pearson Education, 1999.
3.	David Bedworth, <b>"Computer Integrated Design and Manufacturing"</b> , TMH, New Delhi, 1998
4.	Foley, Wan Dam, Feiner and Hughes - "Computer graphics principles & practice" Pearson Education - 2003.
5.	Donald Hearn and M. Pauline Baker, "Computer Graphics", Prentice Hall Inc., 2002.

			PSOs												
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	2									1	2	2	
CO2	3	2	2									1	2	2	
CO3	3	2	2									1	2	2	
CO4	3	2	2									1	2	2	
CO5	3	2	2									1	2	2	
Average	3	2	2									1	2	2	
Round off	3	2	2									1	2	2	

20MPE0	06		<b>OPERATIONS RESEARCH</b>	L	Т	Р	С						
				3	0	0	3						
OBJECT	IVES:												
•	Top	orov	vide students the knowledge of optimization techniques and a	pproa	ches	•							
•	То е	enat	ble them to understand the various transportation and network	mod	els.								
•	Τοι	unde	erstand the different Inventory models.										
•	To s	stud	y the various queueing models and its applications.										
•	Τοι	unde	erstand the different decision models and apply them for optim	mizat	ion.								
UNIT	Ι	LI	NEAR MODELS				9						
Introduction method – Si	oduction to Operations Research – Linear Programming - Mathematical Formulation – Graphical nod – Simplex method – Duality – Two Phase Simplex method .												
UNIT	II TRANSPORTATION AND NETWORK MODELS												
Transportati – Minimal s Critical path	Transportation Assignment Models – Traveling Salesman problem - Network models – Shortest route – Minimal spanning tree – Maximum flow models – Project network – CPM and PERT networks – Critical path scheduling.												
UNIT I	II	IN	VENTORY MODELS				9						
Inventory m models – St	odels – ochastic	Va Inv	rious Costs and Concepts – EOQ – Deterministic inventory n ventory models – Buffer stock.	nodel	s – P	rodu	ction						
UNIT I	[V	QU	JEUEING MODELS				9						
Queueing m server mode Simulation -	nodels - els – Po – Seque	Qu Disso ncii	eueing systems and structures – Notation parameter – Singlon input – Exponential service – Constant rate service – Ir ng models.	e ser finite	ver a e pop	nd n oulat	nulti- ion –						
UNIT	V	DF	ECISION MODELS				9						
Decision m solution– L Economic li	odels – inear P fe – Sin	- Ga rog ngle	ame theory – Two person zero sum games – Graphical s ramming solution – Replacement models – Models based / Multi variable search technique.	soluti l on	on- servi	Alge ice 1	braic ife –						
			TOTAL	: 45	PE	RIC	DDS						
OUTCO	<b>MES</b> :	:	On completion of this course, students will be able to										
1.	Interpr	et th	ne concepts of Linear programming techniques.										
2.	Apply	the	concept of CPM, PERT and sequencing models for engineeri	ng pr	oble	ms.							
3.	Explain	n th	e concept of different Inventory models and its applications in	n eng	ineer	ing.							
4.	Apply	the	concept of queueing models for different problems.										
5.	Analyze various decision models and apply for various applications.												

TEXT B	OOKS:	
1.	Sharma, S	. D. " <b>Operations Research</b> ", 2 nd Ed., kedarNath Ram Nath& Co. Meerut, 1998.
2.	P. K. Gup Solutions	ta, D. S. Hira, <b>"Problems in Operations Research (Principles and</b> )", S. Chand & Co. Ltd., 2003.
3.	TahaHan	ndy A., "Operations Research", 8 th Ed., Prentice Hall of India Pvt. Ltd., 2007.
REFERI	ENCES:	
1.	DharaniV Edition, K	enkatakrishnan. S. <b>"Operations Research" (Principles and Problems)</b> , 5 th Teerthi Publishing House Pvt. Ltd., 1996.
2.	Don. T. Pl John Wile	hillips, Ravindren, A and James Solberg <b>," Operations Research"</b> , 2 nd Edition, y & Sons, 1987.
3.	Hillier and	d Libeberman, "Operations Research", Holden Day, 1986
4.	Budnick F Irwin, 199	T. S., <b>"Principles of Operations Research for Management"</b> , 2 nd Richard D 00.
5.	Panneerse	elvam. K, "Operation Research", 2 nd Edition, Prentice Hall of India, 2006.

MAPPIN	MAPPING OF COs, POs AND PSOs:														
				PSOs											
	1	1     2     3     4     5     6     7     8     9     10     11     12										1	2	3	
CO1	3	2	2								2	1	2	2	
CO2	3	2	2								2	1	2	2	
CO3	3	2	2								2	1	2	2	
CO4	3	2	2								2	1	2	2	
CO5	3	2	2								2	1	2	2	
Average	3	2	2								2	1	2	2	
Round off	3	2	2								2	1	2	2	
3- Strong C	orrel	ation;	2 - N	lediu	m Co	rrelat	ion; 1	- Lov	w Coi	rrelati	on		•		

20M	PE007	THEORY OF METAL CUTTI	NG	L	Т	Р	С					
				3	0	0	3					
OBJE	CTIVES	5:										
•	To make	e the students to understand the concept and basic	c mechanics o	f meta	al cu	tting	3.					
•	To unde	rstand the nomenclature of standard machine too	ols.									
•	To unde	rstand the various thermal aspects of cutting fluid	ds.									
•	To analy	vse the cutting tool materials, tool life and tool w	ear.									
•	To desig	in the cutting tools.										
UNI	TI 0	RTHOGONAL CUTTING					9					
breaker Mercha model -	ction - Ma s - Expres nt Upper l Stress and	sion for Shear plane angle - Cutting force and sound solution - Lee and Shaffer Lower bound s d Strain in the chip - Energy consideration in ma	velocity relation - type velocity relation solution - Oxle chining.	oes of ionshi ey's th	p - 1	ps - Erns near	t and zone					
UNI	ΓΠ Ο	BLIQUE CUTTING					9					
Directionangles -	on of Chip Cutting r	flow - Normal, Velocity and Effective Rake ang atios in oblique cutting - Shear angle and Velocit	gles - Relations ty relationship	ship b - Sta	etwe bler's	en 1 5 rul	rake e.					
UNIT	TIII T	HERMAL ASPECTS AND CUTTING	FLUIDS				9					
Heat dis tool ten Selectio	stributions perature - on of Cutti	in machining - Experimental determination and Cutting fluids - Effects of cutting fluid - Funct ng Fluids.	Analytical ca ions - Require	lculat ement	tion ( s - T	of cu 'ype	utting s and					
UNI	TIV C	UTTING TOOL MATERIALS, TOOI VEAR	L LIFE AN	D T C	OOL		9					
Essentia - Machi	al requiren nability -	nents of tool materials – development of tool ma Economics of metal machining - Theory of Chat	terials - Tool v ter.	wear a	and 7	Tool	life					
UNI	<b>Γ V</b> D	ESIGN OF CUTTING TOOLS					9					
Nomen Milling	clature of cutters.	Single point and Multi point cutting tools - Desig	gn of Turning	tool, I	Drill	s an	d					
			TOTAL :	45 P	ER	[0]	DS					
OUTO	COMES:	On completion of this course, students will be	able to									
1.	Applying	the orthogonal metal cutting theory in engineeri	ing.									
2.	Evaluatin	g the oblique metal cutting theory in engineering	g.									
3.	Learn He	at distributions in machining and cutting fluids.										
4.	Understa	nd the essential requirements of tool material and	d its life.									
5.	Design th	Design the cutting tools for metal removal process.										

TEXT	BOOKS:	
1.	Bhattacharyya Calcutta, 1984.	A., "Metal Cutting Theory and Practice", Central Book Publishers,
2.	Juneja B L., Se Age Internation	khon G. S., <b>"Fundamentals of Metal Cutting and Machine Tools"</b> , New nal (P) Limited, 1995.
3.	Shaw M C., "N	Aetal Cutting Principles'', Oxford Press, 1984.
REFI	ERENCES:	
1.	David A. Steph 2006.	enson, John S. Agapio, "Metal Cutting Theory and Practice", CRC Press,
2.	Armarego E.J.	A., Brown R.H., "The Machining of Metals", Prentice Hall Inc., 1969.
3.	Geoffrey Booth Marcel Dekkor	proyd, Knight W.A., <b>''Fundamentals of Machining and Machine Tools''</b> , r, New York, 1989.
4.	Rodin P., "Des	ign and Production of Cutting Tools", MIR Publishers, 1968.
5.	P C Sharma, " Delhi 2008.	A Textbook of Production Engineering", S. Chand & Company Ltd. New

MAPPING OF COs, POs AND PSOs:																
						P	Os						PSOs			
	1	1         2         3         4         5         6         7         8         9         10         11         12										1	2	3		
CO1	3	3	2									1	2	2		
CO2	3	3	2									1	2	2		
CO3	3	3	2									1	2	2		
CO4	3	3	2									1	2	2		
CO5	3	3	2									1	2	2		
Average	3	3	2									1	2	2		
Round off	3	3	2									1	2	2		
3- Strong C	3- Strong Correlation; 2 - Medium Correlation; 1 – Low Correlation															

20MP	<b>E008</b>	WELDING		L	Т	Р	С					
					3	0	0	3				
OBJE	CTIVI	:										
•	Ton	te the student to understa	and the basics of welding	g technolog	y.							
•	Τοι	erstand the basic concep	ts of welding metallurgy	/.								
•	Τοι	erstand welding techniq	ues for various materials	<b>.</b>								
•	To l	n the various advanced	welding processes.									
•	Тоа	uire the knowledge of te	sting of weldments.									
UNI	ГΙ	AS AND ARC WEI	DING PROCESSE	S				9				
Fundamental principles – Air-acetylene welding, Oxy-acetylene welding, Carbon arc welding, Shielded metal arc welding, Submerged arc welding, TIG & MIG welding, Plasma arc welding and Electro-slag welding processes - advantages, limitations and applications.												
UNIT	UNIT II RESISTANCE WELDING PROCESSES											
Spot we Percussi applicati	Spot welding, Seam welding, Projection welding, Resistance Butt welding, Flash Butt welding, Percussion welding and High frequency resistance welding processes - advantages, limitations and applications.											
UNIT	III	DLID STATE WEL	DING PROCESSE	S				9				
Cold we welding, applicati	lding, I Roll ons.	fusion bonding, Explosite Iding and Hot pressu	ve welding, Ultrasonic v re welding processes	velding, Fri - advantag	ction ges,	weld limita	ing, H tions	Forge and				
UNIT	IV	THER WELDING	PROCESSES					9				
Thermit stir weld vehicles	weldin ling, Ur , Cold r	Atomic hydrogen weldin rwater welding, Welding al transfer and explosive	g, Electron beam weldir g automation in aerospac welding.	ng, Laser be ce, nuclear a	am v and s	veldin urface	g, Fri e tran	ction sport				
UNIT	V	ESIGN OF WELD . ESTING OF WELD	IOINTS, WELDAB MENTS	ILITY A	ND			9				
Various - destruc GTAW	weld jo tive and & Robo	designs - Heat affected on-destructive testing fo GMAW processes	zone – Weldability of di r weldments. Demonstra	fferent mate tion of SM	erials IAW	s – We , GMA	eld de AW,	fects				
				TOTAL	: 45	5 PE	RIO	DS				
OUTC	OME	On completion of this	course, students will be	able to								
1.	Compa	lifferent types of Weldin	ng processes.									
2.	Analys	e principles of resistanc	e welding processes.									
3.	Unders	d the concept of solid st	ate welding process.									
4.	Analys	e weldablity and weld d	efects.									
5.	Learn different testing methods for weldment.											

TEX	T BOOKS:	
1.	Parmer R.S., " NewDelhi, 200	Welding Engineering and Technology", 1 st edition, Khanna Publishers, 8.
2.	Parmer R.S., " 1992.	Welding Processes and Technology", Khanna Publishers, New Delhi,
3.	Little R.L., <b>"W</b> Ltd., NewDelh	<b>elding and welding Technology"</b> , Tata McGraw Hill Publishing Co., i, 34 th reprint, 2008.
REFI	ERENCES:	
1.	Schwartz M.M.	"Metals Joining Manual". McGraw Hill Books, 1979.
2.	Tylecote R.F. " London,1968.	The Solid Phase Welding of Metals". Edward Arnold Publishers Ltd.
3.	Nadkarni S.V. 2005.	<b>"Modern Arc Welding Technology"</b> , 1 st edition, Oxford IBH Publishers,
4.	Christopher De	avis. "Laser Welding- Practical Guide". Jaico Publishing House, 1994.
5.	Davis A.C., " <b>T</b> Cambridge,199	<b>he Science and Practice of Welding"</b> , Cambridge University Press, 93

MAPPING OF COs, POs AND PSOs:																
						P	Os						PSOs			
	1	1         2         3         4         5         6         7         8         9         10         11         12									1	2	3			
CO1	3	3	2									1	2	2		
CO2	3	3	2									1	2	2		
CO3	3	3	2									1	2	2		
CO4	3	3	2									1	2	2		
CO5	3	3	2		3							1	2	2		
Average	3	3	2									1	2	2		
Round off	3	3	2		3							1	2	2		
3- Strong Correlation; 2 - Medium Correlation; 1 – Low Correlation																

20MH	PE009		REFRIGERATION AND AIR CONDITIONING	L	Т	Р	С				
		1		3	0	0	3				
OBJE	CTIV	ES	:	I							
•	To ma Opera	ake atio	the students to understand vapour compression and vapour al n.	bsorpt	ion s	syste	m				
• To analyse the refrigeration cycles and methods for improving Performance.											
• To acquire the knowledge on components of refrigeration systems.											
•	To de	sig	n air conditioning systems using cooling load calculations.								
•	To ex	plo	re the application of refrigeration and air conditioning system	IS.							
UNI	ГΙ	IN	TRODUCTION				9				
Introduc Desirabl	tion to	Re erti	frigeration - Unit of Refrigeration and C.O.P. – Ideal cycles- es – Classification - Nomenclature - ODP & GWP.	Refrig	geran	ts					
UNIT	T II	V	APOUR COMPRESSION REFRIGERATION SY	YSTI	EM		9				
Vapour and supe low tem Condens	Vapour compression cycle: p-h and T-s diagrams - deviations from theoretical cycle – sub cooling and super heating- effects of condenser and evaporator pressure on COP- multi pressure system – low temperature refrigeration - Cascade systems – problems. Equipments: Type of Compressors, Condensers, Expansion devices, Evaporators.										
UNIT		0	THER REFRIGERATION SYSTEMS				9				
Working refrigera Magneti	g princi tion- I c -Vort	iple Eje æx	es of Vapour absorption systems and adsorption cooling sector refrigeration systems- Thermoelectric refrigeration- and Pulse tube refrigeration systems.	ystem: Air r	s – S efrig	Steai erati	n jet on -				
UNIT	' IV	P	SYCHOMETRIC PROPERTIES AND PROCESS	SES			9				
Properties saturation Thermoor processe	es of m on, Re dynami es, mixi	nois clat c ng	st Air-Gibbs Dalton law, Specific humidity, Dew point tem ive humidity, Enthalpy, Humid specific heat, Wet wet bulb temperature, Psychometric chart, Psychometric of airstreams.	peratu bulb of aiı	re, I ten :-con	Degra npera nditic	ee of iture, oning				
UNIT V AIR CONDITIONING SYSTEMS AND LOAD ESTIMATION											
Air conditioning loads- Outside and inside design conditions- Heat transfer through structure- Solar Radiation- Electrical appliances- Infiltration and ventilation- internal heat load-Apparatus selection-fresh air load-Human comfort & IAQ principles- effective temperature & chart- calculation of summer &winter air conditioning load- Classifications- Layout of plants- Air distribution system- Filters- Air-conditioning Systems with Controls- Temperature, Pressure and Humidity sensors, Actuators &Safety controls.											
		~	TOTAL :	45 P	EK	IOL	12				
OUTC	<b>OUTCOMES:</b> On completion of this course, students will be able to										
	1. Analyze common basics of refrigeration systems and refrigerants.										

2.	Elucidate the concept of vapor compression refrigeration system and solve problems on it.
3.	Learn the components and working of other refrigeration and air conditioning systems
4.	Evaluate different psychometric properties and processes.
5.	Perform heating and cooling load calculations.
TEXT	BOOKS:
1.	Arora, C. P., "Refrigeration and Air Conditioning", 3 rd ed., McGraw Hill, Delhi, 2010.
2.	Manohar Prasad., "Refrigeration and Air Conditioning", 2 nd ed., <u>New Age Int.</u> , 2011.
3.	Rex Milter, Mark R.Miller, "Air conditioning and Refrigeration", McGraw Hill 2006.
REFE	CRENCES:
1.	Roy J. Dossat, "Principles of Refrigeration", 4 th edition, Pearson Education Asia, 2009.
2.	Stoecker, W. F. and Jones J. W., '' <b>Refrigeration and Air Conditioning</b> '', McGraw Hill, New Delhi, 1986.
3.	AhmadulAmeen., <b>"Refrigeration and Air Conditioning",</b> 1 st edition, prentice-hall of India Private limited New Delhi 2006.
4.	Jones W. P., "Air conditioning engineering", 5 th edition, Elsevier Butterworth- Heinemann, 2001.
5.	Wilbert F. Stoecker, Jerold W. Jones., " <b>Refrigeration and Air Conditioning</b> ", McGraw- Hill 1982.

MAPPING OF COs, POs AND PSOs:															
				PSOs											
	1	1         2         3         4         5         6         7         8         9         10         11         12										1	2	3	
C01	3	3	2									1	2	2	
CO2     3     3     2     1     2     2															
CO3	3	3	2									1	2	2	
CO4	3	3	2									1	2	2	
CO5	3	3	2									1	2	2	
Average	3	3	2									1	2	2	
Round off         3         3         2         1         2         2															
3- Strong C	3- Strong Correlation; 2 - Medium Correlation; 1 – Low Correlation														

20M]	PE010	POWER PLANT ENGINEERING	L	Т	P	С			
			3	0	0	3			
OBJE	CTIVE	S:							
•	To help	the students to learn the various cycles of coal based thermal po	ower	plan	ts.				
•	To gain	knowledge on diesel, gas turbine and combined cycle power pl	ants.						
•	To fam	liarise the basics of nuclear engineering and various types of re	actor	s.					
•	To learn	how to get power from renewable energy sources.							
•	• To Understand energy, economic and environmental issues of power plants.								
UNI	ΤΙ (	COAL BASED THERMAL POWER PLANTS				9			
Rankine Boilers, ash han	e cycle - Turbines dling, Dra	improvisations, Layout of modern coal power plant, Super C , Condensers, Steam & Heat rate, Subsystems of thermal pow aught system, Feed water treatment. Binary Cycles and Cogener	ritica er pla ation	l Bo ants syst	ilers – Fu ems	, FBC el and			
UNI		DIESEL, GAS TURBINE AND COMBINED CYCI POWER PLANTS	Æ			9			
Otto, D Turbine systems	iesel, Dua power pl	l &Brayton Cycle - Analysis & Optimisation. Components of I ants. Combined Cycle Power Plants. Integrated Gasifier based (	Diesel Coml	l and oinec	Gas l Cyc	cle			
UNIT		UCLEAR POWER PLANTS				9			
Basics Nuclear Deuteri Safety r	of Nucle Reactor um- Urar neasures	ar Engineering, Layout and subsystems of Nuclear Power s : Boiling Water Reactor (BWR), Pressurized Water React ium reactor (CANDU), Breeder, Gas Cooled and Liquid Met for Nuclear Power plants.	Plant tor (l al Co	s, W PWR polec	/orki k),CA l Rea	ng of ANada actors.			
UNIT	T IV I	OWER FROM RENEWABLE ENERGY				9			
Hydro I Turbine Therma	Electric P es. Princip 1, Geo Th	ower Plants – Classification, Typical Layout and associated co ole, Construction and working of Wind, Tidal, SolarPhoto V ermal, Biogas and Fuel Cell power systems.	ompo Voltai	nents c (S	s incl PV),	luding Solar			
UNI	rv H	ENERGY, ECONOMIC AND ENVIRONMENTAL OF POWER PLANTS	ISS	SUE	S	9			
Power to Relative technole	ariff type e merits d ogies incl	s, Load distribution parameters, load curve, Comparison of si & demerits, Capital & Operating Cost of different power plan uding Waste Disposal Options for Coal and Nuclear Power Plar	te se ts. Po nts.	lectio olluti	on ci on c	riteria, ontrol			
		TOTAL :	<b>45</b> I	PER		DS			
OUTO	COMES	: On completion of this course, students will be able to							
1.	Learn th	e various cycles of coal based thermal power plants.							
2.	Gain kno	owledge on diesel, gas turbine and combined cycle power plants	5.						
3.	Understa	and the basics of nuclear engineering and various types of reactor	ors.						

