GOVERNMENT COLLEGE OF ENGINEERING BARGUR Regulations-2017 AUTONOMOUS Curriculum for B.E. COMPUTER SCIENCE AND ENGINEERING [FULL TIME] I TO VIII SEMESTER CURRICULUM From the Academic Year 2017 -2018 AND ONWARDS

SEMESTER I

Sl.No	COURSE CODE	COURSE TITLE	CATEGORY	L	Т	Р	С
THEORY							
1.	17ZHS101	Communicative English I	HS	4	0	0	4
2.	17ZBS102	Engineering Mathematics I	BS	3	2	0	4
3.	17ZBS103	Engineering Physics I	BS	3	0	0	3
4.	17ZBS104	Engineering Chemistry	BS	3	0	0	3
5.	17SES105	Problem Solving and Python	ES	3	0	0	3
		Programming					
6.	17ZES106	Engineering Graphics	ES	2	0	4	4
PRACTIC	CALS						
7.	17SES107	Problem Solving and Python	ES	0	0	4	2
		Programming Laboratory					
8.	17ZBS108	Physics Laboratory	BS	0	0	4	2
9.	17ZBS109	Chemistry Laboratory	BS	0	0	4	2
			TOTAL	18	2	16	27

SEMESTER II

Sl.No	COURSE CODE	COURSE TITLE	CATEGORY	L	Т	Р	С
THEORY	Y						
1.	17ZHS201	Communicative English II	HS	4	0	0	4
2.	17ZBS202	Engineering Mathematics II	BS	3	2	0	4
3.	17ZBS203	Engineering Physics II	BS	3	0	0	3
4.	17SES204	Basic Electrical, Electronics and	ES	3	0	0	3
		Measurement Engineering					
5.	17ZBS205	Environmental Science and	BS	3	0	0	3
		Engineering					
6.	17SES206	Structured Programming Using C	ES	3	0	0	3
PRACTI	CALS						
7.	17ZES207	Engineering Practices Laboratory	ES	0	0	4	2
8.	17SES208	Structured Programming Using C	ES	0	0	4	2
		Laboratory					
			TOTAL	19	2	8	24

SEMESTER III

Sl.No	COURSE CODE	COURSE TITLE	CATEGORY	L	Т	Р	C
THEORY	ľ	I					
1.	17ZBS301	Transforms and Partial Differential	BS	3	2	0	4
		Equations					
2.	17SPC302	Object Oriented Programming using	PC	3	0	0	3
		C++					
3.	17SPC303	Database Management Systems	PC	3	0	0	3
4.	17SPC304	Software Engineering	PC	3	0	0	3
5.	17SPC305	Data Structures	PC	3	0	0	3
6.	17SES306	Digital Principles and Systems	ES	3	0	0	3
		Design					
PRACTI	CALS						
7.	17SPC307	Database Management systems	PC	0	0	4	2
		Laboratory					
8.	17SPC308	Object Oriented Programming	PC	0	0	4	2
		Laboratory Using C++					
9.	17SES309	Digital Principles and Systems	ES	0	0	4	2
		Design Laboratory					
			TOTAL	18	2	12	25

SEMESTER IV

Sl.No	COURSE CODE	COURSE TITLE	CATEGORY	L	Т	Р	С
THEORY							
1.	17SBS401	Probability and Queuing Theory	BS	3	2	0	4
2.	17SPC402	Operating Systems	PC	3	0	0	3
3.	17SPC403	Computer Architecture and	PC	3	0	0	3
		Organization					
4.	17SPC404	Design and Analysis of Algorithms	PC	3	0	0	3
5.	17SPC405	Java Essentials	PC	3	0	0	3
6.	17SPC406	Object Oriented Analysis and Design	PC	3	0	0	3
PRACTIC	CALS						
7.	17SPC407	Operating Systems Laboratory	PC	0	0	4	2
8.	17SPC408	CASE Tools Laboratory	PC	0	0	4	2
9.	17SPC409	DataStructures and Algorithms	PC	0	0	4	2
		Laboratory					
			TOTAL	18	2	12	25

SEMESTER V

Sl.No	COURSE CODE	COURSE TITLE	CATEGORY	L	Т	Р	С
THEORY	ľ						
1.	17SBS501	Discrete Mathematics	BS	3	2	0	4
2.	17SPC502	Embedded Computing Systems	PC	3	0	0	3
3.	17SPC503	Computer Networks	PC	3	0	0	3
4.	17SPC504	Theory of Computation	PC	3	0	0	3
5.	17SPC505	Artificial Intelligence	PC	3	0	0	3
6.		Professional Elective – 1	PE	3	0	0	3
PRACTI	CALS						
7.	17SPC507	Computer Networks Laboratory	PC	0	0	4	2
8.	17SPC508	Embedded Computing Systems	PC	0	0	4	2
		Laboratory					
			TOTAL	18	2	8	23

SEMESTER VI

Sl.No	COURSE CODE	COURSE TITLE	CATEGORY	L	Т	Р	С
THEORY	ζ						
1.	17SHS601	Professional Ethics and Human	HS	3	0	0	3
		Values					
2.	17SBS602	Resource Management Techniques	BS	3	2	0	4
3.	17SPC603	Mobile Communications	PC	3	0	0	3
4.	17SPC604	Compiler Design	PC	3	0	0	3
5.	17SPC605	Parallel and Distributed systems	PC	3	0	0	3
6.		Professional Elective -2	PE	3	0	0	3
PRACTI	CALS						
7.	17SPC607	Mobile Application Development	PC	0	0	4	2
		Laboratory					
8.	17SPC608	Compiler Laboratory	PC	0	0	4	2
9.	17ZEE609	Communication and Soft Skills	EEC	4	0	0	2
		Laboratory					
		TOTAL		22	2	8	25

SEMESTER VII

Sl.No	COURSE CODE	COURSE TITLE	CATEGORY	L	Т	Р	С
THEOR	RY						
1.	17SPC701	Cloud Computing	PC	3	0	0	3
2.	17SPC702	Cryptography and Network Security	PC	3	0	0	3
3.		Professional Elective-3	PE	3	0	0	3
4.		Professional Elective-4	PE	3	0	0	3
5.		Open Elective	OE	3	0	0	3
PRACT	ICALS						
6.	17SPC706	Cryptography and Network Security	PC	0	0	4	2
		Laboratory					
7.	17SPC707	Cloud Computing Laboratory	PC	0	0	4	2
			TOTAL	15	0	8	19

SEMESTER VIII

Sl.No	COURSE CODE	COURSE TITLE	CATEGORY	L	Т	Р	C
THEOD	X 7						
THEOR	Y						
1.		Professional Elective-5	PE	3	0	0	3
2.		Professional Elective-6	PE	3	0	0	3
PRACT	ICALS						
3.	17SEE803	Project Work	EEC	0	0	12	6
			TOTAL	6	0	12	12

TOTAL NUMBER OF CREDITS: 180

CREDITS SUMMARY

	Subje			Cr	edits P	er Se	emester	ſ		Credita	% of Total Credits	Total No of Subjec ts	AIC Recom Range Cre	CTE mended of % of dits
Sl.No	ct Area	I	п	III	IV	v	VI	VII	VIII	total			MIN	MAX
1.	HS	4	4	0	0	0	3	0	0	11	6.1	3	5	10
2.	BS	14	10	4	4	4	4	0	0	40	22.2	12	15	20
3.	ES	9	10	5	0	0	0	0	0	24	13.3	9	15	20
4.	PC	0	0	16	21	16	13	10	0	76	42.2	29	30	40
5.	PE	0	0	0	0	3	3	6	6	18	10	6	10	15
6.	OE	0	0	0	0	0	0	3	0	3	1.66	1	5	10
7.	EEC	0	0	0	0	0	2	0	6	8	4.4	2	10	15
ΤΟΤΑΙ		27	24	25	25	23	25	19	12	180	100	62		

S.NO	COURSE	COURSE TITLE	L	Т	Р	C
	CODE					
1.	17SPE001	Fundamentals of Image Processing	3	0	0	3
2.	17SPE002	Advanced Data Structures	3	0	0	3
3.	17SPE003	Project Management	3	0	0	3
4.	17SPE004	Essentials of Information Technology (Infosys)	3	0	0	3
5.	17SPE005	Data Mining	3	0	0	3
6.	17SPE006	C # and .NET Framework	3	0	0	3
7.	17SPE007	Green Computing	3	0	0	3
8.	17SPE008	Agile Software Development (Infosys)	3	0	0	3
9.	17SPE009	Software Defined Networks	3	0	0	3
10.	17SPE010	Social Networks Analysis	3	0	0	3
11.	17SPE011	Pattern Recognition	3	0	0	3
12.	17SPE012	Building Enterprise Applications (Infosys)	3	0	0	3
13.	17SPE013	Natural Language Processing	3	0	0	3
14.	17SPE014	Information Retrieval Techniques	3	0	0	3
15.	17SPE015	GPU Architecture and Programming	3	0	0	3
16.	17SPE016	Business Intelligence and its Applications (Infosys)	3	0	0	3
17.	17SPE017	Internet of Things	3	0	0	3
18.	17SPE018	Game Theory	3	0	0	3
19.	17SPE019	Open Source Systems	3	0	0	3
20.	17SPE020	Big Data and Analytics (Infosys)	3	0	0	3
21.	17SPE021	Machine Learning	3	0	0	3
22.	17SPE022	Geographical Information Systems	3	0	0	3
23.	17SPE023	Service Oriented Architecture	3	0	0	3
24.	17SPE024	Soft Computing	3	0	0	3
25.	17SPE025	Web Technology	3	0	0	3
26.	17SPE026	Computer Graphics and Multimedia	3	0	0	3

LIST OF PROFESSIONAL ELECTIVES

OPEN ELECTIVES

[Students should select open electives offered by other Departments]

CSE:						
S.NO	COURSE	COURSE TITLE	L	Т	Р	С
	CODE					
1.	17SOE001	Programming in C++	3	0	0	3
2.	17SOE002	Java Programming	3	0	0	3
3.	17SOE003	Python Programming	3	0	0	3
4.	17SOE004	Web Designing	3	0	0	3
5.	17SOE005	Android Application Development	3	0	0	3

ECE:

S.NO	COURSE	COURSE TITLE	L	Τ	Р	С
	CODE					
1.	17LOE001	Real Time Systems	3	0	0	3
2.	17LOE002	Wireless Sensor Networks	3	0	0	3
3.	17LOE003	Industrial Automation and Robotics	3	0	0	3
4.	17LOE004	Principles of VLSI design	3	0	0	3
5.	17LOE005	Applied Electronics	3	0	0	3
6.	17LOE006	Wireless Networks	3	0	0	3

EEE:

S.NO	COURSE	COURSE TITLE	L	Т	Р	С
	CODE					
1.	17EOE001	Matlab Programming	3	0	0	3
2.	17EOE002	Renewable Energy Sources	3	0	0	3
3.	17EOE003	Energy Management and Auditing	3	0	0	3
4.	17EOE004	Smart Grid	3	0	0	3

MECH:

S.NO	COURSE	COURSE TITLE	L	Τ	Р	С
	CODE					
1.	17MOE001	Disaster Management and Mitigation	3	0	0	3
2.	17MOE002	Environmental Management	3	0	0	3
3.	17MOE003	Composite materials	3	0	0	3
4.	17MOE004	Renewable Energy Sources and Technology	3	0	0	3
5.	17MOE005	Intellectual Property Rights	3	0	0	3
6.	17MOE006	Engineering Economics and Financial Accounting	3	0	0	3
7.	17MOE007	Material Characterizations	3	0	0	3
8.	17MOE008	Global Warming and Climate Change	3	0	0	3

ONE CREDIT COURSES

S.NO	COURSE	COURSE TITLE	L	Τ	Р	С
	CODE					
1.	17SOC001	Tools for Machine Learning	3	0	0	1
2.	17SOC002	Microsoft Office Suite	3	0	0	1
3.	17SOC003	Project using Arduino	3	0	0	1
4.	17SOC004	Software Project Management	3	0	0	1
5.	17SOC005	Linux Administration	3	0	0	1
6,	17SOC006	Network Simulation Tools	3	0	0	1

MANDATORY INDUCTION PROGRAM (3 WEEKS DURATION)

- Physical activity
- Creative Arts
- Universal Human Values
- ➢ Literary
- Proficiency Modules
- Lectures by Eminent People
- Visits to local Areas
- Familiarization to Dept./Branch & Innovations

1. INDUCTION PROGRAM

When new students enter an institution, they come with diverse thoughts, backgrounds and preparations. It is important to help them adjust to the new environment and inculcate in them the ethos of the institution with a sense of larger purpose. Precious little is done by most of the institutions, except for an orientation program lasting a couple of days.

It is proposed a 3-week long induction program for the UG students entering the institution, right at the start. Normal classes start only after the induction program is over. Its purpose is to make the students feel comfortable in their new environment, open them up, set a healthy daily routine, create bonding in the batch as well as between faculty and students, develop awareness, sensitivity and understanding of the self, people around them, society at large, and nature.

The time during the Induction Program is also used to rectify some critical lacunas, for example, English background, for those students who have deficiency in it. The following are the activities under the induction program in which the student would be fully engaged throughout the day for the entire duration of the program.

1.1PHYSICAL ACTIVITY

This would involve a daily routine of physical activity with games and sports. It would start with all students coming to the field at 6 am for light physical exercise or yoga. There would also be games in the evening or at other suitable times according to the local climate. These would help develop team work. Each student should pick one game and learn it for three weeks. There could also be gardening or other suitably designed activity where labour yields fruits from nature.

1.2 CREATIVE ARTS

Every student would chose one skill related to the arts whether visual arts or performing arts. Examples are painting, sculpture, pottery, music, dance etc. The student would pursue it everyday for the duration of the program. These would allow for creative expression. It would develop a sense of aesthetics and also enhance creativity which would, hopefully, flow into engineering design later.

1.3 UNIVERSAL HUMAN VALUES

It gets the student to explore oneself and allows one to experience the joy of learning, stand up to peer pressure, take decisions with courage, be aware of relationships with colleagues and supporting staff in the hostel and department, be sensitive to others, etc.Need for character building has been underlined earlier. A module in Universal Human Values provides the base.

Methodology of teaching this content is extremely important. It must not be through dos and don'ts but get students to explore and think by engaging them in a dialogue. It is best taught through group discussions and real life activities rather than lecturing. The role of group discussions, however, with clarity of thought of the teachers cannot be overemphasized. It is essential for giving exposure, guiding thoughts, and realizing values.

The teachers must come from all the departments rather than only one department like HSS or from outside of the Institute.

Discussions would be conducted in small groups of about 20 students with a faculty mentor each. It is to open thinking towards the self. Universal Human Values discussions could even continue for rest of the semester as a normal course, and not stop with the induction program.

Besides drawing the attention of the student to larger issues of life, it would build relationships between teachers and students which last for their entire 4-year stay and possibly beyond.

1.4 LITERARY

Literary activity would encompass reading, writing and possibly, debating, enacting a play etc.

1.5 PROFICIENCY MODULES

This period can be used to overcome some critical lacunas that students might have, for example, English, computer familiarity etc. These should run like crash courses, so that when normal courses start after the induction program, the student has overcome the lacunas substantially. We hope that problems arising due to lack of English skills, wherein students start lagging behind or failing in several subjects, for no fault of theirs, would, hopefully, become a thing of the past.

1.6 LECTURES BY EMINENT PEOPLE

This period can be utilized for lectures by eminent people, say, once a week. It would give the students exposure to people who are socially active or in public life.

1.7 VISITS TO LOCAL AREA

A couple of visits to the landmarks of the city, or a hospital or orphanage could be organized. This would familiarize them with the area as well as expose them to the underprivileged.

1.8 FAMILIARIZATION TO DEPT./BRANCH & INNOVATIONS

The students should be told about different method of study compared to coaching. They should be told about what getting into a branch or department means what role it plays in society, through its technology. They should also be shown the laboratories, workshops & other faculties.

2. SCHEDULE

The activities during the Induction Program would have an Initial Phase, a Regular Phase and a Closing Phase. The Initial and Closing Phases would be two days each.

Time	Activity
Day 0	Students arrive - Hostel allotment. (Preferably do pre allotment)
Whole day	
Day 1	
09:00 am - 03:00 pm	Academic registration
04:30 pm - 06:00 pm	Orientation
Day 2	
09:00 am - 10:00 am	Diagnostic test (for English etc.)
10:15 am - 12:25 pm	Visit to respective depts.
12:30 pm - 01:55 pm	Lunch
02:00 pm - 02:55 pm	Director's address
03:00 pm - 05:00 pm	Interaction with parents
03:30 pm - 05:00 pm	Mentor-mentee groups - Introduction within group
	(Same as Universal Human Values groups)

2.1 INITIAL PHASE

2.2 REGULAR PHASE

After two days is the start of the Regular Phase of induction. With this phase there would be regular program to be followed every day.

2.2.1 DAILY SCHEDULE

Some of the activities are on a daily basis, while some others are at specified periods within the Induction Program. We first show a typical daily timetable.

Session	Time	Activity	Remarks
	Day 3 onwards	Wake up call	
	06:00 am		
Ι	06:30 am - 07:10 am	Physical activity (mild exercise /	
		yoga)	
II	09:00 am - 10:55 am	Creative Arts / Universal Human	Half the Groups
		Values	do Creative Arts
III	11:00 am - 12:55 pm	Universal Human Values / Creative	Complementary
		Arts	Alternate
	01:00 pm - 02:25 pm	Lunch	

IV	02:30 pm - 03:55 pm	Afternoon Session	See below
V	04:00 pm - 05:00 pm	Afternoon Session	See below
	05:00 pm - 05:25 pm	Break / light tea	
VI	05:30 pm - 06:45 pm	Games / Special Lectures	
	06:50 pm - 08:25 pm	Rest and Dinner	
VII	08:30 pm - 09:25 pm	Informal interactions (in hostels)	

Sundays are off. Saturdays have the same schedule as above or have outings.

2.2.2 AFTERNOON ACTIVITIES (NON-DAILY)

The following five activities are scheduled at different times of the Induction Program, and are not held daily for everyone:

- 1. Familiarization to Dept./Branch & Innovations
- 2. Visits to Local Area
- 3. Lectures by Eminent People
- 4. Literary
- 5. Proficiency Modules

Here is the approximate activity schedule for the afternoons (may be changed to suit local needs):

Activity	Session	Remarks
Familiarization with	IV	For 3 days (Day 3 to 5)
Dept/Branch & Innovations		
Visits to Local Area	IV, V and	For 3 days - interspersed (e.g., 3
	VI	Saturdays)
Lectures by Eminent People	IV	As scheduled - 3-5 lectures
Literary (Play / Book Reading /	IV	For 3-5 days
Lecture)		
Proficiency Modules	V	Daily, but only for those who need it

2.3 CLOSING PHASE

Time	Activity
Last But One Day	Discussions and finalization of presentation within each group
08:30 am - 12 noon	
02:00 am - 05:00 pm	Presentation by each group in front of 4 other groups besides their
	own (about 100 students)
Last Day	Examinations (if any). May be expanded to last 2 days, in case
Whole day	needed

2.4 FOLLOW UP AFTER CLOSURE

A question comes up as to what would be the follow up program after the formal 3weekInduction Program is over? The groups which are formed should function as mentormentee network. A student should feel free to approach his faculty mentor or the student guide, when facing any kind of problem, whether academic or financial or psychologicaletc. (For every 10 undergraduate first year students, there would be a senior student as a student guide, and for every 20 students, there would be a faculty mentor.) Such a group should remain for the entire 4-5 year duration of the stay of the student. Therefore, it would be good to have groups with the students as well as teachers from the same department/discipline. Here we list some important suggestions which have come up and which have been experimented with.

2.4.1 FOLLOW UP AFTER CLOSURE - SAME SEMESTER

It is suggested that the groups meet with their faculty mentors once a month, within the semester after the 3-week Induction Program is over. This should be a scheduled meeting shown in the timetable. (The groups are of course free to meet together on their own more often, for the student groups to be invited to their faculty mentor's home for dinner or tea, nature walk, etc.)

2.4.2 FOLLOW UP - SUBSEQUENT SEMESTERS

It is extremely important that continuity be maintained in subsequent semesters. It is suggested that at the start of the subsequent semesters (upto fourth semester), three days be set aside for three full days of activities related to follow up to Induction Program. The students are shown inspiring films, do collective art work, and group discussions be conducted. Subsequently, the groups should meet at least once a month.

SEMESTER I

17ZHS101COMMUNICATIVE ENGLISH ILTP												
		4 0	0	4								
OBJECTIVE	5:											
•	To develop the active skills as well as the passive skills o Engineering and Technology students.	f the first	year									
•	To help learners develop their speaking skills and speak f situations.	lawlessly	in rea	l life								
•	To help learners acquire vocabulary by the way of reading	g skills.										
•	• To help learners enhance their listening skills which will enable them to listen to lectures and comprehend them by asking questions, seeking clarifications											
• To help learners improve their writing skills by practicing dialogue writing, and writing short essays.												
UNIT I				12								
Telephonic inter Reading -Skimr introducing Ten Vocabulary: Pre	views. Speaking- Introducing one self- exchanging pening and Scanning. Writing -Letter writing - E-mail ses (Simple Present, Present Continuous, and Present fix & Suffix and Compounds.	ersonal in writing. t Perfect	o Iv nforma G ram) Art	ation. mar- icles,								
UNIT II				12								
congratulating an Short narrative d Simple Past)- W Synonym & Anto	d taking leave. Reading – Finding key information in a escriptions- dialogue writing. Grammar - Tenses (Present H questions, Yes-No questions, Prepositions Vocabula boym.	given text Perfect C ry: Word	t. Wri Contin -forma	ting- uous, ation,								
UNIT III				12								
Listening- Liste opinions. Readin informal letter comparison, direc	ning to dialogue Speaking – describing a person, exp g- Reading longer text, reading science articles. Writing - writing. Grammar - Tenses (Past continuous, Past et-indirect speech Vocabulary : One- word substitution	perience, · Paragrap Perfect),	expre oh Wri degree	ssing iting- s of								
UNIT IV	· · ·			12								
Listening- Lister - Reading compr inventions. Gran verbs.	ing to product descriptions. Speaking - describing an object ehension. Writing - completing sentences- writing about s nmar - Tenses (Past Perfect Continuous, Simple Future)	ct- proces cientific o Vocabula	s. Rea objects ry : Ph	iding s and irasal								
UNIT V				12								
Listening- Lister responding. Rea Grammar- Tens	ning to talks & conversations. Speaking - participating ding - Reading longer text & close reading. Writing es (Future Continuous, Future Perfect, Future Perfect Cont	in conve –Creativ inuous), c	rsation e Wr onditi	ns & iting. onals								
Vocabulary- col	ocations, idioms.											
	TOTAL: 60 PE	RIODS										
OUTCOMES	On completion of this course, students will be able	e to										
1. Read art	icles of a general kind in magazines and newspapers.											
2. Participa	the effectively in informal conversations; introduce themsel	ves and th	ieir fri	ends								
3. Compre	hend conversations and short talks delivered in English.											

4	4. Write short essays of a general kind and personal letters and emails in English.														
COURSE ARTICULATION MATRIX:															
	PO1	PO2	PO3	PO4	PO5	PO6	P07	P08	PO9	PO1	PO1	PO1	PSO	PSO	PSO
										0	1	2	1	2	3
CO1								Н	Μ	Η	L		Η		Μ
CO2								Н	Μ	Н	L		Н		М
CO3								Η	Μ	Η	L		Η		М
CO4								Η	Μ	Н	L		Η		М
(L- I	.ow, M-	Modera	te, H-H	ligh)											
TE	XT B	OOK	S:												
	1. Bo	oard o	of Edit	ors,"U	Jsing	Englis	h A (Course	e book	c for	underg	gradua	te Eng	gineers	s and
	Τe	echnol	ogists'	', Orie	nt Bla	ck Sw	an Lin	nited, I	Hydera	abad, 2	2015.				
RE	FERF	ENCE	ES:												
1.	Richar	ds, C.	Jack.	"Inter	chang	e Stud	ents' l	Book-2	?", Nev	w Dell	ni: CU	P, 201	5.		
2	Bailey	, Step	ohen, "	Acade	mic	Writin	g: A	Prac	tical	guide	for	stude	nt", I	New	York,
∠.	Rutled	ge,201	11.				_			-	-				
3.	Seely,	John, '	"The C	Dxford	guide	to wri	ting &	Speak	king",	New I	York, 1	998.			

17ZBS1	102	Τ	Р	С								
			3	2	0	4						
OBJEC	TIVE	S:										
•		To develop the use of matrix algebra techniques this i	s ne	edec	l by							
		engineers for practical applications.			•							
•		To make the student knowledgeable in the area of inf	inite	seri	es and	their						
		convergence so that applications. he/ she will be fam	iliar	wit	1							
		limitations of using infinite series approximations for	solı	ition	s arisi	ng in						
		mathematical modeling										
•	10 tamiliarize the student with functions of several variables. This is											
	needed in many branches in mathematical modeling.											
•		To introduce the concepts of improper integrals, Gam	ma,	Bet	a and I	Error						
		Tunctions			1							
•		To acquaint the student with mathematical tools need multiple integrals and their peeded in engineering and		n eva	aiuatin	g						
TINITT		MATRICEC	nica	uon	5.	0.6						
UNITI		MATRICES				9+0						
Eigen val	lues and	d Eigenvectors of a real matrix - Characteristic equation	tion	– P	roperti	les of						
eigen val	ues and	eigenvectors - Statement and applications of Cayley-H	lam	ilton	Theor	rem –						
Diagonal	ization	of matrices – Reduction of a quadratic form to	cano	onica	al for	n by						
orthogona	al transf	formation – Nature of quadratic forms.										
UNIT I	Ι	SEQUENCES AND SERIES				9+6						
Sequence	s: Defii	nition and examples - Series: Types and Convergence	- S	eries	of po	sitive						
terms – T	Tests of	convergence: Comparison test, Integral test and D'Ale	emb	ert's	ratio	test –						
Alternatio	ng serie	s - Leibnitz's test - Series of positive and negative ter	rms	– A	bsolut	e and						
condition	al conv	ergence.										
UNIT I	II	APPLICATIONS OF DIFFERENTIAL				9+6						
		CALCULUS										
Curvature	e in Car	tesian co-ordinates – Centre and radius of curvature – C	Circl	e of	curvat	ure –						
Evolutes	– Envel	opes - Evolute as envelope of normals.										
UNIT I	V	FUNCTIONS OF SEVERAL VARIABLES				9+6						
Limits an	nd Cont	inuity – Partial derivatives – Total derivative – Different	entia	ation	of im	plicit						
functions	– Jaco	bian and properties – Taylor's series for functions	of 1	wo	variab	les –						
Maxima	and mir	nima of functions of two variables – Lagrange's methods	od o	of ur	ndeterr	nined						
multiplier	rs.											
UNIT V	7	MULTIPLE INTEGRALS				9+6						
Double in	ntegrals	in cartesian and polar coordinates - Change of order o	f int	tegra	tion –	Area						
enclosed	by plan	ne curves – Change of variables in double integrals -	- A	rea	of a c	urved						
surface -	Triple i	ntegrals – Volume of Solids.										
TOTAL (L : 45 + T : 30): 75 PERIODS												
OUTCO	OMES	• On completion of this course, students will be able	to									
1	Solve	problems on matrices and to apply concepts of matri	ix tl	ieor	v whe	never						
1.	applica	able in the field of engineering.			, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							
2.	Solve	problems using convergence tests on sequences and	seri	es a	nd to	apply						
	them i	n engineering field appropriately.				rr-J						

3		Solve problems on differential and integral calculus and will be exposed to the									their				
		applic	ations	in en	gineer	ing.									
COU	COURSE ARTICULATION MATRIX:														
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO
										0	1	2	1	2	3
CO1	Н	Μ		Μ	L								L	Н	М
CO2	Η	Μ		Μ	L								L	Η	Μ
CO3	Η		Μ	Μ	L								L	Η	Μ
(L- L	ow, M	- Moder	ate, H-	High)											
TEX	KT F	BOOK	KS:												
1		Bali N	V. P, N	Manisl	h Goy	val, "A	A Tex	t bool	c of E	Engine	ering	Mathe	ematic	s", E	ighth
1.		Edition	n, Lax	mi Pu	blicat	ions P	vt Ltd	., 201	1.						-
2		Grewal. B.S, "Higher Engineering Mathematics", 41st Edition, Khanna													
۷.		Publications, Delhi, 2011.													
RE	FER	ENC	ES:												
1	•	Dass,	<i>H.K</i> .	,Er. I	Rajnis	h Veri	ma, "	Highe	r Eng	gineer	ing M	athem	atics'	',S. C	hand
		Priva	te Ltd	., 201	1.			-	-		-				
2		Glyn	Jame	es, "1	4dvan	ced N	Ioder	n Eng	gineer	ing N	Iather	natics	", 3r	d Edi	ition,
		Pear	son Ed	lucati	on, 20	12.				U					
3		Peter	· V. O	'Neil,	"Adv	anced	' Engi	neerin	ng Ma	thema	tics",	7th E	dition	, Cen	gage
		learn	ing, 2	012.			0		0					-	00
4		Rame	ana l	3. <i>V</i> ,	"High	ner E	Ingine	ering	Mat	hemat	ics",	Tata	McC	Graw	Hill
		Publi	ishing	Com	oany, I	New D	elhi, 2	2008.							
5		Sivar	ama i	Krishn	a Da	s P., 1	Rukma	ingada	achari	<i>E</i> '	'Engin	eerin	g Mat	hemat	tics".
		Volu	me I, S	Second	l Editi	ion, Pe	earsor	n Publ	ishing	, 2011	!.		5		,