4.	Design power	plants to get energy from renewable energy sources.
5.	Analyse energy	, economic and environmental issues of power plants.
TEX	T BOOKS:	
1.	Nag. P.K., <b>"Po</b> Company Ltd., 2008.	wer Plant Engineering", Third Edition, Tata McGraw – Hill Publishing
2.	Arora.S.C and Delhi, 2015.	Domkundwar.S, <b>"Power Plant Engineering",</b> DhanpatRai& Sons, New
3.	Ramalingam.K	.K, "Power Plant Engineering", Scitech Publication Pvt. Ltd, 2015.
REFI	ERENCES:	
1.	El-Wakil. M.M Ltd.,2010.	., '' <b>Power Plant Technology'',</b> Tata McGraw – Hill Publishing Company
2.	Black & Veatch	h, Springer, '' <b>Power Plant Engineering'',</b> 1996.
3.	Thomas C. Elli Second Edition	ott, Kao Chen and Robert C. Swanekamp, <b>''Power Plant Engineering''</b> , , Standard Handbook of McGraw – Hill, 1998.
4.	Godfrey Boyle, association wit	'' <b>Renewable energy'',</b> Open University, Oxford University Press in h the Open University, 2004.
5.	Drbal, Larry F Engineering'',	. Boston, Patricia G. Westra, Kayla L. Black, Veatch, '' <b>Power Plant</b> Kluwer Academic Pub., 1995

		POs									PSOs				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	2									1	2	2	
CO2	3	3	2									1	2	2	
CO3	3	3	2									1	2	2	
CO4	3	3	2									1	2	2	
CO5	3	3	2									1	2	2	
Average	3	3	2									1	2	2	
Round off	3	3	2									1	2	2	

20MI	PE011	GAS DYNAMICS AND JET PROPULSION	L	Т	P	С			
		(Use of Approved Gas table is Permitted)	3	0	0	3			
OBJE	CTIVE	S:		•					
•	To pr funda	ovide students with an insight into the applications of compress mentals of jet propulsion system.	sible f	lows	and	the			
•	To er comp	able them to formulate and solve problems in one –dimensiona ressible flow.	ıl stea	dy					
• To derive the conditions for change in pressure, density and temperature for flows through normal and oblique shocks.									
•	To ar	alyse the performance of jet propulsion system.							
•	To ar	alyse the performance of space propulsion system.							
UNI	ГІ І	BASIC CONCEPTS				9			
Energy a Mach co Nozzle a	and mor one – Eff and Difft	entum equations of compressible fluid flows – Stagnation state ect of Mach number on compressibility – Isentropic flow throu sers.	es, Ma Igh va	ch w riabl	aves e du	and and cts –			
UNIT	TII I	LOW THROUGH DUCTS				9			
Flows th Variatio	nrough co n of flow	onstant area ducts with heat transfer (Rayleigh flow) and Frictic properties.	on (Fa	nno	flow	) –			
UNIT		NORMAL AND OBLIQUE SHOCKS				9			
Governi Prandtl	ng equat –Meyer 1	ons – Variation of flow parameters across the normal and oblice elations – Applications.	que sh	locks	-				
UNIT	'IV J	ET PROPULSION				9			
Theory principle Turbo p	of jet pro e, cycle a rop engin	pulsion – Thrust equation – Thrust power and propulsive effici nalysis and use of stagnation state performance of ram jet, turb les – Applications of jet propulsion.	ency - ojet, t	– Op urbo	erati fan a	ng and			
UNI	<b>Γ V</b>	PACE PROPULSION				9			
Types of rocket p Applicat	of rocket propulsic tions – sp	engines – Propellants-feeding systems – Ignition and comb n – Performance study – Staging – Terminal and charac pace flights.	ustion cterist	i – 7 ic v	Theoret	ry of ty –			
		TOTAL	: 45 ]	PER	<b>IO</b>	DS			
OUTC	OMES	: On completion of this course, students will be able to							
1.	Explain	the basic concepts of compressible flow and jet propulsion.							
2.	Solve pr	oblems of Rayleigh and Fanno flow.							
3.	Apply th	e concept of normal and oblique shocks for various application	ıs.						
4.	Apply th	e concept of jet propulsion in turbojet, turbofan and turboprop	engin	es.					
5.	Analyse	the concept of space propulsion of rockets.							

TEX	T BOOKS:	
1.	Yahya, S. M. " International (H	<b>'Fundamentals of Compressible Flow''</b> , 6 th Edition, New Age P) Limited, NewDelhi, 2018.
2.	Somasundaram InternationalPt	n. PR. S. L., <b>"Gas Dynamics and Jet Propulsions"</b> , New Age Iblishers, 1996.
3.	Ganesan. V., "	Gas Turbines'', Tata McGraw Hill Publishing Co., New Delhi, 1999.
REFI	ERENCES:	
1.	Anderson, J. D	., "Modern Compressible flow", 3rd Edition, McGraw Hill, 2003.
2.	Babu. V., '' <b>Fu</b>	ndamentals of Gas Dynamics'', ANE Books India, 2008.
3.	Hill. P. and C. Wesley Publish	Peterson, " <b>Mechanics and Thermodynamics of Propulsion</b> ", Addison – ning company, 1992.
4.	Zucrow. N. J., 1970.	"Principles of Jet Propulsion and Gas Turbines", John Wiley, New York,
5.	Shapiro. A. H., wiley, New Yor	" <b>Dynamics and Thermodynamics of Compressible fluid Flow</b> ", John k, 1953.

WAPPIN	J ()I		s, PC	<b>JS</b> A1	ND P	308:									
		POs								PSOs					
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	2									1	2	2	
CO2	3	3	2									1	2	2	
CO3	3	3	2									1	2	2	
CO4	3	3	2									1	2	2	
CO5	3	3	2									1	2	2	
Average	3	3	2									1	2	2	
Round off	3	3	2									1	2	2	

<b>20M</b>	PE012		PROCESS PLANNING AND COST ESTIMATION	L	T	Р	С			
		1		3	0	0	3			
OBJE	CTIV	ES:			1					
●	To l	help the	students to understand the method of process planning							
•	Тое	explore	various process planning activities.							
•	To learn importance of costing and estimation and different types of estimates.									
٠	Тое	evaluate	production cost estimation of different types of shops.							
•	Тос	calculate	e machining time for different machining processes.							
UNI	TI	INTR	ODUCTION TO PROCESS PLANNING				9			
Introdu process	ction- m selectio	ethods on the second se	of process planning-Drawing interpretation-Material evuction equipment and tooling selection.	aluatio	n – s	teps	in			
UNI	ГП	PROC	CESS PLANNING ACTIVITIES				9			
Process election process	param of qua plannin	eters ca lity ass g- case	alculation for various production processes-Selection surance methods - Set of documents for process pla studies. Introduction to CAPP and ERP.	on jigs anning-	and Econ	fix omic	tures cs of			
UNI	ΓΠ	INTR	ODUCTION TO COST ESTIMATION				9			
Importa estimate charges	unce of o es – Est - Calcul	costing timating ation of	and estimation –methods of costing-elements of cost g procedure- Estimation labor cost, material cost- al depreciation cost.	estimat locatior	ion - 1 of	Typ over	es of head			
UNI	ΓΙ	PROI	DUCTION COST ESTIMATION				9			
Estimat Estimat	ion of D ion of F	oifferent oundry	Types of Jobs - Estimation of Forging Shop, Estimation Shop.	on of W	'eldir	ıg Sh	10p,			
UNI	ΓV	MAC	HINING TIME CALCULATION				9			
Estimat Machin Calcula	ion of ing Tir tion for	Machin ne for Milling	ing Time - Importance of Machine Time Calcula Different Lathe Operations ,Drilling and Boring , Shaping and Planning -Machining Time Calculation f	tion- C - Mae For Grin	Calcu chini ding	latio ng ´	n of Time			
			ΤΟΤΑ	L:45	PE	RIO	DS			
OUTO	COME	S: On	completion of this course, students will be able to							
1	Select	the proc	ess, equipment and tools for various industrial product	s.						
2	Prepare	e proces	s planning activity chart.							
3	Explain	n the co	ncept of cost estimation.							
4	Compu	te the jo	bb order cost for different type of shop floor.							
5	Calcula	ate the r	nachining time for various machining operations.							

TEX	BOOKS:
1.	Peter scalon, <b>"Process planning, Design/Manufacture Interface"</b> , Elsevier science technology Books, Dec 2002.
2.	Sinha B.P, <b>"Mechanical Estimating and Costing",</b> Tata-McGraw Hill publishing co, 1995.
3.	B. Vijayaramanath, C.Elanchezhian, R.Kesavan, <b>"Process Planning and Cost Estimation"</b> , New Age International (P) Limited, (2008).
REFI	RENCES:
1.	Chitale A.V. and Gupta R.C., <b>"Product Design and Manufacturing"</b> , 2nd Edition, PHI, 2002.
2.	Ostwalal P.F. and Munez J., <b>"Manufacturing Processes and systems"</b> , 9th Edition, John Wiley, 1998.
3.	Russell R.S and Tailor B.W, "Operations Management", 4th Edition, PHI, 2003.
4.	Mikell P. Groover, " <b>Automation, Production, Systems and Computer Integrated</b> Manufacturing", Pearson Education 2001.
5.	K.C. Jain & L.N. Aggarwal, <b>"Production Planning Control and Industrial</b> Management",Khanna Publishers 1990.

MAPPIN	G OI	F CO	s, PO	)s Al	ND P	SOs:									
						P	Os							PSOs	}
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2				2		2			2	1	2	2	
CO2	2	2				2		2			2	1	2	2	
CO3	2	2				2		2			2	1	2	2	
CO4	2	2				2		2			2	1	2	2	
CO5	2	2				2		2			2	1	2	2	
Average	2	2				2		2			2	1	2	2	
Round off	2	2				2		2			2	1	2	2	
3- Strong C	orrel	ation	; 2 - N	lediu	m Coi	rrelati	ion; 1	- Lo	w Coi	relati	on	•		•	

20MPE013   LEAN MANUFACTURING   L											
		3	\$	0	0	3					
OBJE	CTIVES	:									
•	To make	the students to study the concept and implementation of lean man	nuf	factu	ıring	•					
٠	To learn	the Sustainable engineering concepts.									
٠	To analy	se the multi attributes decision making methods									
٠	To understand the concept of lean manufacturing management.										
٠	To explore the applications in lean manufacturing.										
UNI	TII	NTRODUCTION				9					
Objecti vs. lean	ves of lear manufact	manufacturing-key principles and implications of lean manufactu ring – Lean benefits.	rir	ng tr	aditi	onal					
UNI	ГII L	EAN MANUFACTURING CONCEPTS				9					
Value c	alue creation and waste elimination- Major kinds of waste- pull production – different models of Ill production-continuous flow – Kaizen – Worker involvement; Part family- Production flow halysis – Composite part concept – Machine cell design -Case studies.										
Value c pull pro analysis	reation an oduction-c s – Compo	d waste elimination- Major kinds of waste- pull production – diffeontinuous flow – Kaizen – Worker involvement; Part family- P site part concept – Machine cell design -Case studies.	ere Pro	ent n duct	tion	flow					
Value c pull pro analysis	ereation an oduction-c s – Compo Γ III L	d waste elimination- Major kinds of waste- pull production – diffeontinuous flow – Kaizen – Worker involvement; Part family- P site part concept – Machine cell design -Case studies. EAN MANUFACTURING TOOLS & METHODOL	ere Pro O	GII	tion E <b>S</b>	flow 9					
Value c pull pro analysis UNIT Standar	$\begin{array}{c c} reation an \\ oduction-c \\ s - Compo \\ \hline III \\ t \\ d work -c \\ c \\ c \\ oontrols \\ c \\ $	d waste elimination- Major kinds of waste- pull production – differentiation – Kaizen – Worker involvement; Part family- Part family- Part concept – Machine cell design -Case studies. EAN MANUFACTURING TOOLS & METHODOL communication of standard work to employees -standard work and work and work to employees -standard work and work and work and work to employees -standard work and work and work and work to employ the standard work and work and work to employ the standard work and work and work to employ the standard work and work and work to employ the standard work and w	ere Pro O	GII GII	ES Exibil	flow 9 ity					
Value c pull pro analysis UNIT Standar visual manage	reation an oduction-c s – Compo Γ III L d work -c controls-q ement-total	d waste elimination- Major kinds of waste- pull production – differentiation – Kaizen – Worker involvement; Part family- Pasite part concept – Machine cell design -Case studies. <b>EAN MANUFACTURING TOOLS &amp; METHODOL</b> communication of standard work to employees -standard work a uality at the source- 5S principles –preventive maintenance productive maintenance -changeover/setup time -batch size reduce	ere Pro O und ce-1	GII duct GII d fle total	ES Exibil	<b>9</b> ity - ality					
Value c pull pro analysis UNIT Standar visual manage UNIT	reation an oduction-c s – Compo <b>F III L</b> d work -c controls-q ement-total <b>F IV V</b>	d waste elimination- Major kinds of waste- pull production – differentiation – Kaizen – Worker involvement; Part family- Paste part concept – Machine cell design -Case studies. EAN MANUFACTURING TOOLS & METHODOL ommunication of standard work to employees -standard work a uality at the source- 5S principles –preventive maintenance productive maintenance -changeover/setup time -batch size reduce ALUE STREAM MAPPING	ere Pro O und ce-1	GII GII I fle total	ES Exibil qu	9 ity ality 9					
Value c pull pro analysis UNIT Standar visual manage UNIT The as balancin system.	arreation an         oduction-c         s - Compo         F III       L         rd work -c         controls-q         controls-q         ement-total         F IV       V         s-is       diagra         ng -poke       y	d waste elimination- Major kinds of waste- pull production – diffe ontinuous flow – Kaizen – Worker involvement; Part family- P site part concept – Machine cell design -Case studies. <b>EAN MANUFACTURING TOOLS &amp; METHODOL</b> ommunication of standard work to employees -standard work a uality at the source- 5S principles –preventive maintenance productive maintenance -changeover/setup time -batch size reduce <b>ALUE STREAM MAPPING</b> m-the future state map-application to the factory simulation oka- Kanban – overall equipment effectiveness -JIT - elements of	ere Pro O und ce-1 ctic	GII GII I fle total on. Scer JIT	ES Exibil qu nario -Ka	9 ity - ality 9 -line nbar					
Value c pull pro analysis UNIT Standar visual manage UNIT The <i>as</i> balancin system. UNIT	reation an oduction-c s – Compo F III L d work -c controls-q ement-total F IV V s-is diagra ng -poke y F V II	d waste elimination- Major kinds of waste- pull production – differentiation – Kaizen – Worker involvement; Part family- Pasite part concept – Machine cell design -Case studies. EAN MANUFACTURING TOOLS & METHODOL communication of standard work to employees -standard work a uality at the source- 5S principles –preventive maintenance productive maintenance -changeover/setup time -batch size reduce ALUE STREAM MAPPING m-the future state map-application to the factory simulation oka- Kanban – overall equipment effectiveness -JIT - elements of MPLEMENTING LEAN	ere Pro- O und ce-1 ctic	GII GII I fle total on. Scer JIT	ES Exibil qu nario -Ka	9 ity - ality 9 -line nbar 9					
Value of pull pro- analysis UNIT Standar visual manage UNIT The <i>as</i> balancin system. UNIT Road m Toyota	reation an oduction-c s - Compo $\Gamma$ IIILd work-crd work-ccontrols-qement-total $\Gamma$ IVV $r$ -isdiagram ng -poke $\Gamma$ VIfhap-Senior production	d waste elimination- Major kinds of waste- pull production – differentiation – Kaizen – Worker involvement; Part family- Paste part concept – Machine cell design -Case studies. EAN MANUFACTURING TOOLS & METHODOLO ommunication of standard work to employees -standard work a uality at the source- 5S principles –preventive maintenance productive maintenance -changeover/setup time -batch size reduce ALUE STREAM MAPPING m-the future state map-application to the factory simulation oka- Kanban – overall equipment effectiveness -JIT - elements of MPLEMENTING LEAN management Involvement-best practices- reconciling lean with other system-lean six sigma-lean and ERP-lean with ISO9001:2000.	ere Pro O und ce-1 ctic	GII GII 1 fle total on. scer JIT	ES Exibil l qu nario -Ka	9 ity - ality 9 -line nbar 9 s -					
Value of pull pro- analysis <b>UNI</b> Standar visual manage <b>UNI</b> The <i>as</i> balancir system. <b>UNI</b> Road m Toyota	reation an oduction-c s - Compo $\Gamma$ IIILd work -c controls-q ement-total $\Gamma$ IVV $\Gamma$ IVV $r$ -is diagrang ng -poke y $\Gamma$ VII nap-Senior production	d waste elimination- Major kinds of waste- pull production – differentiation – Kaizen – Worker involvement; Part family- Paste part concept – Machine cell design -Case studies. EAN MANUFACTURING TOOLS & METHODOLA communication of standard work to employees -standard work a uality at the source- 5S principles –preventive maintenance productive maintenance -changeover/setup time -batch size reduce ALUE STREAM MAPPING m-the future state map-application to the factory simulation oka- Kanban – overall equipment effectiveness -JIT - elements of MPLEMENTING LEAN management Involvement-best practices- reconciling lean with other a system-lean six sigma-lean and ERP-lean with ISO9001:2000. TOTAL : 45 1	ere Pro O und xe-1 ctic of her PH	GII GII l fle total on. scer JIT r sys	ES Exibil l qu nario -Ka	9 ity - ality 9 -line nbar 9 s - S					
Value c pull pro analysis UNIT Standar visual manage UNIT The <i>as</i> balancin system. UNIT Road m Toyota	reation an oduction-c s – Compo $\Gamma$ IIILd work -c controls-q ement-total $\Gamma$ IVV $\Gamma$ IVV $r$ -is diagrang ng -poke y $\Gamma$ VII p ap-Senior productionCOMES:	d waste elimination- Major kinds of waste- pull production – differentiation – Kaizen – Worker involvement; Part family- Pasite part concept – Machine cell design -Case studies. EAN MANUFACTURING TOOLS & METHODOLA communication of standard work to employees -standard work a uality at the source- 5S principles –preventive maintenance productive maintenance -changeover/setup time -batch size reduce ALUE STREAM MAPPING m-the future state map-application to the factory simulation oka- Kanban – overall equipment effectiveness -JIT - elements of MPLEMENTING LEAN management Involvement-best practices- reconciling lean with other system-lean six sigma-lean and ERP-lean with ISO9001:2000. TOTAL : 45 I On completion of this course, students will be able to	ere Pro O und ce-1 ctic of PF	GII duct GII l fle total on. scen JIT r sys	ES Exibil l qu nario -Ka	9 ity ality 9 -line nbar 9 5 - 5 5 5					
Value of pull pro- analysis UNIT Standar visual manage UNIT The <i>as</i> balancin system. UNIT Road m Toyota OUTC 1.	reation an oduction-c s – Compo $\Gamma$ III L d work -c controls-q ement-total $\Gamma$ IV V $\sim$ -is diagra ng -poke y $\Gamma$ V II hap-Senior production COMES: Evaluate	d waste elimination- Major kinds of waste- pull production – differentiation – Kaizen – Worker involvement; Part family- Pasite part concept – Machine cell design -Case studies. EAN MANUFACTURING TOOLS & METHODOLA communication of standard work to employees -standard work a uality at the source- 5S principles –preventive maintenance productive maintenance -changeover/setup time -batch size reduce ALUE STREAM MAPPING m-the future state map-application to the factory simulation oka- Kanban – overall equipment effectiveness -JIT - elements of MPLEMENTING LEAN management Involvement-best practices- reconciling lean with oth system-lean six sigma-lean and ERP-lean with ISO9001:2000. TOTAL : 45 I On completion of this course, students will be able to the objectives and benefits of lean manufacturing.	ere Pro Ound ce-1 ction n of PF	GII duct GII l fle total on. scen JIT	ES Exibil l qu nario -Ka	9 ity - ality 9 -line nbar 9 s - S					
Value of pull pro- analysis UNIT Standar visual manage UNIT The <i>as</i> balancin system. UNIT Road m Toyota OUTC 1. 2.	reation an oduction-c s – Compo F III L d work -c controls-q ement-total F IV V s-is diagra ng -poke y T V II hap-Senior production	d waste elimination- Major kinds of waste- pull production – differentiation – Kaizen – Worker involvement; Part family- Paste part concept – Machine cell design -Case studies. EAN MANUFACTURING TOOLS & METHODOLY communication of standard work to employees -standard work a uality at the source- 5S principles –preventive maintenance productive maintenance -changeover/setup time -batch size reduce ALUE STREAM MAPPING m-the future state map-application to the factory simulation oka- Kanban – overall equipment effectiveness -JIT - elements of MPLEMENTING LEAN management Involvement-best practices- reconciling lean with oth a system-lean six sigma-lean and ERP-lean with ISO9001:2000. TOTAL : 45 I On completion of this course, students will be able to the objectives and benefits of lean manufacturing. arious lean manufacturing concepts with case studies.	ere Pro- ond ce-1 ctic	GII duct GII l fle total on. scen JIT	ES Exibil l qu nario -Ka	9 ity - line nbar 9 s - S					
Value of pull pro- analysis UNIT Standar visual manage UNIT The <i>as</i> balancin system. UNIT Road m Toyota OUTC 1. 2. 3.	reation an oduction-c s - Compo $\Gamma$ IIILd work-crd work-ccontrols-qment-total $\Gamma$ IVV $r$ -isdiagramng-pokeT VIfaap-SeniorproductionCOMES:EvaluateEvaluateExplainLearnvan	d waste elimination- Major kinds of waste- pull production – differentiation – Kaizen – Worker involvement; Part family- P site part concept – Machine cell design -Case studies. EAN MANUFACTURING TOOLS & METHODOLA communication of standard work to employees -standard work a uality at the source- 5S principles –preventive maintenance productive maintenance -changeover/setup time -batch size reduce ALUE STREAM MAPPING m-the future state map-application to the factory simulation oka- Kanban – overall equipment effectiveness -JIT - elements of MPLEMENTING LEAN management Involvement-best practices- reconciling lean with ot a system-lean six sigma-lean and ERP-lean with ISO9001:2000. TOTAL : 45 I On completion of this course, students will be able to the objectives and benefits of lean manufacturing. arious lean manufacturing tools and methodologies.	ere Pro- ond ce-1 ctic	GII duct GII l fle total on. scen JIT	ES Exibil l qu nario -Ka	9 ity - line nbar 9 s - S					
Value of pull pro- analysis UNIT Standar visual manage UNIT The <i>as</i> balancin system. UNIT Road m Toyota OUTC 1. 2. 3. 4.	reation an oduction-c s - Compo $\Gamma$ IIILd work -c controls-q ement-total $\Gamma$ IVV $\Gamma$ IVV $r$ -is diagrang -poke y $\Gamma$ VII f ap-Senior productionCOMES: EvaluateEvaluate Explain v Learn var Analyse a	d waste elimination- Major kinds of waste- pull production – differentinuous flow – Kaizen – Worker involvement; Part family- P site part concept – Machine cell design -Case studies. EAN MANUFACTURING TOOLS & METHODOLA communication of standard work to employees -standard work a uality at the source- 5S principles –preventive maintenance productive maintenance -changeover/setup time -batch size reduce ALUE STREAM MAPPING m-the future state map-application to the factory simulation oka- Kanban – overall equipment effectiveness -JIT - elements of MPLEMENTING LEAN management Involvement-best practices- reconciling lean with other system-lean six sigma-lean and ERP-lean with ISO9001:2000. TOTAL : 45 I On completion of this course, students will be able to the objectives and benefits of lean manufacturing. arious lean manufacturing tools and methodologies. bout value stream mapping techniques.	ere Pro- ond ce-1 ctic	GII GII I fle total on. Scer JIT	ES Exibil l qu nario -Ka	9 ity - ality -line nbar 9 S - S					

79:			

1.	Michael L George, David T Rowlands, Bill Kastle, <b>"What is Lean Six Sigma",</b> McGraw Hill Inc., New York, 2004.
2.	Askin R.G, Goldberg J.B, <b>"Design</b> JohnWiley & Sons, New York, 2003. <b>and Analysis of Lean Production Systems"</b> ,
3.	S. R. Devadasan, V. Sivakumar, R. Murugesh, P. R.Shalij, "Lean and AgileManufacturing: Theoretical, Practical and ResearchFuturities", PHI LearningPrivate limited, New Delhi, 2012.Futurities", PHI Learning
REF	ERENCES:
1.	Joseph A De Feo, William W BearnardJuran Institute, <b>"Six Sigma Break Throughand Beyond",</b> Tata McGraw Hill, New Delhi, 2004.
2.	Richard B Chase F Robert Jacobs and Nicholas J Aquilano, <b>"Operations Management</b> for Competitive Advantage", McGraw Hill Inc., New York, 10 th Edition, 2003.
3.	Dennis P. Hobbs, <b>"Lean Manufacturing Implementation: A Complete Execution</b> Manual for Any Size", J. Ross Publishing, 2005.
4.	Micheal Wader, "Lean Tools: A Pocket guide to Implementing Lean Practices", Productivity and Quality Publishing Pvt Ltd, 2002.
5.	Akhilesh N. Singh, "Lean Manufacturing: Principles to Practice", L.B. Associates, 2010.