17ZBS103 ENGINEERING PHYSICS I L T P C Common to MECH, EEE, ECE & CSE 3 0 0 3												
		Common to MECH, EEE, ECE & CSE	3	0	0	3						
OBJEC	CTIV	ES:										
•		To develop knowledge on properties of solids										
•		To use the principles of lasers, its types and its application										
•		To make students to understand about fiber optics and its appl	licat	ions.								
•		To develop knowledge on thermal properties of materials										
•		To apply principles of quantum physics in engineering field.										
UNIT I		PROPERTIES OF MATTER				9						
Modulus elastic co materials Determin Experime	– Ri onstan - Ben ation ent).	gidity Modulus – Bulk Modulus –Poisson's ratio – Relation ts and Poisson's ration – Torsional Pendulum – Factors aff nding moment of a Beam – Depression of cantilever (Theory of Young's modulus – Uniform and non-uniform ben	ship fecti and ding	b betw ng ela l Expe g (Th	veen t asticit erimen eory	hree y of it) – and						
Introduct Spontane	ion to	LASER – Interaction of light radiation with materials – Stim mission – Stimulated emission –Einstein's A and B co-eff SER – Deputation inversion – Pumping action – Matheda fo	ulat icie	ed aba	sorpti rivatio	$\frac{1}{2}$						
Concept of Character application	Concept of LASER – Population inversion – Pumping action – Methods for pumping action – Characteristics of LASER - Types of Lasers (Nd-YAG, He-Ne) – Industrial and medical applications of lasers.											
UNIT I	II	FIBRE OPTICS				9						
Introducti Critical A Optical F refractive fibres.	ion – Angle Fibres e inde	Structure of Optical Fibre – Guiding mechanism – Total in – Conditions for total internal reflection – Principle and Pro- – Numerical aperture and acceptance angle – Types of optic x and mode) – their characteristics and applications – Losses a	nteri paga cal f	nal re ation o ïbres ciated	flection of ligh (Mate in op	n – nt in rial, tical						
UNIT I	V	THERMAL PHYSICS				9						
Introduct: Thermal of heat flow method f exchange	ion to condu v – F for de ers, ret	Heat flow – Modes of heat transfer (Conduction, Convection activity – Expression for thermal conductivity – Newton's law leat conduction through a compound media(Series and para etermination of thermal conductivity of bad conductors – frigerators.	on an of c allel Ap	nd Ra ooling) – L oplicat	diatio g – Li Lee's ion:	n) – near disk Heat						
UNIT V	/	QUANTUM PHYSICS				9						
Concept theory (d Planck's particle d dependen box.	Concept of Blackbody radiation – Wien's displacement law – Rayleigh-Jean's law - Planck's theory (derivation) – Deduction of Wien's displacement law and Rayleigh-Jean's law from Planck's law – Matter waves – De-Broglie's Hypothesis – Properties of matter waves - Wave-particle duality – Wave function – Physical Significance – Schrodinger wave equation – Time dependent and time independent – Application of Schrodinger wave equation – Particle in a 1 D box.											
		TOTAL: 45 PER	RIC	DDS								
OUTCO	OME	S: On completion of this course, students will be able to)									
1.	Lear	n about, three types of elastic modulus, related laws and luctivity of different solid materials with relevant Newton's law	bas	sics o	f the	mal						
2.	App	ly the functional knowledge of different types of lasers in	$\frac{1}{1}$ th	eir en	iginee	ring						

		applications.														
3		Attain	the ba	isic kn	owled	ge of	fibre o	optics	and ap	oply in	n their	engin	eering	& me	edical	
		applica	tions.													
4		Apply	the fur	ndame	ntal pr	rincipl	es of q	uantui	n phy	sics in	engin	eering	field.			
COU	JRSE	E ARTI	CULA	ATIO	N MA'	FRIX										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO	
					_					0	1	2	1	2	3	
CO1	Н	Μ		M	L								Н		Μ	
CO2	Η	Μ	1 M L H M													
CO3	Η		M M L H M													
CO4	Η		M H L H M													
(L- Lo	ow, M	- Modera	te, H-H	ligh)												
TEX	KT E	BOOK	S:													
1		P. Ma	.ni, "E	nginee	ring p	hysics	", Dha	inam F	ublica	ations,	2017.					
2		G. Set	nthi ku	ımar, ʻ	'Engin	eering	, physi	cs", V	RB Pi	ublishe	ers.					
3	•	A.Ma	rikani,	"Eng	ineerir	ıg Phy	sics",	PHI L	earnin	g Pvt.	, India	2009.				
REI	FER	ENCE	ES:													
1.		<i>R</i> . <i>K</i> .	Gaur d	and S.	C. Gu	<i>pta</i> , ".	Engine	ering	physic	cs", D	hanpa	t Rai j	public	ations,	New	
		Delhi	2003.													
2	•	<i>M. N</i> .	Avad	hanulı	i and	<i>P. G.</i>	Kshirs	sagar,	"A te	xt boo	ok of e	nginee	ering p	ohysic	s", S.	
		Chand	d and (Сотра	ny Lta	l, New	Delhi	, 2005	•							
3	•	K. Raj	iagopa	ıl, "Er	ngineer	ring P	hysics	", PH	, New	Delhi	, 2011	•				
4		P. K. 1	Palani	isamy,	"Engl	ineerir	ig Phy	sics",	SCITH	ECH P	Publica	tion, 2	2011.			
5	•	M. Ar	umuga	ım, "E	Ingine	ering p	ohysics	s", An	uradha	a Publ	ishers	•				

17ZBS104	ENGINEERING CHEMISTRY	L	Τ	Р	C
		0	0	3	
OBJECTIV	TES:				
•	To make students conversant with water parameters, boilers, i	need	l for	wate	er
	treatment and its merits and demerits.				
•	Students ought to be aware of fundamental principles behind	diffe	erent		
	electrochemical reactions, corrosion of materials and methods	to j	prev	ent	
	corrosion.				
•	To learn the chemistry behind polymers, synthesis, merits, de	meri	its aı	nd its	5
	applications in various field.				
•	To acquire basic knowledge in renewable, non renewable and	alte	ernat	e ene	ergy
	resources and the chemical reactions involved in cell, batterie	s an	d its		
	applications.				
•	To learn the working principle of various spectroscopy and its	s app	olica	tions	5.
•	To acquire basic knowledge in Nano materials, synthesis, pro	pert	ies a	nd u	ses.
UNIT I	WATER TECHNOLOGY				9
Characteristics	s = alkalinity and its significance = hardness (problems) - type	s an	d es	tima	tion by
EDTA method	- specifications of drinking water (BIS and WHO standard	ds) -	- n0	table	e water
treatment – b	piler feed water - requirements – disadvantages of using ha	rd v	vate	r in	boilers
(Scales & Sh	udge, Boiler corrosion, Priming & Foaming, Caustic embr	ittle	men	t) –	water
treatment - In	ternal treatment – external treatment – zeolite method - Demi	nera	lizat	ion p	process
- desalination	– reverse osmosis.				
UNIT II	ELECTROCHEMISTRY AND CORROSION				9
Electrochem	istry: Electrochemical cells – reversible and irreversible	ce	lls -	– El	MF –
measurement	of EMF - single electrode potential - Nernst equation (Pro	blen	ns) -	- refe	erence
electrode – st	andard hydrogen electrode and calomel electrode – ion selectiv	ve el	ectro	ode -	- glass
electrode and	measurement of pH – electrochemical series and its application	ns.			
Corrosion:	Corrosion – Pilling Bedworth rule - dry corrosion and	its	me	chan	ism -
electrochemic	cal corrosion and its mechanism – types (galvanic, pitting, diff	eren	tial	aerat	ion) –
factors influe	encing corrosion – corrosion control methods – sacrificial	an	ode	met	hod –
functions	rrent method – corrosion inhibitors – protective coatings – pair potallic coatings – clostroplating ($C_{\mu\nu}$) and clostroplating ($N_{\mu\nu}$)	nts - Ji)	- cor	istitu	lents –
	DOLYMEDS AND COMPOSITES	NI).			0
UNII III Polymors: D	FOLTMERS AND COMPOSITES	ion		dag	9 rea of
polymerization	types (addition condensation conclumerization) mechan	iem	(fro	uegi e rac	lical)
polymenzation	rmonlastics and thermosetting plastics – preparation prop	ertie	(110) (110	nd u	uses of
individual pol	vmers (PVC TEFLON Nylon-66 Nylon-6 PET enoxy	res	in)	r	bber -
vulcanization	of rubber – applications - Advanced polymeric materials and	elect	roni	c de	vices –
conducting an	d semiconducting polymers – liquid crystal properties – de	ndri	imer	s an	d their
difference from	n polymers.				
Composites:	definition – type's polymer matrix composites – Fibre Reir	forc	ced]	Poly	mers –
applications –	advanced composite materials – physical and chemical propert	ies -	- app	olicat	tions.
UNIT IV	ENERGY SOURCES AND STORAGE DEVICES	5		_	9

Nuclear energy – fission fusion reactions – light water nuclear reactor for power generation –
breeder reactor - solar energy conversion - solar cells - wind energy - batteries: alkaline
batteries - lead -acid, Ni-Cd, and Li-ion batteries - fuel cells - principles and applications -
advantages and disadvantages.

UNIT V ANALYTICAL TECHNIQUES AND NANOMATERIALS

Spectroscopy: Electromagnetic spectrum - Fundamentals of spectroscopy – Instrumentation, working principle and applications of UV-Visible spectrophotometer, Atomic Absorbance Spectrophotometer, Flame photometer.

Nanomaterials: Introduction to nanotechnology in electronics - nanomaterial's – fullerenes carbon nanotubes – nanowires – Electronics and mechanical properties - synthesis of nanomaterial – top down and bottom up approach – applications of nanomaterials in electronic devices (Semiconductors, LED & OLED) – electronics and telecommunication – medicines.

									101		43	PERI	IODS			
OU.	ГСС	DMES	:	On c	omplet	ion of	this co	ourse,	studer	nts wil	l be at	ole to				
1		Analyz	e wate	er bor	ne pro	blems	faced	in boi	lers, n	eed fo	or wate	er treat	tment	and va	rious	
		method	is and	techni	ques f	or trea	ting h	ard wa	ter.							
2		Unders	stand p	olyme	erizatio	on reac	tions a	and its	applic	cations	s in en	gineer	ing fie	ld.		
3		Unders	stand t	he me	chanis	m beh	indvar	ious ty	pes o	f elect	rochei	nical r	reactio	ns wh	ich in	
		turn he	lp in u	inderst	anding	g the c	auses	for cor	rosior	n and p	oreven	tion m	ethods	5.		
4	•	Acquir	e kno	wledg	e abou	it ener	gy co	nversi	on and	d cher	nical 1	reactio	n taki	ng pla	ce in	
		renewa	ible en	ergy r	esourc	es, bat	teries	and fu	el cell	s.						
5	•	Acquire in-depth knowledge on various nanomaterials and its applications in electronic devices.														
COL	electronic devices.															
COL	RSE				N MA'	FRIX	:	200	200		201	201	200	200		
	P01	POZ	PO3	P04	P05	P06	P07	P08	P09	0	1	2	1	2	2	
CO1	Н	М	M M L I <thi< th=""> <thi< th=""> <thi< th=""> <thi< th=""></thi<></thi<></thi<></thi<>													
CO2	H	M	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
CO3	Н		М	M	L								Н		M	
CO4		М		Н	L								Н		L	
CO5		Μ		Η	L								Н		L	
(L- Lo	ow, M	- Modera	te, H-H	ligh)	•											
TEX	KT E	BOOK	S :													
1	•	Vaira	am S,	Kaly	ani P	, Sub	a Ran	nesh.,	"Eng	ineeri	ng Cł	nemistr	ry", V	Viley	India	
		PvtL	td.,Ne	w Dell	ni, 201	1.										
2	•	Dara	S.S,U	mare	S.S, "	Engin	eering	Chen	nistry"	', S. C	Chand	& Co	mpany	Ltd.,	New	
		Delh	i, 2010).												
REF	FER	ENCE	ES:													
1.		Pahar	i A, Cl	hauhai	n B, "I	Engine	ering	Chemi	stry",	Firew	vall Me	edia, N	lew De	elhi, 20	010.	
2		Rao, C	C. N. I	R.; Go	vindar	aj, A,	"Nan	otubes	and 1	Vanow	vires",	United	l King	dom, I	Royal	
		Societ	y of Cl	hemist	ry, 200)5.										
3	•	Sabu	Thom	as, N	andaki	umar	Kalar	ikkal,	Maci	ej Jai	roszew	rski, J	osmin	<i>e P</i> .	Jose;	
		"Adva	nced	Polym	ieric I	Materi	als: F	From .	Macro	o to l	Vano	Lengtl	h Scal	les", 1	Apple	
		Acade	$\frac{mic Pi}{1}$	ess, C	anada	, 2016			cth 1	•.•	D1	D			G	
4.		Jain a	nd Jai	n, "E	nginee	ring (hemis	try", I	0''' ed	ition, I	Dhanp	oat Rqa	u Pub	lishing	<i>Co</i> .	

17SES1	05 PROBLEM SOLVING AND PYTHON	L	Τ	P	С					
	PROGRAMMING		_							
0.0.100		3	0	0	3					
OBJEC	TIVES:									
•	To know the basics of algorithmic problem solving									
•	To read and write simple Python programs.									
٠	To develop Python programs with conditionals and loops.									
•	To define Python functions and call them.									
•	To use Python data structures — lists, tuples, dictionaries.									
•	To do input/output with files in Python.									
UNIT I	ALGORITHMIC PROBLEM SOLVING				9					
Algorithm	ns, building blocks of algorithms (statements, state, control flow,	func	ction	s), no	otation					
(pseudo	code, flow chart, programming language), algorithmic proble	m s	solvi	ng, s	simple					
strategies	for developing algorithms (iteration, recursion). Illustrative probl	ems	fin	d mir	nimum					
in a list, i	nsert a card in a list of sorted cards, and guess an integer number in	ı a ra	ange	, Tow	vers of					
Hanoi.										
UNIT I	DATA, EXPRESSIONS, STATEMENTS				9					
Python in	terpreter and interactive mode; values and types: int, float, boole	ean,	strin	g, an	d list;					
variables,	expressions, statements, tuple assignment, precedence of op	erate	ors,	com	nents;					
modules	and functions, function definition and use, flow of execution	n, j	parai	neter	s and					
argument	s; Illustrative programs: exchange the values of two variables, circu	ulate	the	value	es of n					
variables,	distance between two points.									
UNIT I	I CONTROL FLOW, FUNCTIONS				9					
Condition	als: Boolean values and operators, conditional (if), alternative	e (i	f-els	e), cl	hained					
condition	al (if-elif-else); Iteration: state, while, for, break, continue, pass	; Fri	iitfu	l fun	ctions:					
return va	lues, parameters, local and global scope, function composition,	rec	ursic	on; S	trings:					
string sli	ces, immutability, string functions and methods, string modul	le; I	_1sts	as a	arrays.					
Illustrativ	e programs: square root, gcd, exponentiation, sum an array of nur	nber	s, lii	near s	earch,					
binary sea										
UNITI	V LISTS, TUPLES, DICTIONARIES									
Lists: list	operations, list slices, list methods, list loop, mutability, aliasin	g, cl	onin	ig lis	ts, list					
parameter	s; Tuples: tuple assignment, tuple as return value; Dictionari	les:	oper	ation	s and					
methods;	advanced list processing - list comprehension; illustrative progr	ams	sel	ectioi	1 sort,					
insertion	sort, mergesort, histogram.									
	FILES, MODULES, PACKAGES				<u> </u>					
Files and	exception: text files, reading and writing files, format opera	tor;	con	nman	d line					
argument	s, errors and exceptions, nandling exceptions, modules, pa	ска	ges;	mus	trative					
programs				1						
	IUIAL: 45 PE	KIU	102)						
	MES: On completion of this course, students will be able to	0								
1.	Develop algorithmic solutions to simple computational problems.									
2.	Keau, write, execute by hand simple Python programs.									
<u> </u>	Decompose a Puthon program into functions									
4. <i>F</i>	Decompose a Python program into functions.									
Э.	Represent compound data using Python lists, tuples, and dictionaries.									

6	6. Read and write data from/to files in Python Programs.														
COU	JRSE	E ARTI	CULA	NTION	N MA'	FRIX	:								
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO
							_			0	1	2	1	2	3
CO1		M	Н		Μ		L						Н		M
CO2		Μ	Н		Μ		L						Н		Μ
CO3		Μ	Н		Μ		L						Н		Μ
CO4	Μ		Н		Μ		L						Н		М
CO5			Μ	Н	Μ		L						Η		Μ
CO5			Μ	Н	Μ		L						Η		Μ
(L- Lo	ow, M	w, M- Moderate, H-High)													
TEX	FEXT BOOKS:														
1	1. Allen B. Downey, "Think Python: How to Think Like a Computer Scientist", 2 nd														
		edition	, Up	odated	for	Pyt	thon	3,	Shroft	f/O'Re	eilly	Publi	shers,	201	6
		(http://g	greente	eapres	s.com/	wp/thi	ink- py	(/thon/)).						
2		Guido	van R	ossum	and F	red L	Drak	e Jr, "	An In	troduc	tion to	o Pyth	on – F	Revise	d and
		updated	d for P	ython	3.2", 1	Vetwo	rk The	ory Lt	d., 20	11.					
3		Dr.A.K	annan	, Dr.L	.Saira	nesh,	"Prob	lem So	olving	and H	ython	progr	ammi	ng", U	nited
		Global	Publis	hers P	vt. Lto	I., 201	7.		-		-			-	
4	•	John V	' Gutta	ag, "Ir	ntrodu	ction t	o Cor	nputat	ion an	d Pro	gramn	ning U	Jsing	Pythor	ı",
		Revised	d and e	expand	led Ed	ition, I	MIT P	ress, 2	013.		-	-	-	•	
REF	FER	ENCE	ES:												
1.		Rober	t Sedg	ewick,	Kevin	Wayı	ie, Ro	bert D	onder	o, "In	troduc	tion to	Prog	rammi	ng in
		Pytho	n: An	Inter-	discip	linary	Appr	oach"	Pear	son I	ndia E	Educat	ion Se	ervices	Pvt.
		Ltd., 2	2016.		1		11	-							
2		Timot	hv A. I	Budd,	"Explo	oring l	Python	.". Мс	-Graw	Hill I	Educat	tion (Ir	ıdia) H	Private	Ltd.,
		2015.	2	, i	1	0						,	,		
3		Kenne	eth A.	Lam	bert,	"Fund	ament	als of	^r Pyth	on: F	First F	Progra	ms",	CENC	GAGE
		Learn	ing, 20	012.				5	2			0	,		
4		Charl	es D	ierbac	h, "I	Introd	uction	to	Comp	uter	Scien	ce us	ing	Python	n: A
		Comp	utation	nal Pr	oblem	Solvir	ig Foc	us", N	Vilev II	ndia E	dition	, 2013			
5		Paul	Gries.	Jenni	fer Ca	mpbel	l and	Jason	Mont	ojo, "	Practi	ical Pr	rogran	nming.	· An
		Introd	luction	to C	omput	er Sci	ience	using	Pytho	n 3".	Seco	nd edi	ition.	Pragm	atic
		Progr	amme	rs, LL	C, 201	3.)			· · · · · · · · · · · · · · · · · · ·		

17ZES106	ENGINEERING GRAPHICS	L	T	P	С							
Com	non to MECH, EEE, ECE and CSE Branches	2	0	4	4							
OBJECTIV	ES:											
	This course aims to introduce the concept of graphic commun	icati	ion,	devel	op							
•	the drawing skills for communicating concepts, ideas and desi	gns	ofe	ngine	ering							
	products.											
•	To expose them to existing national standards related to techn	ical	drav	vings	•							
•	To draw the projection of simple solids like prisms, pyramids,	, cyl	inde	r etc.								
•	To draw the development of surfaces to estimate the sheet me	tal r	equi	reme	nt and							
	to prepare sectional views of solids.											
•	To develop skills in three-dimensional visualization of engine and to draw isometric and perspective views of simple solids	leeri	ng c	compo	onents							
CONCEPT	S AND CONVENTIONS (Not for Examination)											
Importance of	graphics in engineering applications $-$ use of drafting instrume	nts -	_									
BISconvention	s and specifications – size, layout and folding of drawing sheet	is —	lette	ring a	and							
dimensioning.				0								
UNIT I	PLANE CURVES AND FREE-HAND SKETCHI	NG	r		6+9							
Basic geometr	ical constructions, curves used in engineering. Conics - const	struc	ction	of e	llipse,							
parabola and h	syperbola by eccentricity method - drawing of tangents and n	orm	al to	the o	above							
curves. Visual	zation concepts and free hand sketching: visualization princip	oles	-rep	oreser	itation							
of three dime	nsional objects – layout of views- freehand sketching of m	ultij	ple v	views	from							
pictorial views	of objects.		<u> </u>									
UNIT II	UNIT IIPROJECTION OF POINTS, LINES AND PLANE6+9											
SURFACES												
Orthographic p	projection – principles-principal planes-first angle projection-pr	ojec	tion	of po	oints.							
Projection of s	traight lines inclined to both the principal planes - determina	tion	oft	rue le	engths							
and true inclu	nations by rotating line method - traces. Projection of plan	ies	(pol	ygona	al and							
	es) inclined to both the principal planes by rotating object meth	00.	<u> </u>		<u>()</u>							
	PROJECTION OF SOLIDS	1	1.1	1	6+9							
Projection of s	imple solids like prisms, pyramids, cylinder, cone and truncat	ea s	ona	s, wn	en the							
	PROJECTION OF SECTIONED SOL US AND		<u> </u>		6.0							
UNITIV	PROJECTION OF SECTIONED SOLIDS AND DEVELOPMENT OF SUDFACES				0+9							
Sectioning of a	DEVELOPHENI OF SURFACES		han	thac	uttin ~							
plane is incline	of the one of the principal planes and perpendicular to the of)II W bor	/nen/ ob	tne c	utting							
shape of secti	on Development of lateral surfaces of simple and sectione	ner - ad s	- UU alide	a_{n}	risms							
pyramids cylin	ders and cones	u s	onu	, – P	1151115,							
INIT V	ISOMETRIC AND PERSPECTIVE PROJECTIC)N(Z		6+9							
Principles of i	sometric projection – isometric scale –isometric projections o	f si	nple	e solio	ds and							
truncated solid	s - prisms, pyramids, cylinders, cones- combination of two sol	id o	bjec	ts in s	simple							
vertical position	ons - perspective projection of simple solids- prisms, pyramic	ls a	nd c	ylind	ers by							
visual ray meth	nod.				-							
	TOTAL (L:45 + T:30)	: 75	5 PI	E RI(ODS							
OUTCOME	CS: On completion of this course, students will be able to	,										
1. Fam	iliarize with the fundamentals and standards of Engineering gra	aphi	cs.									

2		Perform freehand sketching of basic geometrical constructions and multiple views of													
		objects													
3		Draw of	orthog	raphic	projec	tions (of line	s and p	plane s	surface	es.				
4		Draw p	project	ions o	f solid	s and o	develo	pment	of sur	faces.					
5		Visuali	ize and	l draw	isome	etric ar	nd pers	pectiv	e view	vs of s	imple	solids.			
COU	JRSI	E ARTI	CULA	NTIO	N MA'	TRIX	:								
	PO1	. PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO
				_		_				0	1	2	1	2	3
CO1	Η	M		L	Μ	L							M	Н	<u> </u>
CO2	Η	M	A L M L M H												
CO3		H	H M M L M H H M M L M H												
CO4		H	H M M L M H												
CO5		H	M		Μ	L							Μ	H	
(L- L0	ow, M	I- Modera	ite, H-H	ligh)											
TE2		SOOK	<u>.S:</u>	• · · ·			0.5		~				<u> </u>	D 1 11	-
1.		Natraja	n K.V	′., "A	text	book (of Eng	gineeri	ng Gi	raphics	s", Dh	nanalal	(shm1	Publis	shers,
		Chenna	u, 201	2.	D 11	р ·	XZ (1	. .	•	G	1 · •	N T	<u> </u>		. 1
2.		(P) Lin	opal K nited, 2	. and 2016.	Prabh	u Raja	ı V., "	Engin	eering	Grap	hics",	New	Age I	nterna	tional
3.		Bhatt N 53 rd Ed	N.D. a	nd Pa 2014.	nchal	V.M.,	"Engi	neerin	g Dra	wing"	, Cha	rotar F	ublish	ing H	ouse,
REI	FER	ENCE	ES:												
1.		N S F	Partha.	sarath	y and	Vela	Mural	i, "En	gineer	ring C	Fraphi	cs", C	Dxford	Unive	ersity,
		Press,	New	Delhi,	2015.				-	0			v		
2	•	Gopal	lakrisk	na K.	R., "E	ngine	ering l	Drawi	ng" (V	Vol. Ið	kII cor	nbinea	l), Sub	has S	tores,
		Banga	alore, 1	2013.		-	-								
3		Basan	t Aga	rwal d	and Ag	garwa	l C.M.	, "En	gineer	ring D	Prawin	g", Ta	ata M	cGraw	, Hill
		Publis	shing (Сотра	ny L	imited,	, New	Delhi,	2013.						
4	•	Luzza	der, W	⁷ arren.	J. ana	Duff.	John N	1., "F	undam	ientals	of En	gineer	ing \overline{D}	rawing	<i>; with</i>
		an in	troduc	tion t	o Inte	ractiv	e Con	iputer	Grap	hics f	for De	esign d	and P	roduci	ion",
		Easter	rn Eco	nomy	Editio	n, Pre	ntice H	Iall of	India	Pvt. L	td, Ne	w Dell	hi, 200	5.	
5	•	Shah I	M.B., a	and Ra	na B.	С., "Е	nginee	ring L	Drawin	ig", Pe	earson	$e, 2^{nd} E$	dition	, 2009	•

17SES107	PROBLEM SOLVING AND PYTHON	L	Т	Р	С					
	PROGRAMMING LABORATORY									
		0	0	4	2					
OBJECTIV	/ES:									
٠	To write, test, and debug simple Python programs.									
•	To implement Python programs with conditionals and loops.									
•	Use functions for structuring Python programs.									
٠	Represent compound data using Python lists, tuples, and dictionaries.									

• Read and write data from/to files in Python.

LIST OF EXPERIMENTS:

- 1. Compute the GCD of two numbers.
- 2. Find the square root of a number (Newton's method).
- 3. Exponentiation (power of a number).
- 4. Find the maximum of a list of numbers.
- 5. Linear search and Binary search.
- 6. Selection sort, Insertion sort.
- 7. Merge sort.
- 8. First n prime numbers.
- 9. Multiply matrices.
- 10. Programs that take command line arguments (word count).
- 11. Find the most frequent words in a text read from a file.
- 12. Simulate elliptical orbits in Pygame.
- 13. Simulate bouncing ball using Pygame.

PLATFORM NEEDED

• Python 3 interpreter for Windows/Linux

	TOTAL: 60 PERIODS														
OU	ГСС	MES	:	On co	omplet	ion of	this co	ourse,	studer	nts wil	l be ab	le to			
1		Write,	test, a	nd deb	ug sin	iple py	ython p	orogra	ms.						
2		Implen	nent p	ython j	progra	ms wi	th con	ditiona	als and	l loops	•				
3		Develo	p pyth	on pro	ograms	s step-	wise b	y defii	ning fu	unction	ns and	calling	g them	l.	
4		Use python lists, tuples, dictionaries for representing compound data.													
5	5. Read and write data from/to files in python.														
COURSE ARTICULATION MATRIX:															
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO
										0	1	2	1	2	3
CO1	Μ		Η		Μ									L	Η
CO2		Μ	Н		Μ								Μ		Н
CO3		Μ	Н	Μ	L									L	Η
CO4		Μ	Н	Μ	L								Μ		Н
CO5	М		H M L H H												
(L- Lo	(L- Low, M- Moderate, H-High)														

172	ZBS	108			PHY	SICS	LAP	BORA	TOF	RY		Ι	Δ T	P	С
		C	ommo	on to	MEC	H, EI	EE, E	CE &	CSE	1		0	0	4	2
OB.	JEC	TIVE	S:									-			
	•	,	To inti	oduce	differ	ent ex	perim	ents to	test b	asic ur	ndersta	nding	of phy	ysics	
			concep	ots app	olied in	optic	s, ther	mal pł	nysics,	prope	rties o	f matte	er and	liquid	.S
LIS	LIST OF EXPERIMENTS : (ANY 5 EXPERIMENTS)														
1	1. Determination of rigidity modulus: Torsion Pendulum.														
2	2. Determination of Young's modulus by non-uniform bending method.														
3	3. (a) Determination of wave length and particle size using LASER.														
	(b) Determination of acceptance angle in an optical fibre.														
4	4. Determination of thermal conductivity of a bad conductor – Lee's Disc method.														
5	. Det int	erminat erferon	ion of neter.	veloc	ity of s	sound	and co	ompres	sibilit	y of flı	uid – U	Jltraso	nic		
6	. Det	erminat	ion of	wave	length	of me	rcury s	spectru	ım – S	pectro	meter	grating	3.		
7	. Det	erminat	ion of	band	gap of	a sem	icondu	actor.							
									TOT	'AL :	60 I	PERI	ODS		
OU'	ГСС	MES	:	On co	omplet	ion of	this c	ourse,	studer	nts will	l be ab	le to			
1		Apply	princip	oles of	elasti	city, o	ptical	and th	ermal	proper	ties fo	r engii	neerin	g	
	applications.														
COU	JRSE	ARTI	CULA	TIO	N MA'	TRIX	:								
	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO
										0	1	2	1	2	3
CO1	L	Η		Н	Μ		Μ						Н	Μ	

(L- Low, M- Moderate, H-High)

17ZBS109		CI	IEM	ISTR	YLA	BOF	RATC	ORY]	T	P	С	
										(0	4	2	
OBJECTIV	OBJECTIVES:													
•	To ma	ke stud	ents c	onvers	ant wi	th han	ds on	water	param	eter an	alysi	s.		
٠	To mak	the st	udent t	to acqu	ire pra	ctical s	kills in	the co	rrosior	n in met	als.			
•	To acq polyme	uaint t er by C	he stud Stwald	dents v d visco	vith th ometer	e deteı	minat	ion of	molec	cular w	eight	of a		
•	To make the student acquire practical skills in analytical instruments.													
LIST OF EXPERIMENTS:														
 Determ Determ Conduct Determ Determ Estima Corros Estima 10. Estima method 	 Determination of total nations of given water sample by ED III include. Determination of alkalinity in given water sample. Determination of molecular weight of polyvinyl alcohol using Ostwald viscometer. Conduct of metric titration using mixture of acids and strong base. Determination of strength of in given hydrochloric acid using pH meter. Estimation of sodium present in water using flame photometer. Estimation of Zn present in effluent using Atomic Absorption Spectroscopy(AAS). Corrosion experiment – weight loss method. Estimation of iron content of the given solution using potentiometer meter. Estimation of iron content of the given sample using Spectro photometer (thiocyanate method). 													
	<u>a</u>		1	· · ·			TOT	<u>'AL :</u>	60	PER		S		
	S:	Un co	omple	$\frac{1}{100}$	this c	ourse,	studer	its wil	i be at	ble to		1		
1. Be outfitted with hands-on knowledge in the qualitative and quantitative chemical analysis of water quality related parameters, corrosion studies, heavy metal analysis, etc.														
COURSE AR	FICUL	ATIO	N MA	TRIX	:									
PO1 PC	2 PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO	
СО1 Г. Н		н	М		М			0	1	2	1 Н	2 M	3 T	
(L- Low, M- Mod	erate, H-I	High)	111	I	1 1 1	I	l		I	I	11	141		

SEMESTER II

17ZHS201	COMMUNICATIVE ENGLISH II	L	Т	P	С							
		4	0	0	4							
OBJECTIV	ES:											
•	To make learners acquire listening and speaking skills in both informal contexts.	for	mal	and								
•	To help them develop their reading skills by familiarizing the types of reading strategies.	m w	ith d	liffer	ent							
●	To equip them with writing skills needed for academic as wel contexts.	l as	worl	kplac	e							
•	To make them acquire language skills at their own pace by using e-materials and language lab components.											
•	• To help them give a short extempore speech and also make them participate in debates.											
UNIT I					12							
Listening – Listening to different types of conversation and answering questions. Listening to announcements at railway station, airports, etc. Speaking – Comments on topics like weather. Turn taking – Closing a conversation (excuses, general wish, positive comment, thanks); Reading – Extensive reading; Writing – purpose statements – extended definitions – issuewriting instructions – checklists-recommendations - Grammar- impersonal passive voice,												
numerical adje	ctives ; Vocabulary – Homonyms, Homophones.				10							
UNII II Listoping Li	staning to situation based dialogues: Speaking Conversation	nro	otion	in r								
situations ask	ing for directions giving directions. Discussing various aspe	ects	of a	filn	n or a							
book. Welcom	e address, Vote of Thanks, special address on special topics. I	Read	ling	– rea	ading a							
short story or	an article from newspaper. Writing -writing a review/ sur	mma	ry c	of a	story /							
article. Gram	nar –Concord, compound words.											
UNIT III					12							
Listening – I	Listening to the conversation – Understanding the structure	e of	cor	ivers	ations.							
Speaking – Conversation skills with a sense of stress, intonation, pronunciation and meaning – seeking information – expressing feelings, Reading – speed reading – reading passages with time limit - skimming; Writing – Minutes of meeting – writing summary after reading articles from journals; Grammar - Cause and effect expressions; Vocabulary – Words used as nouns and verbs without any change in spelling.												
UNIT IV					12							
Listening – V Speaking – ro note taking – r Reading – Rea job – cover let reported speec	Viewing model interviews (face-to- face, telephonic and viewing model interviews (face-to- face, telephonic and viewed le play practice in telephone skills – listening and responding bassing on messages, Role play and mock interview for graspinating the profile of the company concerned – scanning; Writing ter – resume preparation – vision, mission and goals of the care h Vocabulary – Idioms and their meanings.	ideo , ask ing i ng – ndid	cor ing nter Apj ate;	feren ques view plyin Gra	ncing); tions – skills; g for a nmar -							
					14							

Listening – Viewing a model group discussion ; **Speaking** – Group discussion skills – initiating the discussion – exchanging suggestions and proposals – expressing dissent/ agreement – assertiveness in expressing opinions- mind mapping technique; **Reading** – Note making skills – making notes from books, or any form of written materials – Intensive reading; **Writing** – Types of reports / Project report – report format – recommendations/ suggestions - **Grammar** – Use of Clauses ; Vocabulary – Collocation; fixed and semi-fixed expressions.

									TOT	AL:	60	PER	IODS				
OU'	ГСС	MES	:	On co	omplet	ion of	this co	ourse,	studer	nts wil	l be ab	ole to					
1		Read to	echnic	al text	s and v	write a	rea sp	ecific	texts e	ffortle	ssly.						
2		Listen	and co	mpreh	nend le	ctures	and ta	ılks in	n their area of specialization successfully.								
3		Speak a	approp	oriately	y and e	effectiv	vely in	varie	ed formal and informal contexts.								
4		Write r	reports	and w	vinning	g job a	pplica	tions.									
COURSE ARTICULATION MATRIX:																	
	PO1	1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO1 PO1 PO1											PSO	PSO	PSO		
CO1	тт	M	TT	т		TT		м	TT	0	1	2	1	2	3		
(01	H	M	H			H		M	H	M	H			H			
CO2	Н	NI M	Н			Н		M	Н	M	Н			Н			
CO3	H	M	H			H		M	H	M	H			H			
	H W M	Modera		L (igh)		Н		M	Н	M	Η	L		Н			
	777 E		це, п-п С.	iigii)													
			D:									-					
1		Board	d of	editor	s. "Fl	uency	in E	nglish	AC	Course	book	t for	Engin	eering	and		
		Tech	nology	/", Ori	ent BI	acksw	an, Hy	derab	ad: 20	16.							
REF	FER	ENCE	ES:														
1.		Comfo	rt, Jer	ету, е	et al, "S	Speaki	ng Eff	ectivel	y: Dev	velopir	ig spe	aking .	skills f	or Bus	iness		
		Englis	h", Ca	imbria	lge Un	iversit	y Pres	s, Can	nbridg	e, Rep	orint 2	011.					
2	•	Dutt P	P. Kira	nmai d	and Ro	ajeeva	n Geei	tha, "I	Basic	Comm	unicat	tion Sk	cills",	Found	ation		
		Books,	2013														
3		Means	, <i>L</i> . Th	omas	and E	laine	Langl	ois, "E	nglish	& Co	ommur	iicatio	n For	Colle	ges",		
		Cenga	geLea	rning,	, USA,	2007.											
4.		Redsto	on, Ch	ris & (Gillies	Cunn	inghar	n, "Fa	ce2Fa	ce (Pr	e-inter	rmedia	ite stud	dent's	Book		
		& Wor	<i>kbook</i>	:)", Ca	mbrid	ge Un	iversit	y Pres	s, New	v Delh	i: 200.	5.					

	02 ENGINEERING MATHEMATICS II	L	T	P	C								
		3	2	0	4								
OBJECTIVES: To make the student acquire sound knowledge of techniques in solving ordinary													
•	To make the student acquire sound knowledge of techniques differential Equations that model engineering problems.	s in s	olvi	ng o	rdinary								
•	To acquaint the student with the concepts of vector calculus in all engineering disciplines	need	ed fo	or pr	oblems								
•	To develop an understanding of the standard techniques theory so as to enable the student to apply them with confid areas such as heat conduction, elasticity, fluid dynamics and current	of co lence l flov	ompl e, in w the	ex v appl e of o	variable lication electric								
•	To make the student appreciate the purpose of using transfer domain in which it is easier to handle the problem that is being	orms ng in	to c vest	reate igate	a new d.								
UNIT I	T I VECTOR CALCULUS 9+6												
Gradient, o – Vector	Gradient, divergence and curl – Directional derivative – Irrotational and solenoidal vector fields												
– Vector integration – Green's theorem in a plane, Gauss divergence theorem and Stokes'theorem (excluding proofs) – Simple applications involving cubes and rectangular parallelopipeds													
UNIT II	ORDINARY DIFFERENTIAL EOUATIONS				9+6								
Higher or	der linear differential equations with constant coefficients – Me	thod	of	varia	tion of								
parameters	5 – Cauchy's and Legendre's linear equations – Simultaneou	s fi	rst o	order	linear								
equations	equations with constant coefficients.												
UNIT II	I LAPLACE TRANSFORMS				9+6								
Laplace transform – Sufficient condition for existence – Transform of elementary functions – Basic properties – Transforms of derivatives and integrals of functions - Derivatives and integrals of transforms - Transforms of unit step function and impulse functions – Transform of periodic functions. Inverse Laplace transforms -Statement of Convolution theorem – Initial and final value theorems – Solution of linear ODE of second order with constant coefficients using													
integrals o periodic fu final value Laplace tra	f transforms - Transforms of derivatives and integrals of functions f transforms - Transforms of unit step function and impulse functions. Inverse Laplace transforms -Statement of Convolution t theorems – Solution of linear ODE of second order with consta ansformation techniques.	s - 1 ions heore nt co	Deriv – T em –	func vativ ransf - Init cient	tions – es and form of tial and s using								
integrals o periodic fu final value Laplace tra	f transforms of derivatives and integrals of functions f transforms - Transforms of unit step function and impulse functions inctions. Inverse Laplace transforms -Statement of Convolution t theorems – Solution of linear ODE of second order with consta ansformation techniques.	s - 1 ions heore nt co	Deriv – T em –	func vativ ransf - Init cient	tions – es and form of tial and s using 9+6								
integrals o periodic fu final value Laplace tra UNIT IV Functions equations analytic fu mapping:	perfect – Transforms of derivatives and integrals of functions f transforms - Transforms of unit step function and impulse function inctions. Inverse Laplace transforms -Statement of Convolution t e theorems – Solution of linear ODE of second order with consta ansformation techniques. ANALYTIC FUNCTIONS of a complex variable – Analytic functions: Necessary conditions and sufficient conditions (excluding proofs) – Harmonic and orth unction – Harmonic conjugate – Construction of analytic fun- w = z+k, kz, 1/z, z ² , e ^z and bilinear transformation.	s - 1 ions heore nt co s - C ogor ction	Deriy – Tr em – peffic auch nal p is –	func vativ ransf - Init cient ny-Ri rope Cor	tions – es and form of tial and s using 9+6 iemann rties of nformal								
integrals o periodic fu final value Laplace tra UNIT IV Functions equations analytic fu mapping: V	perfect – Transforms of derivatives and integrals of functions f transforms - Transforms of unit step function and impulse function inctions. Inverse Laplace transforms -Statement of Convolution t is theorems – Solution of linear ODE of second order with consta ansformation techniques. ANALYTIC FUNCTIONS of a complex variable – Analytic functions: Necessary conditions and sufficient conditions (excluding proofs) – Harmonic and orth unction – Harmonic conjugate – Construction of analytic fun- tion $w = z+k$, kz, 1/z, z ² , e ^z and bilinear transformation. COMPLEX INTEGRATION	s - 1 ions heore nt co s - C ogor ction	Deriv – Tr em – peffic auch auch nal p	runc vativ ransf - Init cient iy-Ri rope Cor	tions – es and form of ial and s using 9+6 iemann rties of nformal 9+6								
integrals o periodic fu final value Laplace tra UNIT IV Functions equations analytic fu mapping: UNIT V Complex i integral fo Cauchy's t circle and	perfectives – Transforms of derivatives and integrals of functions f transforms - Transforms of unit step function and impulse function inctions. Inverse Laplace transforms -Statement of Convolution t is theorems – Solution of linear ODE of second order with constant ansformation techniques. ANALYTIC FUNCTIONS of a complex variable – Analytic functions: Necessary conditions and sufficient conditions (excluding proofs) – Harmonic and orthunction – Harmonic conjugate – Construction of analytic fun- tion function – Harmonic conjugate – Construction of analytic fun- unction – Harmonic conjugate – Construction of analytic fun- tion – Statement and applications of Cauchy's integral theorem Integration – Statement and applications of Cauchy's integral theorem residue theorem – Evaluation of real definite integrals as contour semi-circle (excluding poles on the real axis).	s - I ions heored nt co ogor ction ction	Deriv — T em – T eeffic auch nal p s – n an s – rals	runc vativ ransf - Init cient ny-Ri rope Cor d Ca Resi arou	tions – es and form of ial and s using 9+6 iemann rties of nformal 9+6 suchy's idues – nd unit								
integrals o periodic fu final value Laplace tra UNIT IV Functions equations analytic fu mapping: V UNIT V Complex i integral fo Cauchy's n circle and	perfection of transforms of derivatives and integrals of functions f transforms - Transforms of unit step function and impulse function inctions. Inverse Laplace transforms -Statement of Convolution t is theorems – Solution of linear ODE of second order with constant ansformation techniques. ANALYTIC FUNCTIONS of a complex variable – Analytic functions: Necessary conditions and sufficient conditions (excluding proofs) – Harmonic and orthunction – Harmonic conjugate – Construction of analytic fun- tion tegration – Statement and applications of Cauchy's integral theorem mula – Taylor's and Laurent's series expansions – Singular presidue theorem – Evaluation of real definite integrals as contour is semi-circle (excluding poles on the real axis). TOTAL (L: 45 + T: 30	s - I ions heore nt co ogor ction ction eorer point integ): 7:	Deriv - T - T - T - T - T - T - T - T	tunc vativ ransf - Init cient rope Cor d Ca Resi arou	tions – es and form of ial and s using 9+6 iemann rties of nformal 9+6 suchy's idues – nd unit ODS								
integrals o periodic fu final value Laplace tra UNIT IV Functions equations analytic fu mapping: UNIT V Complex i integral fo Cauchy's f circle and	perfus– Transforms of derivatives and integrals of functionsf transforms - Transforms of unit step function and impulse functioninctions. Inverse Laplace transforms -Statement of Convolution tinctions. Inverse Laplace transforms -Statement of Convolution tinction techniques.7ANALYTIC FUNCTIONSof a complex variable – Analytic functions: Necessary conditionsand sufficient conditions (excluding proofs) – Harmonic and orthunction – Harmonic conjugate – Construction of analytic function. $W = z+k, kz, 1/z, z^2, e^z$ and bilinear transformation.COMPLEX INTEGRATIONIntegration – Statement and applications of Cauchy's integral theorem – Evaluation of real definite integrals as contour isresidue theorem – Evaluation of real definite integrals as contour issemi-circle (excluding poles on the real axis).TOTAL (L: 45 + T: 30MES:On completion of this course, students will be able to	s - 1 ions heored nt co ogor ction eorer point integ): 7:	Deriv - T - T - T - T 	tunc vativ ransf - Init cient rope Cor d Ca Resi arou	tions – es and form of ial and s using 9+6 iemann rties of nformal 9+6 nuchy's idues – nd unit ODS								
integrals o periodic fu final value Laplace tra UNIT IV Functions equations analytic fu mapping: V UNIT V Complex i integral fo Cauchy's r circle and OUTCO 1.	pertures – Transforms of derivatives and integrals of functionsf transforms - Transforms of unit step function and impulse functionsinctions. Inverse Laplace transforms -Statement of Convolution te theorems – Solution of linear ODE of second order with constaansformation techniques.VANALYTIC FUNCTIONSof a complex variable – Analytic functions: Necessary conditionsand sufficient conditions (excluding proofs) – Harmonic and orthunction – Harmonic conjugate – Construction of analytic function. $w = z+k, kz, 1/z, z^2, e^z$ and bilinear transformation.COMPLEX INTEGRATIONntegration – Statement and applications of Cauchy's integral theorem – Evaluation of real definite integrals as contour issemi-circle (excluding poles on the real axis).TOTAL (L: 45 + T: 30MES:On completion of this course, students will be able tSolve problems on vector calculus and to apply them in any othersubjects.	<pre>s - l ions heore nt co ogor ction ction eorer point integ): 7: o r fiel</pre>	Deriv - T - T - T - T - T - T - T - T	tunc vativ ransf - Init cient rope Cor d Ca Resi arou ERI	tions – es and form of ial and s using 9+6 iemann rties of nformal 9+6 suchy's idues – nd unit ODS related								
integrals o periodic fu final value Laplace tra UNIT IV Functions equations analytic fu mapping: V UNIT V Complex i integral fo Cauchy's f circle and 0UTCO 1.	perfus– Transforms of derivatives and integrals of functionsf transforms - Transforms of unit step function and impulse functioninctions. Inverse Laplace transforms -Statement of Convolution tansformation techniques.7ANALYTIC FUNCTIONSof a complex variable – Analytic functions: Necessary conditionsand sufficient conditions (excluding proofs) – Harmonic and orthunction – Harmonic conjugate – Construction of analytic function. V COMPLEX INTEGRATIONIntegration – Statement and applications of Cauchy's integral theorem – Evaluation of real definite integrals as contour issemi-circle (excluding poles on the real axis).TOTAL (L: 45 + T: 30)MES:On completion of this course, students will be able tSolve problems on vector calculus and to apply them in any othesubjects.Solve differential equations and will be exposed to their application	s - l ions heored nt co ogor ction ction eorer point integ): 7: o f fiel	Deriv - T - T - T - T - T - T - T - T	Func vativ ransf - Init cient rope Cor d Ca Resi arou ERI eory	tions – es and form of ial and s using 9+6 iemann rties of nformal 9+6 nuchy's idues – nd unit ODS related s fields								

		finding solutions of differential and integral equations and other engineering																
		applica	tions.															
4	•	Solve of	compl	ex inte	egratio	n prol	blems	and w	vill be	expos	sed to	vario	is app	licatio	ons of			
		analyti	c func	tions a	nd cor	nforma	al map	ping ii	ı engii	neerin	g.							
COU	JRSE	ARTI	CULA	TION	N MA'	FRIX		1		1	1							
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO			
601		TT	3.6		T	3.6				0	1	2	1	2	3			
001		H	M		L	M							M	H				
CO2		H	H M L M H															
CO3	H	Μ	M L M H															
CO4	Η	M M L M M H																
(L- Low, M- Moderate, H-High)																		
TEX	TEXT BOOKS:																	
1		Bali	N.Pa	and M	anish	Goyal	, "A T	ext be	ook of	Engin	neerin	g Mat	hemati	cs" , E	lighth			
1	•	Editi	on, La	xmi P	ublicat	tions P	vt Ltd	., 2011	l.									
2	,	Grew	val. B.S	S, "Hi	gher E	nginee	ering N	Aather	natics	", 41 st	Editio	n, Kha	anna P	Publications,				
2	••	Delh	i, 2011	•														
REF	FER	ENCE	ES:															
1.		Dass,	Н.К.,	and E	r. Raj	nish V	^r erma,	"Hig	her Ei	nginee	ring N	Iathen	natics	", S. C	Chand			
		Privat	e Ltd.,	2011.														
2	•	Glyn.	James	"Adı	vancea	l Mode	ern Er	igineer	ring M	lathen	natics	", 3rd	Editic	on, Pe	arson			
		Educa	tion, 2	2012.				-	-									
3		Peter	<i>V. O</i>	'Neil,	"Adv	ranced	Engi	neerin	g Ma	thema	tics",	7th	Edition	ı, Cer	igage			
		learni	ng, 20	12.			0		-									
4	•	Rama	na B.I	V, "H	igher	Engin	eering	Math	ematio	cs", T	'ata M	lcGrav	v Hill	Publi	shing			
		Comp	any, N	ew De		008.	0								5			
L		20mp	,, 11		, _0													

17ZBS203	ENGINEERING PHYSICS II	L	Т	Р	С							
	Common to MECH, EEE, ECE & CSE	3	0	0	3							
OBJECTIV	ES:		L									
•	To describe the properties of conducting material.											
•	To understand the theory of semi-conducting materials devices	and	bas	ic e	lectron							
•	To get the knowledge about properties of magnetic materials.											
•	To understand the polarization process in dielectric materials and their temperature, frequency dependence and the causes of dielectric breakdown.											
• To acquire some exciting prospects of modern engineering materials.												
UNIT I	ELECTRICAL PROPERTIES OF MATERIALS				9							
Conductors – Classification of conducting materials – Ohm's Law – Electrical conductivity – Relation between current density, drift velocity and mobility – Classical free electron theory of metals – Expression for electrical conductivity of a metal – Thermal conductivity – Expression for thermal conductivity of a metal – Wiedemann – Franz law – success and failuresof classical free electron theory –Fermi distribution function – Effect of temperature on Fermi Function –												
UNIT II	SEMICONDUCTOR PHYSICS				9							
Introduction -	- Intrinsic semiconductor – Energy band diagram – D	irec	t ai	nd i	ndirect							
semiconductor semiconductor Determination	 S – Carrier concentration in an intrinsic semiconductor (derived as a concentration in n-type & p-type semiconduct of Hall coefficient (Theory) – Application of Hall effect. 	vati ors	on) –Ha	– Ex Ill et	xtrinsic ffect –							
UNIT III	MAGNETIC AND SUPERCONDUCTING				9							
	MATERIALS				-							
Magnetization – Magnetic flux – Magnetic flux density – Intensity of Magnetisation – Magnetic field intensity – magnetic permeability – magenetic susceptibility – Magnetic field and induction – Types of magnetic materials – Microscopic classification of magnetic materials – Ferromagnetism : origin and exchange interaction – Domain theory- Hard and soft magnetic materials – Magnetic storage devices – Hard disk. Superconductivity: Properties – Type I and Type II Superconductors- BCS theory of Superconductivity.												
UNIT IV	DIELECTRIC PROPERTIES OF MATERIALS				9							
General prope Electronic, ior dependence of Dielectric brea - Ferroelectric UNIT V	rties of Dielectric materials – Electrical susceptibility – Dia nic, orientational and space-charge polarization – Frequency f Polarisation– Internal field – Claussius – Mosotti relati kdown – Dielectric loses – Use of dielectric materials (capacit ity and its applications. MODERN ENGINEERING MATERIALS	ielec y ar on or a	etric nd T (de nd tr	cons emp rivat ransf	stant – erature ion) – former) 9							
Metallic glasse	es – Properties of metallic glasses – Shape memory allovs (S	MA) –]	Prepa	ration.							
properties and applications of Shape memory alloys (SMA) – Preparation, alloys – Characteristics, properties of Ni-Ti alloy, application, advantages and disadvantages of												

shape memory alloys (SMA) - Nanomaterials - Different forms of nanomaterials - Preparations
–Pulsed Laser Deposition, Chemical Vapour Deposition and Applications.

Γ

									TOT	TAL :	45	PER	IODS)	
OU	<u>ГС(</u>	<u>DMES</u>	•	On co	omple	ion of	this c	ourse,	studer	nts wil	l be ab	ole to			
1		Explor	e kno	wledge	e abou	it free	electi	ron th	eory a	und de	nsity	of stat	tes of	condu	ıcting
		materia	als wit	h relat	ed law	'S.									
2		Compa	are in	trinsic	and	extrin	sic se	micon	ductor	r, den	isity c	of elec	ctrons	and	holes
		calcula	tion, I	Hall ef	fect w	ith app	olicatio	ons and	l basic	e semio	conduc	ctor de	vices.		
3	•	Learn	comp	arative	ely ab	out di	fferent	t type	of m	agneti	c mat	erials,	super	rcondu	icting
		materia	als and	l apply	in the	eir eng	ineerir	ng field	d.						
4	•	Attain the functional knowledge of different types of dielectric materials, polariz													ation
_		mechanism and their qualitative engineering applications.													
5		Know more about preparation of modern engineering materials and mate												erials	
COL	suitability for their own engineering field.														
ιοι	RSI PO1						007	000	DOO	DO1	DO1	DO1	DCO	DCO	DSO
	PUI	POZ	P05	P04	P05	P00	P07	PUo	P09	0	1	2	1	2	3
CO1		Μ	Н		М		М				-	-	L	M	
CO2	L	М	Н		М		Μ						L	М	
CO3	L		Μ	Н			Μ						Μ	Μ	
CO4	L		Μ	Η			Μ						Μ	Μ	
CO5		М	М	Η			Μ						Μ	М	
(L- Lo	ow, M	- Modera	ate, H-H	ligh)											
TEX	KT I	BOOK	S:												
1		P. Man	i, "Eng	gineeri	ing ph	ysics",	Dhan	am Pu	blicati	ions, 2	011.				
2		G. Sent	thil ku	mar, "	Engine	eering	physic	es", Vl	RB Pu	blishe	rs.				
3		A.Mari	kani, ʻ	'Engin	eering	g Physi	cs" PI	HI Lea	rning	Pvt., I	ndia 2	009.			
4		Wahen	M. A.	, "Soli	id state	e physi	cs: St	ructure	e and p	proper	ties of	mater	ials", I	Varosa	L
		publish	ing ho	use, 2	009.										
REF	FER	ENCE	ES:												
1.		<i>R. K.</i>	Gaur a	ind S.	C. Gu	pta, "I	Engine	ering	physic	s", Dl	hanpat	t Rai p	ublica	tions,	New
		Delhi	2003.												
2	•	M. N.	Avad	hanulı	ı and	<i>P</i> . <i>G</i> .	Kshir	sagar,	"A te	ext boo	ok of e	engine	ering	physic	s"S.
		Chan	$\frac{d}{d}$ and $\frac{d}{d}$	<u>Compe</u>	iny,Lto	<i>t, New</i>	Delhi	2005.		D 11 -	0.01				
3	•	K. Ra	jagopi	ul, "En	igineei	ring P	hysics	<u>, PHI</u>	, New	Delhi	, 201.				
4.		M. Ar	umuga	ım, "E	ngine	ering p	physics	5", Ant	uradha	a publi	ishers.				