#### MAPPING OF COs, POs AND PSOs: POs **PSOs** CO1 **CO2 CO3 CO4** CO5 Average **Round off** 3- Strong Correlation; 2 - Medium Correlation; 1 – Low Correlation

20MI	PE014	DESIGN OF JIGS, FIXTURES AND PRESS TOOLS	L	Т	Р	С				
			3	0	0	3				
OBJE	CTIV	ES:				4				
•	To he	p the students explore the various locating and clamping method	s.							
•	To de	sign and development of jigs and fixtures for given component.								
•	To un	derstand press working terminologies and elements of cutting die	es.							
•	To dea	sign bending and drawing dies.								
• To understand the functions and design principles of various forming techniques like bending, forming, drawing, etc.										
UNI	ГΙ	LOCATING AND CLAMPING PRINCIPLES				9				
principle clampin bushes a	es of lo g –Meo and Jig	boot design- Function and advantages of Jigs and fixtures – bocation – Locating methods and devices – Redundant Locati chanical actuation – pneumatic and hydraulic actuation - Star bouttons – Tolerances and materials used.	on – ndard	Prin part	iciple is – ]	ns – s of Drill				
UNI	T II	JIGS AND FIXTURES				9				
Channel boring, fixturing	l, latch, broachi g systen	box, pot, angular post jigs – Indexing jigs – General principles ng and grinding fixtures – Assembly, Inspection and Welding ns- Quick change fixtures.	s of n fixtu	nillin res –	ng, La Moc	ver, athe, lular				
UNIT	' III	PRESS WORKING TERMINOLOGIES AND ELE OF CUTTING DIES	CME	NTS	5	9				
Press W of press	orking capacit	Terminologies - operations – Types of presses – press accessor y – Strip layout – Material Utilization – Shearing action – Cleara	ries – inces	Cor – Pre	nputa ess W	ation /ork				
Material Die set, preparat	ls – Cer guide ion of f	nter of pressure- Design of various elements of dies – Die Blo plates – Stops – Strippers – Pilots – Selection of Standard p our standard views of simple blanking, piercing, compound and	ck – barts progr	Punc – De essiv	ch ho esign re die	lder, and s.				
UNIT	IV	BENDING AND DRAWING DIES				9				
Difference between bending and drawing – Blank development for above operations – Types Bending dies – Press capacity – Spring back – knockouts – direct and indirect – pressure pads Ejectors – Variables affecting Metal flow in drawing operations – draw die inserts – draw beac ironing– Design and development of bending, forming, drawing, reverse redrawing an combination dies – Blank development for axi-symmetric, rectangular and elliptic parts – Sing and double action dies.										
UNI	ΓV	OTHER FORMING TECHNIQUES				9				
Bulging, Swaging, Embossing, coining, curling, hole flanging, shaving and sizing, assembly, fi blanking dies – recent trends in tool design- computer Aids for sheet metal forming Analysis basic introduction - tooling for numerically controlled machines- setup reduction for work holdin – Single minute exchange of dies – Poka Yoke.										
	_			_		_				

		TOTAL : 45 PERIODS							
OUTO	COMES: On completion of this course, students will b	be able to							
1.	Explore various locating and clamping principles.								
2.	Explore the functions and design of Jigs & Fixtures.								
3.	Analyze functions and design Press work and cutting die.								
4.	Evaluate functions and design of press working and ele	ements of cutting dies.							
5.	Apply functions and various design to other forming te	echniques.							
ТЕХТ	BOOKS:								
1.	Joshi, P.H. "Jigs and Fixtures", Second Edition, Tata	McGraw Hill, NewDelhi, 2004.							
2.	Joshi P.H "Press tools - Design and Construction", v	wheels publishing, 1996.							
3.	Cyril Donaldson, George H. LeCain, V. C. Goold, Joy Edition, Tata McGraw Hill Publishing Co., Ltd., NewI	jeetGhose, <b>"Tool Design"</b> , Fourth Delhi, 2012.							
REFE	RENCES:								
1.	Venkataraman. K., "Design of Jigs Fixtures & Press	Tools", Tata McGraw Hill,2005.							
2.	Donaldson, Lecain and Goold"Tool Design", 3 rd Edite	ion, Tata McGraw Hill, 2000.							
3.	Kempster, "Jigs and Fixture Design", Third Edition, J	Hoddes and Stoughton, 1974.							
4.	"Design Data Hand Book", PSG College of Technolo	gy, Coimbatore.							
5.	Hoffman "Jigs and Fixture Design", Thomson Delma	r Learning, Singapore, 2004.							

MAPPIN	G OI	F CO	s, PO	)s Al	ND P	SOs	:										
		POs													PSOs		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
CO1	3	3	2									1	2	2			
CO2	3	3	2									1	2	2			
CO3	3	3	2									1	2	2			
CO4	3	3	2									1	2	2			
CO5	3	3	2									1	2	2			
Average	3	3	2									1	2	2			
Round off	3	3	2									1	2	2			
3- Strong C	3- Strong Correlation; 2 - Medium Correlation; 1 – Low Correlation																

20MPE015 MECHANICAL VIBRATIONS L T P											
		•		3	0	0	3				
OBJE	CTIVE	S:			•						
•	To mal	ke t	he students to understand different types of vibration.								
•	To mal	ke t	hem to understand the sources of vibration and noise in autor	nobil	es.						
•	To make the con	ke d npo	lesign modifications to reduce the vibration and noise and imponents.	prov	e the	life	of				
•	To ana	lyze	e the Single Degree, Two Degree and Multi degree of Freedo	om Sy	sten	ıs.					
٠	To stud	ly t	he numerical methods for vibration analysis.								
UNIT	I ]	BA	SICS OF VIBRATION				9				
vibration harmoni determin	n, linear ic force, nation of	ana ana	nd nonlinear vibration, response of damped and undamp alysis of single degree and two degree of freedom systems, tural frequencies.	bed s torsic	yster onal	ns u vibra	inder ation,				
UNIT	Г <b>II</b>   1	BA	SICS OF NOISE				9				
averagir measure analysis UNIT	ng decib ement en	el nvin AU	levels, noise dose level, legislation, measurement and ronment, equipment, frequency analysis, tracking analys <b>TOMOTIVE NOISE SOURCES</b>	analy sis, s	sis ound	ofr 1 qu	ioise, iality 9				
assessm contribu	ent of m	ech e, tr	nanical noise, engine radiated noise, intake and exhaust noise ransmission noise, aerodynamic noise, tire noise, brake noise	ndusi e, eng	ine i	nece	ssary				
UNIT		CO	ONTROL TECHNIQUES				9				
Vibratic dynamic the mass	on isolati c forces g s elastic	on, gen mo	, tuned absorbers, un-tuned viscous dampers, damping treat erated by IC engines, engine isolation, crank shaft damping del shock absorbers.	tment , moc	s, ap lal ai	plic nalys	ation sis of				
UNI	Γ V S	<b>SO</b>	URCE OF NOISE AND CONTROL				9				
Methods palliativ sound en	s for converting the second se	ntro ient sorj	ol of engine noise, combustion noise, mechanical noise, p ts and enclosures, automotive noise control principles, so ption, and sound transmission through barriers.	oredic und i	tive n er	ana iclos	lysis, sures,				
			TOTAL : 4	5 PI	ERI	OD	S				
OUTC	COMES	5:	On completion of this course, students will be able to								
1.	Explore	the	e causes, source and types of vibrations in machineries.								
2.	Gaining	kn	owledge in basics and measurement of noise.								
3.	Design	and	l develop vibrations and noise control systems.								
4.	Explain	the	e various control techniques of dampers and shock absorbers.								

5.	Learn about va	rious sources of noises and its control.							
TEX	T BOOKS:								
1.	SingiresuS.Rac	o, "Mechanical Vibrations", 5 th Edition, Pearson Education, 2010							
2.	William T. The	omson, Marie Dillon Dahleh, ChandramouliPadmanabhan, "Theory of							
	<b>Vibration with Application</b> ", 5 th Edition Pearson Education, 2011								
3.	David Bies and Edition,E and I	l Colin Hansen, " <b>Engineering Noise Control – Theory and Practice</b> ",4 th FN Spon, Taylore&Francise e-Library, 2009							
REFI	ERENCES:								
1.	Benson H. Ton	gue, "Principles of Vibrations", 2nd Edition, Oxford University, 2007							
2.	Grover. G.T., '	'Mechanical Vibrations", Nem Chand and Bros., 1996							
3.	Julian Happian Heinemann,200	n-Smith - "An Introduction to Modern Vehicle Design"- Butterworth- 04							
4.	Rao, J.S and G	upta, K., "Introductory course on Theory and Practice of Mechanical							
	Vibration", 2n	d Edition, New Age International Publications, 2010							
5.	Shabana. A.A.,	"Theory of vibrations – An introduction", 2nd Edition, Springer, 2010							

MAPPIN	G OI	F CO	s, PO	Ds Al	ND P	SOs:											
		POs													PSOs		
	1         2         3         4         5         6         7         8         9         10         11         12											1	2	3			
CO1	3	3	2									1	2	2			
CO2	3	3	2									1	2	2			
CO3	3	3	2									1	2	2			
CO4	3	3	2									1	2	2			
CO5	3	3	2									1	2	2			
Average	3	3	2									1	2	2			
Round off	3	3	2									1	2	2			
<b>3- Strong Correlation; 2 - Medium Correlation; 1 – Low Correlation</b>																	

20M	20MPE016 PRINCIPLES OF MANAGEMENT L T P											
					3	0	0	3				
OBJE	CTIVI	ES	:			•						
•	To hel	lp t	he students to understand the basics of mana	gement and organ	izati	ons.						
•	To get	t kı	nowledge on various planning techniques.									
•	To exp	plo	re various organising methods.									
•	To Fa	mi	liarise different directing techniques.									
•	To Le	arr	and differentiate various types of controllin	g techniques.								
UNIT I INTRODUCTION TO MANAGEMENT AND ORGANIZATIONS												
Definiti manage conting compan trends a	Definition of Management – Science or Art – Manager vs Entrepreneur - types of managers - managerial roles and skills – Evolution of Management – Scientific, human relations, system and contingency approaches – Types of Business organization - Sole proprietorship, partnership, company-public and private sector enterprises - Organization culture and Environment – Current trends and issues in Management.											
UNI	ГΙ	P	LANNING					9				
Nature objectiv Technic	and pur ves – p jues – D	rpo oli )ec	se of planning – planning process – types cies – Planning premises – Strategic M ision making steps and process.	of planning – o anagement – Pl	bject annin	ives 1g T	– se ools	etting and				
UNIT	III	0	RGANISING					9				
Nature structur centrali Recruit and mat	and put e – typ zation a ment, se nagemen	rpo es nd eleo nt.	ose – Formal and informal organization – – Line and staff authority – departmental decentralization – Job Design - Human Res ction, Training and Development, Performa	- organization ch ization – delegat source Manageme nce Management	art – ion c ent – , Ca	org of au HR areer	aniz ithor Plan plar	ation ity – ning, nning				
UNI	ΓΙ	D	IRECTING					9				
Founda techniq commu commu	Foundations of individual and group behaviour – motivation – motivation theories – motivational techniques – job satisfaction – job enrichment – leadership – types and theories of leadership – communication – process of communication – barrier in communication – effective communication – communication and IT.											
UNI	ΓV	C	ONTROLLING					9				
System and process of controlling – budgetary and non-budgetary control techniques – use of computers and IT in Management control – Productivity problems and management – control and performance – direct and preventive control – reporting.												
				TOTAL:4	5 PI	ERI	OD	S				
OUTO	COME	S:	On completion of this course, students wil	l be able to								
1.	Explor	e tl	ne basics of management and organizations									
2.	Identif	y tl	ne nature and purpose of planning and to get	knowledge on var	rious	plan	ning	;				

	techniques.									
3.	Learn and implement various organising methods.									
4.	Gain knowledge on different directing techniques.									
5.	Analyse and learn various types of controlling techniques.									
TEX	T BOOKS:									
1.	JAF Stoner, Freeman R.E and Daniel R Gilbert "Management", 6th Edition, Pearson Education, 2004.									
2	Stephen P. Robbins & Mary Coulter, "Management", Prentice Hall (India)Pvt. Ltd., 10th Edition, 2009.									
3	Hill Charles W. L., "Principles of Management", Tata McGraw-Hill Education India, 2007.									
REF	ERENCES:									
1.	Harold Koontz & Heinz Weihrich, <b>"Essentials of Management",</b> Tata McGraw Hill, 1998.									
2.	Tripathy PC & Reddy PN, "Principles of Management", Tata Mcgraw Hill, 1999.									
3.	Robert Kreitner&MamataMohapatra, "Management",Biztantra, 2008.									
4.	Stephen A. Robbins & David A. Decenzo & Mary Coulter, <b>"Fundamentals of</b> Management", 7th Edition, Pearson Education, 2011.									
5.	R. C. Bhatia, "Principles of Management", Sterling Publishers (25 February 2013).									

MAPPIN	MAPPING OF COs, POs AND PSOs:														
	POs														;
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1						2	2	2	2	2	3	1			2
CO2						2	2	2	2	2	3	1			2
CO3						2	2	2	2	2	3	1			2
CO4						2	2	2	2	2	3	1			2
CO5						2	2	2	2	2	3	1			2
Average						2	2	2	2	2	3	1			2
Round off						2	2	2	2	2	3	1			2
3- Strong C	orrel	ation;	; 2 - N	lediu	m Co	rrelati	ion; 1	- Lo	w Coi	rrelati	ion	•	•	•	

	EOL/	AUTOMOBILE ENGINEERING I		Τ	Р	C
		3	3	0	0	3
OBJEC	CTIVES	5:				
•	To unde	erstand the construction and working principle of various parts of a	an a	autor	nobi	le.
•	To unde	erstand assembling and dismantling of engine parts and transmission	on	syste	em.	
•	To broa	den the understanding of automotive architecture and performance	e.			
•	To intro	duce students about the transmission system.				
•	To fami	liarize about the wheels, tyres, and braking system.				
UNIT	TI V	<b>EHICLE STRUCTURE AND ENGINES</b>				9
Types of aerodyna materials	automol mics (va , variable	biles, vehicle construction and different layouts, chassis, frame an arious resistances and moments involved), IC engines –component e valve timing (VVT).	nd b	ody, func	Veh tions	icle and
UNIT	II E	CNGINE AUXILIARY SYSTEMS				9
injection system), ignition s converter	system Electror system), r system,	(Unit injector system, Rotary distributor type and common rail nic ignition system (Transistorized coil ignition system, capac Turbo chargers (WGT, VGT), Engine emission control by the Emission norms (Euro and BS).	dıı citi reev	rect ve d way	injec lischa catal	tioi arge ytio
UNIT	III T	<b>'RANSMISSION SYSTEMS</b>				9
UNIT Clutch-ty drive, tra Different	IIITypes and ansfer bo tial and response to the second s	<b>TRANSMISSION SYSTEMS</b> construction, gear boxes- manual and automatic, gear shift me ox, fluid flywheel, torque converter, propeller shaft, slip joints, ear axle, Hotchkiss Drive and Torque Tube Drive.	echa uni	anisr vers	ns, C al joi	<b>9</b> Over
UNIT Clutch-ty drive, tra Different UNIT	IIITypes and ansfer bo tial and reIVS	<b>TRANSMISSION SYSTEMS</b> construction, gear boxes- manual and automatic, gear shift me ox, fluid flywheel, torque converter, propeller shaft, slip joints, ear axle, Hotchkiss Drive and Torque Tube Drive. <b>TEERING, BRAKES AND SUSPENSION SYSTEM</b>	echa uni	anisr vers	ns, C al joi	9 Over ints 9
UNIT Clutch-ty drive, tra Different UNIT Steering Suspensio electronic	IIIT/pes andansfer botial and rIVSgeometryon Systec brake f	<ul> <li><b>RANSMISSION SYSTEMS</b></li> <li>construction, gear boxes- manual and automatic, gear shift me ox, fluid flywheel, torque converter, propeller shaft, slip joints, ear axle, Hotchkiss Drive and Torque Tube Drive.</li> <li><b>TEERING, BRAKES AND SUSPENSION SYSTEM</b></li> <li>y and types of steering gear box-Power Steering, Types of Front ms, Pneumatic and Hydraulic Braking Systems, Antilock Braking Force distribution (EBD) and Traction Control.</li> </ul>	echa uni [ <b>S</b> t A: g Sy	anisr vers xle, ' ysten	ns, C al joi Type n (Al	9 Over ints 9 s of 3S),
UNIT Clutch-ty drive, tra Different UNIT Steering Suspensional electronic UNIT	IIIT $\sqrt{pes}$ $and$ $\sqrt{pes}$ $and$ $ansfer$ $bo$ $\sin and$ $r$ $IV$ $S$ $geometryonSystecbrakeVA$	<ul> <li><b>RANSMISSION SYSTEMS</b></li> <li>construction, gear boxes- manual and automatic, gear shift me ox, fluid flywheel, torque converter, propeller shaft, slip joints, ear axle, Hotchkiss Drive and Torque Tube Drive.</li> <li><b>TEERING, BRAKES AND SUSPENSION SYSTEM</b></li> <li>y and types of steering gear box-Power Steering, Types of Front ms, Pneumatic and Hydraulic Braking Systems, Antilock Braking Force distribution (EBD) and Traction Control.</li> <li><b>LTERNATIVE ENERGY SOURCES</b></li> </ul>	echa uni [ <b>S</b> t A: g Sy	anisr vers xle, ' ysten	ns, C al joi Type n (Al	9 Dver ints 9 s oi 3S) 9
UNIT Clutch-ty drive, tra Different UNIT Steering Suspensional electronic UNIT Use of N Automob Character Cell Not	IIITvpesandunsferboiialandialandialandialandialandialandialandialandialandialandialandgeometryandonSystecbrakeifalliandiandiandiandiandiandiandiandiandiandiandiandiandiandiandiandiandiandiandiandiandiandiandiandiandiandiandiandiandiandiandiandiandiandiandiandiandiandiandiandiandiandiandiandiandiandi </td <td><ul> <li><b>TRANSMISSION SYSTEMS</b></li> <li>construction, gear boxes- manual and automatic, gear shift me ox, fluid flywheel, torque converter, propeller shaft, slip joints, ear axle, Hotchkiss Drive and Torque Tube Drive.</li> <li><b>TEERING, BRAKES AND SUSPENSION SYSTEM</b></li> <li>y and types of steering gear box-Power Steering, Types of Front ms, Pneumatic and Hydraulic Braking Systems, Antilock Braking Force distribution (EBD) and Traction Control.</li> <li><b>LTERNATIVE ENERGY SOURCES</b></li> <li>Fas, Liquefied Petroleum Gas, Bio-diesel, Bio-ethanol, Gasohol a fingine modifications required –Performance, Combustion SI and CI engines with these alternate fuels - Electric and Hybrid cal Training in dismantling and assembling of Engine parts are given to the students.</li> </ul></td> <td>echa uni (S t A: g Sy und an d V nd</td> <th>anisr vers xle, ' ysten Hyd d I Yehic Tran</th> <td>ns, C al joi Type n (Al Troge Emis les, l smis</td> <td>9 Dven ints 9 s of 3S) 9 n ir sior Fue sior</td>	<ul> <li><b>TRANSMISSION SYSTEMS</b></li> <li>construction, gear boxes- manual and automatic, gear shift me ox, fluid flywheel, torque converter, propeller shaft, slip joints, ear axle, Hotchkiss Drive and Torque Tube Drive.</li> <li><b>TEERING, BRAKES AND SUSPENSION SYSTEM</b></li> <li>y and types of steering gear box-Power Steering, Types of Front ms, Pneumatic and Hydraulic Braking Systems, Antilock Braking Force distribution (EBD) and Traction Control.</li> <li><b>LTERNATIVE ENERGY SOURCES</b></li> <li>Fas, Liquefied Petroleum Gas, Bio-diesel, Bio-ethanol, Gasohol a fingine modifications required –Performance, Combustion SI and CI engines with these alternate fuels - Electric and Hybrid cal Training in dismantling and assembling of Engine parts are given to the students.</li> </ul>	echa uni (S t A: g Sy und an d V nd	anisr vers xle, ' ysten Hyd d I Yehic Tran	ns, C al joi Type n (Al Troge Emis les, l smis	9 Dven ints 9 s of 3S) 9 n ir sior Fue sior
UNIT Clutch-ty drive, tra Different UNIT Steering Suspensional electronic UNIT Use of N Automob Character Cell Not	III     T       vpes     and       unsfer     boil       ial     and       ial     and       IV     S       geometry     on       on     Syste       c     brake       V     A       Vatural     G       piles-     E       ristics     of       should     b	<b>TRANSMISSION SYSTEMS</b> construction, gear boxes- manual and automatic, gear shift me box, fluid flywheel, torque converter, propeller shaft, slip joints, ear axle, Hotchkiss Drive and Torque Tube Drive. <b>TEERING, BRAKES AND SUSPENSION SYSTEM</b> y and types of steering gear box-Power Steering, Types of Front ms, Pneumatic and Hydraulic Braking Systems, Antilock Braking Force distribution (EBD) and Traction Control. <b>LTERNATIVE ENERGY SOURCES</b> as, Liquefied Petroleum Gas, Bio-diesel, Bio-ethanol, Gasohol a fingine modifications required –Performance, Combustion FSI and CI engines with these alternate fuels - Electric and Hydra and assembling of Engine parts are given to the students.	echa uni (S g Sy und an d V nd	anisr versa xle, ' ysten Hyd d I Zehic Tran	ns, C al joi Type n (Al roge Emiss les, I smiss	9 Dven ints: 9 s of 3S): 9 n in sior Fuel sior S
UNIT Clutch-ty drive, tra Different UNIT Steering Suspenside electronic UNIT Use of N Automob Character Cell Not Systems	III     T       vpes     and       unsfer     boil       ial     and       ial     and       iv     S       geometry     on       on     Syste       c     brake       V     A       Vatural     G       poiles-     E       ristics     of       should     b	<b>`RANSMISSION SYSTEMS</b> construction, gear boxes- manual and automatic, gear shift me box, fluid flywheel, torque converter, propeller shaft, slip joints, ear axle, Hotchkiss Drive and Torque Tube Drive. <b>TEERING, BRAKES AND SUSPENSION SYSTEM</b> y and types of steering gear box-Power Steering, Types of Front ms, Pneumatic and Hydraulic Braking Systems, Antilock Braking force distribution (EBD) and Traction Control. <b>LTERNATIVE ENERGY SOURCES</b> as, Liquefied Petroleum Gas, Bio-diesel, Bio-ethanol, Gasohol a fingine modifications required –Performance, Combustion         SI and CI engines with these alternate fuels - Electric and Hybric cal Training in dismantling and assembling of Engine parts ar e given to the students. <b>TOTAL : 45</b> concompletion of this course, students will be able to	echa uni (S g Sy and d V nd '	anisr versa xle, ' ysten Hyd d I Zehic Tran	ns, C al joi Type n (Al roge Emis les, l smiss	9 Dven ints 9 s of 3S) 9 n ir sior Fue sior S
UNIT Clutch-ty drive, tra Different UNIT Steering Suspenside electronic UNIT Use of N Automob Character Cell Not Systems OUTCO 1. 1	III     T       /pes     and       insfer     bo       ial and     r       IV     S       geometry     on Syste       c     brake       'V     A       Vatural     G       piles-     E       ristics     of       e:     Practi       should     b	<b>TRANSMISSION SYSTEMS</b> construction, gear boxes- manual and automatic, gear shift me         ox, fluid flywheel, torque converter, propeller shaft, slip joints,         ear axle, Hotchkiss Drive and Torque Tube Drive. <b>TEERING, BRAKES AND SUSPENSION SYSTEM</b> y and types of steering gear box-Power Steering, Types of Front         ms, Pneumatic and Hydraulic Braking Systems, Antilock Braking         force distribution (EBD) and Traction Control. <b>LTERNATIVE ENERGY SOURCES</b> ass, Liquefied Petroleum Gas, Bio-diesel, Bio-ethanol, Gasohol a         ingine modifications required –Performance, Combustion         SI and CI engines with these alternate fuels - Electric and Hybrid         cal Training in dismantling and assembling of Engine parts ar         e given to the students. <b>TOTAL : 45 C</b> On completion of this course, students will be able to         the different vehicle structure in automobile.	echa uni (S g Sy and d V nd '	anisr vers xle, ' ysten Hyd d I Yehic Tran E <b>RI</b>	ns, C al joi Type n (Al roge Emis les, l smis	9 Verints 9 s of 3S) 9 n in sion Fuel sion S
UNIT Clutch-ty drive, tra Different UNIT Steering Suspenside electronic UNIT Use of N Automob Character Cell Not Systems OUTCO 1. 1 2. 1	III     T       /pes     and       /pes     and       ial and     r       IV     S       geometry     on Syste       c     brake       c     brake       V     A       Vatural     G       piles-     E       ristics     of       e:     Practi       should     b       OMES       Identify	<b>TRANSMISSION SYSTEMS</b> construction, gear boxes- manual and automatic, gear shift metox, fluid flywheel, torque converter, propeller shaft, slip joints, ear axle, Hotchkiss Drive and Torque Tube Drive. <b>TEERING, BRAKES AND SUSPENSION SYSTEM</b> y and types of steering gear box-Power Steering, Types of Front ms, Pneumatic and Hydraulic Braking Systems, Antilock Braking Force distribution (EBD) and Traction Control. <b>LTERNATIVE ENERGY SOURCES</b> as, Liquefied Petroleum Gas, Bio-diesel, Bio-ethanol, Gasohol a fingine modifications required –Performance, Combustion SI and CI engines with these alternate fuels - Electric and Hybric cal Training in dismantling and assembling of Engine parts are given to the students. <b>TOTAL : 45</b> con completion of this course, students will be able to the different vehicle structure in automobile.	echa uni (S g Sy and d V nd '	anisr versa xle, ' ysten Hyd d I Yehic Tran E <b>RI</b>	ns, C al joi Type n (Al roge Emis les, l smiss	9 verifications 9 s of 3S), 9 n in sion Fuel sion S