MEASUREMENT ENGINEERING Image: State of the	17S	ES2	04]	BASI	C EL	ECT	RICA	AL, E	LEC	TRO	NICS	5 AN	DI	L T	P	С	
OBJECTIVES: 3 0 0 • Understand the fundamentals of electronic circuit constructions. • To learn the fundamental laws, theorems of electrical circuits and also to analyse them • Study the basic principles of electrical machines and their performance • To study the different energy sources, protective devices and their field applications • To understand the principles and operation of measuring instruments and transducers UNIT I ELECTRICAL CIRCUITS 9 Basic elements of Electric circuits including sources, Resistor, Inductor and Capacitor - Mesh and Nodal analysis of simple circuits - Basics of AC circuits - Power and Power factor - Introduction to three phase circuits and its connections (Star and Delta). 9 UNIT II ELECTRONIC DEVICES AND CIRCUITS 9 Principle, classification, characteristics and Applications of DC Generators, Motors, Transformers, Three phase induction machines, Alternators, Synchronous Motors. 9 UNIT III ELECTRONIC DEVICES AND CIRCUITS 9 Reviewofnumbersystems, binarycodes, errordetection and correctioncodes (Parity and Hamming code) - Combinationallogic-representationoflogicfunctions-SOPandPOS 9 Reviewofnumbersystems, binarycodes, errordetection and correctioncodes (Parity and Hamming code) - Combinationallogic-representationoflogicfunctions-SOPandPOS 9 OUNIT IV				Ι	MEA	SURI	EME	NT I	ENGI	NEE	RIN	с Т					
OBJECTIVES: Image: Construction of the second of th													3	0	0	3	
Inderstand the fundamentals of electronic circuit constructions. To learn the fundamental laws, theorems of electrical circuits and also to analyse them Study the basic principles of electrical machines and their performance Study the basic principles of electrical machines and their performance To study the different energy sources, protective devices and their field applications To understand the principles and operation of measuring instruments and transducers UNIT I ELECTRICAL CIRCUITS 9 Basic elements of Electric circuits including sources, Resistor, Inductor and Capacitor - Mesh and Nodal analysis of simple circuits - Basics of AC circuits - Power and Power factor - Introduction to three phase circuits and its connections (Star and Delta). UNIT II ELECTRICAL MACHINES 9 Principle, classification, characteristics and Applications of DC Generators, Motors, Transformers, Three phase induction machines, Alternators, Synchronous Motors. UNIT II ELECTRONIC DEVICES AND CIRCUITS 9 Introduction- PN Junction diode and its characteristics - Zener diode - BJT Configurations and characteristics - Introduction to Op Amps - Amplifers, Oscillators, Differentiators - Integrators - Multivibrator using 555 Timer IC, Voltage Regulator IC using LM 723 and LM 317. UNIT IV DIGITAL ELECTRONICS 9 Reviewofnumbersystems, binarycodes, errordetection and correctioncodes(Parity andHamming code). Combinationallogic-representationoflogicfunctions-SOPandPOS forms, K-maprepresentations - simplificationandimplementationofcombinationallogic-multiplexers, encoders and decoders- codeconverters, adders, and subtractors. UNIT V MEASUREMENTS 9 Contracteristics of measurement-Introduction to Digital Measurement - Instrument Transducers: Resistive, Inductive, Capacitive, Thermoelectric, piezoelectric, piezoelectric, piezoelectric, piezoelectric, piezoelectric, piezoelectric, piezoelectric, machines and transformers. UNIT V MEASUREMENTS 9 COTCOMES: On completion of this course, students will be ab	OB.	IEC	TIVE	S:													
To learn the fundamental laws, theorems of electrical circuits and also to analyse them Study the basic principles of electrical machines and their performance To study the different energy sources, protective devices and their field applications To understand the principles and operation of measuring instruments and transducers UNIT I ELECTRICAL CIRCUITS Basic elements of Electric circuits including sources, Resistor, Inductor and Capacitor - Mesh and Nodal analysis of simple circuits and its connections (Star and Delta). UNIT II ELECTRICAL MACHINES Principle, classification, characteristics and Applications of DC Generators, Motors, Transformers, Three phase induction machines, Alternators, Synchronous Motors. UNIT II ELECTRONIC DEVICES AND CIRCUITS 9 Introduction- PN Junction diode and its characteristics - Zener diode - BJT Configurations and characteristics - FET Configurations and characteristics - Introduction to Op Amps -Amplifiers, Oscillators, Differentiators - Integrators - Multivibrator using 555 Timer IC, Voltage Regulator IC using LM 723 and LM 317. UNIT IV DIGITAL ELECTRONICS 9 Reviewofnumbersystems,binarycodes,errordetection andcorrectioncodes(Parity andHamming code)- Combinationallogic-representationofogicfunctions-SOPandPOS forms,K-maprepresentationallogic - representationofogicfunctions-SOPandPOS ONTT IV MEASUREMENTS 9 Characteristics of measurement-Errors in measurement - Moving coil and moving		•	, U	Inderst	and th	e fund	ament	als of	electro	onic ci	rcuit c	onstru	ctions.				
Image: study the basic principles of electrical machines and their performance Study the basic principles of electrical machines and their performance To study the different energy sources, protective devices and their field applications To understand the principles and operation of measuring instruments and transducers UNIT I ELECTRICAL CIRCUITS Basic elements of Electric circuits including sources, Resistor, Inductor and Capacitor - Mesh and Nodal analysis of simple circuits and its connections (Star and Delta). UNIT II ELECTRICAL MACHINES Principle, classification, characteristics and Applications of DC Generators, Motors, Transformers, Three phase induction machines, Alternators, Synchronous Motors. UNIT II ELECTRIONIC DEVICES AND CIRCUITS 9 Introduction- PN Junction diode and its characteristics - Introduction to Op Amps -Amplifiers, Oscillators, Differentiators - Integrators - Multivibrator using 555 Timer IC, Voltage Regulator IC using LM 723 and LM 317. 9 Reviewofnumbersystems, binarycodes, errordetection and correctioncodes(Parity andHamming code) - Combinationallogic-representationoflogicfunctions-SOPandPOS forms,K-maprepresentations - simplificationandimplementationofcombinationallogic-multiplexers, Energy meter, Watt meter and Multimeter - Three phase Power measurement - Instrument Transformers (CT and PT) - Introduction to Digital Measurements - Oscilloscope(CRO and DSO) - Transducers: Resistive, Inductive, Capacitive, Thermoelectric, piezoelectric, photoelectric, Hall effect, RTD, Strain gauge, LVDT and LDR. UNIT IV		•	Γ	'o learr	n the fu	undam	ental l	aws, tl	neoren	ns of e	lectric	al circ	uits ar	d also	o to an	alyse	
To study the different energy sources, protective devices and their field applications To understand the principles and operation of measuring instruments and transducers INIT I ELECTRICAL CIRCUITS 9 Basic elements of Electric circuits including sources, Resistor, Inductor and Capacitor - Mesh and Nodal analysis of simple circuits and its connections (Star and Delta). UNIT II ELECTRICAL MACHINES 9 Principle, classification, characteristics and Applications of DC Generators, Motors, Transformers, Three phase induction machines, Alternators, Synchronous Motors. UNIT II ELECTRIONIC DEVICES AND CIRCUITS 9 Introduction- PN Junction diode and its characteristics - Zener diode - BJT Configurations and characteristics - FET Configuration and characteristics - Zener diode - BJT Configurations and characteristics - FET Configuration and characteristics - Introduction to Op Amps - Amplifiers, Oscillators, Differentiators - Integrators - Multivibrator using 555 Timer IC, Voltage Regulator IC using LM 723 and LM 317. UNIT IV DIGITAL ELECTRONICS 9 Reviewofnumbersystems, binarycodes, errordetection and correctioncodes(Parity andHamming code)- Combinationallogic-representationoflogicfunctions-SOPandPOS forms,K- maprepresentations - simplificationandimplementationofcombinationallogic-multiplexers, demultiplexers, encoders and decoders- codeconverters, adders, and subtractors. UNIT V MEASUREMENTS 9 Characteristics of measurement-Errors in measurement - Moving coil and moving iron meters, Energy meter, Watt meter and Multimeter - Three phase Power measurement - Instrument Transducers: Resistive, Inductive, Capacitive, Thermoelectric, piezoelectric, photoelectric, Hall effect, RTD, Strain gauge, LVDT and LDR. 1 Analyze electric circuits. Understand be concepts of various analog and digital electronic devices. Have the knowledge to measurement and metering for electric circuits. Understand				nem tudv tł	ne basi	c prin	ciples	of elec	trical	machi	nes an	d their	. perfo	manc	e		
• To study the interference of gy sources, protective devices and their netd applications • To understand the principles and operation of measuring instruments and transducers UNIT I ELECTRICAL CIRCUITS 9 Basic elements of Electric circuits including sources, Resistor, Inductor and Capacitor - Mesh and Nodal analysis of simple circuits - Basics of AC circuits - Power and Power factor - Introduction to three phase circuits and its connections (Star and Delta). 9 Principle, classification, characteristics and Applications of DC Generators, Motors, Transformers, Three phase induction machines, Alternators, Synchronous Motors. 9 UNIT II ELECTRONIC DEVICES AND CIRCUITS 9 Introduction- PN Junction diode and its characteristics - Zener diode - BJT Configurations and characteristics - FET Configuration and characteristics - Introduction to Op Amps - Amplifiers, Oscillators, Differentiators - Integrators - Multivibrator using 555 Timer IC, Voltage Regulator IC using LM 723 and LM 317. 9 Reviewofnumbersystems,biaraycodes,errordetection andcorrectioncodes(Parity andHamming code) - Combinationallogic-representationoflogicfunctions-SOPandPOS forms,K-maprepresentations - simplificationandimplementationofcombinationallogic-multiplexers, demultiplexers, encoders and decoders- codeconverters,adders, and subtractors. 9 Characteristics of measurement-Errors in measurement - Moving coil and moving iron meters, Energy meter, Watt meter and Multimeter - Three phase Power measurement - Instrument Transformers (CT and PT) - Introduction to Digital Measurements - Oscilloscopes(CRO and DSO) -		•	~ ד	'o studi	v tho d	lifforor	ot on or		roog	arotoot	ivo do	vicos	and the	ir fio			
To understand the principles and operation of measuring instruments and transducers UNIT I ELECTRICAL CIRCUITS 9 Basic elements of Electric circuits including sources, Resistor, Inductor and Capacitor - Mesh and Nodal analysis of simple circuits - Basics of AC circuits - Power and Power factor - Introduction to three phase circuits and its connections (Star and Delta). 9 UNIT II ELECTRICAL MACHINES 9 Principle, classification, characteristics and Applications of DC Generators, Motors, Transformers, Three phase induction machines, Alternators, Synchronous Motors. 9 UNIT III ELECTRONIC DEVICES AND CIRCUITS 9 Introduction- PN Junction diode and its characteristics - Alternators, Synchronous Motors. 9 Oxill Arastan LM 317. 9 UNIT IV DIGITAL ELECTRONICS 9 Reviewofnumbersystems, binarycodes, errordetection and correctioncodes (Parity andHamming code)- Combinationallogic-representationoflogic functions-SOPandPOS 9 Characteristics ossing measurement - Moving coil and moving iron meters, demultiplexers, encoders and decoders- codeconverters, adders, and subtractors. 9 Characteristics On completion of this course, students will be able to 9 Characteristics, Hall effect, RTD, Strain gauge, LVDT and LDR. 9 9 <th< td=""><td></td><td>•</td><td>a</td><td>pplicat</td><td>ions</td><td>interer</td><td>it ener</td><td>gy sot</td><td>nces, j</td><td>protect</td><th>live de</th><th>vices</th><th></th><td></td><th>lu</th><td></td></th<>		•	a	pplicat	ions	interer	it ener	gy sot	nces, j	protect	live de	vices			lu		
UNIT I ELECTRICAL CIRCUITS 9 Basic elements of Electric circuits including sources, Resistor, Inductor and Capacitor - Mesh and Nodal analysis of simple circuits - Basics of AC circuits - Power and Power factor - Introduction to three phase circuits and its connections (Star and Delta). UNIT II ELECTRICAL MACHINES 9 Principle, classification, characteristics and Applications of DC Generators, Motors, Transformers, Three phase induction machines, Alternators, Synchronous Motors. 9 INIT III ELECTRONIC DEVICES AND CIRCUITS 9 Introduction- PN Junction diode and its characteristics - Zener diode - BJT Configurations and characteristics - Introduction to OP Amps - Amplifiers, Oscillators, Differentiators - Integrators - Multivibrator using 555 Timer IC, Voltage Regulator IC using LM 723 and LM 317. 9 UNIT IV DIGITAL ELECTRONICS 9 Reviewofnumbersystems, binarycodes, errordetection and correctioncodes (Parity and Hamming code)- Combinationallogic-representationoffogicfunctions-SOP and POS forms, K-maprepresentations UNIT V MEASUREMENTS 9 Characteristics of measurement-Errors in measurement - Moving coil and moving iron meters, Energy meter, Watt meter and Multimeter - Three phase Power measurement - Instrument Transformers (CT and PT) - Introduction to Digital Measurements – Oscilloscopes(CR0 and DSO) - Transducers: Resistive, Inductive, Capacitive, Thermoelectric, piezoelectric, photoelectric, Hall effect, RTD, Strain gauge, LVDT and LDR. 1		•	T T	'o unde ansdue	erstand cers	l the p	rincipl	es and	opera	tion of	fmeas	uring	instrun	nents	and		
Basic elements of Electric circuits including sources, Resistor, Inductor and Capacitor - Mesh and Nodal analysis of simple circuits - Basics of AC circuits - Power and Power factor - Introduction to three phase circuits and its connections (Star and Delta). UNIT II ELECTRICAL MACHINES 9 Principle, classification, characteristics and Applications of DC Generators, Motors, Transformers, Three phase induction machines, Alternators, Synchronous Motors. 9 UNIT III ELECTRONIC DEVICES AND CIRCUITS 9 Introduction- PN Junction diode and its characteristics - Zener diode - BJT Configurations and characteristics - Introduction to Op Amps -Amplifiers, Oscillators, Differentiators - Integrators - Multivibrator using 555 Timer IC, Voltage Regulator IC using LM 723 and LM 317. 9 UNIT IV DIGITAL ELECTRONICS 9 Reviewofnumbersystems, binarycodes, errordetection 9 Reviewofnumbersystems, and decoders- codeconverters, adders, and subtractors. 9 UNIT V MEASUREMENTS 9 Characteristics of measurement-Errors in measurement - Moving coil and moving iron meters, Energy meter, Watt meter and Multimeter - Three phase Power measurement - Instrument Transformers (CT and PT) - Introduction to Digital Measurements - Oscilloscopes(CRO and DSO) - Transducers: Resistive, Inductive, Capacitive, Thermoelectric, piezoelectric, photoelectric, Hall effect, RTD, Strain gauge, LVDT and LDR. 1 Q On completion of this course, students will be able to 1	UNI	T I ELECTRICAL CIRCUITS 9													9		
and Nodal analysis of simple circuits - Basics of AC circuits - Power and Power factor - Introduction to three phase circuits and its connections (Star and Delta). 9 VNIT II ELECTRICAL MACHINES 9 Principle, classification, characteristics and Applications of DC Generators, Motors, Transformers, Three phase induction machines, Alternators, Synchronous Motors. 9 UNIT III ELECTRONIC DEVICES AND CIRCUITS 9 Introduction- PN Junction diode and its characteristics - Zener diode - BJT Configurations and characteristics - FET Configuration and characteristics - Introduction to Op Amps - Amplifiers, Oscillators, Differentiators - Integrators - Multivibrator using 555 Timer IC, Voltage Regulator IC using LM 723 and LM 317. 9 Reviewofnumbersystems, binarycodes, errordetection and correctioncodes(Parity andHamming code)- Sominationallogic-representationoflogicfunctions-SOPandPOS forms, K-maprepresentations - simplificationandimplementationofcombinationallogic	Basic elements of Electric circuits including sources, Resistor, Inductor and Capacitor - Mesh																
Introduction to three phase circuits and its connections (Star and Delta). 9 VNIT II ELECTRICAL MACHINES 9 Principle, classification, characteristics and Applications of DC Generators, Motors, Transformers, Three phase induction machines, Alternators, Synchronous Motors. 9 UNIT III ELECTRONIC DEVICES AND CIRCUITS 9 Introduction PN Junction diode and its characteristics - Zener diode - BJT Configurations and characteristics - FET Configuration and characteristics - Introduction to Op Amps - Amplifiers, Oscillators, Differentiators - Integrators - Multivibrator using 555 Timer IC, Voltage Regulator IC using LM 723 and LM 317. 9 Reviewofnumbersystems, binarycodes, errordetection and correctioncodes (Parity andHamming code) 0 Combinationallogic -representationoflogicfunctions-SOP and POS forms, K-maprepresentations – simplificationandimplementationofcombinationallogic	and Nodal analysis of simple circuits - Basics of AC circuits - Power and Power factor -																
ONT IT Image of the principle, classification, characteristics and Applications of DC Generators, Motors, Transformers, Three phase induction machines, Alternators, Synchronous Motors. UNIT III ELECTRONIC DEVICES AND CIRCUITS 9 Introduction- PN Junction diode and its characteristics - Zener diode - BJT Configurations and characteristics - FET Configuration and characteristics - Introduction to Op Amps - Amplifiers, Oscillators, Differentiators - Integrators - Multivibrator using 555 Timer IC, Voltage Regulator IC using LM 723 and LM 317. 9 Reviewofnumbersystems, binarycodes, errordetection and correctioncodes (Parity andHamming code)- Combinationallogic-representationoflogicfunctions-SOPandPOS forms, K-maprepresentations – simplificationandimplementationofcombinationallogic–multiplexers, demultiplexers , encoders and decoders- codeconverters, adders, and subtractors. 9 Characteristics of measurement-Errors in measurement - Moving coil and moving iron meters, Energy meter, Watt meter and Multimeter - Three phase Power measurement - Instrument Transformers (CT and PT) - Introduction to Digital Measurements – Oscilloscopes(CR0 and DSO) - Transducers: Resistive, Inductive, Capacitive, Thermoelectric, piezoelectric, photoelectric, Hall effect, RTD, Strain gauge, LVDT and LDR. 1. Analyze electric circuits. 2. 2. Understand operation of electric machines and transformers. 3. Understand the concepts of various analog and digital electronic devices. 4. 4. Have the knowledge to measurement and metering for electric circuits. 2. 1. 2. 1. <td colspan="13">Introduction to three phase circuits and its connections (Star and Delta).</td>	Introduction to three phase circuits and its connections (Star and Delta).																
Principle, Claracteristics Alternators, Synchronous Motors. Transformers, Three phase induction machines, Alternators, Synchronous Motors. 9 Introduction- PN Junction diode and its characteristics - Zener diode - BJT Configurations and characteristics - FET Configuration and characteristics - Introduction to Op Amps - Amplifiers, Oscillators, Differentiators - Integrators - Multivibrator using 555 Timer IC, Voltage Regulator IC using LM 723 and LM 317. 9 Reviewofnumbersystems, binarycodes, errordetection andcorrectioncodes(Parity andHamming code)- Combinationallogic-representationoflogicfunctions-SOPandPOS forms, K-maprepresentations – simplificationandimplementationofcombinationallogic-multiplexers, demultiplexers, encoders and decoders- codeconverters, adders, and subtractors. 9 Characteristics of measurement-Errors in measurement - Moving coil and moving iron meters, Energy meter, Watt meter and Multimeter - Three phase Power measurement - Instrument Transformers (CT and PT) - Introduction to Digital Measurements – Oscilloscopes(CRO and DSO) - Transducers: Resistive, Inductive, Capacitive, Thermoelectric, piezoelectric, photoelectric, Hall effect, RTD, Strain gauge, LVDT and LDR. TOTAL : 45 PERIODS OUTCOMES: On completion of this course, students will be able to 1. 1. Analyze electric circuits. 2. 2. Understand operation of electric machines and transformers. 3. 3. Understand the concepts of various analog and digital electronic devices. 4. 4. <t< td=""><td>Dring</td><td></td><td></td><td>LLEC</td><td></td><td>CAL</td><td>VIAC</td><td>HIN.</td><td><u>ES</u></td><td>licatio</td><th>na of</th><th>F DC</th><th>Gan</th><td>arotor</td><th></th><td>9 otors</td></t<>	Dring			LLEC		CAL	VIAC	HIN.	<u>ES</u>	licatio	na of	F DC	Gan	arotor		9 otors	
UNIT III ELECTRONIC DEVICES AND CIRCUITS 9 Introduction- PN Junction diode and its characteristics - Zener diode - BJT Configurations and characteristics - FET Configuration and characteristics - Introduction to Op Amps - Amplifiers, Oscillators, Differentiators - Integrators - Multivibrator using 555 Timer IC, Voltage Regulator IC using LM 723 and LM 317. 9 UNIT IV DIGITAL ELECTRONICS 9 Reviewofnumbersystems, binarycodes, errordetection andcorrectioncodes(Parity andHamming code)- combinationallogic-representationoflogicfunctions-SOPandPOS forms, K-maprepresentations - simplificationandimplementationofcombinationallogic-multiplexers, encoders and decoders- codeconverters, adders, and subtractors. 9 Characteristics of measurement-Errors in measurement - Moving coil and moving iron meters, Energy meter, Watt meter and Multimeter - Three phase Power measurement - Instrument Transformers (CT and PT) - Introduction to Digital Measurements - Oscilloscopes(CRO and DSO) - Transducers: Resistive, Inductive, Capacitive, Thermoelectric, piezoelectric, photoelectric, Hall effect, RTD, Strain gauge, LVDT and LDR. TOTAL : 45 PERIODS OUTCOMES: On completion of this course, students will be able to Inderstand operation of electric machines and transformers. 3. Understand operation of electric machines and transformers. Inderstand operation of electric machines and transformers. 3 4. Have the knowledge to measurement and metering for electric circuits. 9 0 1 2	Principle, classification, characteristics and Applications of DC Generators, Motors, Transformers, Three phase induction machines, Alternators, Synchronous Motors.																
Introduction- PN Junction diode and its characteristics - Zener diode - BJT Configurations and characteristics - FET Configuration and characteristics - Introduction to Op Amps - Amplifiers, Oscillators, Differentiators - Integrators - Multivibrator using 555 Timer IC, Voltage Regulator IC using LM 723 and LM 317. UNIT V DIGITAL ELECTRONICS 9 Reviewofnumbersystems,binarycodes,errordetection andcorrectioncodes(Parity andHamming code) Combinationallogic-representationoflogicfunctions-SOPandPOS forms,K- maprepresentations - simplificationandimplementationofcombinationallogic-multiplexers, and subtractors. UNIT V MEASUREMENTS 9 Characteristics of measurement-Errors in measurement - Moving coil and moving iron meters, Energy meter, Watt meter and Multimeter - Three phase Power measurement - Instrument Transformers (CT and PT) - Introduction to Digital Measurements – Oscilloscopes(CRO and DSO) TOTAL : 45 PERIODS OUTCOMES: On completion of this course, students will be able to Introductive, Capacitive, Thermoelectric, piezoelectric, photoelectric, Hall effect, RTD, Strain gauge, LVDT and LDR. INT V INT V INT V OUTECOMES: 0 On completion of this course, students will be able to Introductive, Capacitive, Thermoelectric, piezoelectric, photoelectric circuits. <td colspan="13">UNIT IIIELECTRONIC DEVICES AND CIRCUITS9</td>	UNIT IIIELECTRONIC DEVICES AND CIRCUITS9																
characteristics - FET Configuration and characteristics - Introduction to Op Amps -Amplifiers, Oscillators, Differentiators - Integrators - Multivibrator using 555 Timer IC, Voltage Regulator IC using LM 723 and LM 317. UNIT IV DIGITAL ELECTRONICS 9 Reviewofnumbersystems,binarycodes,errordetection and correctioncodes(Parity and Hamming code) - Combinationallogic-representationoflogicfunctions-SOPandPOS forms,K-maprepresentations – simplificationandimplementationofcombinationallogic-multiplexers, demultiplexers, encoders and decoders- codeconverters,adders, and subtractors. 9 ONNT V MEASUREMENTS 9 Combinationallogic-representationoflogicfunctions-SOPandPOS forms,K-maprepresentations OUNIT V MEASUREMENTS 9 Combinationallogic-representationoflogicfunctions-SOPandPOS forms,K-maprepresentations output: ymathematic and decoders- codeconverters,adders, and subtractors. UNIT V MEASUREMENTS 9 Characteristics of measurement-Errors in measurement - Moving coil and moving iron meters, Energy meter, Watt meter and Multimeter - Three phase Power measurement - Instrument Transformers (CT and PT) - Introduction to Digital Measurements – Oscilloscopes(CRO and DSO) - Transducers: Resistive, Inductive, Capacitive, Thermoelectric, piezoelectric, photoelectric transformers.	Introduction- PN Junction diode and its characteristics - Zener diode - BJT Configurations and																
Oscillators, Differentiators - Integrators - Multivibrator using 555 Timer IC, Voltage Regulator IC using LM 723 and LM 317. UNIT IV DIGITAL ELECTRONICS 9 Reviewofnumbersystems, binarycodes, errordetection and correctioncodes(Parity and Hamming code)- Combinationallogic-representationoflogicfunctions-SOPandPOS forms, K-maprepresentations - simplificationandimplementationofcombinationallogic-multiplexers, demultiplexers, encoders and decoders- codeconverters, adders, and subtractors. 9 Combinationallogic-representation of combinationallogic-multiplexers, demultiplexers, encoders and decoders- codeconverters, adders, and subtractors. 9 ONINT V MEASUREMENTS 9 Characteristics of measurement-Errors in measurement - Moving coil and moving iron meters, Energy meter, Watt meter and Multimeter - Three phase Power measurement - Instrument Transformers (CT and PT) - Introduction to Digital Measurements – Oscilloscopes(CRO and DSO) - Transducers: Review of this course, students will be able to INTENTION COMPETION of this course, students will be able to INTENTION OF this course, students will be able to INTENTION OF this course, students will be able to INTENTION OF this course, students will be able to INTENTI	characteristics - FET Configuration and characteristics - Introduction to Op Amps - Amplifiers,												ifiers,				
Initial classifier 9 Initial classifier 9 Reviewofnumbersystems, binarycodes, errordetection and correction codes (Parity and Hamming code) - Combinationallogic - representation of logic functions-SOP and POS forms, K-maprepresentations - simplification and implementation of combinationallogic - multiplexers, demultiplexers encoders and decoders- code converters, adders, and subtractors. 9 UNIT V MEASUREMENTS 9 Characteristics of measurement-Errors in measurement - Moving coil and moving iron meters, Energy meter, Watt meter and Multimeter - Three phase Power measurement - Instrument Transformers (CT and PT) - Introduction to Digital Measurements - Oscilloscopes(CRO and DSO) - Transducers: Resistive, Inductive, Capacitive, Thermoelectric, piezoelectric, photoelectric, Hall effect, RTD, Strain gauge, LVDT and LDR. TOTAL : 45 PERIODS OUTCOMES: On completion of this course, students will be able to Interventer 1. Analyze electric circuits. Inderstand operation of electric machines and transformers. Inderstand the concepts of various analog and digital electronic devices. Interventer 2. Understand the concepts of various analog and digital electronic circuits. Interventer Interventer 3. Understand the concepts of various analog and digital electronic devices. Interventer Interventer Interventer 3. Understand the concepts of various analog and digital electronic devices. Inter	Oscil	lator	s, Diffe	erentia	tors - 1	Integra	tors -	Multi	vibrato	or usin	lg 555	Time	r IC, V	'oltag	e Reg	ulator	
Reviewofnumbersystems, binarycodes, errordetection and correction codes (Parity and Hamming code)- Combinationallogic-representationoflogic functions-SOP and POS forms, K-maprepresentations – simplification and implementation of combinationallogic-multiplexers, demultiplexers, encoders and decoders- codeconverters, adders, and subtractors. 9 UNIT V MEASUREMENTS 9 On combinational decoders- codeconverters, adders, and subtractors. UNIT V MEASUREMENTS 9 Characteristics of measurement-Errors in measurement - Moving coil and moving iron meters, Energy meter, Watt meter and Multimeter - Three phase Power measurement - Instrument Transformers (CT and PT) - Introduction to Digital Measurements – Oscilloscopes(CRO and DSO) - Transducers: Resistive, Inductive, Capacitive, Thermoelectric, piezoelectric, photoelectric, Hall effect, RTD, Strain gauge, LVDT and LDR. TOTAL : 45 PERIODS OUTCOMES: On completion of this course, students will be able to 1. Analyze electric circuits. 2. Understand operation of electric machines and transformers. 3. Understand the concepts of various analog and digital electronic devices. 4. Have the knowledge to measurement and metering for electric circuits. Analyze PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO1	IC us	T T	V I			<u>, .</u> ELE(TRO	ONIC	S							9	
code)- Combinationallogic-representationoflogicfunctions-SOPandPOS forms,K- maprepresentations – simplificationandimplementationofcombinationallogic-multiplexers, demultiplexers ,encoders and decoders- codeconverters,adders, and subtractors. 9 On measurement-Errors in measurement - Moving coil and moving iron meters, Energy meter, Watt meter and Multimeter - Three phase Power measurement - Instrument Transformers (CT and PT) - Introduction to Digital Measurements – Oscilloscopes(CRO and DSO) - Transducers: Resistive, Inductive, Capacitive, Thermoelectric, piezoelectric, photoelectric, Hall effect, RTD, Strain gauge, LVDT and LDR. TOTAL : 45 PERIODS OUTCOMES: 0 On completion of this course, students will be able to 1. Analyze electric circuits. 2. Understand operation of electric machines and transformers. 3. Understand the concepts of various analog and digital electronic devices. 4. Have the knowledge to measurement and metering for electric circuits. COURSE ARTICULATION MATRIX: P01 P02 P03 P04 P05 P08 P09 P01 P01 P50 P50 3 C01 L M H <	Revi	ewof	number	rsysten	ns hins	arvcod	es erro	ordetec	tion	andco	rrectio	ncode	s(Pari	v ar	ndHan	mino	
maprepresentations - simplificationandimplementationofcombinationallogic-multiplexers, demultiplexers, encoders and decoders- codeconverters, adders, and subtractors. UNIT V MEASUREMENTS 9 Characteristics of measurement-Errors in measurement - Moving coil and moving iron meters, Energy meter, Watt meter and Multimeter - Three phase Power measurement - Instrument Transformers (CT and PT) - Introduction to Digital Measurements - Oscilloscopes(CRO and DSO) - Transducers: Resistive, Inductive, Capacitive, Thermoelectric, piezoelectric, photoelectric, Hall effect, RTD, Strain gauge, LVDT and LDR. TOTAL : 45 PERIODS OUTCOMES: On completion of this course, students will be able to 1. Analyze electric circuits. 2. Understand operation of electric machines and transformers. 3. Understand the concepts of various analog and digital electronic devices. 4. 4. Have the knowledge to measurement and metering for electric circuits. COURSE ARTICULATION MATRIX: P01 P01 P01 P01 P50	code)-	C	ombina	ational	logic-1	represe	entatio	noflog	ticfunc	tions-	SOPar	ndPOS	.j ul	for	ms,K-	
demultiplexers ,encoders and decoders- codeconverters, adders, and subtractors. VINT V MEASUREMENTS 9 Characteristics of measurement-Errors in measurement - Moving coil and moving iron meters, Energy meter, Watt meter and Multimeter - Three phase Power measurement - Instrument Transformers (CT and PT) - Introduction to Digital Measurements – Oscilloscopes(CRO and DSO) - Transducers: Resistive, Inductive, Capacitive, Thermoelectric, piezoelectric, photoelectric, Hall effect, RTD, Strain gauge, LVDT and LDR. TOTAL : 45 PERIODS OUTCOMES: On completion of this course, students will be able to 1. Analyze electric circuits. 2. On derstand operation of electric machines and transformers. 3. Understand the concepts of various analog and digital electronic devices. 4. 4. Have the knowledge to measurement and metering for electric circuits. 2. P01 P01 P01 P01 P50 P50<	mapr	epre	sentatic	ns -	– si	implifi	cation	andim	pleme	ntatior	nofcon	nbinati	ionallo	gic–n	nultipl	exers,	
UNIT V MEASUREMENTS 9 Characteristics of measurement-Errors in measurement - Moving coil and moving iron meters, Energy meter, Watt meter and Multimeter - Three phase Power measurement - Instrument Transformers (CT and PT) - Introduction to Digital Measurements – Oscilloscopes(CRO and DSO) - Transducers: Resistive, Inductive, Capacitive, Thermoelectric, piezoelectric, photoelectric, Hall effect, RTD, Strain gauge, LVDT and LDR. TOTAL : 45 PERIODS OUTCOMES: On completion of this course, students will be able to On completion of this course, students will be able to 1. Analyze electric circuits. On completion of this course, students will be able to 3. Understand operation of electric machines and transformers. Image: State Stat	demu	ıltipl	exers,e	ncode	rs and	decod	ers- co	odecon	verter	s,adde	rs, and	l subtr	actors.				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	UNI	TV	V I	JEAS	SURE	EMEN	NTS									9	
Energy meter, Watt meter and Multimeter - Three phase Power measurement - Instrument Transformers (CT and PT) - Introduction to Digital Measurements – Oscilloscopes(CRO and DSO) - Transducers: Resistive, Inductive, Capacitive, Thermoelectric, piezoelectric, photoelectric, Hall effect, RTD, Strain gauge, LVDT and LDR. TOTAL : 45 PERIODS OUTCOMES: On completion of this course, students will be able to 1. Analyze electric circuits. On completion of this course, students will be able to I 3. Understand operation of electric machines and transformers. I Inderstand the concepts of various analog and digital electronic devices. 4. Have the knowledge to measurement and metering for electric circuits. I Voltant in the concept of th	Char	acter	istics o	f meas	ureme	ent-Err	ors in	measu	iremei	nt - M	oving	coil a	nd mo	ving i	ron n	neters,	
Transformers (CT and P1) - Introduction to Digital Measurements – Oscilloscopes(CRO and DSO)DSO) - Transducers: Resistive, Inductive, Capacitive, Thermoelectric, piezoelectric, photoelectric, Hall effect, RTD, Strain gauge, LVDT and LDR.TOTAL : 45 PERIODSOUTCOMES:On completion of this course, students will be able to1.Analyze electric circuits.2.Understand operation of electric machines and transformers.3.Understand the concepts of various analog and digital electronic devices.4.Have the knowledge to measurement and metering for electric circuits.COURSE ARTICULATION MATRIX:PO1PO2PO3PO4PO5PO6PO7PO8PO9PO1PO1PO1PS0PS0PS0PS0Co1LMMHIIIIIIIIIIIII	Energ	gy n	neter, V	Vatt m	neter a	ind M	ultime	ter - '	Three	phase	Powe	er mea	asurem	ent -	Instr	ument	
DSO) - Hansducers. Resistive, Inductive, Capacitive, Thermoelectric, plezoelectric,	Trans	storn	ners (C	I and	PT) -	Intro	luction	n to D	ngital	Measu	iremei	its – (JSC111C	scope	S(CR	J and	
TOTAL : 45 PERIODS OUTCOMES: On completion of this course, students will be able to 1. Analyze electric circuits. 2. Understand operation of electric machines and transformers. 3. 3. Understand the concepts of various analog and digital electronic devices. 4. Have the knowledge to measurement and metering for electric circuits. OURSE ARTICULATION MATRIX: P01 P02 P03 P04 P05 P06 P07 P08 P09 P01 P01 P50 P50 P50 C01 L M H I <td< td=""><td>photo</td><td>) - Delec</td><td>tric Ha</td><td>ll effe</td><td>o. Ke nt RT</td><td>SISUVE</td><td>, πα ain σa</td><td>nge I</td><td>, Ca VDT :</td><td>and LT</td><th>)R</th><th>nermo</th><th>elecul</th><td><i>c</i>, p</td><th>ezoei</th><td>ecuric,</td></td<>	photo) - Delec	tric Ha	ll effe	o. Ke nt RT	SISUVE	, πα ain σa	nge I	, Ca VDT :	and LT)R	nermo	elecul	<i>c</i> , p	ezoei	ecuric,	
TOTAL: 45 PERIODSOUTCOMES:On completion of this course, students will be able to1.Analyze electric circuits.Analyze electric circuits.2.Understand operation of electric machines and transformers.3.Understand the concepts of various analog and digital electronic devices.4.Have the knowledge to measurement and meatring for electric circuits.COURSE ARTICULATION MARTINAPO6PO8PO9PO1 <th c<="" td=""><td>photo</td><td></td><td></td><td></td><td>, 111</td><td>D, 50</td><td>um Su</td><td>uge, 1</td><td></td><td></td><th></th><th></th><th></th><td></td><th></th><td></td></th>	<td>photo</td> <td></td> <td></td> <td></td> <td>, 111</td> <td>D, 50</td> <td>um Su</td> <td>uge, 1</td> <td></td> <td></td> <th></th> <th></th> <th></th> <td></td> <th></th> <td></td>	photo				, 111	D , 50	um Su	uge, 1								
OUTCOMES: On completion of this course, students will be able to 1. Analyze electric circuits. 2. Understand operation of electric machines and transformers. 3. Understand the concepts of various analog and digital electronic devices. 4. Have the knowledge to measurement and metering for electric circuits. VOURSE ARTICULATION MATRIX: P01 P02 P03 P04 P05 P06 P07 P08 P09 P01 P01 PS0 PS0 PS0 C01 L M M H Image: State in the completion of this course, students will be able to interview.	0.77									TOT	<u>'AL :</u>	45	PERI	ODS			
Analyze electric circuits.2. Understand operation of electric machines and transformers.3. Understand the concepts of various analog and digital electronic devices.4. Have the knowledge to measurement and metring for electric circuits.PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO1 PO1 PO1 PO1 PS0 PS0 PS0PO1 1 2 1 2 3COULSE HEILE IN TENESCOULSE HEILE IN TENESPO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO1 PO1 PO1 PO1 PS0 PS0 PS0COULSE HEILE IN TENESCOULSE HEILE IN TENESPO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO1 PO1 PO1 PO1 PO1 PS0 PS0 PS0CO1 LM MM MHIN PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO1 PO1 PO1 PO1 PS0 PS0 PS0COULSE PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO1	OU'	rce	<u>DMES</u>	:	On co	omplet	ion of	this co	ourse,	studen	its will	be ab	le to				
2. Onderstand operation of electric machines and transformers. 3. Understand the concepts of various analog and digital electronic devices. 4. Have the knowledge to measurement and metering for electric circuits. COURSE ARTICULATION MATRIX: P01 P02 P03 P04 P05 P06 P07 P08 P09 P01 P01 PS0 PS0 PS0 C01 L M H Image: State in the imag	1	•	Analyz	ze elec	tric cir	cuits.	1 4 1	1.	•••••		<u> </u>						
4. Have the knowledge to measurement and metering for electric circuits. PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO1 PO1 PO1 PO1 PS0 PS0 PS0 C01 L M H I I I L M L M M	2		Under	stand t	peration be con	Cents (of vari	inach	alog a	nd dia	isiorm	ers.	ic devi	CAS			
PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO1 PO1 PO1 PS0 PS0 PS0 PS0 C01 L M M H Image: Constraint of the constraint of	4	•	Have t	he kno	wledg	e to m	easure	ement :	and me	eterino	for el	ectric	circuit	s			
PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO1 PO1 PO1 PS0 PS0 <td>COU</td> <td>JRSI</td> <td></td> <td></td> <td>TIO</td> <td>N MA'</td> <td>FRIX:</td> <td></td> <td></td> <td></td> <th>, 101 01</th> <th></th> <th>-ii vult</th> <td></td> <th></th> <td></td>	COU	JRSI			TIO	N MA'	FRIX :				, 101 01		-ii vult				
Image: Cond total condition Image: Condition <		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO	
		T									0	1	2	1	2	3	
CO2 M M I I H H I I I M	CO1	L M	M	IVI	T	н Н	н								M	+	
CO3	Μ	Μ	Μ	L	Η	Η								L			
--------	--------	--------	------------	--------	---------	--------	----------	--------	---------	---------	---------	---------	----------	--------	-------		
CO4	Μ	М	Μ		Н									L			
(L- Lo	ow, M-	Modera	nte, H-H	ligh)													
TEX	KT B	OOK	S :														
1		R.Mı	uthukr	ishnar	,S.Sal	ivahar	an,	"Ba	sic	Elect	trical	an	d I	Electr	onics		
		Engi	neerin	g",Tat	a McC	braw H	lill, 20	15.									
2	•	B.L.	Thera	ja and	A.K.	Theraj	a,"A 7	Text B	ook of	f Elect	rical 7	Techno	ology",	Vol-	I and		
		II, S.	Chan	d & C	o. 201-	4.											
REF	FERI	ENCE	ES:														
1.		Allan	S Mor	is, "M	easure	ment d	and Ins	strume	ntatior	n Prine	ciples'	', Else	veir, 20	006.			
2	•	Rajen	dra F	Prasad	l, "Fun	damen	tals c	of Ele	ctrical	l engi	ineerin	ng", P	Prentice	Ha	ll of		
		India,	2006.														
3	•	S.K.B.	hattac	harya,	"Basi	c Elec	trical	and E	Electro	nics I	Engine	ering"	', Pear	son l	ndia,		
		2011.		-							-	-					