4.	Learn the funct	tions of steering, suspension and braking systems.										
5.	Analyze perfor	mance, combustion and emission characteristics of alternative fuels.										
TEX	T BOOKS:											
1.	. Kirpal Singh, <b>"Automobile Engineering</b> ", Vol. 1 & 2, Seventh Edition, Standard Publishers, NewDelhi, 1997.											
2.	Jain K.K. and A NewDelhi, 200	Jain K.K. and Asthana .R.B, <b>"Automobile Engineering"</b> Tata McGraw Hill Publishers, NewDelhi, 2002.										
3.	Ramalingam, K	K. K, <b>"Automobile Engineering",</b> Scitech Publications, 2014.										
REFI	ERENCES:											
1.	Newton, Steeds	and Garet, "Motor Vehicles", Butterworth Publishers, 1989.										
2.	Joseph Heitner	; "Automotive Mechanics", Second Edition, East-West Press, 1999.										
3.	Martin W, Stoc Goodheart –Wi	kel and Martin T Stockle, <b>"Automotive Mechanics Fundamentals",</b> The ill Cox Company Inc, USA, 1978.										
4.	Heinz Heisler, 1998.	"Advanced Engine Technology", SAE International Publications USA,										
5.	Ganesan V. "In	nternal Combustion Engines", Third Edition, Tata McGraw-Hill, 2007.										

MAPPIN	G OI	F CO	s, PC	<b>)s</b> Al	ND P	SOs	:									
	POs													PSOs		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	3	2									1	2	2		
CO2	3	3	2									1	2	2		
CO3	3	3	2									1	2	2		
CO4	3	3	2									1	2	2		
CO5	3	3	2									1	2	2		
Average	3	3	2									1	2	2		
Round off	3	3	2									1	2	2		
3- Strong C	orrel	ation	; 2 - N	lediu	m Coi	rrelat	ion; 1	- Lo	w Co	rrelati	ion					

20MI	PE018	ENERGY CONSERVARION AND L T										
	3 0											
OBJE	CTIVE	S:										
•	To enab Manage	le the students to understand the basic concepts ment.	of Energy Eng	ineeri	ng a	nd						
•	To carryout energy accounting and balancing.											
•	To conduct energy audit and suggest methodologies for energy savings.											
•	To utilise the available resources in optimal ways.											
•	To unde	erstand and analyse the energy data of industries	•									
UNI	ΓΙΙ	NTRODUCTION					9					
Energy Environ Method	- Power mental a ology and	<ul> <li>Past &amp; Present scenario of World; Natio</li> <li>spects associated with energy utilization –</li> <li>Barriers. Role of Energy Managers. Instrument</li> </ul>	nal Energy co Energy Auditi ts for energy au	nsum ng: ] diting	ption Need g.	n Dat , Ty	ta – pes,					
UNI	ΓII F	CLECTRICAL SYSTEMS					9					
Capacite Comput LED Li	ors, Pow ation, En ghting and	rer Factor Improvement, Harmonics, Electrergy Efficient Motors, Illumination – Lux, Lund scope of Energy conservation(encon.) in Illum	ic Motors - mens, Types of nination.	Moto light	or E ing,	Efficie	ency acy,					
UNIT		THERMAL SYSTEMS					9					
Stoichic measure Utilizati	ometry, B es. Steam on, Insula	oilers, Furnaces and Thermic Fluid Heaters – I a: Distribution & Usage: Steam Traps, Cor ators & Refractories.	Efficiency comj idensate Recov	putati very,	on a Flas	nd er h St	ncon eam					
UNIT	UNIT IV ENERGY CONSERVATION IN MAJOR UTILITIES											
Pumps, Cooling	Fans, Blo Towers -	owers, Compressed Air Systems, Refrigeration a - D.G. sets.	nd Air Conditio	oning	Syst	ems -						
UNI	UNIT V ENERGY ECONOMICS						9					
Energy Life Cy	Economic cle Costir	cs – Discount Rate, Payback Period, Internal Ra ng – ESCO concept.	te of Return, Ne	et Pre	sent	Valu	e,					
			TOTAL :	45 P	<b>ER</b>	[OD	S					
OUTC	COMES	On completion of this course, students will b	e able to									
1.	Apply th	e energy utilization at national and international	levels.									
2.	Analyze	various energy conservation techniques in elect	rical systems.									
3.	Learn va	rious energy conservation techniques in Therma	al systems.									
4.	Create various energy conservation techniques in major utilities.											
		anous energy conservation teeninques in major										

TEXT BOOKS:									
1.	Callaghan P.W Press, Oxford,	.O, "Design and Management for Energy Conservation", Pergamon 2003.							
2.	Murphy W.R and McKay G, "Energy Management", Butterworths, London, 2007.								
3.	Paul W. O'Call	laghan, "Energy Management", McGraw-Hill Book Company, 1993.							
REFI	ERENCES:								
1.	Witte. L.C., Utilisation", H	P.S. Schmidt, D.R. Brown, <b>"Industrial Energy Management and</b> Temisphere Publ, Washington, 1988.							
2.	Barney L. Capehart, Wayne C. Turner, William J. Kennedy, <b>"Guide to Energy</b> Management", TheFaimont Press, 6th edition, 2008 Hemisphere, 2003.								
3.	Dryden. I.G.C., "The Efficient Use of Energy", Butterworths, London, 1982.								
4.	Steve Doty, Wa edition, 2009.	yne C. Turner, <b>"Energy Management Handbook"</b> , FairmontPress, 7th							
5.	Trivedi P.R and	d Jolka K.R, "Energy Management", Common Wealth Publication,2002.							

MAPPING OF COs, POs AND PSOs:															
	POs												PSOs		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2	2			2	2	2			2	1	2	2	
CO2	2	2	2			2	2	2			2	1	2	2	
CO3	2	2	2			2	2	2			2	1	2	2	
CO4	2	2	2			2	2	2			2	1	2	2	
CO5	2	2	2			2	2	2			2	1	2	2	
Average	2	2	2			2	2	2			2	1	2	2	
Round off	2	2	2			2	2	2			2	1	2	2	
3- Strong C	orrel	ation;	; 2 - N	lediu	m Co	rrelat	ion; 1	- Lo	w Co	rrelati	ion		1	<u> </u>	<u>.</u>

OBJEC • • • UNIT Robot - Classifica Parts and	$\begin{array}{c c} \mathbf{CTIVES} \\ To make \\ To learn \\ To learn \\ To unde \\ \hline To exploar \\ \mathbf{CI} & \mathbf{F} \\ \mathbf{Definitiation-Specees} \\ \mathbf{CI} & \mathbf{F} \\ \mathbf{CI} & \mathbf{CI} \\ \mathbf{CI} \\ \mathbf{CI} & \mathbf{CI} \\ $	S: e the students to understand the basic concepts of robotics. the concepts and techniques of robot manipulator and its kinema the various end effectors and sensors. rstand the Robots cell design and programming. ore the industrial applications of robot. UNDAMENTALS OF ROBOT ton - Robot Anatomy - Coordinate Systems, Work Envel ecifications-Pitch, Yaw, Roll, Joint notations, Speed of Motion,	3 utic	<b>0</b> s.	0	3
OBJEC • • • • UNIT Robot - Classifica Parts and	CTIVESTo makeTo learnTo learnTo undeTo exploTo exploTIFDefinition-Speedtheir Fu	S: e the students to understand the basic concepts of robotics. the concepts and techniques of robot manipulator and its kinema the various end effectors and sensors. rstand the Robots cell design and programming. ore the industrial applications of robot. UNDAMENTALS OF ROBOT ton - Robot Anatomy - Coordinate Systems, Work Envel ecifications-Pitch, Yaw, Roll, Joint notations, Speed of Motion,	ıtic	s.		
• • • UNIT Robot - Classifica Parts and	To make To learn To learn To unde To $exple$ $\Gamma$ I F Definiti ation-Spe I their Fu	e the students to understand the basic concepts of robotics. the concepts and techniques of robot manipulator and its kinema the various end effectors and sensors. rstand the Robots cell design and programming. ore the industrial applications of robot. <b>UNDAMENTALS OF ROBOT</b> ton - Robot Anatomy - Coordinate Systems, Work Envel ecifications-Pitch, Yaw, Roll, Joint notations, Speed of Motion,	ıtic	S.		
• • • UNIT Robot - Classifica Parts and	To learn To learn To unde To $explo\mathbf{F} \mathbf{I} = \mathbf{F}Definitiation-SpoI their Fu$	the concepts and techniques of robot manipulator and its kinema the various end effectors and sensors. rstand the Robots cell design and programming. ore the industrial applications of robot. <b>UNDAMENTALS OF ROBOT</b> ton - Robot Anatomy - Coordinate Systems, Work Envel ecifications-Pitch, Yaw, Roll, Joint notations, Speed of Motion,	ıtic	S.		
• • UNIT Robot - Classifica Parts and	To learn To unde To explo TI F Definiti ation-Spo I their Fu	the various end effectors and sensors. rstand the Robots cell design and programming. ore the industrial applications of robot. <b>UNDAMENTALS OF ROBOT</b> ion - Robot Anatomy - Coordinate Systems, Work Envel ecifications-Pitch, Yaw, Roll, Joint notations, Speed of Motion,				
• UNIT Robot - Classifica Parts and	To unde To explo TIF Definiti ation-Spo I their Fu	rstand the Robots cell design and programming. ore the industrial applications of robot. <b>UNDAMENTALS OF ROBOT</b> ion - Robot Anatomy - Coordinate Systems, Work Envel ecifications-Pitch, Yaw, Roll, Joint notations, Speed of Motion,				
• UNIT Robot - Classifica Parts and	To explo <b>I F</b> Definiti ation-Spe I their Fu	ore the industrial applications of robot. <b>UNDAMENTALS OF ROBOT</b> ion - Robot Anatomy - Coordinate Systems, Work Envel ecifications-Pitch, Yaw, Roll, Joint notations, Speed of Motion,				
UNIT Robot - Classifica Parts and	<b>I I F D</b> efinitiation-Spectrum Fu	UNDAMENTALS OF ROBOT on - Robot Anatomy - Coordinate Systems, Work Envel ecifications-Pitch, Yaw, Roll, Joint notations, Speed of Motion,				
Robot - Classifica Parts and	Definiti ation-Spe l their Fu	on - Robot Anatomy - Coordinate Systems, Work Envel ecifications-Pitch, Yaw, Roll, Joint notations, Speed of Motion,				9
		nctions-Need for Robots-Different Applications.	ope Pay	e, T ₁ 7 Loa	ypes 1d- R	and obot.
UNIT	II R	OBOT DRIVE SYSTEMS AND END EFFECTORS	5			9
Stepper I Drives, I Magnetic Grippers	Motors, End Eff c Grippe and Exte	A.C. Servo Motors-Salient Features, Applications and Comparectors – Grippers-Mechanical Grippers, Pneumatic and Hydrs, Vacuum Grippers; Two Fingered and Three Fingered Gernal Grippers; Selection and Design Considerations.	iso rau rip	n of ilic pers:	all t Gripj , Inte	hese pers, ernal
UNIT	III S	ENSORS AND MACHINE VISION				9
Requirem sensors – Range Se Finders, Complian Signal C Reductio Applicati	nents of - Piezo-e ensors, T Laser R nce Sens Conversio on, Seguions-Insp	a sensor, Principles and Applications of the following types of lectric Sensor, LVDT, Resolvers, Optical Encoders, pneumatic F riangulations Principles, Structured, Lighting Approach, Time ange Meters, Touch Sensors, Binary Sensors, Analog Sensors ors, Slip Sensors, Camera, Frame Grabber, Sensing and Digitiz n, Image Storage, Lighting Techniques, Image Processing an mentation, Feature Extraction, Object Recognition, Oth ection, Identification, Visual Serving and Navigation.	sen Pos of , V ing d ler	sors sitior Fligl Vrist g Ima Anal Al	Pos Sen nt, Ra Sen age I ysis- gorit	ition sors, ange sors, Data- Data hms,
UNIT	IV R	OBOT KINEMATICS AND ROBOT PROGRAMM	111	NG		9
Forward Kinemati freedom Manipula programm command	Kinema ics of m (in 3D) ator Mec ming Lar ds and sin	tics, Inverse Kinematics and Difference; Forward Kinemati anipulators with Two, Three Degrees of Freedom (in 2 D), Jacobians, Velocity and Forces-Manipulator Dynamics, Traje hanism Design-Derivations and problems. Lead through Prog aguages-VAL Programming-Motion Commands, Sensor Comma mple Programs.	cs Fou cto ran nds	and ar D ory C nmin s, En	Rev egree iener ig, R d effe	verse s of ator, obot ector
UNIT	V I	MPLEMENTATION AND ROBOT ECONOMICS				9
RGV, AO Robot Oj	GV, Impl perations	ementation of Robots in Industries-Various Steps, Safety Consid - Economic Analysis of Robots.	era	tion	s for	
		TOTAL:4	5 I	PER	IOI	)S
OUTCO	OMES:	On completion of this course, students will be able to				

1.	Analyse fundamentals of robotics.										
2.	Explore the design concepts of robot drives and end effectors.										
3.	Apply the concept of sensors and machine vision system.										
4.	Learn the concept of Robot kinematics and write robot programming.										
5.	Evaluate the safety and economics of robots.										
TEX	BOOKS:										
1.	Klafter R.D., Chmielewski T.A and Negin M., <b>"Robotic Engineering</b> - An Integrated Approach", Prentice Hall, 2003.										
2.	Groover M.P., "Industrial Robotics -Technology Programming and Applications", McGraw Hill, 2001.										
3.	J. Norberto Pires., "Industrial Robots Programming" Springer, 2007.										
REF	RENCES:										
1.	Craig J.J., "Introduction to Robotics Mechanics & Control", Pearson Education, 2008.										
2.	Deb S.R., "Robotics Technology and Flexible Automation" Tata McGraw Hill, 1994.										
З.	Koren Y., "Robotics for Engineers", McGraw Hill Book Co., 1992.										
4.	Rajput R.K., "Robotics and Industrial Automation", S. Chand and Company, 2008.										
5.	Janakiraman P.A., "Robotics and Image Processing", Tata McGraw Hill, 1995.										

MAPPING OF COs, POs AND PSOs:															
	POs												PSOs		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	2									1	2	2	
CO2	3	3	2									1	2	2	
CO3	3	3	2									1	2	2	
CO4	3	3	2									1	2	2	
CO5	3	3	2									1	2	2	
Average	3	3	2									1	2	2	
Round off	3	3	2									1	2	2	
3- Strong C	orrel	ation;	; 2 - N	lediu	m Co	rrelat	ion; 1	- Lo	w Coi	rrelati	on				L
3       0       0         OBJECTIVES:         •       To make the students understand the Governing Equations and boundary conditions of various fluid dynamic problems.         •       To introduce numerical modelling and its role in the field of fluid flow and heat transfer         •       To enable the students to understand the various discretization methods, solution procedures and turbulence modelling.	3														
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	--------------------	--	--	--	--	--	--	--	--	--	--	--			
OBJECTIVES:         •       To make the students understand the Governing Equations and boundary conditions of various fluid dynamic problems.         •       To introduce numerical modelling and its role in the field of fluid flow and heat transfer         •       To enable the students to understand the various discretization methods, solution procedures and turbulence modelling.	5														
<ul> <li>To make the students understand the Governing Equations and boundary conditions of various fluid dynamic problems.</li> <li>To introduce numerical modelling and its role in the field of fluid flow and heat transfe</li> <li>To enable the students to understand the various discretization methods, solution procedures and turbulence modelling.</li> </ul>															
<ul> <li>To introduce numerical modelling and its role in the field of fluid flow and heat transfe</li> <li>To enable the students to understand the various discretization methods, solution procedures and turbulence modelling.</li> </ul>															
• To enable the students to understand the various discretization methods, solution procedures and turbulence modelling.	er.														
<ul> <li>procedures and turbulence modelling.</li> <li>To apply finite volume method for convection and diffusion problems.</li> </ul>															
• To apply finite volume method for convection and diffusion problems.															
• To analyse the finite volume approach to discretize the governing equations															
UNIT I GOVERNING EQUATIONS AND BOUNDARY CONDITIONS															
Basics of computational fluid dynamics – Governing equations of fluid dynamics – Continu Momentum and Energy equations – Chemical species transport – Physical boundary condition Time-averaged equations for Turbulent Flow – Turbulent–Kinetic Energy Equations Mathematical behavior of PDEs on CFD - Elliptic, Parabolic and Hyperbolic equations.	ity, 1s – –														
UNIT II     FINITE DIFFERENCE AND FINITE VOLUME METHODS FOR DIFFUSION															
Derivation of finite difference equations – Simple Methods – General Methods for first and second order accuracy – Finite volume formulation for steady state One, Two and Three –dimension diffusion problems –Parabolic equations – Explicit and Implicit schemes – Example problem onelliptic and parabolic equations – Use of Finite Difference and Finite Volume methods.	ond onal ems														
UNIT III FINITE VOLUME METHOD FOR CONVECTION AND DIFFUSION	9														
Steady one-dimensional convection and diffusion – Central, upwind differencing scher properties of discretization schemes – Conservativeness, Boundedness, Transportiveness, Hyb Power-law, QUICK Schemes.	nes rid,														
UNIT IV FLOW FIELD ANALYSIS	9														
Finite volume methods -Representation of the pressure gradient term and continuity equation Staggered grid – Momentum equations – Pressure and Velocity corrections – Pressure Correct equation, SIMPLE algorithm and its variants – PISO Algorithms.	n – tion														
UNIT V TURBULENCE MODELS AND MESH GENERATION	9														
Turbulence models, mixing length model, Two equation (k-C) models – High and low Reynolds number models – Structured Grid generation – Unstructured Grid generation – Mesh refinement Adaptive mesh – Software tools.	8 t —														
TOTAL : 45 PERIODS															
<b>OUTCOMES:</b> On completion of this course, students will be able to															
1. On completion of this course, students will be able toDerive governing equations of flui	id														

	dynamics by applying different boundary conditions.											
2.	To enable the student understand finite difference and volum	ne methods for diffusion.										
3.	Apply finite volume method to solve convection diffusion pr	oblems.										
4.	Learn the concept of flow field analysis.											
5.	Creating different turbulence models and grid generation.											
TEXT BOOKS:												
1.	Versteeg, H.K., and Malalasekera, W., "An Introduction to Dynamics: Thefinite volume method", Pearson Education	<b>Computational Fluid</b> Ltd. 2 nd Edition, 2007.										
2.	Ghoshdastidar, P.S., "Computer Simulation of flow and heat transfer", Tata McGraw Hill Publishing Company Ltd., 1998.											
3.	Anil W. Date, <b>"Introduction to computational fluid dynar</b> Press, Cambridge, 2009.	nics",Cambridge University										
REF	TERENCES:											
1.	Patankar, S.V. "Numerical Heat Transfer and Fluid Flow" Corporation, 2004.	, Hemisphere Publishing										
2.	Chung, T.J. "Computational Fluid Dynamics", Cambridge	University, Press, 2002.										
З.	Ghoshdastidar P.S., "Heat Transfer", Oxford University Pr	ess, 2005										
4.	Muralidhar, K., and Sundararajan, T., <b>"Computational Flux Transfer"</b> ,NarosaPublishing House, New Delhi, 1995.	id Flow and Heat										
5.	Suhas.V. Patankar, <b>"Numerical Heat Transfer and Fluid F</b> Corporation, 2009.	low", Hemisphere Publishing										

MAPPIN	MAPPING OF COs, POs AND PSOs:																
	POs													PSOs			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
CO1	3	3	2									1	2	2			
CO2	3	3	2									1	2	2			
CO3	3	3	2									1	2	2			
CO4	3	3	2									1	2	2			
CO5	3	3	2									1	2	2			
Average	3	3	2									1	2	2			
Round off	3	3	2									1	2	2			
3- Strong C	orrel	ation;	; 2 - N	lediu	m Co	rrelat	ion; 1	- Lo	w Co	rrelati	ion	1	1	1	1		

20MI	PE021	DESIGN FOR MANUFACTURE, ASSEMBLY AND ENVIRONMENTS	L	T	Р	С						
			3	0	0	3						
OBJE	CTIVI	ES:										
•	To ma compo	ke the students to study the various factors influencing the manu onents and the use of tolerances in manufacturing.	ıfactu	rabil	ity o	f						
•	To dis machi	cover the application of this study to various forging, casting, w ning Processes.	elding	g and								
To help the students to design features to facilitate machining.												
To make the students to design features to facilitate casting.												
• To help the students to design the components by considering environmental factors.												
UNIT I DESIGN PRINCIPLES FOR MANUFACTURABILITY												
General design principles for manufacturability – strength and mechanical factors, mechanisms selection, evaluation method, process capability – feature tolerances–geometric tolerances – assembly limits –datum features – tolerance stacks.												
UNIT	Π	FACTORS INFLUENCING FORM DESIGN				9						
Working of mater	Working principle, material, manufacture, design- possible solutions - materials choice -influence of materials on form design - form design of welded members, forgings and castings.											
UNIT	'III	COMPONENT DESIGN - MACHINING				9						
Design a counter amalgar for acce automat	features sunk sc nation - essibility ic assem	to facilitate machining - drills - milling cutters - keyways - do rews - reduction of machined area- simplification by separation design for machinability - design foreconomy - design for cl y - Design for assembly - Product design for manual assembly bly - Robotic assembly.	owelin 1 - sim ampal - Prod	ng pr nplifi oility luct (	oced catic / - de desig	ures, on by esign n for						
UNIT	IV	<b>COMPONENT DESIGN - CASTING</b>				9						
Redesig machine modifyi	n of ca ed holes ng the d	astings based on parting line considerations - minimizing , redesign of cast members to obviate cores. Identification of une esign - group technology.	core econo	requ mica	irem l des	ents, ign -						
UNI	ГV	DESIGN FOR ENVIRONMENT				9						
Introduc methods impact - manufac	Introduction – environmental objectives – global issues – regional and local issues – basic DFE methods – design guidelines – lifecycle assessment method – techniques to reduce environmental impact –design for energy efficiency – design to regulations and standards. Introduction to Green manufacturing.											
TOTAL : 45 PERIODS												
<b>OUTCOMES:</b> On completion of this course, students will be able to												
1.	1.Learn different principles of design for manufacture.											
2.	Explore	e the various factors which are influencing the form design.										

3.	Analyzing design for different aspects.											
4.	Explore the components design involved in casting.											
5.	Create the components which are best suited for environment.											
ТЕХТ	BOOKS:											
1.	Robert Matousek, " Engineering Design- A systematic approach", Blackie& Sons ltd., 1963.											
2.	Harry Peck, "Design for Manufacture", Pitman Publishers, 1983.											
3.	O. Molloy, E.A. Warman, S. Tilley, <b>"Design for manufacture assembly",</b> Springer Science & Business Media. 1998.											
REFE	RENCES:											
1.	Bralla, "Design for Manufacture handbook, McGraw hill, 1999.											
2.	Boothroyd, G, "Design for Assembly Automation and Product Design". New York,											
	Marcel Dekker, 1980.											
3.	Swift, K.G., "Knowledge Based Design for Manufacture", Kogan Page Ltd., 1987.											
4.	Alan Redford and Chal, <b>"Design for Assembly-Principles and Procedures",</b> McGraw Hill International Europe, London, 1994.											
5.	James G.Bralla, <b>"Hand Book of Product design for Manufacturing",</b> McGraw Hill Co., 1986.											

MAPPIN	MAPPING OF COs, POs AND PSOs:																
	POs													PSOs			
	1         2         3         4         5         6         7         8         9         10         11         12											1	2	3			
CO1	2	2			2	2	2					1	2	2			
CO2	2	2			2	2	2					1	2	2			
CO3	2	2			2	2	2					1	2	2			
CO4	2	2			2	2	2					1	2	2			
CO5	2	2			2	2	2					1	2	2			
Average	2	2			2	2	2					1	2	2			
Round off	2	2			2	2	2					1	2	2			
3- Strong C	orrel	ation	; 2 - N	lediu	m Coi	rrelat	ion; 1	-Lo	w Coi	rrelati	on	•		•			

20MPE022     NANO TECHNOLOGY     L     T     I												
			3	0	0	3						
<b>OBJEC</b>	TIVES	6										
•	To ma	ke the students to understand fundamental principles of nanom	ateria	als.								
•	To un	derstand various properties of nanomaterials.										
•	To fan	niliarise the characterisation techniques of nanomaterials.										
•	To gai	n knowledge on various fabrication techniques.										
•	To exp	plore various applications of nanomaterials.										
UNIT	I F	UNDAMENTAL PRINCIPLES				9						
molecules intermolec functional reconstruc	and cl cular f ities - ction.	usters, supra molecules – nano scale phenomena - tunneling orces, molecular and crystalline structure, hierarchica surfaces and interfaces, bulk to surface transition, self-asse	g, cho l str embly	emica ructu and	al bo res d su	onds, and rface						
UNIT	II P	ROPERTIES OF NANOMATERIALS				9						
Size depe calculation magnetic	ndence n appros properti	of properties - phenomena and properties of nanoscale - br aches -mechanical / frictional properties, optical properties, e es.	electr	ical 1	trans	on to port,						
		ANOMATERIAL CHARACTERISATION	•			9						
transmissi	equipm on elect	ron microscopy, Auger electron spectroscopy, , x-ray spectros	e mici copy.	OSCC	ope,							
UNIT I	V S	YNTHESIS OF NANOMATERIALS				9						
Fabricatio nano litho metals: co fullerines	n techn ography olloidal / carbor	iques: self-assembly, self-replication, sol - gels, Langmuir - H – bio inspired synthesis, micro fluidic processes, chemical gold, silver and metal clusters - semiconductors: cadmium nanotubes, nanocomposites, nanoporous materials, biological	Blodg vapc sulpł mate	ett tl our d nide, rials	hin f lepos silic	ilms, ition con -						
UNIT	V A	PPLICATIONS OF NANOMATERIALS				9						
Nano elec – energy a	tronics and envi	- nano sensors - environmental - biological - energy storage and ronment, heating and medical.	d fue	cell	S							
		TOTAL :	45 I	PER	IO	DS						
OUTCO	<b>MES</b> :	On completion of this course, students will be able to										
1. U	Indersta	nd the fundamental principles of nanomaterials.										
2. L	earn vai	ious properties of nanomaterials.										
3. G	Get knowledge on characterisation techniques of nanomaterials.											
4. E	xplore v	various fabrication techniques										
5. G	et know	ledge various applications of nanomaterials.										

TEX	T BOOKS:
1.	Guozhongcao, "Nano Structured and Nano Materials", Imperial College Press, 2006.
	Reference Books
2.	Chris Binns, <b>"Introduction to Nanoscience and Nanotechnology"</b> , Wiley, 1 st edition, 2011.
3.	Jeremy Ramsden ""Nanotechnology: An Introduction", William Andrew, 1 st edition,2011.
REFE	RENCES:
1.	Gabor L. Hornyak, John J. Moore, H.F. Tibbals, <b>"Fundamentals of Nanotechnology",</b> CRC Press; 1 edition -2008
2.	Bharat Bhushan, "Handbook of Nanotechnology", Springer, 2004.
3.	Nalwa H.S., <b>"Handbook of Nano Structured Materials and Nano Technology", Vol. I – V,</b> Academic Press,
4.	Edelstein A.S. and Cammarata R.C., <b>"Nanomaterials – Synthesis, Properties and</b> <i>Applications"</i> , Institute of Physics Publishing, London, 1998.
5.	Dreselhaus M.S., Dreselhaus G., and Eklund P., <b>"Science of Fullerines and Nano Tubes</b> , Academic Press, 1996.

MAPPIN	G OI	F CO	s, PO	Ds Al	ND P	SOs:											
	POs													PSOs			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
CO1	3	3	2									1	2	2			
CO2	3	3	2									1	2	2			
CO3	3	3	2									1	2	2			
CO4	3	3	2									1	2	2			
CO5	3	3	2									1	2	2			
Average	3	3	2									1	2	2			
Round off	3	3	2									1	2	2			
3- Strong C	3- Strong Correlation; 2 - Medium Correlation; 1 – Low Correlation														L		

20MPE023     TOTAL QUALITY MANAGEMENT     L     T														
	3         0         0													
OBJE	CTIVES	5:	•											
•	To facil	itate the understanding of quality management principles and	proces	ss.										
•	To unde	erstand needs of various TQM principles.												
•	To acqu	ire knowledge on TQM tools and techniques.												
•	To impl	ement and assure Quality in Management.												
• To acquire knowledge about various quality standards														
UNIT I INTRODUCTION														
product Deming orientati quality.	and serv , Juran an ion, Cust	ice quality - Basic concepts of TQM - TQM Framework ad Crosby - Barriers to TQM - Quality statements - Custom omer satisfaction, Customer complaints, and Customer re	er foctetentio	ntrib us - ( n -	ution Cust Cos	1s of omer ts of								
UNI	ΓΙΙ Τ	'QM PRINCIPLES				9								
Empow appraisa Partneri	Leadership - Strategic quality planning, Quality Councils - Employee involvement - Motivation, Empowerment, Team and Teamwork, Quality circles Recognition and Reward, Performance appraisal- Continuous process improvement - PDCA cycle, 5S, Kaizen - Supplier partnership - Partnering, Supplier selection, Supplier Rating.													
UNIT	T III   T	QM TOOLS AND TECHNIQUES I				9								
The set Method Reason	ven tradi ology, ap to bench	tional tools of quality - New management tools - Six plications to manufacturing, service sector including IT mark, Bench marking process - FMEA - Stages, Types.	sign - Ben	na: ( ch n	Conc narki	epts, ing -								
UNIT	TIV T	QM TOOLS AND TECHNIQUES II				9								
Control (QFD) improve	Charts - -Taguchi ement nee	Process Capability - Concepts of Six Sigma - Quality Fundation - Total Productive Maintenance of ds - Performance measures -TQM and TPM similarities.	nction (TPM)	Dev	elop Conc	ment epts,								
UNI	Γ V   ζ	QUALITY SYSTEMS				9								
Need fo -QS 900 manufac	or ISO 900 00 - ISO 1 cturing an	0 - ISO 9001-2008 Quality System - Elements, Documentation 4000 - Concepts, Requirements and Benefits - TQM Implement d service sectors.	on, Qu entatio	ality n in	Aud	iting								
		TOTAL	: 45 F	PER	IOI	)S								
OUTC	COMES	Concompletion of this course, students will be able to												
1.	1. Explore the various philosophies of TQM.													
2.	. Learn the various types TQM principles.													
3.	Analyse	the quality of seven tools and types of FMEA.												
4.	Evaluate	about control chart, TPM and QFD.												

5.	Explore the inte	ernational standards and TQM implementation.									
TEX	T BOOKS:										
1.	Dale H. Bester Education Asia	filed, Et At., <b>"Total Quality Management",</b> Third Edition, Pearson , Indian Reprint, 2006.									
2.	Poornima M. Charantimath, <b>"Total Quality Management"</b> , 2 nd Edition, Pearson Publications, 2003										
3.	L. Suganthi, Anand A. Samuel, <b>"Total Quality Management"</b> , PHI Learning Pvt. Ltd. New Delhi, 2011.										
REF	ERENCES:										
1.	James R. Evan. 8 th Edition, Firs	s and William M. Lindsay, <b>"The Management and Control of Quality",</b> st Indian Edition, Cengage Learning, 2012.									
2.	Suganthi.L and	Anand Samuel, "Total Quality Management", Prentice Hall. Ltd.,2006.									
3.	Janakiraman. I Prentice Hall(I	B and Gopal .R.K., <b>"Total Quality Management - Text and Cases'',</b> India) Pvt. Ltd., 2006.									
4.	R. S. Naagaraz	an, "Total Quality Management", New Age International, 2005.									
5.	Jens J. Dahlga Management"	ard, Ghopal K. Khanji, Kai Kristensen <b>"Fundamentals of Total Quality</b> , Taylor and Francis, 2002.									

MAPPIN	MAPPING OF COs, POs AND PSOs:																	
	POs														PSOs			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3			
CO1	1	1				2	2	2			2	1	1	1	1			
CO2	1	1				2	2	2			2	1	1	1	1			
CO3	1	1				2	2	2			2	1	1	1	1			
CO4	1	1				2	2	2			2	1	1	1	1			
CO5	1	1				2	2	2			2	1	1	1	1			
Average	1	1				2	2	2			2	1	1	1	1			
Round off	1	1				2	2	2			2	1	1	1	1			
3- Strong C	orrel	ation;	; 2 - N	lediu	m Co	rrelat	ion; 1	- Lo	w Coi	rrelati	on							

20MP	E024	<b>OPTIMIZATION TECHNIQ</b>	UES	L	Т	P	С
				3	0	0	3
OBJEC	TIVES	:			•		
•	To make	the students to know the various unconstrained	l optimization te	echni	ques	5.	
•	To famil	iarise the constrained optimization techniques.					
•	To impa	rt knowledge on advanced optimization techniq	ues.				
•	To desig	n various static applications.					
•	To explo	re different dynamic applications.					
UNIT	I U	NCONSTRAINED OPTIMIZATION	TECHNIQU	JES			9
minimiza methods.	$\frac{1}{100}$	Solden section, Random, pattern and gradien	chniques	ds –	Inte	erpol	
		anglitu and in a sublitu a constraints. Direct me			h a d a		9
penalty f	unctions,	Lagrange multipliers - Geometric programmin	g.	met	nous	usin	g
UNIT	III A	DVANCE OPTIMIZATION TECHN	IQUES				9
Multi sta optimizat logic prir	age optin tion, Ger nciples in	nization – dynamic programming; stochastietic algorithms and Simulated Annealing tech optimization.	e programming miques; Neural	; M netv	ulti work	obje &F	ctive uzzy
UNIT	IV S'	FATIC APPLICATIONS					9
Structura axial, tra Loaded n	l applicat nsverse nembers	ions – Design of simple truss members - Desig loaded members for minimum cost, weight – Design of springs.	n applications - - Design of sh	- Des afts	sign and	of si tors	mple ional
UNIT	V D	YNAMIC APPICATIONS					9
Dynamic absorbers	Applicat S. Applica	ions – Optimum design of single, two degree o ation in Mechanisms – Optimum design of simp	f freedom syster ble linkage mech	ms, v nanis	vibra ms.	tion	
			TOTAL:	45 P	ER	IOE	)S
OUTC	OMES:	On completion of this course, students will b	e able to				
1. (	Compare	different unconstrained optimization technique	s.				
2.	Learn the	constrained optimization techniques.					
3.	Gain kno	wledge about advanced optimization technique	5.				
4. ]	Design ar	d analyse various static applications.					
5. 1	Design ar	d analyse various dynamic applications.					

TEX	T BOOKS:	
1.	Rao, Singaresu International (F	, <b>S., "Engineering Optimization – Theory &amp; Practice",</b> New Age P) Limited, New Delhi, 2000.
2.	Chander Moha	n, Kusum Deep, "Optimization Techniques", New Age Science, 2009.
3.	A. K. Malik, S. Publishing Hou	K. Yadav, S. R. Yadav, <b>"Optimization Techniques"</b> , I.K. International use Pvt. Limited, 2012.
REF	ERENCES:	
1.	K. Deb, " <b>Optin</b> Hall of India P	<b>uization for Engineering Design Algorithms and Examples'',</b> Prentice- vt. Ltd., New Delhi, 1995.
2.	L. R. Foulds, "	Optimization Techniques: An Introduction", Springer, 1981.
3.	Cornelius T. Le February 1998	eondes, <b>"Optimization Techniques",</b> Academic Press; 1st edition (9 ).
4.	Goldberg, D.E. Addison- Wesle	, <b>"Genetic algorithms in search, optimization and machine",</b> Barnen, ey, New York, 1989.
5.	Johnson Ray, C	C., <b>"Optimum design of mechanical elements",</b> Wiley, John & Sons, 1990.

MAPPIN	G OI	F CO	s, PC	)s Al	ND P	SOs	:								
						P	Os						PSOs		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2			1								2	2	
CO2	2	2			1								2	2	
CO3	3	2			1								2	2	
CO4	2	2			1								2	2	
CO5	2	2			1								2	2	
Average	2	2			1								2	2	
Round off	2	2			1								2	2	
3- Strong C	3- Strong Correlation; 2 - Medium Correlation; 1 – Low Correlation														

20M	OE001	ENC	GINEERING	ECONOMI	CS	L	Τ	Р	С
						3	0	0	3
OBJE	CTIVE								
•	To mak	the students to	understand the	fundamental ec	onomic concej	pts.			
•	To acqu	e basic knowle	edge on value er	ngineering.					
•	To learn	he different ca	sh flow techniq	ues.					
•	To acqu	e basic knowle	edge on differen	t types of replac	ement and ma	inte	nance	analy	ysis.
•	To learr	he different de	preciation meth	ods.					
UNI	TI I	TRODUTI	ON TO ECC	NOMICS					9
Enginee econom Break-e Design	ering Eco nics – Ele even anal selection	omics – Engi nent of costs, sis - V ratio, l or a product, P	neering efficier Marginal cost, Elementary eco rocess planning	ncy, Economic Marginal Reven nomic Analysis	efficiency, Sc nue, Sunk cos – Material se	cope t, O elect	of er pportu tion fo	ngine inity or pro	ering cost, oduct
UNI	ΓΙΙ	ALUE ENG	INEERING						9
formula Single series p gradien	ae and the payment bayment t series an	applications – resent worth fa resent worth f nual equivalent	Time value of r actor, Equal par actor- equal par factor, Effectiv	money, Single p yment series sin yment series c re interest rate, I	bayment comp nking fund fac apital recover Examples in al	ound ctor, y fa l the	l amo Equa actor - meth	unt fa l pay - Uni ods.	ictor, ment form
UNIT		ASH FLOW	V						9
Method diagram flow d domina	ls of com n), Future iagram), ted cash	arison of alter worth method Annual equiva ow diagram), ra	natives – preser (Revenue dom alent method ( ate of return me	nt worth metho hinated cash flo Revenue domi thod, Examples	d (Revenue d ow diagram, c nated cash f in all the met	omin ost low hods	nated domir diag	cash nated ram,	flow cash cost
UNI	ΓΙΥ Ι	EPLACEM	ENT AND M	IAINTENAN	CE ANAL	YSI	S		9
Replace determi recover items w	ement and nation of y with re which fail	Maintenance a economic life urn and conce ompletely.	analysis – Type of an asset, Rep of of challenge	s of maintenand placement of an er and defender	ce, types of re asset with a , Simple prol	plac new babil	ement asset listic	t prot t – ca mode	olem, apital al for
UNI	TV I	EPRECIAT	ION						9
Deprecia deprecia deprecia	iation- In ation-Sur ation / Au	oduction, Stra of the year uity method of	ight line methors digits methors for the digits of the digits method of the digits of	od of depreciation of depreciation of depreciation of depreciation envice output m	on, declining ation, sinking ethod of depre	bala g fu eciat	ance n nd m ion.	netho nethoo	od of d of
					TOTAL :	45	PEF	RIOI	DS
OUT	COME	S: On comp	oletion of this co	ourse, students v	vill be able to				
1.	Explore	he different en	gineering econo	omic principles.					