17ZBS205	ENVIRONMENTAL SCIENCE AND	L	Τ	P	С
	ENGINEERING				
		3	0	0	3
OBJECTIV	ES:	I	I		1
•	To finding and implementing scientific, technological, econor	mic	and	polit	ical
	solutions to environmental problems.				
•	To study the interrelationship between living organism and en	nviro	onme	ent.	
•	To appreciate the importance of environment by assessing its	imp	act o	on th	e
	human world; envision the surrounding environment, its func	tion	s and	d its v	value.
•	To study the dynamic processes and understand the features of	of th	e ear	th's	
	interior and surface.			11	
•	To study the integrated themes and biodiversity, natural resou	irces	, po	llutic	on
					10
UNITI	ENVIKUNMENI, ECUSISIEMS AND DIODIVEDSITY				12
Definition se	DIODIVERSIII	, Dl	woic	ol h	ozorda
Definition, see	ords in the environment sequence of an ecological indication	5, PI	19810 1 f		azarus,
BIOIOgical IIaz	ands in the environment – concept of an ecosystem – structure roducers, consumers and decomposers Oxygen cycle and Nitr	alle			apergy
flow in the ec	converses ecological succession processes. Introduction	type	r Cyc	ne –	teristic
features struct	$\frac{1}{1000}$ $\frac{1}{1000}$ $\frac{1}{1000}$ $\frac{1}{1000}$ $\frac{1}{10000000000000000000000000000000000$	coss	s, ci vsten	n(c)	desert
ecosystem (d) aquatic ecosystems (nonds streams lakes rivers of	ean	sten s e	stuar	ies) –
Introduction	to biodiversity definition: genetic species and ecosystem	n d	iver	sitv	- bio
geographical d	classification of India – value of biodiversity: consumptive i	n e ise.	proc	luctiv	ve use.
social, ethical,	aesthetic and option values – Biodiversity at global, nationa	l an	d lo	cal lo	evels –
India as a meg	a-diversity nation – hot-spots of biodiversity – threats to biodi	vers	ity: 1	habit	at loss,
poaching of v	vildlife, man-wildlife conflicts – endangered and endemic	spe	cies	of I	ndia –
conservation of	of biodiversity: In-situ and ex-situ conservation of biodivers	sity.	Fie	ld st	udy of
common plant	s, insects, birds.				
Field study of	simple ecosystems – pond, river, hill slopes, etc.				
UNIT II	ENVIRONMENTAL POLLUTION & HEALTH	[9
	RISK				
Definition – c	auses, effects and control measures of: (a) Air pollution:	Caus	ses,	effec	ets and
prevention (b)	Water pollution: Causes, effects and prevention (c) Soil pollut	ion:	Cau	ises,	effects
and prevention	n - (d) Marine pollution (e) Noise pollution (f) Thermal po	olluti	on	(g) N	Juclear
hazards-role o	f an individual in prevention of pollution – soil waste manager	nent	: cai	ises,	effects
and control me	asures of municipal solid wastes – pollution case studies	. 1			
Field study of	local polluted site – Urban / Rural / Industrial / Agricultur	al.			0
UNII III Forest resource	INATURAL RESOURCES	tin	bor	ovtr	9 Proction
mining dams	and their effects on forests and tribal people – Water t	uni Perol	ince	er II	se and
overutilization	of surface and ground water dams-benefits and problems -	. Mi	nera	5. U 1 res	ources.
Use and expl	bitation environmental effects of extracting and using mine	ral	reso	urce	s case
studies – Food	resources: World food problems, changes caused by agricultu	ire a	nd o	verg	razing
effects of mod	ern agriculture, fertilizer-pesticide problems, water logging s	alin	itv. (case	studies
- Energy reso	urces: Growing energy needs, renewable and non-renewable	ener	gy s	sourc	es, use
of alternate en	ergy sources. Energy Conversion processes – Land resources:	Lan	d as	a re	source.
land degradati	on, man induced landslides, soil erosion and desertification –	ole	of a	n ind	ividual

in con	serv	ation of	of natur	al reso	ources	– Equ	itable	use of	resour	rces fo	or sust	ainable	e lifest	yles.	' L :II
	<u>sιua</u> Γ ττ	y 01 10 7			IOCUIII SCI IF				n asse	$\frac{1S - \Gamma}{200}$		orest /	grass		<u>nm</u> 0
	1 1 1						υΠ					I			9
From	unsu	istaina	ible to	sustai	inable	devel	opmen	u = u	rban p	brobler	ns rei	ated to	o ener	'gy – ' Hilitoti	water
people	evall	on, rai	II wale	and c	oncern	, water	sileu i	lianag lies –	role	-1est		ent alle	ntal c	onnaniz	ull ul vation
enviro	onme	ntal et	hics. I		and no	ossihle	soluti	ons -	12 Pr	incinle	s of a	reen c	hemis	frv- ni	Iclear
accide	ents	and h	olocau	st. ca	se stu	dies.	– was	teland	recla	matio	1 - c	onsum	erism	and	waste
produ	cts –	envir	onmen	t prod	uction	act –	Air ac	t – W	ater a	ct – W	Vildlife	e prote	ction a	act – F	Forest
conser	rvati	on act	t – Tł	ne Bio	omedic	al W	aste (1	Manag	gement	t and	Hand	ling)	Rules;	1998	and
amenc	dmer	nts- scl	heme c	of labe	ling of	f envii	onme	ntally	friend	ly pro	ducts	(Ecom	ark) -	centra	l and
state p	pollu	tion co	ontrol ł	oards	- disas	ter ma	nagen	nent: f	loods,	earthe	quake,	cyclo	ne and	l lands	lides.
Public	c awa	areness	5.												
UNI	ГV	H	HUM	AN P	OPU	LAT	ION A	AND	THE	2					9
		I	ENVI	RON	MEN	T									
Popul	ation	grow	th, vari	ation	among	g natio	ns – po	opulati	ion exp	plosio	n – far	nily w	elfare	progra	mme
– envi	ironr	nent a	nd hun	han he	alth –	humaı	n right	s – val	lue edu	ucation	n – HI	V / A	DS –	wome	n and
child	welf	are –E	nviron	menta	l impa	ict ana	lysis (EIA)	– GIS	-remo	te sen	sing-ro	ole of	inform	ation
techno	ology	in en	vironm	ent an	d hum	an hea	alth – (Case s	tudies.	•					
									TOT	TAL :	45	PER	ODS		
OUT	CO	MES	:	On co	omplet	tion of	this co	ourse,	studer	nts wil	l be at	ole to			
1.		Apply	the ki	nowled	lge of	envir	onmer	ntal sc	ience	in ide	ntifyi	ng, to	formu	ilate a	nd to
		solve t	he env	ironm	ental p	orobler	ns.								
2.		Public	aware	ness of	f envir	onme	ntal fu	nction	is at i	nfant s	stage.				
3.		Ignora	nce an	d inco	mplete	e know	ledge	has le	d to m	isconc	eptior	ns.			
4.		Devel	op and	impro	ve in s	standa	d of li	ving h	as led	to ser	ious e	nviron	menta	l disas	ters.
5.		Acqui	reknow	ledge	about	enviro	onmen	tal law	<u>'S.</u>	•		0.175		•	
6.		Acqui	re in-de	epth k	nowle	dge or	popu	lation	explos	sion ar	nd role	e of IT	in en	vironm	nental
COU	DOE	manag	gement.												
	RSE PO1							DOQ	DOO	PO1	DO1	DO1	DSO.	DSO.	BSO
	FUI	FU2	FUS	F04	FUJ	FOU	F07	FU0	103	0	1	2	1	2	3
CO1								Н	М	L			Н		L
CO2								Н	М	L	М		Μ		L
CO3								Н	Μ	L	М		М		L
CO4								Н	Μ	L	Μ		Μ		М
CO5								Η	Μ	L	Μ		Μ		Μ
CO6								Η	Μ	L			Μ		
(L-Lov	w, M-	Moder	ate, H-H	ligh)											
TEX	T B	<u>OOK</u>	S:												
1.		Gilb editi	ert M.N on, Pea	Master arson H	s, 'Inti Educat	roduct ion, 20	ion to)04.	Enviro	onmen	tal En	gineer	ing an	d Scie	nce', 2	nd
2.		Benn	ny Jose	ph, 'E	nviror	menta	l Scier	nce an	d Engi	ineerir	ng', Ta	ata Mc	Graw-	Hill, N	Jew
		Delh	i, 2006	5.							-				
REF	ERI	ENCI	ES:												
1.		<i>R.K.</i> 2	Trivedi	, "Har	ıdbool	k of En	viron	nental	Laws,	, Rules	s, Guid	lelines	, Com	plianc	es
		andSt	andard	ls", Ve	ol. I ar	ıd II, E	Enviro	Medic	l.						

2.	Cunningham, W.P. Cooper, T.H. Gorhani, "Environmental Encyclopedia", Jaico
	Publ., House, Mumbai, 2001.
3.	Dharmendra S. Sengar, "Environmental law", Prentice hall of India pvt ltd, New
	Delhi,2007.
4.	Rajagopalan, R, "Environmental Studies-From Crisis to Cure", Oxford University
	Press 2005.

17S	ES2	06	STR	UCTI	URE	D PR	OGR	AMN	AINC	G USI	ING (C I	L T	P		С
												3	0	0		3
OB.	IEC	TIVE	S:													
	•	Т	'o learr	ı vario	us pro	blem s	solving	g meth	ods an	d cons	structs	•				
	•	Т	'o get i	ntrodu	ced to	Struct	tured I	Program	mming	g unsir	ng C L	angua	ge.			
	•	Т	'o learr	about	t vario	us Lib	rary F	unctio	ns and	Conto	ol state	ements	in C	•		
	•	L	earn to	use a	rrays,	strings	s, func	tions,	pointe	rs,						
	•	В	e Exp	osed to	struc	tures,	unions	and F	iles in	C.						
UNI	ΤΙ	E	BASI	CS OI	F PR	OBL	EM S	OLV	ING	AND) C					9
Com Algo Exec Code Varia Relat and H	ipute rithm utior - C ibles iona Expre	r Progr n - P n, Debu Progra - Decl l &Log ession, (rocedu gging, am Stru aration ical Oj <u>Condit</u>	ig Lan Iral Pr Testin Icture- Oper perator ional H	rogram ng - 6 - Cha ators rs, C Expres	s - P nming C Pro uracter – Ar omma sion, H	roblen (Moc gram] Set- rithmet Opera Precede	n Solv lular a Develo Keywo tic Op ator, B ence a	ing M and Si opmen ords- erators fit Wis nd Ord	ethods tructur t Envi Data 7 s, Incr se Ope ler of 1	s - F ral)- fronme Fypes ement erators, Evalua	Progr ent, W and S , Decr , Assigntion.	am riting zes emei gnme	Dev Comj g Por - Co nt Op nt O	pelo pila tab onst pera	ping ttion, ble C cants, ttors, ators
UN			<u>IBR</u>	ARY	FUN	CTIC	DNS A	AND	CON	TRC		~ ~ ~	<u> </u>	<u> </u>		8
Func Swite Goto	tions tions ch C State	- Prep ase, Lc ement.	s – Da process poping:	ta Inpl sor Di Whi	rective	Outputes - B	ranchi le, Foi	ing: If	sted C	ar, Put se Sta Control	tement	t, Nes	Brea	f Sta k, C	ets, iter ont	Puts nent, inue,
UN		imonsi		YDA	String		NGS	10	Dimon	nional	Arro		rrost	of	Str	9
Mult	idim	ensiona	l Arrav	VIIIII) V: Initi	alizati	on. Ur	nsized	0 – Arrav	Initial	izatior	n. Vari	able L	engt	ı Arr	ou avs	mgs, 5.
UN	TI	V F	UNC	TIO	NS A	ND P	OIN	FERS	5		,		0			11
Defin	nitior	n of Fi	unctior	1 – I	Prototy	pes -	- Sto	rage C	lasses	– S	cope	Rules	-]	Recu	rsic	on –
Com	mano	l Line A	Argum	ent - P	Pointer	Decla	ration	- Op	eratio	ns On	Pointe	er - P	assin	g Po	inte	ers to
a Fui	1ct10	n – C Eurotic	alling	Functi	on: Ca	all by no Dir	Value,	, Call	by Ad	dress	– Retu	irn Sta	teme	nt –	Pa:	ssing
–Fun	ctior	Pointe	rs - D	vnami	c Mem	norv A	llocati	on	luitiun	nensio	Jilal A	nay –	Alla	y 01 .	FUI	inters
UNI	TV	S S	TRU	CTU	RES.	UNI	ON A	ND]	FILE	S						9
Defin	nitior	ı - Proc	essing	a Stru	cture -	User	Define	ed Dat	а Туре	es- Ty	pedef	, Array	y of S	Struc	ure	e,and
Point	er to	o Struc	ture-	Passing	g Stru	cture	to Fu	nction	s - Se	elf-Re	ferenti	al Str	uctui	es -	N	ested
Struc	tures	s – Unio	on - Ii	ntrodu	ction t	o Files	s-File	Access	s-File (Organi	zation	-File (Opera	tion	5.	
				~					TOT	<u>AL :</u>	45	PERI	OD	S		
OU'	rce	<u>DMES</u>	:	On co	omplet	ion of	this co	ourse,	studen	ts wil	be ab	le to				
1	•	Explor	e the b	asic co	oncept	$\frac{1}{C}$	•									
3	•	Write	progra	progra ms has	anis in sed on	C. arravs										
4		Write	progra	ms usi	ing fur	nctions	s. poin	ters ar	nd con	cepts	like m	emorv	allo	catio	n.	
5		Write	progra	ms usi	ing Str	ucture	es and	Files.		<u> </u>					-	
COU	IRSE	E ARTI	CULA	TION	N MA'	FRIX :										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO 1	PS	0	PSO
CO1	L	M	Н	Μ			L			U	1	۷	H	2		M

CO2		М	Н		М		L						Н		М
CO3		М	Н		М		L						Н		М
CO4		М	Н	М			L						Н		М
CO5		Μ	Η	М			L						Н		М
(L- Lo	ow, M-	Modera	te, H-H	igh)											
TEX	KT B	OOK	S:												
1		Byro	n S. (Gottfri	ed an	d Jiten	dar k	Kumar	Chha	bra, "	Progra	ammin	g witl	n C",	Tata
1	•	McG	raw H	ill Pub	lishing	g Comp	pany,I	New D	elhi, 2	011.					
n	,	Kern	ighan	B. W	. and	Ritchi	ie D.	М., '	"C Pro	ogram	ming	Langu	iage (ANSI	C)",
2	·•	Prent	tice Ha	ll of I	ndia Pi	rivate L	imite	ed, Nev	w Delh	ni, 201	0.				
REF	FERI	ENCE	ES:												
1.		Herbe	rt Sch	iildt,	"С Т	he Cor	mplete	e Refe	erence	", <i>Ta</i>	ta Mc	Graw	Hill	Publi	shing
		Comp	any, N	ew De	lhi, 20	10.									
2	•	Pradi	pDey a	and M	anasG	shosh,	"Prog	gramm	ing in	<i>C</i> ", (Oxford	Unive	ersity .	Press,	New
		Delhi,	2009.				-						-		
3	•	Deitel	l and L)eitel,	"С На	w to P	rogra	m", P	earson	n Educ	ation,	New L	Delhi, 2	2011.	

177FS	207	ENCINEERING PRACTICESI ABORATORY	T	Т	Р	С
	<u>,201</u> G	ROUP A (CIVIL & MECHANICAL)	0	1	⊥ ∡	$\frac{c}{2}$
OBIE		$\frac{1}{10000000000000000000000000000000000$	U	U	-	
ODUL		To train the students in safety handling of tools, equipment and i	mac	hine	ies	
	•	plumbing operation and basic carpentry exercises.	mue	miei	105,	
	•	To impart skill in fabricating simple components using basic ma	chin	ing	proce	sses,
		sheet metal and metal joining process like welding, soldering, et	c.			
	•	To expose them in house wiring, basic electrical circuits and El	lectr	onic		
CIVII	ENCI					15
CIVIL	LING					15
A) PL II	MRIN					
1. S	tudy of	f pipeline joints, its location and functions: valves, taps, coupli	ings.	uni	ons.	
r	educers	and elbows in household fittings.	0	,	,	
2. S	tudy of	f pipe connections requirements for pumps and turbines.				
3. F	Preparat	ion of plumbing line sketches for water supply and sewage we	orks			
4. F	Iands-o	n-exercise: Basic pipe connections – Mixed pipe material con	nect	ion	– Pip	e
C C	onnect	ions with different joining components.				
5. L	Demons	tration of plumbing requirements of high-rise buildings.				
B) CAR	PENT	RY USING POWER TOOLS ONLY:				
1. S	tudy of	f the joints in roofs, doors, windows and furniture.				
2. F	Hands-c	on-exercise: To make basic carpentry joints by sawing, planing	g and	l cut	ting.	
MECH	IANI	CALENGINEERINGPRACTICES				15
	VEI DI	NC				
A) V	renarat	ion of arc welding of butt joints lan joints and tee joints				
2. 0	Jas wel	ding practice.				
		61				
B) B	ASIC	MACHINING:				
1. S	simple '	Furning and Facing.				
2. L	Drilling	Practice.				
\mathbf{C}) S	HEET	METAL WORK.				
1 F	Forming	& Bending				
2. N	Aodel r	naking – Trays, funnels, etc.				
3. L	Differer	it type of joints.				
=						
\mathbf{D}) \mathbf{N}	1ACH]	NE ASSEMBLY PRACTICE:				
1. 5	tudy of	f centrifugal pump.				
2. 5	nuuy 0					
GROU		ELECTRICAL & ELECTRONICS)				
ELEC		ALENGINEERINGPRACTICES				15
				1		
1. F	Residen	tial house wiring using switches, fuse, indicator, lamp and ene	ergy	mete	er.	