2.	Exp	olain	the co	ncept	of tin	ne valu	ie of i	noney	1							
3.	Exp	olain	the co	ncept	of cas	sh flov	v.									
4.	Unc	dersta	and the	e type	of rep	placen	nent a	nd ma	intena	ince a	nalysi	s.				
5.	Dec	cide v	when t	o repl	ace ar	n asset	and u	unders	tand t	he coi	ncept	of dep	oreciati	ion.		
TEX	Г ВС	JOK	KS:													
1.	Sast 200	mita 9.	Mishr	a, "E	ngine	ering	Econ	omics	and (	Costir	ng" Ea	astern	econo	my E	dition	,
2.	Pan 200	neer 1	Selva	m, R,	"Eng	ineeri	ng Eo	conon	nics",	Prenti	ice Ha	ll of I	ndia L	.td, No	ew De	lhi,
3.	Ern Mc	est D Graw	ale, " Hill I	<b>Mana</b> Publis	geme hing (	nt Th Co., N	eory ew D	<b>and P</b> elhi, 1	<b>ractic</b> 973.	e", In	iternat	ional	Stude	nt Edi	tion,	
REFI	ERE	NCI	ES:													
1.	Rici 200	hard 0.	Pettin	iger, "	Maste	ering	Orgai	nizatio	onal B	ehavi	our",	Macn	nillan	Press,	Lond	on,
2.	Chandran J. S, "Organizational Behaviours", Vikas Publishing House Pvt. Ltd., New Delhi, 1994.															
3.	Gail Freeman - Bell and Janes Balkwill, "Management in Engineering – Principles and Practive", Prentice Hall of India Pvt.Ltd., 1998.															
4.	Bar	athw	al. R.	R, ''E	ngine	ering	Econ	omics	s'', Mc	Graw	, Hill,	1997.				
5.	Zah Kin	id dersl	A k. ey,20.	han: 12	Engi	ineerir	ıg I	Econo	ту,	''Eng	ineeri	ing	Econo	omy'',	Do	rling
MAPPI	NG	OF C	COs, I	POs A	ND P	SOs:										
							P	Os							PSOs	;
		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C01							2	2				2				2
CO2							2	2				2				2
CO3							2	2				2				2
CO4							2	2				2				2
CO5							2	2				2				2
Averag	e						2	2				2				2
Round	off						2	2				2				2
3- Stroi	ng Co	orrel	ation	; 2 - N	lediu	m Cor	relat	ion; 1	-Lo	w Col	relati	ion				

20MOE002	INDUSTRIAL ENGINEERING	L	Т	<b>P</b>					
		3	0	0	3				
OBJECTIV	ES:								
• To exp	lain about various production system and various layouts.								
• To exp	lain and provides knowledge on Process Planning and Control.								
• To dis	cuss on various types of work study and work measurement.								
• To dis	cuss on various Inventory control techniques and material handl	ling	tech	iniques	5.				
• To exp	lain the concept of system analysis and maintenance.								
UNIT I	PRODUCTION SYSTEM				9				
engineer. Pro Operations M Factors affectin fixed position	luction management, Industrial engineering versus production anagement. Production system – Analysis, Input output m ag productivity. Plant layout, Process layout, Product layout, C ayout, Flow pattern, and Workstation design	ction ode Com	ı m l, P bina	anagei roduct tion la	nent, ivity, yout,				
UNIT II	PROCESS PLANNING AND CONTROL				9				
component fa Production con schedule chart,	mily. Production planning, economic batch quantity, lo trol – dispatching, routing. Progress control – bar, curve, g line of balance	adir antt	ıg, cha	schedu rt, rou	ıling. ıte &				
UNIT III	WORK STUDY				9				
Work study – method study p analysis of mo therbligs, SIM motion time sy	definition, need, advantages, objectives of method study and v rocedure, flow diagram, string diagram, multiple activity chart, tion, principles of motion economy, design of work place lay O chart, stop watch procedure, micro & macro motion stu stem, work sampling – principle, procedure.	wor , ope /out .dy.	k me eratio & e Pre	easurei on ana rgono detern	nent, lysis, mics, nined				
UNIT IV	INVENTORY MANAGEMENT				9				
Inventory – co inventory mo Resource Plan technique, lea principles, En maintenance, t	ntrol, classification, management, objectives, functions. Econo dels, ABC analysis, Material Requirement Planning(MRF ning(MRP II), Operating cycle, Just in Time manufacturing n manufacturing, Supply chain management. Material han gineering and economic factors, Material handling equip ppes.	mic PI), syst dlin	ord Ma tem, 1g – nt –	er qua nufact KAN func sele	ntity, uring BAN tions, ction,				
UNIT V	SYSTEM ANALYSIS AND MAINTENANCE				9				
System concep aim, technique engineering, H maintenance e preventive, pre	t - system analysis, systems engineering, techniques, application, procedure, advantages, value engineering, value control, ty susiness process re-engineering. Plant maintenance – object ngineer – duties, functions and responsibilities. Types – breaddictive.	ns. V vpes ctive akde	Value of es, i own,	e analy values import sched	/sis – . Re- ance, luled,				
	TOTAL :	: 45	; PE		DS				

OUT	COMES:	On completion of this course, students will be able to						
1.	Design of Pla	ant layout and material handling system.						
2.	Prepare prod production se	uction planning and control activities such as work study, product planning, cheduling, Inventory Control.						
3.	Explain the e	ergonomics of manufacturing.						
4.	Define the pr	luctivity management system and inventory management.						
5.	Explain the s	system analysis and maintenance.						
TEX	T BOOKS:							
1.	O. P. Khanna New Delhi, 2	Industrial Engineering and Management", Dhanpat Rai and Sons, 3						
2.	Samuel Eilor Digitized, 20	n, " <b>Elements of Production Planning and Control",</b> McMillan and Co., 007.						
3	Martand Tels edition,S. Ch	sang, " <b>Industrial Engineering and Production Management</b> ", First and and Company, 2000						
REF	<b>ERENCES</b> :							
1.	J. A. Tompk	ins and J. A. White, "Facilities planning", John Wiley, 2010.						
2.	Benjamin W	. Neibel, "Motion and time study", Richard .D .Irwin Inc., 2006.						
3.	Hamdy M. T	aha, "Operations Research, an Introduction", McMillan Co.,2008.						
4.	Lee J. Krajev	wski, Larry P.Ritaman, "Operations Management", Addison Wesley,2007.						
5.	Ravi Shanka Ltd, NewDel	r, " <b>Industrial Engineering and Management</b> ", Golgotia Publications Pvt lhi, 2009.						

MAPPING	OF C	Os, P	Os Al	ND P	SOs:											
						P	Os							PSOs		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1						2	2	2		2	2				2	
CO2						2	2	2		2	2				2	
CO3						2	2	2		2	2				2	
CO4						2	2	2		2	2				2	
CO5						2	2	2		2	2				2	
Average						2	2	2		2	2				2	
Round off						2	2	2		2	2				2	
3- Strong C	orrela	ation;	2 - M	ediur	n Cor	relati	on; 1	- Lov	w Cor	relati	on					

20M	OE003	ENTREPRENEURSHIP DEVELOPMENT	L	Т	Р	С
			3	0	0	3
OBJE	CTIVE	S:				
•	To dev	lop and strengthen entrepreneurial quality and motivation in s	tud	ents.		
•	To imp	art basic entrepreneurial skills and understanding to run a busin	ness	s effi	ciently	/.
•	To und	erstand the various business world.				
•	To acq	ire the knowledge of finance and accounting.				
•	To und	erstand the growth Strategies in small industry.				
UNI	TI	ENTREPRENEURSHIP				9
Entrepr Entrepr	eneur – T eneurshi	ypes of Entrepreneurs – Difference between Entrepreneur and in Economic Growth, Factors Affecting Entrepreneurial Grow	l ent wth	repr	eneur	
UNI	ΓΠ	MOTIVATION				9
Major Busines Develop	motives ss game pment Pr	influencing an Entrepreneur – Achievement motivation tr s, Thematic apperception Test – Stress Management ograms – Need, Objectives.	rain , 1	ing, Entre	Self-1 eprene	ating, urship
UNI		BUSINESS				9
opportu of Preli Needs a	inity, Ma minary 1 and Ager	ket Survey and Research, Techno-economic Feasibility Asses roject Reports – Project Appraisal – Sources of Information cies.	sme n —	ent – Clas	Prepa sificat	ration ion of
					-	9
Need – of work Sales T	Sources king Cap ax, GST	of Finance, Term Loans, Capital Structure, Financial Institution tal, Costing, Break Even Analysis, and Taxation – Income	on, a Tax	and M a, Ex	Manage cise D	ement Outy –
UNI	ΤV	SUPPORT TO ENTREPRENEURS				9
Sicknes Measur Strategi Contrac	s in sn es - Bus les in s cting.	all Business – Concept, Magnitude, Causes and Consec iness Incubators – Government Policy for Small Scale En nall industry – Expansion, Diversification, Joint Venture	quen iterj , N	nces, prise Ierge	Corr s – G er and	ective rowth I Sub
		TOTAL	: 4	5 PI	ERIO	DS
OUTO	COMES	: On completion of this course, students will be able to				
1.	Gain kr	owledge and skills needed to run a business successfully.				
2.	Apply r	notivation concept in all types of business.				
3.	Analyse	the business strategies.				
4.	Apply t	e cost analysis and various taxation systems to real life proble	em.			
5.	Know t	e government policies for small enterprises.				
Ј.	KIIOW L	e government poncies for small enterprises.				

TEX	T BOOKS:	
1.	Khanka. S.S., ' Delhi,2013.	<b>'Entrepreneurial Development''</b> S.Chand & Co. Ltd., Ram Nagar, New
2.	Donald F Kura CengageLearni	tko, <b>"Entreprenuership – Theory, Process and Practice",</b> 9 th Edition, ang, 2014.
3.	S. Anil Kumar, Ltd.2003.	"Entrepreneurship Development", New Age International Pvt.
REF	ERENCES:	
1.	Hisrich R D, P	eters M P, "Entrepreneurship" 8th Edition, Tata McGraw-Hill, 2013.
2.	Mathew J Man 2 nd Edition Dree	imala, <b>"Enterprenuership theory at cross roads: paradigms and praxis",</b> am tech, 2005.
3.	Rajeev Roy, " <b>E</b>	Entrepreneurship", 2nd Edition, Oxford University Press, 2011.
4.	<i>"Faulty and 1</i> Entrepreneurs	External Experts – A Hand Book for New Entrepreneurs Publishers: hip Development",2 nd Edition, Institute of India, Ahmadabad, 1986.
5.	Ramachandran company Ltd. N	<b>"Enterpreneurship Development",</b> Tata McGraw-Hill Publishing New Delhi, 2009

MAPPING	OF CO	Os, PO	Os AN	ND PS	Os:											
						P	Os							PSOs		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1						2	2	2			2				2	
CO2						2	2	2			2				2	
CO3						2	2	2			2				2	
CO4						2	2	2			2				2	
CO5						2	2	2			2				2	
Average						2	2	2			2				2	
Round off						2	2	2			2				2	
3- Strong Co	orrela	tion; 2	2 - Me	edium	Corr	elatio	on; 1 -	- Low	Corr	elatio	n	1		L		

20M	OE004	ELEMENTS OF PROJECT MANAGEMENT	Γ MANAGEMENT L T P C										
			3	0	0	3							
OBJE	CTIVE	S:											
•	To ena	ole the students to have overall view of project management to	echn	ique	s.								
•	To intr schedu	oduce students to project definition, management techniques, ling.	plan	ning	and								
•	To und	erstand the commercial aspects of projects.											
•	To app utilizat	ly project management principles in business situations to option.	imiz	e res	ource								
•	To app	ly project management principles to time optimization.											
UNI	TI I	PROJECT MANAGEMENT DEFINITIONS				9							
Project Process Teams.	Manager – Projec	nent – Definition –Goal - Lifecycles. Project Selection Meth et Formulation. Project Manager – Roles- Responsibilities an	ods. d Se	Proj electi	ect Po ion – I	rtfolio Project							
UNI	<b>Γ ΙΙ</b>	PLANNING AND BUDGETING				9							
The Pla Project	nning Pr – Metho	ocess – Work Break down Structure – Role of Multidisciplina ds. Cost Estimating and Improvement. Budget uncertainty and	ry te l risł	eams x ma	. Budg nagem	et the ent.							
UNI		SCHEDULING & RESOURCE ALLOCATION				9							
PERT of Gantt C Goldrat	& CPM I Tharts – E t's Critic	Networks - Crashing – Project Uncertainty and Risk Manage expediting a project – Resource loading and levelling. Allocat al Chain.	emer ing s	nt – scarc	Simula e reso	ution – urces -							
UNI	ΓΙΥ	CONTROL AND COMPLETION				9							
The Pla control	n-Monito system. l	or-Control cycle – Data Collecting and reporting – Project Cor Project Evaluation, Auditing and Termination.	ntrol	- D	esigni	ng the							
UNI	$\mathbf{\Gamma} \mathbf{V}$	PROJECT ORGANISATION & CONFLICT MANAGEMENT				9							
Formal Origin	Organisa & Consec	tion Structure – Organisation Design – Types of project organ quences. Managing conflict – Team methods for resolving con	nizat nflict	ions t.	. Conf	lict –							
		TOTAL	:4	5 Pl	ERIO	DS							
OUTO	COMES	On completion of this course, students will be able to											
1.	Demons	strate the core philosophy of project management.											
2.	Explain	concepts of planning, budgeting, scheduling & resource alloc	atio	n.									
3.	Possess	the knowledge of project management techniques.											
4.	Apply p utilizati	roject management principles in business situations to optimi on and time optimization.	ze re	sour	ce								

5.	Explore comme	ercial and legal aspects of projects.								
TEX	T BOOKS:									
1.	Clifford Gray a	nd Erik Larson, " <b>Project Management</b> ", Tata McGraw Hill Edition, 2005.								
2.	John M. Nicholas, " <b>Project Management for Business and Technology - Principles</b> <b>and Practice</b> ", Second Edition, Pearson Education, 2006.									
3.	Grag and Lawron, (2006), "Project Management", Tata McGraw Hill.									
REF	REFERENCES:									
1.	Reck and Cran	e, (2000), " <b>Project Management</b> ", Wiley Eastern.								
2.	Gido and Clements, "Successful Project Management", Second Edition, Thomson Learning, 2003.									
З.	Harvey Maylor, "Project Management", Third Edition, Pearson Education, 2006.									
4.	Morris and Pri	tco, (2004), "Managing Projects", Wiley Eastern.								
5.	Dennis Locke,	(2000), " <b>Project Management</b> ", Gower.								

MAPPING	OF CO	Os, PO	Os AN	ID PS	Os:										
	POs										PSOs				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1						2	2	2			2				2
CO2						2	2	2			2				2
CO3						2	2	2			2				2
CO4						2	2	2			2				2
CO5						2	2	2			2				2
Average						2	2	2			2				2
Round off						2	2	2			2				2
3- Strong Co	orrela	tion; 2	2 - Me	edium	Cori	elatio	on; 1 -	- Low	Corr	elatio	n		1	1	<u>I</u>

20MOE005

#### NON DESTRUCTIVE TESTING

L T P C

3	0	0	3

OBJECTIVES:										
Fo study and understand the various Non-Destructive Evaluation and Testin	g meth	ods.								
To learn the theory and industrial applications of NDT.										
To understand the concepts of thermography, eddy current testing and surface NDT methods.										
Fo obtain the knowledge on Ultrasonic testing and Acoustic Emission.										
• To explore the principles of radiography.										
OVERVIEW OF NDT		9								
	VES: Yo study and understand the various Non-Destructive Evaluation and Testing Yo learn the theory and industrial applications of NDT. Yo understand the concepts of thermography, eddy current testing and surface the thods. Yo obtain the knowledge on Ultrasonic testing and Acoustic Emission. Yo explore the principles of radiography. OVERVIEW OF NDT	VES: Yo study and understand the various Non-Destructive Evaluation and Testing meth Yo learn the theory and industrial applications of NDT. Yo understand the concepts of thermography, eddy current testing and surface NDT hethods. Yo obtain the knowledge on Ultrasonic testing and Acoustic Emission. Yo explore the principles of radiography. OVERVIEW OF NDT								

Non-Destructive Testing Versus Mechanical testing, Overview of NDT Methods for the detection of manufacturing defects as well as material characterisation. Relative merits and limitations, Various physical characteristics of materials and their applications in NDT – Unaided and aided visual inspection.

# UNIT II SURFACE NDE METHODS

Liquid Penetrant Testing - Principles, types and properties of liquid penetrants, developers, advantages and limitations of various methods, Testing Procedure, Interpretation of results. Magnetic Particle Testing- Theory of magnetism, inspection materials Magnetisation methods, Interpretation and evaluation of test indications, Principles and methods of demagnetization, Residual magnetism.

#### UNIT III THERMOGRAPHY AND EDDY CURRENT TESTING

9

9

Thermography- Principles, Contact and non-contact inspection methods, Techniques for applying liquid crystals, Advantages and limitation - infrared radiation and infrared detectors, Instrumentations and methods, applications. Eddy Current Testing-Generation of eddy currents, Properties of eddy currents, Eddy current sensing elements, Probes, Instrumentation, Types of arrangement, Applications, advantages, Limitations, Interpretation/Evaluation.

UNIT IV	ULTRASONIC TESTING AND ACOUSTIC EMISSION	I
0		i .

Ultrasonic Testing-Principle, Transducers, transmission and pulse-echo method, straight beam and angle beam, instrumentation, data representation, A-Scan, B-scan, C-scan. Phased Array Ultrasound, Time of Flight Diffraction. Acoustic Emission Technique –Principle, AE parameters, Applications.

# UNIT V INTRODUCTION TO SMART MATERIALS

9

9

Introduction to smart materials - classifications - smart sensors and actuators - direct and reverse effects of piezoelectric materials, shape memory alloys, electro/magneto rheological fluids and magnetostrictive materials - applications.

			TOTAL : 45 PERIODS						
OUT	COMES:	On completion of this course, students will	be able to						
1.	Explore th	e need of Non-Destructive Testing methods.							
2.	Explain the	e surface NDT methods.							
3.	Apply the principles and operation of Thermography and Eddy current testing.								
4.	Analysing	the Ultrasonic testing and Acoustic Emission	l.						
5.	Gain the k	nowledge about smart materials and applicati	ons						
TEX	T BOOK	S:							
1.	Baldev Raj, T. Jayakumar, M. Thavasimuthu, " <b>Practical Non-Destructive Testing</b> ", Narosa Publishing House, 2009.								
2.	Ravi Prakash, "Non-Destructive Testing Techniques", 1st revised edition, New Age International Publishers, 2010								
3.	Jayamangal Prasad, C. G. Krishnadas Nair, <b>"Non-Destructive Test And Evaluation Of Materials"</b> , Tata McGraw-Hill Publishing Company Ltd. 2008.								
4.	Inderjit Ch	opra, <b>"Smart Structures Theory</b> " Cambrid	ge University press 2014.						
REF	ERENCE	S:							
1.	ASM Meta Society of	ls Handbook, <b>"Non-Destructive Evaluation</b> Metals, Metals Park, Ohio, USA, 200, Volum	<b>and Quality Control",</b> American e-17.						
2.	Paul E Mi. Edition Ne	x, <b>"Introduction to Non-destructive testing:</b> w Jersey, 2005.	<b>a training guide",</b> Wiley, 2 nd						
3.	Charles, J.	Hellier, <b>"Handbook of Nondestructive evaluatio</b>	<b>n"</b> , McGraw Hill, New York 2001.						
4.	Barry Hull	, Vernon John "Non-Destructive Testing", S	Springer, 1988.						
5.	Amandeep <b>and Metal</b>	Singh Wadhwa, Er. Harvinder Singh "A Tex lurgy", Laxmi Publications, 1 st edition 2015.	tbook of Engineering Material						

# MAPPING OF COs, POs AND PSOs:

		POs										PSOs			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	1										3	12	
CO2	3	2	1										3	2	
CO3	3	2	1										3	2	
CO4	3	2	1										3	2	
CO5	3	2	1										3	2	
Average	3.0	2.0	1										3.0	2	
Round off	3	2	1										3	2	
3- Strong C	orrel	ation;	; 2 - N	lediu	m Co	rrelat	ion; 1	- Lo	w Coi	relati	on	-	-		

20MC	)E000	6	INTRODUCTION TO AUTOMOBILE ENGINEERING	L	Т	Р	С			
				3	0	0	3			
OBJE	OBJECTIVES:									
•	To ur	nders	stand the construction and working principle of various parts	of an	auto	mob	ile.			
• To understand assembling and dismantling of engine parts and transmission system.										
• To broaden the understanding of automotive architecture and performance.										
•	To in	trod	uce students about the transmission system.							
•	To fa	mili	arize about the wheels, tires, and automotive air conditioning	<u>.</u>						
UNI	ГΙ	VI	EHICLE STRUCTURE AND ENGINES				9			
Types of aerodyna function	f auton amics s and r	nobi (var nate	les, vehicle construction and different layouts, chassis, fram- tious resistances and moments involved), IC engines – T trials - variable valve timing (VVT).	e and ypes	body - coi	r, Ve mpor	hicle nents			
UNIT	'II	EN	NGINE AUXILIARY SYSTEMS				9			
injection system), ignition converte	syste Elect systen r syste	m (U roni n), 7 em, F	Unit injector system, Rotary distributor type and common c ignition system (Transistorized coil ignition system, c Turbo chargers (WGT, VGT), Engine emission control by Emission norms (Euro and BS).	rail d apacit three	irect ive way	inje discł cata	ction harge alytic			
UNIT	III	TI	RANSMISSION SYSTEMS				9			
Clutch-ty drive, tra Differen	ypes a ansfer tial an	nd c box d rea	construction, gear boxes- manual and automatic, gear shift , fluid flywheel, torque converter, propeller shaft, slip joir ar axle, Hotchkiss Drive and Torque Tube Drive.	mech nts, un	anis ivers	ms, sal jo	Over bints,			
UNIT	IV	ST	TEERING, BRAKES AND SUSPENSION SYSTI	EMS			9			
Steering Suspensi electroni	geom ion Sy c brak	etry stem te for	and types of steering gear box-Power Steering, Types of Fas, Pneumatic and Hydraulic Braking Systems, Antilock Brakree distribution (EBD) and Traction Control.	ront A king S	xle, ystei	Typ m (A	es of LBS),			
UNIT	V	AU AN	UTOMOTIVE AIR CONDITIONING, WHEELS ND ALTERNATIVE ENERGY SOURCES	5, TII	RES	5	9			
Automotive air conditioning - Wheels and tires: Wheel quality, assembly, types of wheels, wheel rims, Construction of tires and tire specifications - Alternative Energy sources: Engine modifications required –Performance, Combustion and Emission Characteristics of SI and CI engines with these alternate fuels - Electric and Hybrid Vehicles, Fuel Cell.										
			TOTAL :	45 P	'ER	101	)S			
OUTC	OME	ES:	On completion of this course, students will be able to							
1.	Identif	fy th	e different components in vehicle structures and engines.							

2.	Evaluating the various engine auxiliary systems.								
3.	Understand components of transmission systems.								
4.	Learn the functions of steering, suspension, braking systems, wheels and tires.								
5.	Analysing performance, combustion and emission characteristics of alternative fuels								
TEXT BOOKS:									
1.	Kirpal Singh, "Automobile Engineering", Vol. 1 & 2, Seventh Edition, Standard Publishers, NewDelhi, 1997.								
2.	Jain K.K. and Asthana .R.B, <b>"Automobile Engineering"</b> Tata McGraw Hill Publishers, NewDelhi, 2002.								
3.	Ramalingam, K. K, <b>"Automobile Engineering"</b> , Scitech Publications, 2014.								
REF	ERENCES:								
1.	Newton, Steeds and Garet, "Motor Vehicles", Butterworth Publishers, 1989.								
2.	Joseph Heitner, "Automotive Mechanics", Second Edition, East-West Press, 1999.								
3.	Martin W, Stockel and Martin T Stockle, "Automotive Mechanics Fundamentals", The Goodheart –Will Cox Company Inc, USA, 1978.								
4.	Heinz Heisler, "Advanced Engine Technology", SAE International Publications USA, 1998								
5.	Ganesan V. "Internal Combustion Engines", Third Edition, Tata McGraw-Hill, 2007.								

MAPPING OF COs, POs AND PSOs:															
		POs										PSOs			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	1										3	2	
CO2	3	2	1										2	3	
CO3	3	2	1										3	2	
CO4	3	2	1										3	2	
CO5	3	2	1										3	2	
Average	3.0	2.0	1										2.8	2.2	
Round off	3	2	1										3	2	
3- Strong C	orrela	tion;	2 - M	ediun	n Cor	relati	on; 1	– Lov	v Cor	relatio	n				

20MOE007

#### **INDUSTRIAL AUTOMATION**

L T P C 3 0 0 3

9

9

9

9

#### **OBJECTIVES**

ODJEC								
•	To make the students to understand basics of industrial automation.							
•	To explore various types of sensors and transducers.	Γο explore various types of sensors and transducers.						
٠	To get knowledge on electrical drives and machine vision system.							
•	To programme programmable logic controllers.							
•	To design simple mechatronics systems.							
UNIT I	I INTRODUCTION TO AUTOMATION	9						

Industrial Automation - General Aspects – Advantages and Limitations of Automation – Application of Automation – Elements of Automation – Aims of Automation – Mechanisation and Automation – Types of Automation – Low Cost Automation – Assembly Automation Equipment .

## UNIT II SENSORS AND TRANSDUCERS

Introduction to sensors and transducers- classifications- Principle and working of Resistive, capacitive, inductive and resonant transducers- optical measurement systems-encoders, photo electric, vision sensor, Fiber optic transducers- solid state sensors and transducers-magnetic measurements, temperature measurements, Chemical measurements-piezoelectric – accelerometers - ultrasonic sensors and transducers- flow, distance, velocity measurements.

#### UNIT III | ELECTRICAL DRIVES AND MACHINE VISION

Electromagnetic Principles, Solenoids and Relays, Electrical drives -stepper motors, servo motors. Signal processing, A/D and D/A converters – Introduction to Data acquisition system - Proportional, Integral, Derivative and PID controller – Microcontroller. Introduction to machine vision system -Camera, Frame Grabber, Sensing and Digitizing Image Data- Lighting Techniques, Image Processing and Analysis, Applications.

#### UNIT IV PROGRAMMABLE LOGIC CONTROLLERS

Programmable logic controller – Basic structure - Programming units - Memory – Input - Output Modules - Mnemonics – Latching- Timers – Internal relays - Counters – Shift Registers - Master and Jump Controls -Programming the PLC using Ladder diagram -Simple example of PLC application.

## UNIT V MECHATRONICS SYSTEM DESIGN AND APPLICATION

Mechatronics in Engineering Design, Traditional and mechatronics design, Applications - Pick and Place robots, Car park barriers, Bar code reader, Wind screen wiper wing stepper motor control–Traffic Control interface - IOT applications – Industry 4.0. Case studies: Coin counters, Robot walking machine.

			<b>TOTAL: 45 PERIODS</b>					
OU'	<b>FCOMES:</b>	On completion of this course, students will be	able to					
1.	Explain the key elements of automation.							
2.	2. Explore the Performance of commonly used sensors and transducers.							

3.	Compare the different	actuation systems, controllers and machine vision systems
4.	Understand the PLC a	nd develop programs using ladder logic.
5.	Design the mechatron	ics systems for various applications.
Т	TEXT BOOKS:	
1.	Bolton.W, "Mechatro	onics", Addison Wesley, 4th Edition, New Delhi, 2010.
2.	Bradley.D.A, Dawson Publications, New Yo	.D Burd N.C.and Loader A.J, <b>"Mechatronics"</b> , Chapman and Hall rk, 1993.
3.	Rajput R.K., <b>"Roboti</b>	cs and Industrial Automation", S.Chand and Company, 2008.
R	<b>EFERENCES:</b>	
1.	Janakiraman P.A., <b>"R</b>	obotics and Image Processing", Tata Mc Graw Hill, 1995.
2.	David W. Pessen, <b>"In</b> York, 1990.	dustrial Automation Circuit Design and Components", John Wiley, New
3.	Rohner.P, <b>"Automatic</b> New York, 1996.	on with Programmable Logic Controllers", Macmillan /McGraw Hill,
4.	Brian Morris, "Auton McGraw Hill, New Yo	natic Manufacturing Systems Actuators, Controls and Sensors", prk, 1994.
5.	Jacob Fraden, <b>"Hand</b> Edition, Springer-Ver	book of Modern Sensors Physics, Designs, and Applications", Third lag New York, 2004.

MAPPING OF	F COs,	POs	AND	PSOs	:											
						P	Os						PSOs			
	1	1         2         3         4         5         6         7         8         9         10         11         12											1	2	3	
CO1	3	2	1										3	1		
CO2	3	2	1										3	1		
CO3	3	2	1										3	1		
CO4	3	2	1										3	1		
CO5	3	2	1										3	1		
Average	3.0	2	1										3.0	1		
Round off	3	2	1										3	1		
3- Strong Corr	elatio	n; 2 -	Medi	um C	orrela	ation;	1 – Le	ow Co	orrela	tion		•	•			

20MOE008	INTRODUCTION TO COMPOSITE MATERIALS	L	Τ	P	С
		3	0	0	3

#### **OBJECTIVES:**

•	To enable the students to	understand the	properties and	design of	composite materials.
---	---------------------------	----------------	----------------	-----------	----------------------

- To familiarize the different type of polymer matrix composites.
- To understand the various manufacturing techniques for metal matrix composites.
- To study the various manufacturing methods for ceramic matrix composites.
- To understand the geometrical aspects in Composite Materials.

#### UNIT I INTRODUCTION TO REINFORCEMENT AND MATRIX INTERFACE

12

8

8

8

Reinforcement – Fibres – Glass fibre, Aramid fibre, Carbon fibre, boron fibre – Fabrication – Properties – Applications – Comparison of fibres – Particulate and whisker reinforcements. Matrix materials – Properties. Wettability – Effect of surface roughness – Interfacial bonding – Methods for measuring bond strength.

# UNIT II POLYMER MATRIX COMPOSITES

Types – Processing – Thermal matrix composites – Hand layup and spray technique, filament winding, Pultrution, resin transfer moulding, autoclave moulding – Thermoplastic matrix composites – Injection moulding, film stacking – Diaphragm forming – Thermoplastic tape laying. Glass fibre/polymer interface. Mechanical properties – Fracture. Applications.

# UNIT III METAL MATRIX COMPOSITES

Types. Important metallic matrices. Processing – Solid state, liquid state, deposition, insitu. Sic fibre / Titanium interface. Mechanical properties. Applications.

# UNIT IV CERAMIC MATRIX COMPOSITES

Ceramic matrix materials – Processing – Hot pressing, liquid infiltration technique, Lanxide process, insitu chemical reaction techniques – CVD, CVI, sol-gel process. Interface in CMCs. Mechanical properties – Thermal shock resistance – Applications.

UNIT V

#### GEOMETRICAL ASPECTS, FATIGUE AND CREEP IN COMPOSITE MATERIALS

9

Unidirectional laminas – Volume fraction and weight fraction – Woven roving, in-plane random fibres – Fibre length and fibre orientation distribution – Voids – Fibre orientation during flow. Fatigue – S-N curves – Fatigue behaviours of CMCs – Fatigue of particle and whisker reinforced composites – Hybrid composites – Thermal fatigue – Creep.

# TOTAL : 45 PERIODS OUTCOMES: On completion of this course, students will be able to 1. Analyse the fibre reinforced Laminate for optimum design. 2. Explore the concepts of Polymer Matrix Composites. 3. Discuss different Metal Matrix Composites properties and manufacturing process.

4.	Understand	the different Ceramic Matrix Composites properties.							
5.	Apply Fatig Composites	at and creep theory to study and analyse the Mechanical behaviour of							
TEXT H	BOOKS:								
1.	Krishnan K	Chawla, "Composite Materials Science and Engineering", Springer, 2001.							
2.	Mathews F CRC Press a	L and Rawlings R D, "Composite Materials: Engineering and Science", and Woodhead Publishing Limited, 2002.							
3.	Derek Hull,	An introduction to Composite Materials", Cambridge Univ. Press, 1988.							
REFER	ENCES:								
1.	"Handbook	of Composites" – American Society of Metals, 1990							
2.	Gibson, R.F Hill, CRC p	., " <b>Principles of Composite Material Mechanics</b> ", Second Edition, McGraw- ress in progress, 1994.							
3.	Autar K. Ka	w, "Mechanics of Composite Materials", Second Edition, CRC Press, 2006							
4.	Halpin, J.C. 1984.	, "Primer on Composite Materials, Analysis", Technomic Publishing Co.,							
5.	Mallick, P.K <b>Properties"</b> ,	K. and Newman, S., <b>"Composite Materials Technology: Processes and</b> Hansen Publisher, Munish, 1990.							

MAPPING OF C	Os, P	Os Al	ND PS	SOs:													
		POs												PSOs			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
C01	3	2	2										3	2			
CO2	3	2	2										3	1			
CO3	3	2	2										3	2			
CO4	3	2	2										3	1			
CO5	3	3	1										3	2			
Average	3.0	2.2	1.8										3.0	1.6			
Round off	3	2	2										3	2			
3- Strong Correla	ation;	2 - M	ediun	n Cor	relati	ion; 1	- Lo	w Cor	relati	ion	•	•					

20M0	DE0	09	INDUSTRIAL REFRIGERATION AND AIR CONDITIONING	L	Т	Р	С					
				3	0	0	3					
OBJE	CTI	VES	5:									
•	To r Ope	make eratio	the students to understand vapour compression and vapour a n.	bsorpt	tion s	syste	m					
•	Тоа	analy	vse the refrigeration cycles and methods for improving Perform	nance	•							
•	Тоа	acqui	re the knowledge on components of refrigeration systems.									
•	То	desig	n air conditioning systems using cooling load calculations.									
•	• To explore the application of refrigeration and air conditioning systems.											
UNIT	ΓΙ	IN	TRODUCTION				9					
Introduc Refriger Nomenc	ction cation clatur	to I and e - O	Refrigeration and Air conditioning and its Practical appl I C.O.P.– Ideal cycles- Refrigerants Desirable properties DP & GWP.	licatio	ns - lassit	Un ficati	it of on -					
UNIT II         VAPOUR COMPRESSION REFRIGERATION SYSTEM												
Vapour and sup low terr Conden	comp er hea perat sers, l	oressi ating ure 1 Expa	ion cycle: p-h and T-s diagrams - deviations from theoretical - effects of condenser and evaporator pressure on COP- mul- refrigeration - Cascade systems – problems. Equipments: Ty nsion devices, Evaporators.	cycle ti pres pe of	– su sure Con	b coo syste	oling em – ssors,					
UNIT	III	OT	<b>HER REFRIGERATION SYSTEMS</b>				9					
Working refrigera Magnet	g prin ation- ic -Vo	ncipl Eje ortex	es of Vapour absorption systems and adsorption cooling s octor refrigeration systems- Thermoelectric refrigeration- and Pulse tube refrigeration systems.	ystem Air r	s – S efrig	Stear erati	n jet on -					
UNIT	IV	PS	YCHOMETRIC PROPERTIES AND PROCESS	ES			9					
Properti saturatio Thermo processo	es of on, l dynai es, mi	moi Relat mic xing	st Air-Gibbs Dalton law, Specific humidity, Dew point tem ive humidity, Enthalpy, Humid specific heat, Wet wet bulb temperature, Psychometric chart, Psychometric of airstreams.	peratu bulb of ai	ten ten r-cor	Degre npera nditic	ee of ature, oning					
UNIT	V	AI ES	R CONDITIONING SYSTEMS AND LOAD TIMATION				9					
Air con Solar R selection calculat distribut Humidit	ditior adiati n-fres ion c tion s ty sen	ning ion- ioh ai of su systen isors,	loads- Outside and inside design conditions- Heat transfer Electrical appliances- Infiltration and ventilation- internal h r load-Human comfort & IAQ principles- effective ten mmer &winter air conditioning load- Classifications- Lay n- Filters- Air-conditioning Systems with Controls- Temper Actuators &Safety controls.	throu neat lo nperativout c rature,	ugh oad-A ure of pl Pre	struc Appa & c ants- ssure	ture- ratus hart- Air and					
	TOTAL : 45 PERIODS											

OUTO	<b>COMES:</b> On completion of this course, students will be able to									
1.	Analyse different refrigeration systems, air conditioning systems and refrigerants.									
2.	Understand the applications of refrigeration and air conditioning systems.									
3.	Learn the components and working of refrigeration and air conditioning systems									
4.	Evaluate different psychometric properties and processes.									
5.	Perform heating and cooling load calculations.									
TEX	T BOOKS:									
1.	Arora, C. P., "Refrigeration and Air Conditioning", 3 rd ed., McGraw Hill, Delhi, 2010.									
2.	Manohar Prasad., "Refrigeration and Air Conditioning", 2 nd ed., New Age Int., 2011.									
3.	Dick Wirz"Commercial Refrigeration for Air Conditioning Technicians" 3 rd ed., Cengage learning 2016.									
REFE	CRENCES:									
1.	Roy J. Dossat, "Principles of Refrigeration", 4 th edition, Pearson Education Asia, 2009.									
2.	Wilbert F Stoecker "Industrial Refrigeration" Handbook 1st Edition, McGraw Hill, 1998.									
3.	Ahmadul Ameen., "Refrigeration and Air Conditioning", 1st edition, prentice-hall of India Private limited New Delhi 2006.									
4.	Jones W. P., "Air conditioning engineering", 5 th edition, Elsevier Butterworth-Heinemann, 2001.									
5.	Stoecker, W. F. and Jones J. W., "Refrigeration and Air Conditioning", McGraw Hill, New Delhi, 1986.									

MAPPING	OF C	COs, I	POs A	ND P	SOs:												
						P	Os						PSOs				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
CO1	3	2	1										3	2			
CO2	3	2	1										3	2			
CO3	3	2	1										3	2			
CO4	3	2	1										3	2			
CO5	3	2	1										3	2			
Average	3.0	2	1										3.0	2			
Round off	3	2	1										3	2			
3- Strong C	orrel	ation	; 2 - M	Iediu	m Coi	rrelati	ion; 1	- Lov	w Co	rrelati	on						

20M	20MOE010     RENEWABLE ENERGY SOURCES     L     T     P										
				3	0	0	3				
OBJE	CTIVE	S		<u> </u>		I					
•	To get e	exposu	re on solar radiation and its environmental impact to po	ower.							
•	To acqu	ire bas	sic knowledge on wind energy.								
•	To acqu	ire bas	sic knowledge on Geothermal energy.								
•	To expl	ore ab	out energy from biomass.								
•	To expl	ore va	rious energy storage methods.								
UNI	TIS	SOLA	AR ENERGY				10				
Solar en solar ra collecto	nergy – 0 diation – rs, Solar	Conve - Solaı conce	rsion and transfer of solar energy – Sun-Earth angle thermal collectors – General description and charac ntrators- Solar PV and thermal systems-quantitative an	s – N terist alysis	Aeasu ics – s.	reme Flat	nt of plate				
UNI	г п	WIN	D ENERGY				9				
Wind en plant d econom	nergy – F esign – ics.	Princip Type	les of wind energy conversion – Site selection consider s of wind power conversion systems – Operation	atior 1, m	ıs –W ainter	ind p ance	ower and				
UNIT		GEO'	THERMAL ENERGY				9				
Geother convers systems	mal ener ion – Wa	rgy – A ave an	Availability, system development and limitations – O d tidal energy– Scope and economics – Introduction	cean to in	therm tegrat	nal en ed en	iergy iergy				
UNIT		ENEI	RGY FROM BIOMASS				9				
Energy gasifica Properti	from bi tion and les and cl	omass comb naracte	<ul> <li>Sources of biomass- Conversion of biomass in ustion – Aerobic and anaerobic bio-conversion – Pre eristics of biogas.</li> </ul>	ito fi opert	uels- ies of	Pyrol bion	lysis, nass-				
UNI	Γ V ]	ENEI	RGY STORAGE TECHNOLOGY				8				
Energy media s	storage torage –	– Sens Phase	sible heat storage – Liquid media storage – Solid m change energy storage – Storage capacity – Other stora	edia ige te	storag chnol	ge – .ogy.	Dual				
	COME		On completion of this course, students will be able to	. 43							
	Evpalir	L <b>S:</b>	bysics of solar radiation								
1. 2	Examin	n uie pi	d energy with its economic aspects								
3.	Inferen	ce the	energy sources like Geothermal energies. Wave and tic	lal en	ergy.						
4.	Apprec	iate an	id analyse energy from biomass.	-	3,						
5.	Analyse	e vario	bus energy storage methods.								
TEXT	BOOKS	:									

1.	J.A	. Duf	fie an	d W.A	. Bec	kman.	, "Sol	ar En	ergy '	Ther	nal P	rocess	ses", J	. Wile	ey, 199	94
2.	G.D	). Rai	., "No	on-con	venti	ional l	Energ	y Sou	rces"	, Kha	nna Pı	ıblish	ers, 20	003		
3.	F. K	Kreith	and .	J.F. Kı	eider	., " <b>Pri</b>	ncipl	es of S	Solar ]	Engir	eerin	<b>g</b> ", M	cGrav	v Hill,	1978	
REFE	REN	CES:														
1.	A.A	.M. S	Saigh	(Ed).,	"Sola	ar Ene	ergy I	Engin	eering	<b>g</b> ", Ac	ademi	c Pres	ss, 197	77.		
2.	K.N Pro	4. Mi spect	ttal., ' t <b>s</b> ", W	<b>'Non-</b> /heeler	<b>conve</b> r Publ	ention licatio	<b>al En</b> ns, 19	<b>ergy \$</b> 97	Systen	ns-Pr	incipl	es, Pr	ogres	s and		
3.	G.N. Tiwari., "Solar Energy-Fundamentals, Design, Modelling and Applications", Narosa Publishers, 2002															
4.	Kothari D.P, Singhal K.C., <b>"Renewable energy sources and emerging technologies"</b> , P.H.I, New Delhi, 2010															
MAPPI	ING (	OF C	COs, I	POs A	ND P	SOs:										
							P	Os							PSOs	
		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1		3	2	2										3	2	
CO2		3	2	2										3	2	
CO3	5	3	2	2										3	2	
CO4		3	2	2										3	2	
CO5	;	3	2	2										3	2	
Averag	e	3.0	2.0	2.0										3.0	2.0	
Round	off	3	2	2										3	2	

20MOI	E011	INDUSTRIAL SAFETY ENGINEERING	L	Т	Р	С
			3	0	0	3
OBJECT	IVES:					
•	To pro in vari	ovide in depth knowledge in Principles of Environmental safe lous fields	ty an	d its a	pplic	ations
•	To pro	ovide the knowledge of safety precaution, Control of fire and	explo	osion		
•	To ex	pose the students to the Health, Hygiene, noise and vibration i	n ind	lustry		
UNIT I	1	PLANT DESIGN AND LAYOUT AND CITING CRITER	IA:			9
General and planning a and equip rules, Indi	nd Env and Fo ment 1 an Stai	vironmental guidelines, Meteorological aspect, and Separation llow-up, Plant layout and Design, Generals principles for fa ayout and fire protection. Statutory provisions under the fac indard and national building code.	n dist ctory ctorie	tances v build es Act	. Nee ling, 1948	ed for Plant 3 and
UNIT I	[ ]	FIRE AND EXPLOSION. FIRE PHENOMENA :				9
Chemistry of industri and explo emergency site emerg	of fire al fire sion in y actio ency p	e, Stage of fire, Factors contributing to fire, Classification of s. Fire prevention and protection system, Special safety preca n handling / processing flammable liquids, gases, vapors, r n plan and control room. NFPA code and standard, on-site lan.	fire, ution nists, emer	Com , Con , dust gency	mon o atrol c s etc. y plan	cause of fire Fire , off-
UNIT III	1	ELECTRICITY SAFETY, LIGHTING (ILLUMINATION COLOUR:	I) Al	ND		9
Electricity parameter Lighting artificial,	r, its u s on h (illumi direct a	sefulness and hazards, statutory provisions, Indian standard uman body, safety measures for electric work, over load a nation) and colour : Principles of illumination, Types of and indirect, and types of installation, Effects of colour on safe	, Effe and c Lig ety.	ect of other ht: N	Elec protec atural	trical ction, and
UNIT IV	7 I	MACHINE GUARDING, NOISE AND VIBRATION:	•			9
Requirements selection Generation Statutory	ent of of gua n, Pero provisi	machine guarding, Indian standard, Principals of machine ord, Mechanical Tool, Inspection, testing & Maintenance. N ception, Nature & Types of noise, Effect & Hazards of ons, control Method.	Guaro oise noise	ding, and V e and	Types √ibrat vibra	s and tion : ation,
UNIT V	]	NDUSTRIAL HEALTH AND HYGIENE:				9
Occupatio of chemic of human of toxic s (TLV), S7	nal he als, du entry s ubstan TEL, II	alth hazard, Introduction & classification of health hazards. I st, gases, fume, mists, vapors, smoke and aerosols and their h system, recognition, evolution and control basic hazards, and ce and toxicity, type and degrees of toxic effects, threshol DLH, Ld/LC etc. Physiology of work and occupational disease	Dang nealth l bio d lim es	erous a effect chem aits of	property of the property of th	erties outes ction osure
OUTCOL	<b>AT</b> C		: 45 I	EKI	008	
		On completion of this course, students will be able to		1 D1 -	4 D -	
1. $1.$	istrate	and rammarize the basic concepts, scope of engineering safet	y and	i rian	i Des	ign

3.	Appraise the im	Appraise the importance of safety of employees while working with machineries.										
4.	Understand the Machine Guarding, Noise and Vibration in industry											
5.	Measure Industrial Health and Hygiene											
TEX	T BOOKS:											
1.	Philip E. Hagan, NSC, Chicago, 2	John Franklin Montgomery, James T. O'Reilly, "Accident Prevention Manual", 2009.										
2.	Charles D. Reese, "Occupational Health and Safety Management", CRC Press, 2003.											
3.	John V. Grimald seller, New Delh	li and Rollin H. Simonds, " <b>Safety Management"</b> , All India Travelers Book ii, 1989.										
<b>REF</b>	ERENCES:											
1.	John Davies, Ald Approach", CR	astair Ross, Brendan Wallace, <b>"Safety Management: A Qualitative Systems</b> C Press, 2003.										
2.	Health and Safety in welding and Allied processes, welding Institute, UK, High Tech. Publishing Ltd., London, 1989.											
3.	Anil Mital, " <b>Adv</b> 1989	pances in Industrial Ergonomics and Safety", Taylor and Francis Ltd, London,										

MAPPIN	MAPPING OF COs, POs AND PSOs:														
			PSOs												
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	2			2	2	2					3	2	
CO2	3	2	2			2	2	2					3	2	
CO3	3	2	2			2	2	2					3	2	
CO4	3	2	2			2	2	2					3	2	
CO5	3	2	2			2	2	2					3	2	
Average	3.0	2.0	2.0			2.0	2.0	2.0					3.0	2.0	
Round off	3	2	2			2	2	2					3	2	
3- Strong C	orrel	ation	; 2 - N	lediu	m Co	rrelat	ion; 1	- Lo	w Coi	rrelati	ion				

20M	OE01	12 R	APID PROTOTYPING AND TOOLING	L	Т	Р	C							
				3	0	0	3							
OBJE	CTIV	ES												
•	То	study t	he fundamental Theory behind RP process.											
•	То	To study the Process parameters of different machine.												
•	То	To study different types of Rapid tooling.												
•	То	To learn how to prepare manufacturing DATA based on the industrial standards,.												
•	То	learn T	The basics concept of different software used in RP sy	/stem.										
UNIT	I	FUN	DAMENTALS OF RPT			9								
and eff manufac RPT. RI and thei	Definitions, evolution, CAD for RPT. Product design and rapid product development. The cost and effects of design changes during conceptual modeling, detail designing, prototyping, manufacturing and product release. Fundamentals of RPT technologies, various CAD issues for RPT. RPT and its role in modern manufacturing mechanical design. 3D solid modeling software and their role in RPT. Creation of STL or SLA file from a 3D solid model.													
UNIT	II	LIQU	<b>UID AND POWDER BASED RP PROCES</b>	SES		9								
Liquid ground selective	based j curing e laser	process and o sinterii	s: Principles of STL and typical processes such as others - Powder based process: Principles and typing and some 3D printing processes.	the SL ical pr	A prod ocesse	cess, s s such	olid 1 as							
UNIT	III	SOL	ID BASED RP PROCESSES			9								
Principl Paper L Extrusio	es and aminat	typica ed Tec lelling,	l processes such as fused deposition modeling lami chnology, Multi-jet modelling System, Slicing Solid Multi fuctional RPM	nated o Manuf	bject acturir	Model 1g, Me	ing, lted							
UNIT	IV	RAP	ID TOOLING			9								
Rapid to Spray n explanat	ooling netal t tion, Pr	-Indire ooling, rometa	ect rapid tooling, Silicon Robber tooling, Aluminun Direct rapid tooling, Quick cast process, copper ls, sand casting tooling, Soft tooling & hard tooling,	n filling Polyar	g epox nide,	y tool DMIL	ing, S –							
UNIT	V	REV	ERSE ENGINEERING AND INDUSTRY	4.0		9								
3D scar Applica	nning, tions: I	3D dig Evaluat	gitizing and Data fitting, High speed machining- Hation, bench marking and various case studies. Basics	ardware of Indu	e and stry 4.	softwa 0	re -							
			ΤΟΤΑΙ	L:45	PEI	RIOD	S							
OUTC	COME	ES:	On completion of this course, students will be abl	e to										
1.	Descri	ibe proc	luct development, conceptual design and classify rapid pro	ototypin	g syste	ms								
2.	Explai	in the p	rocess parameters of liquid and powder based RP processe	es										
3.	Demo	Demonstrate solid based RP Processes												
4.	Make use of different rapid tooling techniques.													