2. Fluorescent lamp wiring.

3	. Sta	ir case	wiring	g.											
4	. 4. N	Aeasur	rement	of ele	ctrical	quant	ities –	voltag	ge, cur	rent, p	ower	& pow	ver f	actor i	n
	RL	C circu	lit.												
5	. Me	asuren	nent of	fenerg	y usin	g sing	le pha	se ene	rgy me	eter.					
6	. Me	asuren	nent of	f resist	ance to	o earth	of ele	ectrica	l equip	oment.					
ELI	ECTI	RONI	[CSE]	NGIN	NEER	RING	PRA	CTI	CES						15
1	. Stu	dy of I	Electro	onic co	mpone	ents ar	nd equ	ipmen	ts – Re	esistor	, coloi	ır			
	cod	ingme	asurer	nent o	f AC s	ignal j	parame	eter (P	eak-Pe	eak, rn	ns, Tir	ne per	riod,		
	free	quency	y) using	g CRC).										
2	. Stu	dy of l	ogic g	ates A	ND, C	OR, EC	OR and	I NOT	•						
3	. Gei	neratio	n of C	lock S	ignal.										
4	. Sol	dering	pract	ice –	Comp	onent	s, Dev	vices a	and C	ircuits	– Us	ing g	eneral	pu	rpose
_	PC.	В.			C .	6.11	10	1							
5	. Me	asuren	nent of	ripple	e facto	r of H	alfwav	ve and	Full w	vave re	ctifier	s.			
									тот	'AT .	60	DEDI		1	
				0	1 4				101)	
00	<u>rco</u>	MES	•	On co	omplet	10n of	this c	ourse,	studer	its wil	l be at	ole to			
1	.]	Fabrica	ate cor	npone	nts by	carper	ntry an	id pipe	conne	ections	<u>s inclu</u>	ding p	lumbi	ng woi	rks.
2	. 1	Jse w	elding	equip	oment	to fa	bricate	e pern	nanent	t joint	s by	weldi	ng an	d also	o can
	1	pertori	m bası	c mac	hining	g opera	ations.	•							
3			ate ele	ctrical	and el	lectron	ics cir	cuits.							
COL	IRSE				N MA'	IKIX	:		200	DQ (DQ 4	D (C)	200	
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO1	PO1	PO1	PSO 1	PSO	PSO 2
CO1	М		н		Н		L			0	-	2	H	M	5
CO2	M	М	H	М	H		L						H	M	
CO3	M	M	H	111	H		L						Н	M	
	111	111	**	I	**	I							**	111	1

(L- Low, M- Moderate, H-High)

17SES208 STRUCTURED PROGRAMMING USING C	L	Τ	P	C
LABORATORI	0	0	4	2
OBJECTIVES:	U	v	•	-
Be Familiar with basic Unix/Linux Commads.				
• Learn to create simple C programs using I/O statements.				
Be exposed to Decision making, Looping constructs.				
Enable effective use of arrays strings functions Pointers				
Implement the concepts of structure . Union and file organiza	tion			
I IST OF EXPERIMENTS.		•		
First ten programs must be done in Unix/Linux environment and the oth	er n	rogr	ams n	nav he
done in an IDE in Windows Environment. Modular programming and we	orki	ng w	ith m	ultiple
files must be illustrated in the lab.	onki		1011 111	unipie
Programs illustrating the following statements/concepts:				
1. Basic Unix/Linux commands.				
2. Writing portable C code.				
3. Formatted I/O statements.				
4. Decision Making statements: Simple If, If – else, Switch- case.				
5. Looping Statements: For, While, Do – while.				
6. Single dimensional arrays.				
7. Multi-dimensional array.				
8. Operations on Strings.				
9. Pass by value and pass by address.				
10. Recursion.				
11. Structures and nested structures.				
12. String handling operations using pointers.				
13. Operations on arrays using pointers.				
14. Passing data through command line arguments.				
15. Operations on files.				
TOTAL · 60 PER		DS		
OUTCOMES: On completion of this course, students will be able to		-0		
1. Write C programs, which involve decision making and arrays, function	ons a	and s	tructu	ires.
COURSE ARTICULATION MATRIX:				
PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO1 PO1 PO1	01	PSO	PSO	PSO
CO1 M H H I I I I I I I I I I I I I I I I I	_	1 Н	Z M	3
(L- Low, M- Moderate, H-High)		11	141	
REFERENCES:				
1. Herbert Schildt, "C - The Complete Reference", Tata McGra	aw	Hill	Publ	ishing
Company, New Delhi, 2010.				-

SEMESTER III

DIFFERENTIAL EQUATIONS 3 2 0 4 OBJECTIVES: To introduce Fourier series analysis which is central to many applications in engineering apart from its use in solving boundary value problems. To introduce the effective mathematical tools for the solutions of partial differential equations that model several physical processes and to develop Z transform techniques for discrete time systems. UNIT I PARTIAL DIFFERENTIAL EQUATIONS 9+6 Formation of partial differential equations - Lagrange's linear equation - Linear partial differential equations of second and higher order with constant coefficients of both homogeneous and nonhomogeneous types. UNIT I FOURIER SERIES 9+6 Dirichlet's conditions - General Fourier series - Odd and even functions - Half range sine series - Half range coine series - Complex form of Fourier series - Parseval's identity - Harmonic analysis. UNIT II APPLICATIONS OF PARTIAL DIFFERENTIAL 9+6 EQUATIONS 9+6 Dirichlet's conditions - Quation of theat conduction - Steady state solution of two dimensional equation of heat conduction (excluding insulated edges). 9+6 UNIT III APPLICATIONS OF PARTIAL DIFFERENTIAL 9+6 9+6 Classification of PDE - Method of separation of	17ZBS301	TRANSFORMS AND PARTIAL	L	Т	Р	С
3 2 0 4 OBJECTIVES: • To introduce Fourier series analysis which is central to many applications in engineering apart from its use in solving boundary value problems. • To introduce the effective mathematical tools for the solutions of partial differential equations that model several physical processes and to develop Z transform techniques for discrete time systems. UNIT I PARTIAL DIFFERENTIAL EQUATIONS 9+6 Formation of partial differential equations - Lagrange's linear equation Linear partial differential equations of second and higher order with constant coefficients of both homogeneous and nonhomogeneous types. 9+6 Dirichlet's conditions - General Fourier series - Odd and even functions - Half range sine series - Half range cosine series - Complex form of Fourier series - Parseval's identity - Harmonic analysis. 9+6 UNIT II Applications of partial of ferential equation of variables - Solutions of one dimensional wave equation - One dimensional equation of heat conduction - Steady state solution of two dimensional equation of heat conduction (excluding insulated edges). 9+6 Statement of Fourier integral theorem - Fourier transform pair - Fourier sine and cosine transforms - Properties - Transforms of simple functions - Convolution theorem - Parseval's identity. 9+6 Statement of Fourier integral theorem - Fourier transform pair - Fourier sine and cosine transforms - Properties - Transforms of simple functions - Convolution theorem - Parseval's identity. 9+6		DIFFERENTIAL EQUATIONS				
OBJECTIVES: • To introduce Fourier series analysis which is central to many applications in engineering apart from its use in solving boundary value problems. • To acquaint the student with Fourier transform techniques used in wide variety of situations. • To introduce the effective mathematical tools for the solutions of partial differential equations that model several physical processes and to develop Z transform techniques for discrete time systems. UNIT I PARTIAL DIFFERENTIAL EQUATIONS 9+6 Formation of partial differential equations - Lingrange's lincar equation Linear partial differential equations of second and higher order with constant coefficients of both homogeneous and nonhomogeneous types. 9+6 UNIT II FOURIER SERIES 9+6 Dirichlet's conditions - General Fourier series - Odd and even functions - Half range sine series - Langre sine series - Complex form of Fourier series - Parseval's identity - Harmonic analysis. 9+6 UNIT II APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS 9+6 Classification of PDE - Method of separation of variables - Solutions of one dimensional wave equation of heat conduction (excluding insulated edges). 9+6 UNIT IV FOURIER TRANSFORMS 9+6 Statement of Fourier integral theorem - Fourier transform pair - Fourier sine and cosine transforms - Properties - Transforms of simple functions - Convolution theorem - Parseval's identity. UNIT IV			3	2	0	4
• To introduce Fourier series analysis which is central to many applications in engineering apart from its use in solving boundary value problems. • To acquaint the student with Fourier transform techniques used in wide variety of situations. • To introduce the effective mathematical tools for the solutions of partial differential equations that model several physical processes and to develop Z transform techniques for discrete time systems. UNIT I PARTIAL DIFFERENTIAL EQUATIONS 9+6 Formation of partial differential equations – Singular integrals Solutions of standard types of first order partial differential equations - Lagrange's linear equation Linear partial differential equations of second and higher order with constant coefficients of both homogeneous types. UNIT II FOURIER SERIES 9+6 Dirichlet's conditions – General Fourier series – Odd and even functions – Half range sine series - Half range coins earies – Complex form of Fourier series – Parseval's identity – Harmonic analysis. 9+6 UNIT III APPLICATIONS OF PARTIAL DIFFERENTIAL PHE 9+6 EQUATIONS 9+6 Statement of Fourier integral theorem – Fourier transform pair – Fourier sine and cosine transforms – Properties – Transforms of simple functions – Convolution theorem – Parseval's identity. UNIT IV FOURIER TRANSFORMS AND DIFFERENCE [9+6 Statement of Fourier integral theorem – Fourier transform pair – Fourier sine and cosine transforms – Pro	OBJECTIVE	S:				
engineering apart from its use in solving boundary value problems. • To acquaint the student with Fourier transform techniques used in wide variety of situations. • To introduce the effective mathematical tools for the solutions of partial differential equations that model several physical processes and to develop Z transform techniques for discrete time systems. UNIT I PARTIAL DIFFERENTIAL EQUATIONS 9+6 Formation of partial differential equations - Lagrange's linear equation Linear partial differential equations of second and higher order with constant coefficients of both homogeneous and nonhomogeneous type. 9+6 Dirichlet's conditions - General Fourier series - Odd and even functions - Half range sine series - Half range cosine series - Complex form of Fourier series - Parseval's identity - Harmonic analysis. 9+6 UNIT II APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS 9+6 Classification of PDE - Method of separation of variables - Solutions of one dimensional wave equation - One dimensional equation of heat conduction - Steady state solution of two dimensional equation of heat conduction (excluding insulated edges). 9+6 UNIT IV FOURIER TRANSFORMS 9+6 Statement of Fourier integral theorem - Fourier transform using partial fraction and residues) - Convolution theorem - Formation of difference equations - Solution of difference equations - Solution of difference equations - Solution of difference equations - Convolution theorem - Formation of difference equations - Solution of difference equations - Solution of diffe	•	To introduce Fourier series analysis which is central to m	any a	pplic	cation	s in
 To acquaint the student with Fourier transform techniques used in wide variety of situations. To introduce the effective mathematical tools for the solutions of partial differential equations that model several physical processes and to develop Z transform techniques for discrete time systems. UNIT I PARTIAL DIFFERENTIAL EQUATIONS 9+6 Formation of partial differential equations - Lagrange's linear equation Linear partial differential equations of second and higher order with constant coefficients of both homogeneous and nonhomogeneous types. UNIT I FOURIER SERIES 9+6 Dirichlet's conditions - General Fourier series - Odd and even functions - Half range sine series - Half range cosine series - Complex form of Fourier series - Parseval's identity - Harmonic analysis. UNIT II APPLICATIONS OF PARTIAL DIFFERENTIAL 9+6 EQUATIONS Classification of PDE - Method of separation of variables - Solutions of one dimensional equation of heat conduction - Steady state solution of two dimensional equation of heat conduction - Steady state solution of two dimensional equation of heat conduction - Convolution theorem - Parseval's identity. UNIT IV FOURIER TRANSFORMS Statement of Fourier integral theorem - Fourier transform pair - Fourier sine and cosine transforms - Properties - Transforms of simple functions - Convolution theorem - Parseval's identity. UNIT V Z - TRANSFORMS AND DIFFERENCE EQUATIONS Z - Transforms - Elementary properties - Inverse Z - transform (using partial fraction and residues) - Convolution theorem - Formation of difference equations - Solution of difference equations using Z - transform. UNIT V Z - TRANSFORMS AND DIFFERENCE P+6 EQUATIONS On completion of this course, students will be able to Understand the concepts of Fourier series and its construction when discrete and continuous form i		engineering apart from its use in solving boundary value	probl	ems.		
To introduce the effective mathematical tools for the solutions of partial differential equations that model several physical processes and to develop Z transform techniques for discrete time systems. UNIT I PARTIAL DIFFERENTIAL EQUATIONS 9+6 Formation of partial differential equations - Singular integrals Solutions of standard types of first order partial differential equations - Lagrange's linear equation Linear partial differential equations of second and higher order with constant coefficients of both homogeneous and nonhomogeneous types. UNIT II FOURIER SERIES 9+6 Dirichlet's conditions - General Fourier series - Odd and even functions - Half range sine series - Half range cosine series - Complex form of Fourier series - Parseval's identity - Harmonic analysis. 9+6 UNIT II APPLICATIONS OF PARTIAL DIFFERENTIAL 9+6 9+6 Classification of PDE - Method of separation of variables - Solutions of one dimensional wave equation - One dimensional equation of heat conduction - Steady state solution of two dimensional equation of heat conduction - Steady state solution of two dimensional equation of heat conductions - Convolution theorem - Parseval's identity. UNIT IV FOURIER TRANSFORMS 9+6 Statement of Fourier integral theorem - Fourier transform pair - Fourier sine and cosine transforms - Properties - Transforms of simple functions - Convolution theorem - Parseval's identity. 9+6 UNIT IV Z - TRANSFORMS AND DIFFERENCE 204 9+6 EQUATIONS Statement of Fourier	•	To acquaint the student with Fourier transform technique variety of situations.	s usec	l in v	vide	
differential equations that model several physical processes and to develop Z transform techniques for discrete time systems. UNIT I PARTIAL DIFFERENTIAL EQUATIONS 9+6 Formation of partial differential equations – Singular integrals –- Solutions of standard types of first order partial differential equations s Lagrange's linear equation Linear partial differential equations of second and higher order with constant coefficients of both homogeneous and non-homogeneous types. UNIT II FOURIER SERIES 9+6 Dirichlet's conditions – General Fourier series – Odd and even functions – Half range sine series – Complex form of Fourier series – Parseval's identity – Harmonic analysis. 9+6 UNIT III APPLICATIONS OF PARTIAL DIFFERENTIAL gete equation – One dimensional equation of heat conduction – Steady state solution of two dimensional equation of heat conduction (excluding insulated edges). 9+6 UNIT IV FOURIER TRANSFORMS 9+6 Statement of Fourier integral theorem – Fourier transform pair – Fourier sine and cosine transforms – Properties – Transforms of simple functions – Convolution theorem – Parseval's identity. 9+6 Z- TRANSFORMS AND DIFFERENCE 9+6 EQUATIONS Z- TRANSFORMS AND DIFFERENCE 9+6 Z- Transforms - Elementary properties – Inverse Z - transform (using partial fraction and residues) – Convolution theorem - Formation of difference equations – Solution of difference equations using Z - transform. Solutin function and residues) – Convolution theorem	•	To introduce the effective mathematical tools for the solu	itions	of p	artial	
Transform techniques for discrete time systems. UNIT I PARTIAL DIFFERENTIAL EQUATIONS 9+6 Formation of partial differential equations – Lagrange's linear equation – Linear partial differential equations of second and higher order with constant coefficients of both homogeneous and nonhomogeneous types. 9+6 UNIT II FOURIER SERIES 9+6 Dirichlet's conditions – General Fourier series – Odd and even functions – Half range sine series – Half range cosine series – Complex form of Fourier series – Parseval's identity – Harmonic analysis. 9+6 UNIT III APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS 9+6 Classification of PDE – Method of separation of variables - Solutions of one dimensional wave equation – One dimensional equation of heat conduction (excluding insulated edges). 9+6 UNIT IV FOURIER TRANSFORMS 9+6 Statement of Fourier integral theorem – Fourier transform pair – Fourier sine and cosine transforms – Properties – Transforms of simple functions – Convolution theorem – Parseval's identity. 9+6 UNIT V Z - TRANSFORMS AND DIFFERENCE [9+6 9+6 EQUATIONS Z - TRANSFORMS AND DIFFERENCE [9+6 9+6 Ourier times - Formation of difference equations – Solution of difference equations using Z - transform. Solutions – Solution of difference equations – Solution of difference equations using Z - transform. Solutin of difference equations – Solution of difference equati		differential equations that model several physical process	es an	d to o	levelo	op Z
ONIT 1 PARTIAL DIFFERENTIAL EQUATIONS 9+0 Formation of partial differential equations - Lagrange's linear equations of standard types of first order partial differential equations - Lagrange's linear equation Linear partial differential equations of second and higher order with constant coefficients of both homogeneous and nonhomogeneous types. 9+6 UNIT II FOURIER SERIES 9+6 Dirichlet's conditions - General Fourier series - Odd and even functions - Half range sine series - Half range cosine series - Complex form of Fourier series - Parseval's identity - Harmonic analysis. 9+6 UNIT III APPLICATIONS OF PARTIAL DIFFERENTIAL 9+6 9+6 EQUATIONS Classification of PDE - Method of separation of variables - Solutions of one dimensional wave equation - One dimensional equation of heat conduction - Steady state solution of two dimensional equation of heat conduction (excluding insulated edges). 9+6 UNIT IV FOURIER TRANSFORMS 9+6 Statement of Fourier integral theorem - Fourier transform pair - Fourier sine and cosine transforms - Properties - Transforms of simple functions - Convolution theorem - Parseval's identity. 9+6 EQUATIONS Z - TRANSFORMS AND DIFFERENCE EQUATIONS 9+6 EQUATIONS Z - transforms of simple functions - Solution of difference equations using Z - transform. 9+6 Convolution theorem - Fourier integral theorem - Fourier equations - Solution of difference equations using Z - transform.		DADTIAL DIFEEDENTIAL FOLLATIONS				0.6
Formation of partial differential equations – Singular integrals Solutions of standard types of first order partial differential equations - Lagrange's linear equation Linear partial differential equations of second and higher order with constant coefficients of both homogeneous and non-homogeneous types. UNIT II FOURIER SERIES Odd and even functions – Half range sine series - Half range cosine series – Complex form of Fourier series – Parseval's identity – Harmonic analysis. UNIT III APPLICATIONS OF PARTIAL DIFFERENTIAL PHERENTIAL EQUATIONS Classification of PDE – Method of separation of variables - Solutions of one dimensional wave equation – One dimensional equation of heat conduction – Steady state solution of two dimensional equation of heat conduction (excluding insulated edges). UNIT IV FOURIER TRANSFORMS Solutions – Fourier integral theorem – Fourier transform pair – Fourier sine and cosine transforms – Properties – Transforms of simple functions – Convolution theorem – Parseval's identity. UNIT V Z - TRANSFORMS AND DIFFERENCE EQUATIONS Properties – Inverse Z - transform (using partial fraction and residues) – Convolution theorem - Formation of difference equations – Solution of difference equations using Z - transform. TOTAL (L : 45 + T : 30): 75 PERIODS OUTCOMES: On completion of this course, students will	UNITI	PARTIAL DIFFERENTIAL EQUATIONS				9+0
first order partial differential equations - Lagrange's linear equation Linear partial differential equations of second and higher order with constant coefficients of both homogeneous and non-homogeneous types. UNIT II FOURIER SERIES 9+6 Dirichlet's conditions - General Fourier series - Odd and even functions - Half range sine series - Half range cosine series - Complex form of Fourier series - Parseval's identity - Harmonic analysis. UNIT II APPLICATIONS OF PARTIAL DIFFERENTIAL 9+6 EQUATIONS Classification of PDE - Method of separation of variables - Solutions of one dimensional wave equation - One dimensional equation of heat conduction - Steady state solution of two dimensional equation of heat conduction (excluding insulated edges). UNIT IV FOURIER TRANSFORMS 9+6 Statement of Fourier integral theorem - Fourier transform pair - Fourier sine and cosine transforms - Properties - Transforms of simple functions - Convolution theorem - Parseval's identity. UNIT V Z - TRANSFORMS AND DIFFERENCE 9+6 EQUATIONS Classing - Convolution theorem - Formation of difference equations - Solution of difference equations using Z - transform. TOTAL (L : 45 + T : 30): 75 PERIODS OUTCOMES: On completion of this course, students will be able to - Understand the concepts of Fourier series and its construction when discrete and continuous form is known - Acquire fluency in Fourier transforms in order to solve improper integrals - Understand the standard and special types of partial differential equations	Formation of par	tial differential equations – Singular integrals Solutions	of st	anda	rd typ	es of
equations of second and higher order with constant coefficients of both homogeneous and non- homogeneous types. UNIT II FOURIER SERIES 9+6 Dirichlet's conditions – General Fourier series – Odd and even functions – Half range series – Half range cosine series – Complex form of Fourier series – Parseval's identity – Harmonic analysis. 9+6 UNIT III APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS 9+6 Classification of PDE – Method of separation of variables - Solutions of one dimensional wave equation – One dimensional equation of heat conduction – Steady state solution of two dimensional equation of heat conduction (excluding insulated edges). 9+6 UNIT IV FOURIER TRANSFORMS 9+6 Statement of Fourier integral theorem – Fourier transform pair – Fourier sine and cosine transforms – Properties – Transforms of simple functions – Convolution theorem – Parseval's identity. 9+6 UNIT V Z - TRANSFORMS AND DIFFERENCE 9+6 EQUATIONS Z - Transforms of simple functions – Solution of difference equations using Z - transform. 9+6 VINIT V Z - TRANSFORMS AND DIFFERENCE 9+6 EQUATIONS TOTAL (L : 45 + T : 30): 75 PERIODS OUTCOMES: On completion of this course, students will be able to • Understand the concepts of Fourier series and its construction when discrete and continuous form is known	first order partial	differential equations - Lagrange's linear equation Line	ar pa	rtial	differe	ential
homogeneous types. 9+6 UNIT II FOURIER SERIES 9+6 Dirichlet's conditions – General Fourier series – Odd and even functions – Half range sine series – Complex form of Fourier series – Parseval's identity – Harmonic analysis. 9+6 UNIT III APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS 9+6 Classification of PDE – Method of separation of variables - Solutions of one dimensional wave equation – One dimensional equation of heat conduction – Steady state solution of two dimensional equation of heat conduction (excluding insulated edges). 9+6 UNIT IV FOURIER TRANSFORMS 9+6 Statement of Fourier integral theorem – Fourier transform pair – Fourier sine and cosine transforms – Properties – Transforms of simple functions – Convolution theorem – Parseval's identity. 9+6 UNIT V Z - TRANSFORMS AND DIFFERENCE EQUATIONS 9+6 Z. Transforms - Elementary properties – Inverse Z - transform (using partial fraction and residues) – Convolution theorem - Formation of difference equations – Solution of difference equations using Z - transform. TOTAL (L: 45 + T : 30): 75 PERIODS OUTCOMES: On completion of this course, students will be able to . • Understand the concepts of Fourier series and its construction when discrete and continuous form is known . • Understand the standard and special types of partial differential equations	equations of seco	and higher order with constant coefficients of both ho	moge	neou	s and	non-
UNIT II FOURIER SERIES 9+6 Dirichlet's conditions – General Fourier series – Odd and even functions – Half range sine series – Half range cosine series – Complex form of Fourier series – Parseval's identity – Harmonic analysis. UNIT III APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS 9+6 Classification of PDE – Method of separation of variables - Solutions of one dimensional wave equation – One dimensional equation of heat conduction – Steady state solution of two dimensional equation of heat conduction (excluding insulated edges). 9+6 UNIT IV FOURIER TRANSFORMS 9+6 Statement of Fourier integral theorem – Fourier transform pair – Fourier sine and cosine transforms – Properties – Transforms of simple functions – Convolution theorem – Parseval's identity. 9+6 UNIT V Z - TRANSFORMS AND DIFFERENCE EQUATIONS 9+6 Z- Transforms - Elementary properties – Inverse Z - transform (using partial fraction and residues) – Convolution theorem - Formation of difference equations – Solution of difference equations using Z - transform. 9+6 OUTCOMES: On completion of this course, students will be able to 0 • Understand the concepts of Fourier series and its construction when discrete and continuous form is known • • Understand the standard and special types of partial differential equations	homogeneous typ					0 (
Dirichlet's conditions – General Fourier series – Odd and even functions – Half range sine series – Half range cosine series – Complex form of Fourier series – Parseval's identity – Harmonic analysis. UNIT III APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS 9+6 Classification of PDE – Method of separation of variables - Solutions of one dimensional wave equation – One dimensional equation of heat conduction – Steady state solution of two dimensional equation of heat conduction (excluding insulated edges). 9+6 UNIT IV FOURIER TRANSFORMS 9+6 Statement of Fourier integral theorem – Fourier transform pair – Fourier sine and cosine transforms – Properties – Transforms of simple functions – Convolution theorem – Parseval's identity. 9+6 UNIT V Z - TRANSFORMS AND DIFFERENCE EQUATIONS 9+6 Z- Transforms - Elementary properties – Inverse Z - transform (using partial fraction and residues) – Convolution theorem - Formation of difference equations – Solution of difference equations using Z - transform. 9+6 OUTCOMES: On completion of this course, students will be able to 0 • Understand the concepts of Fourier series and its construction when discrete and continuous form is known 4 • Understand the standard and special types of partial differential equations		FOURIER SERIES	1.10			<u>9+6</u>
- Hair range cosine series - Complex form of Fourier series - Parseval's identity - Harmonic analysis. 9 UNIT III APPLICATIONS OF PARTIAL DIFFERENTIAL 9+6 EQUATIONS 9 9 Classification of PDE - Method of separation of variables - Solutions of one dimensional wave equation - One dimensional equation of heat conduction - Steady state solution of two dimensional equation of heat conduction (excluding insulated edges). 9+6 UNIT IV FOURIER TRANSFORMS 9+6 Statement of Fourier integral theorem - Fourier transform pair - Fourier sine and cosine transforms - Properties - Transforms of simple functions - Convolution theorem - Parseval's identity. 9+6 UNIT V Z - TRANSFORMS AND DIFFERENCE EQUATIONS 9+6 Z- Transforms - Properties - Inverse Z - transform (using partial fraction and residues) - Convolution theorem - Formation of difference equations - Solution of difference equations using Z - transform. 9+6 OUTCOMES: On completion of this course, students will be able to 0 0UTCOMES: On completion of this course, students will be able to 0 • Understand the concepts of Fourier series and its construction when discrete and continuous form is known • • Acquire fluency in Fourier transforms in order to solve improper integrals •	Dirichlet's condit	tions – General Fourier series – Odd and even functions – I	Half r	ange	sine s	series
Initialitysis. APPLICATIONS OF PARTIAL DIFFERENTIAL 9+6 EQUATIONS FOURIONS 9+6 Classification of PDE – Method of separation of variables - Solutions of one dimensional wave equation – One dimensional equation of heat conduction – Steady state solution of two dimensional equation of heat conduction (excluding insulated edges). 9+6 UNIT IV FOURIER TRANSFORMS 9+6 Statement of Fourier integral theorem – Fourier transform pair – Fourier sine and cosine transforms – Properties – Transforms of simple functions – Convolution theorem – Parseval's identity. 9+6 UNIT V Z - TRANSFORMS AND DIFFERENCE EQUATIONS 9+6 Z- Transforms - Elementary properties – Inverse Z - transform (using partial fraction and residues) – Convolution theorem - Formation of difference equations – Solution of difference equations using Z - transform. TOTAL (L : 45 + T : 30): 75 PERIODS OUTCOMES: On completion of this course, students will be able to Understand the concepts of Fourier series and its construction when discrete and continuous form is known 4cquire fluency in Fourier transforms in order to solve improper integrals • Understand the standard and special types of partial differential equations	- Half range cos	ine series – Complex form of Fourier series – Parseval's	ident	1ty –	Harn	nonic
UNIT III APPLICATIONS OF PARTIAL DIFFERENTIAL 9+6 EQUATIONS EQUATIONS 9+6 Classification of PDE – Method of separation of variables - Solutions of one dimensional wave equation – One dimensional equation of heat conduction – Steady state solution of two dimensional equation of heat conduction (excluding insulated edges). 9+6 UNIT IV FOURIER TRANSFORMS 9+6 Statement of Fourier integral theorem – Fourier transform pair – Fourier sine and cosine transforms – Properties – Transforms of simple functions – Convolution theorem – Parseval's identity. 9+6 UNIT V Z - TRANSFORMS AND DIFFERENCE EQUATIONS 9+6 Z- Transforms - Elementary properties – Inverse Z - transform (using partial fraction and residues) – Convolution theorem - Formation of difference equations – Solution of difference equations using Z - transform. TOTAL (L : 45 + T : 30): 75 PERIODS OUTCOMES: On completion of this course, students will be able to • Understand the concepts of Fourier series and its construction when discrete and continuous form is known • Acquire fluency in Fourier transforms in order to solve improper integrals •		ADDI ICATIONICOE DADTIAL DIFEEDEN	ГТАТ			0.0
Classification of PDE – Method of separation of variables - Solutions of one dimensional wave equation – One dimensional equation of heat conduction – Steady state solution of two dimensional equation of heat conduction (excluding insulated edges). UNIT IV FOURIER TRANSFORMS 9+6 Statement of Fourier integral theorem – Fourier transform pair – Fourier sine and cosine transforms – Properties – Transforms of simple functions – Convolution theorem – Parseval's identity. 9+6 UNIT V Z - TRANSFORMS AND DIFFERENCE [9+6 9+6 EQUATIONS 9+6 Z- Transforms - Elementary properties – Inverse Z - transform (using partial fraction and residues) – Convolution theorem - Formation of difference equations using Z - transform. 91+6 OUTCOMES: On completion of this course, students will be able to 01 • Understand the concepts of Fourier series and its construction when discrete and continuous form is known • • Acquire fluency in Fourier transforms in order to solve improper integrals		EQUATIONS OF PARTIAL DIFFEREN	IAI			9+0
equation – One dimensional equation of heat conduction – Steady state solution of two dimensional equation of heat conduction (excluding insulated edges). UNIT IV FOURIER TRANSFORMS 9+6 Statement of Fourier integral theorem – Fourier transform pair – Fourier sine and cosine transforms – Properties – Transforms of simple functions – Convolution theorem – Parseval's identity. Q +6 UNIT V Z - TRANSFORMS AND DIFFERENCE EQUATIONS 9+6 Z- Transforms - Elementary properties – Inverse Z - transform (using partial fraction and residues) – Convolution theorem - Formation of difference equations using Z - transform. TOTAL (L : 45 + T : 30): 75 PERIODS OUTCOMES: On completion of this course, students will be able to Understand the concepts of Fourier series and its construction when discrete and continuous form is known • Understand the standard and special types of partial differential equations	Classification of	PDE – Method of separation of variables - Solutions of o	ne dir	nens	ional	wave
dimensional equation of heat conduction (excluding insulated edges). 9+6 UNIT IV FOURIER TRANSFORMS 9+6 Statement of Fourier integral theorem – Fourier transform pair – Fourier sine and cosine transforms – Properties – Transforms of simple functions – Convolution theorem – Parseval's identity. Parseval's UNIT V Z - TRANSFORMS AND DIFFERENCE EQUATIONS 9+6 Z- Transforms - Elementary properties – Inverse Z - transform (using partial fraction and residues) – Convolution theorem - Formation of difference equations – Solution of difference equations using Z - transform. TOTAL (L : 45 + T : 30): 75 PERIODS OUTCOMES: On completion of this course, students will be able to • Understand the concepts of Fourier series and its construction when discrete and continuous form is known • Acquire fluency in Fourier transforms in order to solve improper integrals • Understand the standard and special types of partial differential equations	equation – One	dimensional equation of heat conduction - Steady st	ate s	oluti	on of	two
UNIT IVFOURIER TRANSFORMS9+6Statement of Fourier integral theorem – Fourier transform pair – Fourier sine and cosine transforms – Properties – Transforms of simple functions – Convolution theorem – Parseval's identity.Properties – Transforms of simple functions – Convolution theorem – Parseval's identity.UNIT VZ - TRANSFORMS AND DIFFERENCE 	dimensional equa	tion of heat conduction (excluding insulated edges).				
Statement of Fourier integral theorem – Fourier transform pair – Fourier sine and cosine transforms – Properties – Transforms of simple functions – Convolution theorem – Parseval's identity. UNIT V Z - TRANSFORMS AND DIFFERENCE EQUATIONS 9+6 Z- Transforms - Elementary properties – Inverse Z - transform (using partial fraction and residues) – Convolution theorem - Formation of difference equations – Solution of difference equations using Z - transform. 9+6 OUTCOMES: On completion of this course, students will be able to • Understand the concepts of Fourier series and its construction when discrete and continuous form is known • Acquire fluency in Fourier transforms in order to solve improper integrals • Understand the standard and special types of partial differential equations	UNIT IV	FOURIER TRANSFORMS				9+6
transforms of simple functions – Convolution theorem – Parseval's identity. UNIT V Z - TRANSFORMS AND DIFFERENCE EQUATIONS 9+6 Z- Transforms - Elementary properties – Inverse Z - transform (using partial fraction and residues) – Convolution theorem - Formation of difference equations – Solution of difference equations using Z - transform. TOTAL (L : 45 + T : 30): 75 PERIODS OUTCOMES: On completion of this course, students will be able to Understand the concepts of Fourier series and its construction when discrete and continuous form is known • Understand the standard and special types of partial differential equations	Statement of Fo	urier integral theorem – Fourier transform pair – Fou	rier s	ine a	and c	osine
identity. Z - TRANSFORMS AND DIFFERENCE EQUATIONS 9+6 Z- Transforms - Elementary properties – Inverse Z - transform (using partial fraction and residues) – Convolution theorem - Formation of difference equations – Solution of difference equations using Z - transform. 9+6 TOTAL (L : 45 + T : 30): 75 PERIODS OUTCOMES: 0n completion of this course, students will be able to • Understand the concepts of Fourier series and its construction when discrete and continuous form is known • Acquire fluency in Fourier transforms in order to solve improper integrals • Understand the standard and special types of partial differential equations	transforms - Pro	perties - Transforms of simple functions - Convolution	theore	em –	Parse	eval's
UNIT VZ - TRANSFORMS AND DIFFERENCE EQUATIONS9+6Z- Transforms - Elementary properties – Inverse Z - transform (using partial fraction and residues) – Convolution theorem - Formation of difference equations – Solution of difference equations using Z - transform.TOTAL (L : 45 + T : 30): 75 PERIODSOUTCOMES:On completion of this course, students will be able to•Understand the concepts of Fourier series and its construction when discrete and continuous form is known•Acquire fluency in Fourier transforms in order to solve improper integrals•Understand the standard and special types of partial differential equations	identity.					
Z- TRANSFORMOS AND DREPERENCE 940 EQUATIONS EQUATIONS Z- Transforms - Elementary properties – Inverse Z - transform (using partial fraction and residues) – Convolution theorem - Formation of difference equations using Z - transform. TOTAL (L : 45 + T : 30): 75 PERIODS OUTCOMES: On completion of this course, students will be able to • Understand the concepts of Fourier series and its construction when discrete and continuous form is known • Acquire fluency in Fourier transforms in order to solve improper integrals • Understand the standard and special types of partial differential equations	LINIT V	Z - TRANSFORMS AND DIFFFRENCE				0 _6
Z- Transforms - Elementary properties – Inverse Z - transform (using partial fraction and residues) – Convolution theorem - Formation of difference equations – Solution of difference equations using Z - transform. TOTAL (L : 45 + T : 30): 75 PERIODS OUTCOMES: On completion of this course, students will be able to • Understand the concepts of Fourier series and its construction when discrete and continuous form is known • Acquire fluency in Fourier transforms in order to solve improper integrals • Understand the standard and special types of partial differential equations		EOUATIONS				770
2- Transforms - Elementary properties - inverse 2 - transform (using partial fraction and residues) - Convolution theorem - Formation of difference equations - Solution of difference equations using Z - transform. TOTAL (L: 45 + T: 30): 75 PERIODS OUTCOMES: On completion of this course, students will be able to • Understand the concepts of Fourier series and its construction when discrete and continuous form is known • Acquire fluency in Fourier transforms in order to solve improper integrals • Understand the standard and special types of partial differential equations	7. Transforms -	Elementary properties Inverse 7 - transform (using	narti	al fr	action	and
Totation of converting Formation of unforcine equations boltation of unforced equations boltations boltation of unforced equations boltations boltation of unforced equations boltations boltation of unforced equations boltation equatio	residues) – Conv	colution theorem - Formation of difference equations $-S$	olutic	an n	diffe	rence
TOTAL (L: 45 + T: 30): 75 PERIODS OUTCOMES: On completion of this course, students will be able to • Understand the concepts of Fourier series and its construction when discrete and continuous form is known • Acquire fluency in Fourier transforms in order to solve improper integrals • Understand the standard and special types of partial differential equations	equations using Z	Z - transform.	oradio	11 01	unite	lence
OUTCOMES: On completion of this course, students will be able to • Understand the concepts of Fourier series and its construction when discrete and continuous form is known • Acquire fluency in Fourier transforms in order to solve improper integrals • Understand the standard and special types of partial differential equations		TOTAL (L : 45 + T : 3	0): 7	5 Pl	ERIC	DDS
• Understand the concepts of Fourier series and its construction when discrete and continuous form is known • Acquire fluency in Fourier transforms in order to solve improper integrals • Understand the standard and special types of partial differential equations	OUTCOMES	On completion of this course, students will be able to)			
 Acquire fluency in Fourier transforms in order to solve improper integrals Understand the standard and special types of partial differential equations 	•	Understand the concepts of Fourier series and it discrete and continuous form is known	s con	struc	tion	when
• Understand the standard and special types of partial differential equations	•	Acquire fluency in Fourier transforms in order integrals	to s	solve	imp	roper
	•	Understand the standard and special types of partial	differ	entia	l equa	tions

	•			Gain f	luency	' in sol	ving b	ounda	ry val	ue pro	blems				
	•			Under equation	stand ons.	the Z	trans	form	metho	ds to	find	solutio	ons of	diffe	rence
COU	URS	E AR'	TIC	ULAT	TION	MA	ΓRIX	:							
	PO1	PO2	PO 3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
CO1	Н	Н	Н							Н				Н	
CO2	Μ	Н	Μ							Μ				Μ	
CO3	Н	М								L					М
CO4	Н	Н	Μ			Μ				Μ	М			L	
CO5	Μ	М	М												L
(L-Lo	w, M	- Mode	rate,	H-High	ı)										
TEX	KT B	BOOK	S:												
1	. \	/eeraraj	an T	'., "Tra	nsforn	ns and	l Parti	al Di	fferent	ial Eq	uatior	ns", Ta	ata Mo	cGraw	Hill
2		ducatio	$\frac{n Pv}{P S}$	t. Ltd.,	New I	Jelhi, :	$\frac{3^{n}}{n\alpha}$ Edi	$\frac{100}{2}$	2016.	11th	Editi	on V	honno	Dubli	hore
2	. C	Delhi, 20	D.S., 017.	Ingh		gineen	ing ivia	unema	uies,	44	Luiu	on, K	nanna	I UUII	silers,
3	$\left \begin{array}{c} \mathbf{N} \\ \mathbf{f} \end{array} \right $	Jarayan or Engi	an S.	, Manic	cavach	agom Vol II	Pillay	T.K a. S.Vis	nd Ra	manai ban Pi	ah.G '	'Advar	nced M	lathen	natics
REF	TER	ENCE	S:		ents	<u>v 01. 11</u>	<u>a m</u> ,	5. 13	wana		1011511	<u>.15 I VI</u>	L.u., .	1770.	
1.	Bal Pvt	i. N.P 1 Ltd, 9 th	Manis Edit	sh Goy ion 201	al, "A 6.	Textb	ook of	^e Engi	neerin	g Mat	hemat	ics",Lc	axmi P	Publica	itions
2.	Ran Cor	nana. – npany I	B.V., Limite	"High ed, New	er En Delhi	gineer , 2018	ring N 2.	<i>Mather</i>	natics	", Tai	ta Mo	:Graw	Hill	Publi	shing
3.	Gly Edi	n Jam Ication,	es, " 2016	Advano 6.	ced M	lodern	Eng	ineerii	ng Ma	athemo	atics",	4^{th}	Editior	ı, Peo	arson
4.	Erw	vin Krey	vszig,	"Adva	nced E	Inginee	ering I	Mather	natics	", 10 th	Editic	on, Wil	ey Ind	ia, 20	11.
5.	Ray Mc	[,] Wylie Graw H	C, Iill Ea	Barreti lucatio	t .L.C n Pvt I	, "Adı Ltd, Ne	vancec ew Del	l Eng lhi, 20	ineerii 12.	ıg Ma	athemo	atics",	6 th E	Edition	,Tata
6.	Dat Ind	ta K.B. ia Pvt L	, "M .td, D	athema elhi, 20	tical)13.	Metho	ds of	Scien	ce and	l Eng	ineerin	ıg", C	engag	e Lea	rning

USING C++ 3 0 0 3 OBJECTIVES: -
3 0 0 3 OBJECTIVES: • Be familiar with the Object oriented programming concepts usins C++. • Learn the basics of Programming in C++ using Classes and objects. • Be familiar with the C++ concepts of abstraction, encapsulation, Constructor. • Be familiar with the C++ concepts of polymorphism, overloading and Inheritance • Be exposed to concepts of Virtual Functions, Streams, Files, Templates and Exceptions. UNIT I INTRODUCTION TO OOP, CLASSES AND OBJECTS 9 Introduction of Object Oriented Programming – Characteristics of Object Oriented Languages – C++ Programming basics - Loops and Decisions – Function Components - Passing Parameters – Class Specification- Member Function Definition – Constructors – Destructors – C++ objects as data types – Objects as function arguments - Structures and Classes - Static Class Data – const and Classes – Inline function. 9 Operator Function – Overloading Unary and Binary Operators - Overloading The Operator Using Friend Function-Stream Operator Overloading-Data Conversion. 9 Derived and Base Class – Protected access specifier – Derived class constructors - Overliding member functions - Single Inheritance- 9 Derived and Base Class – Protected access specifier – Derived class constructors - Overriding member functions - Single Inheritance- 9 Durit III INHERESTANCE 9 Derive
OBJECTIVES: • Be familiar with the Object oriented programming concepts usins C++. • Learn the basics of Programming in C++ using Classes and objects. • Be familiar with the C++ concepts of abstraction, encapsulation, Constructor. • Be familiar with the C++ concepts of polymorphism, overloading and Inheritance • Be exposed to concepts of Virtual Functions, Streams, Files, Templates and Exceptions. UNIT I INTRODUCTION TO OOP, CLASSES AND OBJECTS 9 Introduction of Object Oriented Programming – Characteristics of Object Oriented Languages – C++ Programming basics - Loops and Decisions – Function Components - Passing Parameters – Class Specification- Member Function Definition – Constructors – Destructors – C++ objects as data types – Objects as function arguments - Structures and Classes - Static Class Data – const and Classes – Inline function. 9 UNIT II OPERATOR OVERLOADING 9 Operator Function – Overloading Unary and Binary Operators - Overloading The Operator Using Friend Function-Stream Operator Overloading-Data Conversion. 9 UNIT III INHERITANCE 9 Derived and Base Class – Protected access specifier – Derived class constructors - Overriding member functions - Single Inheritance- 9 Derived and Base Class – Protected access specifier – Derived class constructors - Overriding member functions - Single Inheritance- 9 Derived and
• Be familiar with the Object oriented programming concepts usins C++. • Learn the basics of Programming in C++ using Classes and objects. • Be familiar with the C++ concepts of abstraction, encapsulation, Constructor. • Be familiar with the C++ concepts of polymorphism, overloading and Inheritance • Be familiar with the C++ concepts of polymorphism, overloading and Inheritance • Be exposed to concepts of Virtual Functions, Streams, Files, Templates and Exceptions. UNIT I INTRODUCTION TO OOP, CLASSES AND OBJECTS 9 Introduction of Object Oriented Programming – Characteristics of Object Oriented Languages – C++ Programming basics - Loops and Decisions – Function Components - Passing Parameters – Class Specification- Member Function Definition – Constructors – Destructors – C++ objects as data types – Objects as function arguments - Structures and Classes - Static Class Data – const and Classes – Inline function. 9 UNIT II OPERATOR OVERLOADING 9 Operator Function – Overloading Unary and Binary Operators - Overloading The Operator Using Friend Function-Stream Operator Overloading-Data Conversion. 9 UNIT III INHERITANCE 9 Derived and Base Class – Protected access specifier – Derived class constructors - Overriding member functions - Single Inheritance- Protected Data With Private Inheritance- Multiple Inheritance- Multiple Inheritance. 9 Inh
 Learn the basics of Programming in C++ using Classes and objects. Be familiar with the C++ concepts of abstraction, encapsulation, Constructor. Be familiar with the C++ concepts of polymorphism, overloading and Inheritance Be exposed to concepts of Virtual Functions, Streams, Files, Templates and Exceptions. INTRODUCTION TO OOP, CLASSES AND OBJECTS 9 Introduction of Object Oriented Programming – Characteristics of Object Oriented Languages – C++ Programming basics - Loops and Decisions – Function Components - Passing Parameters – Class Specification- Member Function Definition – Constructors – Destructors – C++ objects as data types – Objects as function arguments - Structures and Classes - Static Class Data – const and Classes – Inline function. UNIT II OPERATOR OVERLOADING 9 Operator Function – Overloading Unary and Binary Operators - Overloading The Operator Using Friend Function – Overloading Unary and Binary Operators - Overloading The Operator Using Friend Function – Stream Operator Overloading-Data Conversion. UNIT III INHERITANCE 9 Derived and Base Class – Protected access specifier – Derived class constructors - Overriding member functions - Single Inheritance- Protected Data With Private Inheritance- Multiple Inheritance. UNIT IV VIRTUAL FUNCTIONS 9
• Be familiar with the C++ concepts of abstraction, encapsulation, Constructor. • Be familiar with the C++ concepts of polymorphism, overloading and Inheritance • Be familiar with the C++ concepts of polymorphism, overloading and Exceptions. • Be exposed to concepts of Virtual Functions, Streams, Files, Templates and Exceptions. • Be exposed to concepts of Virtual Functions, Streams, Files, Templates and Exceptions. • INTRODUCTION TO OOP, CLASSES AND OBJECTS 9 Introduction of Object Oriented Programming – Characteristics of Object Oriented Languages 9 Introduction of Object Oriented Programming – Characteristics of Object Oriented Languages 9 Parameters – Class Specification- Member Function Definition – Constructors – Destructors – C++ objects as data types – Objects as function arguments - Structures and Classes - Static Class Data – const and Classes – Inline function. 9 Operator Function – Overloading Unary and Binary Operators - Overloading The Operator Using Friend Function-Stream Operator Overloading-Data Conversion. 9 Derived and Base Class – Protected access specifier – Derived class constructors - Overriding member functions - Single Inheritance- Protected Data With Private Inheritance- Multiple Inheritance- Multiple Inheritance- Hierarchical Inheritance- Hybrid Inheritance- Multiple Inheritance. 9 UNIT IV VIRTUAL FUNCTIONS 9
• Be familiar with the C++ concepts of polymorphism, overloading and Inheritance • Be exposed to concepts of Virtual Functions, Streams, Files, Templates and Exceptions. UNIT I INTRODUCTION TO OOP, CLASSES AND OBJECTS 9 Introduction of Object Oriented Programming – Characteristics of Object Oriented Languages 9 Parameters – Class Specification- Member Function Definition – Constructors – Destructors – C++ objects as data types – Objects as function arguments - Structures and Classes - Static Class Data – const and Classes – Inline function. UNIT II OPERATOR OVERLOADING 9 Operator Function – Overloading Unary and Binary Operators - Overloading The Operator Using Friend Function-Stream Operator Overloading-Data Conversion. 9 UNIT III INHERITANCE 9 Derived and Base Class – Protected access specifier – Derived class constructors - Overriding member functions - Single Inheritance- Protected Data With Private Inheritance- Multiple Inheritance- Multiple Inheritance- Multiple Inheritance- Hierarchical Inheritance- Hybrid Inheritance- Multiple Inheritance- 9
•Be exposed to concepts of Virtual Functions, Streams, Files, Templates and Exceptions.UNIT IINTRODUCTION TO OOP, CLASSES AND OBJECTS9Introduction of Object Oriented Programming – Characteristics of Object Oriented Languages – C++ Programming basics - Loops and Decisions – Function Components - Passing Parameters – Class Specification- Member Function Definition – Constructors – Destructors – C++ objects as data types – Objects as function arguments - Structures and Classes - Static Class Data – const and Classes – Inline function.9UNIT IIOPERATOR OVERLOADING9Operator Function – Overloading Unary and Binary Operators - Overloading The Operator Using Friend Function-Stream Operator Overloading-Data Conversion.9Derived and Base Class – Protected access specifier – Derived class constructors - Single Inheritance- Multi Level Inheritance- Multi Level Inheritance- Multi Level Inheritance- Hierarchical Inheritance- Hierarchical Inheritance- Hybrid Inheritance- Multi Inheritance- Multi Level Inheritance- Multi Level Inheritance- Multi Inheritance- Multi Inheritance- Multi Level Inheritance- Multi Inheritance-
UNIT IINTRODUCTION TO OOP, CLASSES AND OBJECTS9Introduction of Object Oriented Programming – Characteristics of Object Oriented Languages- C++ Programming basics - Loops and Decisions – Function Components - PassingParameters – Class Specification- Member Function Definition – Constructors –Destructors – C++ objects as data types – Objects as function arguments - Structures andClasses - Static Class Data – const and Classes – Inline function.UNIT IIOPERATOR OVERLOADINGOperator Function – Overloading Unary and Binary Operators - Overloading The OperatorUsing Friend Function-Stream Operator Overloading-Data Conversion.UNIT IIIINHERITANCEDerived and Base Class – Protected access specifier – Derived class constructors - Single Inheritance-Multi Level Inheritance-Multi Level Inheritance-Hierarchical Inheritance-Multi Level Inheritance-Multi Diheritance.UNIT IVVIRTUAL FUNCTIONS9
Introduction of Object Oriented Programming – Characteristics of Object Oriented Languages– C++ Programming basics - Loops and Decisions – Function Components - PassingParameters – Class Specification- Member Function Definition – Constructors – Destructors – C++ objects as data types – Objects as function arguments - Structures and Classes - Static Class Data – const and Classes – Inline function.UNIT IIOPERATOR OVERLOADING9Operator Function – Overloading Unary and Binary Operators - Overloading The Operator Using Friend Function-Stream Operator Overloading-Data Conversion.9UNIT IIIINHERITANCE9Derived and Base Class – Protected access specifier – Derived class constructors - Overriding member functions - Single Inheritance- Multi Level Inheritance- Hierarchical Inheritance- Hybrid Inheritance-9UNIT IVVIRTUAL FUNCTIONS9
UNIT IIOPERATOR OVERLOADING9Operator Function – Overloading Unary and Binary Operators - Overloading The Operator Using Friend Function-Stream Operator Overloading-Data Conversion.9UNIT IIIINHERITANCE9Derived and Base Class – Protected access specifier – Derived class constructors - Overriding member functions - Single Inheritance- Multi Level Inheritance- Hierarchical Inheritance- Hierarchical Inheritance- Hybrid Inheritance- Multi INHERITANCE9UNIT IVVIRTUAL FUNCTIONS9
Operator Function – Overloading Unary and Binary Operators - Overloading The Operator Using Friend Function-Stream Operator Overloading-Data Conversion.9UNIT IIIINHERITANCE9Derived and Base Class – Protected access specifier – Derived class constructors - Overriding member functions - Single Inheritance- Multi Level Inheritance- Multi Level Inheritance- Hierarchical Inheritance- Hybrid Inheritance- Multi Inheritance-<
Using Friend Function-Stream Operator Overloading-Data Conversion.UNIT IIIINHERITANCE9Derived and Base Class – Protected access specifier – Derived class constructors - Overriding member functions - Single Inheritance- Multi Level Inheritance- Multi Level Inheritance- Hierarchical Inheritance- Hybrid Inheritance- Multi Inheritan
UNIT IIIINHERITANCE9Derived and Base Class – Protected access specifier – Derived class constructors - Overriding member functions - Single Inheritance- Multi Level Inheritance- Multi Level Inheritance- Hierarchical Inheritance- Hybrid Inheritance- Hybrid Inheritance- Multi Inheritance-
Derived and Base Class – Protected access specifier – Derived class constructors - Overriding member functions - Single Inheritance- Multi Level Inheritance- Multi Level Inheritance- Hierarchical Inheritance- Hybrid Inheritance- Multipath Inheritance-Protected Data With Private Inheritance- Multiple Hierarchical Inheritance- Hybrid Inheritance- MultipleUNIT IVVIRTUAL FUNCTIONS9
member functions - Single Inheritance- Inheritance- Multi Level Inheritance- Hierarchical Inheritance- Hierarchical Inheritance- Hybrid Inheritance-Multiple Hierarchical Inheritance- Hybrid Inheritance- 9UNIT IVVIRTUAL FUNCTIONS9
Inheritance- Multi Level Inheritance- Hierarchical Inheritance- Hybrid Inheritance- Multipath Inheritance. VIRTUAL FUNCTIONS 9
UNIT IV VIRTUAL FUNCTIONS 9
UNITIV VIKTUAL FUNCTIUNS 91
Need For Virtual Europian Deinter to Derived Class Objects Arrow of Deinter to Dese Class
Objects- Pure Virtual Functions- Abstract Classes- Virtual Destructors – Virtual Dynamic Binding – Run Time Type Identification(RTTI).
UNIT VSTREAMS, FILES, TEMPLATES AND9EXCEPTIONS9
Stream Classes - Advantages of Streams - Manipulators- User Defined Manipulators- File
Streams-File Pointer and Manipulation-File Open and Close- Sequential and Random Access
- Function templates - Class Templates - Template and Inheritance - Exceptions - Multiple
exceptions – Exceptions with arguments.
TOTAL : 45 PERIODS
OUTCOMES: On completion of this course, students will be able to
1. Use object oriented approach to programming.
Write programs using operator overloading.
S. Establish the use of inheritance for software reuse. Write programs using virtual functions
5 Use exceptional handling methods and templates

CO	URSI	E AR'	TICU	JLAT	ION	MA	ΓRIX								
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	P01	PO1	PO1	PSO	PSO	PSO
										0	1	2	1	2	3
CO1		Н	Μ	Μ									н	М	
CO2		Н			М	L							Н		
CO3				Н	М		L						Н		
CO4	H M H M H M H M														
CO5	M H H H ow, M- Moderate, H-High)														
(L- Lo	w, M-	Modera	te, H-H	igh)											
TE	XT E	BOOH	XS:												
1	. R	obert I	Lafore,	" Obje	ect Ori	ented	Progra	ımmin	g in C	++", F	Pearson	n India	ı, 2008	8.	
2	. Bj	arne S	Stroust	rup,"F	rogran	nming	: Prin	ciples	and	Practi	ce us	ing C	++", .	Addiso	on-
	W	esley, i	2008.		-										
REF	FERF	ENCE	IS:												
1	. He	erbert	Schild	lt, "C	++: 7	The C	omple	te Ref	ference	e", Ta	ata M	cGraw	, Hill	Publi	shing
	Ca	mpan	y, New	Delhi	, 2011	•									
2	. Sta	inley E	B. Lipp	man a	nd Jos	eeLaj	oie, " (C + + P	Primer	", Pea	rson I	ndia,,	2010.		
3	. De	eital & I	Deital,	"C+-	-: Hov	v To P	rograi	n", PI	HI Lea	rning,	New	Delhi,	2010.		
4	. Ve	nugop	al K.	<i>R</i> ., <i>I</i>	Rajkun	narBu	yya a	nd Ra	ivisha	nkar	T, "N	laster	ing C	++",	Tata
	Ma	Graw	Hill P	ublish	ing Co	mpan	y, New	Delhi	,2009						