5.	Discuss 3D scanning, digitizing and Data fitting and basics of industry 4.0										
TEXT	BOOKS:										
1.	Paul F. Jacobs 1996.	: "Stereo lithography and other RP & M Technologies", SME, NY									
2.	Flham D. T & I	Dinjoy S.S "Rapid Manufacturing" Verlog London 2001.									
3.	Chua C.K, I <b>Applications</b> ",	Leong K.F and Lim C.S, " <b>Rapid Prototyping: Principles and</b> Second Edition, World Scientific, 2003									
REFE	<b>RENCES:</b>										
1.	Rafiq I. Noora 2006.	ni, Rapid Prototyping, " <b>Principles and Applications</b> ", Wiley & Sons,									
2.	Gurumurthi, "I	Rapid prototyping materials", IISc Bangalore.									
3.	N.Hopkinson, revolution for t	R.J.M, Hauge, P M, Dickens, " <b>Rapid Manufacturing</b> – An Industrial he digital age", Wiley, 2006									
4.	Ian Gibson, "A <b>Engineering, S</b>	dvanced Manufacturing Technology for Medical applications: Reverse Software conversion and Rapid Prototying ", Wiley, 2006									
5.	Pham. D.T., an	d Dimov. S.S., " <b>Rapid Manufacturing</b> ", Springer Verlog 2001.									

MAPPING OF COs, POs AND PSOs:															
			PSOs												
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	2										3	2	
CO2	3	2	2										3	2	
CO3	3	2	2										3	2	
CO4	3	2	2										3	2	
CO5	3	2	2										3	2	
Average	3.0	2.0	2.0										3.0	2.0	
Round off	3	2	2										3	2	
3- Strong C	Correl	ation;	; 2 - N	lediu	m Coi	rrelat	ion; 1	- Lo	w Co	rrelati	ion				

20MOI	E013	3 WELDING TECHNOLOGY L '								
			3	0	0	3				
<b>OBJEC</b>	TIVE	CS:								
•	To m	nake the student to understand the basics of welding technolog	у.							
٠	To u	nderstand welding techniques for various materials.								
•	To le	earn the various resistance welding processes.								
	To ga	ain knowledge about solid state welding processes.								
•	To ac	cquire the knowledge of advanced welding techniques and test	ting o	of wel	ldmer	nts.				
UNIT	ΙΙ	INTRODUCTION				9				
Introduction and symbol Recomment	on of v ol of w ndation	welding - Classification of welding and joints - Parts of weld j velding joints, Heat source intensity, Shielding methods, Clear ns in Welding, ISO related welding standards.	joint ning	– Nor of edg	mencl ges, S	lature Safety				
UNIT I	II A	ARC WELDING PROCESSES				9				
Flasilla a	irc we	nunig and Electro-stag welding processes – Auvantage	es- I	Limita	uions	and				
UNIT II Spot weld Percussior	II I Ing, S n weld	elding of Similar and Dissimilar Metals. <b>RESISTANCE WELDING PROCESSES</b> Feam welding, Projection welding, Resistance Butt welding, ling and High frequency resistance welding processes, Adv	Flas	h Butges- I	tt wel	9 Iding,				
UNIT II Spot weld Percussior and Applic	II I ling, S n weld cations	RESISTANCE WELDING PROCESSES – Advantage elding of Similar and Dissimilar Metals. Ream welding, Projection welding, Resistance Butt welding, ling and High frequency resistance welding processes, Adv s.	Flas	h But ges- I	tt wel	9 Iding, ations				
UNIT II Spot weld Percussior and Applic UNIT I Cold weld welding, Applicatio	ITC We ons. We II I ling, S n weld cations IV S ling, D Roll wons.	RESISTANCE WELDING PROCESSES – Advantage elding of Similar and Dissimilar Metals.           RESISTANCE WELDING PROCESSES           leam welding, Projection welding, Resistance Butt welding, ling and High frequency resistance welding processes, Advas.           SOLID STATE WELDING PROCESSES           Diffusion bonding, Explosive welding, Ultrasonic welding, Friwelding and Hot pressure welding processes, Advantage	Flas Flas antag ction es-	h But ges- I	tt wel	9 Iding, ations 9 Forge and				
UNIT II Spot weld Percussior and Applic UNIT I Cold weld welding, Applicatio	ITC we we ons. We ons. We ons. We ons. We on the second se	RESISTANCE WELDING PROCESSES – Advantage elding of Similar and Dissimilar Metals.           RESISTANCE WELDING PROCESSES           eam welding, Projection welding, Resistance Butt welding, ling and High frequency resistance welding processes, Adv s.           SOLID STATE WELDING PROCESSES           Diffusion bonding, Explosive welding, Ultrasonic welding, Friwelding and Hot pressure welding processes, Advantage           OTHER WELDING PROCESSES AND WELDING PROCESSES AND WELDING DEFECTS AND INSPECTION	Flas Flas vanta ction es- 1	h But ges- I	tt wel Limita	9 Iding, ations 9 Forge and 9				
Application UNIT II Spot weld Percussion and Application UNIT I Cold weld welding, Application UNIT V Thermit w Welding, Treatment	II     I       ling, S       n weld       cations       IV       Roll       ons.       V       I       velding       Welding       Welding       t of We	RESISTANCE WELDING PROCESSES – Advantage elding of Similar and Dissimilar Metals. RESISTANCE WELDING PROCESSES Leam welding, Projection welding, Resistance Butt welding, ling and High frequency resistance welding processes, Adv s. SOLID STATE WELDING PROCESSES Diffusion bonding, Explosive welding, Ultrasonic welding, Friwelding and Hot pressure welding processes, Advantage OTHER WELDING PROCESSES AND WELDING DEFECTS AND INSPECTION g, Electron beam welding, Laser beam welding, Friction stirving Defects and Inspection, Residual Welding Stresses, eldments, Welding Distortion and methods to prevent.	Flas vantag ction es- 1 <b>NG</b> weld Stre	h But ges- I weld Limita	tt wel Limita ling, I ations Jndervelief	9 Iding, ations 9 Forge and 9 water Heat				
Application UNIT II Spot weld Percussion and Application UNIT I Cold weld welding, Application UNIT V Thermit w Welding, Treatment	I I I I I I I I I I I I I I I I I I I	RESISTANCE WELDING PROCESSES – Advantage elding of Similar and Dissimilar Metals. RESISTANCE WELDING PROCESSES Jeam welding, Projection welding, Resistance Butt welding, ling and High frequency resistance welding processes, Advas. SOLID STATE WELDING PROCESSES Diffusion bonding, Explosive welding, Ultrasonic welding, Friwelding and Hot pressure welding processes, Advantage OTHER WELDING PROCESSES AND WELDING DEFECTS AND INSPECTION g, Electron beam welding, Laser beam welding, Friction stirving Defects and Inspection, Residual Welding Stresses, eldments, Welding Distortion and methods to prevent.	Flas Flas vanta ction es- 1 NG weld Stre	h But ges- I weld Limita	tt wel Limita ling, I ations Jnderrelief	9 Iding, ations 9 Forge and 9 water Heat DS				
VNIT II Spot weld Percussior and Applic UNIT I Cold weld welding, Application UNIT V Thermit w Welding, Treatment	Ing, S an weld cations V Sons. V Sons. V V Velding Welding t of We	Earling and Electro-stag weiging processes – Advantage         elding of Similar and Dissimilar Metals.         RESISTANCE WELDING PROCESSES         team welding, Projection welding, Resistance Butt welding,         ling and High frequency resistance welding processes, Adv         s.         SOLID STATE WELDING PROCESSES         Diffusion bonding, Explosive welding, Ultrasonic welding, Friwelding and Hot pressure welding processes, Advantage         OTHER WELDING PROCESSES AND WELDING         DEFECTS AND INSPECTION         g, Electron beam welding, Laser beam welding, Friction stir ving Defects and Inspection, Residual Welding Stresses,         eldments, Welding Distortion and methods to prevent.         St.         On completion of this course, students will be able to	Flas rantage ction es- 1 <b>NG</b> weld Stre	h But ges- I weld Limita	tt wel Limita ling, I ations Jnder elief	9 Iding, ations 9 Forge and 9 water Heat DS				
Prasma a         Application         UNIT II         Spot weld         Percussion         and Application         UNIT I         Cold weld         welding,         Application         UNIT V         Thermit w         Welding,         Treatment         OUTCO         1.       C	Ing, S an weld cations (V S ling, D Roll v ons. (V S ling, D Roll v ons. (V S ling, D Roll v ons. (V S ling, D Roll v ons. (V S ling, D Roll v ons.	Ending and Electro-stag weiging processes – Advantage         elding of Similar and Dissimilar Metals. <b>RESISTANCE WELDING PROCESSES</b> leam welding, Projection welding, Resistance Butt welding,         ling and High frequency resistance welding processes, Adv         s. <b>SOLID STATE WELDING PROCESSES</b> Diffusion bonding, Explosive welding, Ultrasonic welding, Friwelding and Hot pressure welding processes, Advantage <b>OTHER WELDING PROCESSES AND WELDI DEFECTS AND INSPECTION</b> g, Electron beam welding, Laser beam welding, Friction stir ving Defects and Inspection, Residual Welding Stresses, eldments, Welding Distortion and methods to prevent. <b>TOTAL S:</b> On completion of this course, students will be able to re different types of Welding processes.	Flas rantage ction es- 1 <b>NG</b> weld Stre	h But ges- I weld Limita	tt wel Limita ling, I ations Jnder elief <b>RIO</b>	9 dding, ations 9 Forge and 9 water Heat DS				

3.	Understand the concept of solid state welding process.
4.	Analyses of weld defects.
5.	Learn different testing methods for weldment.

TEX	T BOOKS:						
1.	Parmer R.S., " NewDelhi, 200	Welding Engineering and Technology", 1 st edition, Khanna Publishers, 98.					
2.	Parmer R.S., <b>"Welding Processes and Technology"</b> , Khanna Publishers, New Delhi, 1992.						
3.	Little R.L., <b>"W</b> Ltd., NewDelh	Velding and welding Technology", Tata McGraw Hill Publishing Co., i, 34 th reprint, 2008.					
<b>REF</b>	ERENCES:						
1.	Schwartz M.M.	"Metals Joining Manual". McGraw Hill Books, 1979.					
2.	Tylecote R.F. " London,1968.	<b>'The Solid Phase Welding of Metals"</b> . Edward Arnold Publishers Ltd.					
3.	Nadkarni S.V. 2005.	"Modern Arc Welding Technology", 1 st edition, Oxford IBH Publishers,					
4.	Christopher De	avis. "Laser Welding- Practical Guide". Jaico Publishing House, 1994.					
5.	Davis A.C., " <b>T</b> Cambridge,199	<b>The Science and Practice of Welding"</b> , Cambridge University Press, 93					

MAPPIN	MAPPING OF COs, POs AND PSOs:														
			PSOs												
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	2										3	2	
CO2	3	2	1										3	2	
CO3	3	2	1										3	2	
CO4	3	2	3										3	3	
CO5	3	2	1										3	2	
Average	3.0	2.0	1.6										3.0	2.2	
Round off	3	2	2										3	2	
3- Strong C	orrel	ation;	; 2 - M	lediu	m Co	rrelat	ion; 1	-Lo	w Col	rrelati	ion				
20MOE014			HEATING, VENTILATION AND AIR CONDITIONING		Т	Р	С								
----------------------------------------------------------------------------------------------------------------------------	------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	-------------------------------------------------------------------------------------------------------------------------------------------	----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	-----------------------------------------------------	-----------------------------------------------------	-------------------------------	-------------------------------------------------	--	--						
				3	0	0	3								
OBJE	CTIVE	S													
•	To enab systems	ole stuc	lents to understand the basic principles of refrigeration	and	refrig	eratio	n								
•	To acqu														
•	To impart knowledge on Cooling load calculations														
•	To acquire basic knowledge on Heating systems.														
•	To acquire basic knowledge on Air conditioning equipments and control systems.														
UNI	UNIT I PRINCIPLES OF REFRIGERATION, REFRIGERATION														
Princip coeffic compor	les of re ient of p nents – co	frigera erform ompres	ation Carnot refrigeration cycle unit of refrige nance. Refrigeration systems vapour compression sors – condensers – expansion devices – evaporators.	eration 1 sys	n – c tem -	capaci — sy	ity vstem								
UNI	T II	AIR (	CONDITIONING				9								
Psychi space. - centra	cometry – Air condi al and uni	psych tioning tary sy	rometric processes – determination of condition of air g systems – summer, winter and year-round-year air co rstems.	entei onditi	ring co ioning	onditi g syste	onec ems								
UNI	ΓIII	COO	LING LOAD CALCULATIONS				9								
					1	eauin	mon								
Cooling loadi	g load cal nfiltration	culation air lo	ons – various heat sources contributing heat load – soload duct heat gain fan load.	lar lo	ad	equip	men								
Cooling loadi	g load cal nfiltration <b>F IV</b>	culation n air lo REFF	ons – various heat sources contributing heat load – sol bad duct heat gain fan load. RIGERANTS AND ITS IMPACTS	lar lo	ad		9								
Coolin loadi <b>UNI</b> Classif Montrea Refriger	g load cal nfiltration <b>F IV</b> ] ication of al / Kyo rants	culation n air lo <b>REFH</b> Refrig to pro	ons – various heat sources contributing heat load – soload duct heat gain fan load. <b>RIGERANTS AND ITS IMPACTS</b> gerants, Refrigerant properties, Oil Compatibility, Environte de Solo	lar lo ironn HCF	nental	Impa Secor	9 act- ndary								
Cooling loadi UNI Classif Montrea Refriger UNI	g load cal nfiltration <b>F IV</b> 1 ication of ants <b>T V</b> 4	culation n air loc REFH Refrig to pro- AIR ( SYST	ons – various heat sources contributing heat load – soload duct heat gain fan load. <b>RIGERANTS AND ITS IMPACTS</b> gerants, Refrigerant properties, Oil Compatibility, Envi otocols-Eco Friendly Refrigerants, alternatives to <b>CONDITIONING EQUIPMENTS AND CO</b> YEMS	ironn HCF NTF	nental CS,	Impa Secor	9 act- ndary 9								
Coolin loadi UNI Classif Montrea Refriger UNI Air con control faults a	g load cal nfiltration <b>F IV</b> 1 ication of a / Kyo ants <b>T V</b> 4 subsection systems and rectifie	culation air loc <b>REFH</b> Refriguto to protection <b>AIR (</b> <b>SYST</b> g equiputo for tection.	ons – various heat sources contributing heat load – sol oad duct heat gain fan load. <b>RIGERANTS AND ITS IMPACTS</b> gerants, Refrigerant properties, Oil Compatibility, Envo otocols-Eco Friendly Refrigerants, alternatives to <b>CONDITIONING EQUIPMENTS AND CO</b> <b>YEMS</b> oments and control systems – air filters – humidifier mperature and humidity – noise control. Testing for	ironn HCF <b>NTF</b> r leal	nental CS, ROL	Impa Secor blow Caus	9 act- ndary 9 ers - e for								
Cooling loadi UNI Classif Montrea Refriger UNI Air con control faults a	g load cal nfiltration <b>F IV</b> 1 ication of ants <b>T V</b> 4 mditioning systems nd rectifie	culation air loc <b>REFH</b> Refrig to pro- <b>AIR (</b> <b>SYST</b> for te cation.	ons – various heat sources contributing heat load – soload duct heat gain fan load. <b>RIGERANTS AND ITS IMPACTS</b> gerants, Refrigerant properties, Oil Compatibility, Envictocols-Eco Friendly Refrigerants, alternatives to <b>CONDITIONING EQUIPMENTS AND CO</b> <b>YEMS</b> pments and control systems – air filters – humidifier mperature and humidity – noise control. Testing for <b>TOTAL</b>	ironn HCF NTF r leal : 45	ad nental CS, ROL San – cage, PE	Impa Secor blow Caus	9 act- adary 9 ers - e fo DS								
Cooling loadi UNI Classif Montrea Refriger UNI Air con control faults a	g load cal nfiltration <b>F IV</b> 1 ication of al / Kyo ants <b>T V</b> 4 moditioning systems and rectifier	CS:	ons – various heat sources contributing heat load – soload duct heat gain fan load. <b>RIGERANTS AND ITS IMPACTS</b> gerants, Refrigerant properties, Oil Compatibility, Environtocols-Eco Friendly Refrigerants, alternatives to <b>CONDITIONING EQUIPMENTS AND CO</b> <b>YEMS</b> pments and control systems – air filters – humidifier mperature and humidity – noise control. Testing for <b>TOTAL</b> On completion of this course, students will be able to	ironn HCF NTH r leal : 45	nental CS, ROL Fan – kage, PEI	Impa Secor blow Caus	9 act- ndary 9 ers - e for DS								
Cooling loadi UNI Classif Montrea Refriger UNI Air con control faults a OU 1.	g load cal nfiltration <b>F IV</b> 1 ication of a / Kyo ants <b>T V</b> 4 systems and rectifient <b>FCOMF</b> Apply 1	culation n air lo REFH Refrig to pro AIR ( SYST g equip for te cation. CS: refrige	ons – various heat sources contributing heat load – soload duct heat gain fan load.  RIGERANTS AND ITS IMPACTS gerants, Refrigerant properties, Oil Compatibility, Envolutocols-Eco Friendly Refrigerants, alternatives to  CONDITIONING EQUIPMENTS AND CO 'EMS oments and control systems – air filters – humidifier mperature and humidity – noise control. Testing for TOTAL On completion of this course, students will be able to ration principles to real life problems	ironn HCF <b>NTH</b> r leal <b>: 45</b>	ad nental CS, ROL fan – kage, PEI	Impa Secor blow Caus	9 act- adary 9 ers - e fo DS								
Cooling loadi UNI Classif Montrea Refriger UNI Air con control faults a OU 1. 2.	g load cal nfiltration <b>F IV</b> 1 ication of ants <b>T V</b> 2 moditioning systems and rectifient <b>FCOMF</b> Apply 1 Analyze	culation n air lo REFH Refrig to pro AIR ( SYST g equip for te cation. CS: refrige e the p	ons – various heat sources contributing heat load – soload duct heat gain fan load.  RIGERANTS AND ITS IMPACTS gerants, Refrigerant properties, Oil Compatibility, Envolutocols-Eco Friendly Refrigerants, alternatives to  CONDITIONING EQUIPMENTS AND CO YEMS coments and control systems – air filters – humidifier mperature and humidity – noise control. Testing for TOTAL On completion of this course, students will be able to ration principles to real life problems principles of Air conditioning.	ironn HCF <b>NTH</b> r leal <b>: 45</b>	ad hental CS, ROL fan – kage, PEI	Impa Secor blow Caus	9 act- adary 9 ers - e fo DS								
Cooling loadi UNI Classif Montrea Refriger UNI Air con control faults a OU 1. 2. 3.	g load cal nfiltration <b>F IV</b> 1 ication of 1 / Kyo ants <b>T V</b> 2 moditioning systems and rectifier <b>FCOMF</b> Apply 1 Analyze	culation n air lo REFH Refrig to pro AIR ( SYST g equip for te cation. CS: refrige e the p cooling	ons – various heat sources contributing heat load – soload duct heat gain fan load.  RIGERANTS AND ITS IMPACTS gerants, Refrigerant properties, Oil Compatibility, Envolutocols-Eco Friendly Refrigerants, alternatives to  CONDITIONING EQUIPMENTS AND CO 'EMS oments and control systems – air filters – humidifier mperature and humidity – noise control. Testing for TOTAL On completion of this course, students will be able to ration principles to real life problems rinciples of Air conditioning. g load calculations in real life applications.	ironn HCF <b>NTH</b> r leal <b>: 45</b>	ad hental CCS, ROL fan	Impa Secor blow Caus	9 act- adary 9 ers - e fo DS								

5.	Explore the Air conditioning equipments and control systems															
TEXT BOOKS:																
1.	Rex Milter, Mark R.Miller, "Air conditioning and Refrigeration", , McGraw Hill, 2006															
2.	Noman C. Harris, " <b>Modern Air conditioning Practice</b> " -McGraw-Hill, 2 nd Edition, 1974															
3.	Arora, C.P., " <b>Refrigeration &amp; Air conditioning</b> "- McGraw Hill, 2 nd Edition, 2000															
REFERENCES:																
1.	Stoecker, W.F., " <b>Principles of Air conditioning</b> ", industrial press, 2 nd Edition, 1977.															
2.	Laub, J.M., " <b>Heating &amp; air conditioning of buildings</b> ", Holt, Rinehart and Winston, 1963.															
3.	Kell, J.R., and Martin, P.L., " <b>Air conditioning &amp; Heating of buildings</b> ", Architectural Press, 6 th Edition, 2007															
4.	<b>Carrier's Handbook for Design of Unit Air Conditioners</b> , Kenrick Place Media Ltd, 14 th edition, 1996															
MAPPING OF COs, POs AND PSOs:																
	POs												PSOs			
		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1		3	2	1		1				1		1	2	3	2	
CO2		3	2	1		1				1		1	2	3	2	
CO3	;	3	2	1		1				1		1	2	3	2	
CO4		3	2	1		1				1		1	2	3	2	
CO5		3	2	1		1				1		1	2	3	2	
Average		3	2	1		1				1		1	2	3	2	
Round off		3	2	1		1				1		1	2	3	2	
3- Stro	3- Strong Correlation; 2 - Medium Correlation; 1 – Low Correlation															