17S	PC30	3	DA	TAB	ASE	MAN	AGI	EME	NT S	YSTI	EMS]	L ′	ΓΙ	P	С
			VES:													3
OBJ	IECT	IVES	S:													
	•	U	nderst	and ba	asics o	f DBM	1S.									
	٠	Ir	ntrodu	ce the	differe	ent mo	dels in	datab	ase.							
	٠	Ir	ntrodu	ce the	Data I	Definit	ion La	nguag	e and	queryi	ng usi	ng SQ	L			
	٠	U	nderst	and in	detail	transa	action	proces	sing.							
	٠	А	cquire	e know	ledge	of adv	anced	databa	ases							
UNI	ΤI	Ι	NTR	ODU	CTIC)N T	O DA	ТАВ	ASE	SYS	TEM	S				9
Data mode	- Data els - Da	abase atabas	Applic e Arcł	cations nitectur	- Evo re - Ke	olution ey Issu	of Dates and	tabase Chall	e - Neo enges	ed for in Dat	Datab abase	ase M Syster	anag ns.	geme	nt –	-Data
UNI	TII	E	R Al	ND R	ELA	TION	NAL]	MOD	ELS							9
ER 1	Models	s – E	R to	Relatio	onal N	Aappir	ng –O	bject]	Relatio	onal N	Aappir	ng - R	elati	onal	М	odel-
Cons	traints	ints - Keys - Dependencies - Relational Algebra - Normalization - First, Secor Normal Forms - BCNF – Join Dependencies.												cond,	Th	nird&
Four	n Nor	III DATA DEFINITION AND QUERYING														0
Basic		I DATA DEFINITION AND QUERYING L - Introduction to SQL - Data Constraints - Advanced SQL - Views -													riaa	J
Data	base S	DL - Introduction to SQL - Data Constraints - Advanced SQL - Views - 7 Security – Embedded & Dynamic SQL											- 11	ngg	3015 -	
UNI	TIV	T	RAN			NS A		ONC	URF	RENC	CY					9
Intro	ductio	n to	Trans	saction	IS -	Transa	action	Syste	ems -	ACI	D Pr	opertie	es -	Sy	ster	n &
Medi	aReco	very -	- Need	d for (Concu	rrency	- Loc	king 1	Protoc	ols –	SQL 1	for Co	ncui	renc	у –	Log
Base	dReco	very	- Tw	o Pha	ase C	ommi	t Prot	tocol	- Red	covery	with	SQL	I	Deadl	ock	is &
TINI	igingL T V		$\frac{\text{CKS.}}{\text{DV}}$	NCE			'C TN	<u>руд</u>		SEC						0
Index	ing <i>&</i>	Has	hing '	Techni		- 0ue	rv Pro	DAI	ADA	Ontim	izatio	n - So	ortin	σ &	Io	ins –
Data	base T	uning	- Intro	oductio	on to S	pecial	Topic	s - Sp	atial &	z Tem	poral I	Databa	ses -	- Dat	aM	ining
and I	Data W	/areho	using.			•	1	-		-	-					U
									TO	ΓAL :	: 45 P	PERIC	DD S	5		
OU'	ΓΟΟΙ	MES	: (On con	npletic	on of th	nis cou	irse, st	udents	will t	e able	to				
1	. Cla	assify	moder	n and	futuris	stic dat	abase	applic	ations	based	on siz	e and	com	plexi	ty.	
2	. <u>Ma</u>	ip ER	model	to Re	lationa	al mod	el.									
3	\cdot W1	rite qu	eries u	ising n	ormali	ization	oving	1a.	tion in	diffor	ont dat	obasa	avet	ma		
5	An	praise	how a	advanc	ed dat		diffe	from	traditi	onal d	atabas	es.	syste			
CO	URSE	E AR'	TICU	JLAT	ION	MA	ΓRIX					•51				
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO1	PO1	PO1	PSC	PS	60	PSO
<u> </u>	u	L	М				1			0	1	2	1	2		3 ⊔
		••					L .									
CO2		Н	Μ		м											Μ
CO3	Η		н		L											Н

CO4	м	н	M Image: Constraint of the systems								н				
	••	l													
CO5	M	н	M				IVI								н
										ļ				ļ	
(L- L0	ow, M-	Modera	ite, H-H	igh)											
TEX	KT B	<u>OOK</u>	S:												
1	. Ał	oraham	n Silbe	rschat	z, Hei	nry F.	Korth	, S. S	udhars	shan, ʻ	'Datab	ase S	ystem	Conce	epts",
	Si	xth Ed	raham Silberschatz, Henry F. Korth, S. Sudharshan, "Database System Concepts", th Edition, Tata McGraw Hill, 2010.												
2	. Ra	oraham Silberschatz, Henry F. Korth, S. Sudharshan, "Database System Concepts", <u>kth Edition, Tata McGraw Hill, 2010.</u> mez Elmasri, Shamkant B. Navathe, "Fundamentals of Database Systems", Sixth													
	Ec	lition,	Pearso	n/Add	ison -	Wesle	y, 201	0.					-		
REF	FERI	ENCE	ES:												
1	. <i>C</i> .	J. Date	e, A. K	annan	and S	. Swan	nynath	nan, "A	An Intr	oduct	ion to .	Datab	ase Sy	stems '	,
	Pe	arson	Educa	tion, E	Eighth	Editio	n, 200	6.							
2	. <i>Ra</i>	ghu F	Ramak	rishna	n, "D	atabas	se Ma	nagem	ent S	ystems	s", Fo	urth i	Editior	ı, Mc	Graw
	Hi	ll,2015	5.												
3	. <i>Nc</i>	arain (Gehani	and M	<i>Aelliyc</i>	al Ann	amala	i., "Th	e Date	abase	Book	Princi	ples a	nd Pro	ictice
	Us	ing th	e Orac	le Dat	abase	System	n", Ur	iiversi	ties Pr	ess, 2	012.				

17SPC30	4		SOF	TWA	ARE	ENGI	IN	EERIN	G	L	Τ	P	С
										3	0	0	3
OBJECTI	/ES:												
•	Unde	erstar	nd the p	hases	s in a s	software	e pr	roject.					
•	Unde	erstar	nd fund	ament	ital co	ncepts o	of re	equireme	nts engineer	ring.			
•	Learr	n var	ious Ar	nalysis	is Moo	deling A	Appi	roaches.					
•	Unde	erstar	nd the n	najor	consi	deration	is fo	or enterp	ise integrati	ion and	l dep	loym	ent
•	Learr	n var	ious tes	sting a	and m	naintenai	nce	measure	s.				
UNIT I	SOF	FTW	VARE	PRO	OCE	SS MC	DD	ELS					9
The Evolvin software – Capability Process M Incrementa Models –	ng Role of A generic Maturity odels – Process Prototypi	of Sof c viev Mod Prod Mod ing -	ftware – w of pr lel Integ luct an lels – It – The	- Softy ocess- gratio d Pro ncrem Spira	tware - A la on (CM rocess nental al Mo ified I	 The cl ayered 7 MMI) – Prod Model odel – 	han Fec Process – T Th	nging Nat chnology cocess As s Model The RAD ne Concu	ure of Softw – A Process sessment –] s – The V Model – Ev urrent Deve	vare – J s Fram Person Waterfa volutio elopme	Lega ewor al an dl N nary nt N	cy k – 7 d Te Iodel Proc Iodel	The am l – ess l –
Specialized	Process r		eis - in			Process.							
UNIT II REQUIREMENT ENGINEERING Software Engineering Practice – Communication Practice – Planning Practice - Modeling Practice – Construction Practice – Deployment - Requirements Engineering - Requirements													9
Software Engineering Practice – Communication Practice – Planning Practice - Modeling Practice – Construction Practice – Deployment - Requirements Engineering - Requirements Engineering Tasks – Initiating the Requirements Engineering Process - Eliciting Requirements – Developing Use Cases – Building the Analysis Models – Elements of the Analysis Model – Analysis Pattern – Negotiating Requirements – Validating Requirements.UNIT IIIANALYSIS MODELLING9													
Requirements-DevelopingUseCases-BuildingtheAnalysisModels-ElementsoftheAnalysisModel-AnalysisPattern -NegotiatingRequirementsValidatingRequirementsUNITIIIANALYSISMODELLING9													
Requiremen ObjectOrien BasedMode	ts Analy ted Anal ling – Cro	ysis alysis reatin	 Anal Scent g a Bel 	lysis nario naviou	Mode Base ur Mo	eling Aj ed Mode odel.	ppr elin	roaches - 1g – Flov	- Data Mo w Oriented	deling Mode	Con ling	icepts – Cl	3 — .ass
UNIT IV	DES	SIG	N ANI	D TE	ESTI	NG							9
Design Eng Design – T Oriented S Managemen	gineering esting Str oftware - nt.	g – E rategi - Val	Design ies - Te lidation	Proce esting Test	ess -D ; Tacti ting –	Design (ics - Stra - Systen	Qua ateg n T	ality - D gies Issue Festing –	esign Mode es for Conve - Art of De	el - U entiona ebuggin	ser I I and ng –	nterf d Obj Proj	ace ect ject
UNIT V	QUA	ALI	TY A	ND]	MAI	INTEN	JA]	NCE					9
Software E Process, P Managemen	volution - roject an nt- Config	- Veri ind I gurati	ification Product ion Ma	n and t-Qual nagen	Valid lity ment –	dation -C Manage – Softwa	Crit me are	ical Syste ent - Pr Cost Esti	ems Validat ocess Imp mation.	ion – N rovem CRIO I	Aetrie ent	cs foi – R	isk
	MES.	On	compl	etion	of thi	is course	s et	tudents w	ill be able to				
1 Dif	ferentiate	e the	nersner	rtive c	of var	ious soft	twa	are proces	s models	0			
$\frac{1}{2}$ Fli	the real	anire	ments f	for rea	al_time	e proble	ems		55 mouels.				
3. Co	npile a S	SRS n	ertaini	ng to i	indust	try stand	larc	ds.					
4. Cre	ate a beh	navio	ural mo	odel fr	rom th	he set of	rec	quiremen	ts.				
5. De	velop a us	ser-ir	nterface	e desig	gn for	r the give	en s	system.					
6. Ou and	tline varie	ious s e the s	softwar softwar	re met re cost	etrics a st.	and their	r co	ontext in	measuring	softwa	ire p	rogra	ıms
	ARTIC	<u>CU</u> L	LATIC	<u> </u>	MAT	RIX:							

	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	P01	P01	P01	PSO	PSO	PSO
										0	1	2	1	2	3
CO1	Μ	Н			L		Μ								Н
CO2		Н			L		Η								Η
CO3		Μ	Н		L		Μ								Η
CO4	Μ	Μ	Н		L		Η						Η		М
CO5	М		М		Н		Μ						L		М
CO6	М		М		Н		Н						L		М
(L- Lo	ow, M-	Modera	te, H-H	ligh)											
TEX	KT B	OOK	S:												
1	. Ro	oger S	. Press	sman,	"Soft	ware I	ering:	A Pr	actitio	ner's .	Appro	ach",	McGr	aw	
	Hi	ll Inter	rnatior	al edi	tion, S	eventh	editio	on, 200)9.						
2	. Ia	n Somi	mervil	le, "So	oftware	e Engi	neerin	g", Ni	nth Ed	ition, I	Pearso	n Edu	cation	, 2008	•
REF	FERI	ENCE	ES:												
1	. St	ephan	Schaci	h, "Soj	ftware	Engin	neering	g", Tai	ta McC	Graw I	Hill, 20	007.			
2	. <i>Pf</i>	leeger	and	Lawre	ence, ".	Softwa	re En	igineer	ring:	Theory	y and	Prace	tice",	Pears	son
	Ec	lucatio	n,Secc	ondEdi	ition, 2	2001.									

17S	PC3	05			DA	TAS	STRU	JCT	JRE	5			L	T	Р	C
													3	0	0	3
OBJ	ECT	IVES:														
	•	E	Be fam	iliar w	vith the	e basic	es of C	c progi	ammi	ng lan	guage	•				
	٠	E	Be exp	osed to	o the c	oncep	ts of A	ADTs								
	•	I	learn l	inear o	lata st	ructur	es – A	rrays,	list, st	ack, a	nd qu	eue.				
	٠	E	Be exp	osed to	o sorti	ng, sea	archin	g, hasl	ning a	lgorith	ms					
	•	E	Be fam	iliar w	vith the	e conc	ept of	graph	s.							
UN	IT I	A	ARRA	AYS .	AND	LIN	KED	LIS	ГS							9
Data Linea List Matr	Struc ar and Repro ices -	tures - l Binar esentat Garba	Types y Sean tion - ge Col	s of D rch - In Oper llectio	ata Str nsertic ations n and	ructure on Sort - Ty Comp	es - Ar t -Bub /pes - action	ray Ro ble Sc App	eprese ort – N licatio	ntation Iatrice ns: P	n –Op s - Sp olynoi	eratior ecial N mial A	ns - A Aatric Additi	ppli ces - ion	cati Lir -Sp	ons: iked arse
UN	IT II	S	STAC	CKS,	QUE	UES .	AND	TRE	ES							9
Stack - Op Term Repr	StackRepresentation - Operations - Applications - Expression Handling - QueueRepresentation - Operations - Types of Queues: Circular Queue – Deque - Priority Queue. TREE Terminologies - Binary Trees: Types - Representation - Traversal - Binary Search Tree Representation - Operations. UNIT III PRIORITY QUEUES AND SEARCH TREES Priority Queues - Binary Heap - Applications of Priority Queues- Heap Sort - d-Heaps														tion EES: ees:	
UN	TIT	III PRIORITY QUEUES AND SEARCH TREES												9		
Prior	ity Q	ieues – Binary Heap – Applications of Priority Queues- Heap Sort – d-Hea												Heap	ps –	
Lefti Trees	riority Queues – Binary Heap – Applications of Priority Queues- Heap Sort – d-Heaps eftist Heaps – Skew Heaps - AVL Trees- Splay Trees - B-Trees – B+ Trees – Red Blac Trees -2-3-4 trees – Tries. Applications, Expression Trees.													lack		
UN	ΤΙ	7 (GRAI	PHS												9
Grap	hTerr	ninolo	gies -	Types	of Gr	aphs -	Repr	esenta	tion -	Opera	tions -	- Trave	ersal '	Fecł	nniq	ues:
Brea	dth F	First S	Search	-Dep	th Fi	rst Se	earch.	Appl	icatio	ns: T	opolo	gical	Sort-	M	inin	num
Span Bico	ning nnecti	ivity –	– Prin Fuler	n's – Circui	Krusk its – F	indino	Algori	tnm –	· App	llCatlo nts	ns of	Deptr	1 Firs	st S	earc	:n –
UN	TV	F	HASE	IING		manie	, buon		ipone							9
Hash	Func	tion –	Separa	ate Ch	aining	g - Lin	ear Pro	obing	– Oua	dratic	Probi	ng – D	ouble	Ha	shin	1g -
Reha	shing	– Exte	endible	e Hasł	ning.	,		U				0				0
										TC	DTAL	: 45 P	PERI	ODS	5	
OUT	CON	<u>1ES:</u>	(On con	mpleti	on of t	this co	urse, s	studen	ts will	be ab	le to				
	. W	rite pr	ogram	s usin	g arra	ys and	linke	d lists.	-							
3	. D	evelop entify	the us	e of pi	sing si riority	$\frac{acks}{aueue}$	queues	s and t search	trees.							
4	. U	ndersta	and the	e use c	of grap	hs and	algor	rithms	in cor	nputer	appli	cation	s.			
5	. U	se hasł	ning fo	or sear	ching	data.	0			1	11					
CO	URS	E AR	TICU	ULA'	ΓΙΟΝ	N MA	TRI	X:								
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO	PS	0	PSO
<u>(01</u>	ц	М								0	1	2	1	2 11	-+	3 M
	11	101												Г		111
CO2	Η	L												Η		М
CO3		М	Н		Н		L						М	Η		L

CO4	Η	L					М							Η	М
CO5	Η	М					L						L	Н	М
(L- Lo	w, M-	Modera	ate, H-H	High)											
TEX	T BO	OKS:													
1	. M	ark Al	len W	eiss, '	' Data	Struct	ures a	nd Al	gorith	m Ana	alysis	in C",	Seco	nd Ed	ition,
	Pe	arson	Educa	tion, 2	2010.										
2	. Ve	enkatesan R and Lovelyn Rose S, "Data Structures", Wiley India Pvt Ltd, New													
	De	nkatesan R and Lovelyn Rose S, "Data Structures", Wiley India Pvt Ltd, New lhi, 2015.													
REF	ERE	NCES	:												
1	. Sa	laria I	R S, "	Data .	Structi	ires ai	nd Alg	gorithn	ns usir	ıg C",	Fifth	Editie	on, Kh	anna	Book
	Pı	ıblishi	ng, Ne	w Del	hi, 20	12.									
2	. El	lis Ho	orowit	z, Sai	rtaj S	ahni 🛛	and S	Sangut	hevar	Raja	sekard	ın, "I	Funda	menta	ls of
	Ca	ompute	er Alge	orithm	", Sec	ond E	dition	,Unive	rsities	Press	, 2011	!.			
3	. Je	an Pa	ul Tr	embla	iy and	d Sore	enson,	"An	Intro	ductic	on to	Data	Struc	tures	with
	Ap	plicat	ions",	McG	raw H	ill Puł	olishin	g Con	ıpany,	New L	Delhi, I	2012.			
4	A h	no, Ho	pcroft	and	Ullma	n, "Da	ata Sti	ructur	es and	l Algo	rithms	", Pe	arson	Educe	ition,
	20	11.													

•

17S	ES30	6	DI	GITA	AL P	RIN	CIPL	ES A	ND S	SYST	TEM	S	L	T	Р	C	
							DESI	GN					3	0	Δ	3	
OBJ	ECTI	VES:											5	U	U	5	
	•	Ι	earn t	he var	ious n	umbei	r syste	ms.									
	•	I	earn H	Boolea	n Alg	ebra											
	•	U	Inders	tand tl	he vari	ious lo	gic ga	ites.									
	•	E	Be fam	iliar w	vith va	rious o	combi	nation	al circ	uits.							
	•	E	Be fam	iliar w	vith de	signin	g sync	chrono	us and	l asyn	chrono	ousseq	uenti	al ci	ircui	its.	
	•	E	e exp	osed to	o desig	zning 1	using]	PLD		5		1					
UN	TI	F		EA	N AL	GEB					ATE	S				9	
						ULD										,	
famil conn chara chara Theo	ly, Sta ection acteris acteris orem -	ndard , Tris tics, M tics, 0 K ma	TTL state fetal-c CMOS ps- si	TL characteristics, Other TTL series, Open collector TTL, WiredOR/AND e TTL, Emitter-Coupled Logic family, ECL NOR/OR gate andita al-oxide semi-conductor (MOS) family, NMOS and CMOS gates andtheir IOS transmission gate circuits-Review of logic Gates, Demorgan's - simplification and representation using NAND, NOR gates. MBINATIONAL LOGIC cuits – Analysis and Design Procedures – Circuits for Arithmetic onversion – Decoders and Encoders – Multiplexers – Real Time													
UN	T II	(COM	MBINATIONAL LOGIC cuits – Analysis and Design Procedures – Circuits for Arithme												9	
Oper Appl Com	ations ication bination	,Code n of onal ci	Conv Combi rcuits	MBINATIONAL LOGIC 9 uits – Analysis and Design Procedures – Circuits for Arithmetic 9 onversion – Decoders and Encoders – Multiplexers – Real Time 10 abinational Circuits- Introduction to HDL – HDL Models of 10 its. 10													
UNI		[S	SYNC	CHRO	DNO	US SI	EQU	ENT	IAL	LOG	IC					9	
Sequ andS Circu	ential tate A uits.	Circu Assign	its – L ment	atches - Ana	s and l alysis	Flip F and I	lops – Design	Shift Proc	Regis edures	ters – s – H	Count DL f	ters-S orSec	tate I Juent	Redu ial	ictic Log	on ic	
UN	T IV	r A	SYN	ICHI	RON	OUS	SEQ	UEN	TIAI	LO	GIC					9	
Anal	ysis a	nd De	sign o	f Asy	nchroi	nous S	Sequer	tial C	ircuits	– Re	ductio	on of S	state	and	Flo	W	
	es - Ra	ice-fre	e State		$\frac{\text{gnmer}}{7 \text{ A NU}}$	ht - Ha	azards			TET					1	0	
	LLV Iand			Jemoi	AINI	odina		Tror I	VIAD	ion a	DGI nd Co	IC prrectio	<u>n</u> _		M	9	
Prog Devi	ramma ces – 2	ableLo Applic	ogic A	Array -Speci	– Pro	grami egrate	nable ad Circ	Array	y Log	ic –	Seque	ntial	Prog	rami	mab	le	
										TO	ΓAL	: 45 I	PER	IO	DS		
OU	ГСО	MES	: (On co	mpleti	on of	this co	ourse, s	studen	ts will	be ab	le to					
1	. De	esign a	ind and	alyse c	ligital	circui	ts.										
2	. S1	mplify	comp	ign up	olean	functi	ons.										
4	. Bi	ild di	vital s	vstems	s invol	ving c	ps and combir	nationa	s. al and	seque	ntial lo	ogic.					
CO	URSI	EAR		JLA	ΓΙΟΝ	MA	TRI	X:		- 140		0					
_	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO	PS	50	PSO	
CO1	L	М	Н			L	Μ			0	1	2	1 L	2 H		3	

CO2	L	Μ	Н				М						Μ	Н		
CO3	L	М	Н			L	М						Μ	L		
CO4	L	М	Н				М						Μ	Н		
(L- Lo	ow, M-	Moder	ate, H-H	ligh)												
TEX	KT B	BOOKS: M. Morris Mano and Michael D. Ciletti, "Digital Design", Fifth Edition, Pearson														
1	. M	BOOKS: M. Morris Mano and Michael D. Ciletti, "Digital Design", Fifth Edition, Pearson Elementary of the state of														
	Ec	M. Morris Mano and Michael D. Ciletti, "Digital Design", Fifth Edition, Pearson Education, 2012.														
REF	FERI	ENCI	ES:													
1	. <i>G</i> .	K. Kl	harate,	"Dig	ital El	ectror	ics",	Oxfor	d Univ	versity	Press	<i>s, 2010.</i>				
2	. Jo	hn F.	Waker	ly, "D	igital	Desig	n Prin	ciples	and H	Practic	ces", I	Fourth I	Editic	on, Pea	arson	
	Ec	lucatio	on,200	7.												
3	. <i>Cl</i>	harles	H. Rot	th Jr,	"Fund	lamen	tals of	Logic	Desig	gn", F	Fifth E	dition, .	Jaico	Publi	shing	
	He	ouse,N	Iumba	i, 200.	3.											
4	. Do	onald .	D. Giv	one, "	Digite	al Prir	nciple	s and I	Desigr	ı", Ta	ta Mc	Graw H	Hill, 2	2003.		

LABORATORY Image: Note of the image: Note o
0 0 4 2 OBJECTIVES: • Be exposed to DDL Commands • Be familiar with DML commands • Learn to create SQL Queries using nested constructs, grouping, constraints etc. • Get introduced to TCL commands • Design database along with front end application LIST OF EXPERIMENTS: Experiment the following commands on sample Case studies 1. DDL commands a. Creation of tables with appropriate integrity constraints. b. Usage of alter, drop commands. 2. 2. DML commands a. Creation using different ways. b. Usage of truncate command. 3. SQL Queries a. Study of SELECT command with different clauses. b. Nested Queries (IN and NOT IN, EXISTS and NOT EXISTS, UNIQUE and NOT UNIQUE, op ANY, op ALL, op SOME). c. NULL value and OUTER JOIN Queries. d. Aggregation Operators. e. Grouping and Ordering commands. f. Show Integrity constraints. g. Views and Indices. 4. 4. TCL commands a. Setting privileges. b. Save point, roll back commands. 5. Generation of suitable reports. 6. Implementation of suitable front end for querying and displaying the results.
OBJECTIVES: • Be exposed to DDL Commands • Be familiar with DML commands • Learn to create SQL Queries using nested constructs, grouping, constraints etc. • Get introduced to TCL commands • Design database along with front end application LIST OF EXPERIMENTS: Experiment the following commands on sample Case studies 1. DDL commands a. Creation of tables with appropriate integrity constraints. b. Usage of alter, drop commands. 2. DML commands a. Data Insertion using different ways. b. Usage of truncate command. 3. SQL Queries a. Study of SELECT command with different clauses. b. Nested Queries (IN and NOT IN, EXISTS and NOT EXISTS, UNIQUE and NOT UNIQUE, op ANY, op ALL, op SOME). c. NULL value and OUTER JOIN Queries. d. Aggregation Operators. e. Grouping and Ordering commands. f. Show Integrity constraints. g. Views and Indices. 4. TCL commands a. Setting privileges. b. Save point, roll back commands. 5. Generation of suitable reports. 6. Implementation of suitable front end for querying and displaying the results. <
 Be exposed to DDL Commands Be familiar with DML commands Learn to create SQL Queries using nested constructs, grouping, constraints etc. Get introduced to TCL commands Design database along with front end application LIST OF EXPERIMENTS: Experiment the following commands on sample Case studies 1. DDL commands a. Creation of tables with appropriate integrity constraints. b. Usage of alter, drop commands. 2. DML commands a. Data Insertion using different ways. b. Usage of truncate command. 3. SQL Queries a. Study of SELECT command with different clauses. b. Nested Queries (IN and NOT IN, EXISTS and NOT EXISTS, UNIQUE and NOT UNIQUE, op ANY, op ALL, op SOME). c. NULL value and OUTER JOIN Queries. d. Aggregation Operators. e. Grouping and Ordering commands. f. Show Integrity constraints. g. Views and Indices. 4. TCL commands a. Setting privileges. b. Save point, roll back commands. 5. Generation of suitable front end for querying and displaying the results.
 Be familiar with DML commands Learn to create SQL Queries using nested constructs, grouping, constraints etc. Get introduced to TCL commands Design database along with front end application LIST OF EXPERIMENTS: Experiment the following commands on sample Case studies 1. DDL commands a. Creation of tables with appropriate integrity constraints. b. Usage of alter, drop commands. 2. DML commands a. Data Insertion using different ways. b. Usage of truncate command. 3. SQL Queries a. Study of SELECT command with different clauses. b. Nested Queries (IN and NOT IN, EXISTS and NOT EXISTS, UNIQUE and NOT UNIQUE, op ANY, op ALL, op SOME). c. NULL value and OUTER JOIN Queries. d. Aggregation Operators. e. Grouping and Ordering commands. f. Show Integrity constraints. g. Views and Indices. TCL commands a. Setting privileges. b. Save point, roll back commands. Generation of suitable front end for querying and displaying the results.
 Learn to create SQL Queries using nested constructs, grouping, constraints etc. Get introduced to TCL commands Design database along with front end application LIST OF EXPERIMENTS: Experiment the following commands on sample Case studies DDL commands Creation of tables with appropriate integrity constraints. Usage of alter, drop commands. DML commands
 Get introduced to TCL commands Design database along with front end application LIST OF EXPERIMENTS: Experiment the following commands on sample Case studies DDL commands Creation of tables with appropriate integrity constraints. Usage of alter, drop commands. DML commands Data Insertion using different ways. Usage of truncate command. SQL Queries Study of SELECT command with different clauses. Not UNIQUE, op ANY, op ALL, op SOME). NULL value and OUTER JOIN Queries. Aggregation Operators. Grouping and Ordering commands. Show Integrity constraints. Views and Indices. TCL commands Setting privileges. Save point, roll back commands. Generation of suitable front end for querying and displaying the results.
 Design database along with front end application LIST OF EXPERIMENTS: Experiment the following commands on sample Case studies DDL commands
LIST OF EXPERIMENTS: Experiment the following commands on sample Case studies 1. DDL commands a. Creation of tables with appropriate integrity constraints. b. Usage of alter, drop commands. 2. DML commands a. Data Insertion using different ways. b. Usage of truncate command. 3. SQL Queries a. Study of SELECT command with different clauses. b. Nested Queries (IN and NOT IN, EXISTS and NOT EXISTS, UNIQUE and NOT UNIQUE, op ANY, op ALL, op SOME). c. NULL value and OUTER JOIN Queries. d. Aggregation Operators. e. Grouping and Ordering commands. f. Show Integrity constraints. g. Views and Indices. 4. TCL commands a. Setting privileges. b. Save point, roll back commands. 5. Generation of suitable reports. 6. Implementation of suitable front end for querying and displaying the results.
 Experiment the following commands on sample Case studies 1. DDL commands a. Creation of tables with appropriate integrity constraints. b. Usage of alter, drop commands. 2. DML commands a. Data Insertion using different ways. b. Usage of truncate command. 3. SQL Queries a. Study of SELECT command with different clauses. b. Nested Queries (IN and NOT IN, EXISTS and NOT EXISTS, UNIQUE and NOT UNIQUE, op ANY, op ALL, op SOME). c. NULL value and OUTER JOIN Queries. d. Aggregation Operators. e. Grouping and Ordering commands. f. Show Integrity constraints. g. Views and Indices. 4. TCL commands a. Setting privileges. b. Save point, roll back commands. 5. Generation of suitable front end for querying and displaying the results.
TOTAL : 60 PERIODS
UDITUDIMES: Un completion of this course, students will be able to
2 Design applications to test nested and joint queries
3. Implement simple applications that use Views.
4. Implement applications that require a Front End Tool and Report Generations.
5. Critically analyze the use of Tables, Views, functions and Procedures for a realistic
Database application.
COURSE ARTICULATION MATRIX:
PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO1 PO1 PO1 PO1 PSO PSO PSO PSO 0 1 2 3
CO1 H M M M M I I I M M
CO2 M H M L H M M

CO3		Н	Н		L								Н		М
CO4	М	М					Η						Н		М
CO5	Н	Н					М						Н		М
(L- Lo	ow, M-	Moder	ate, H-H	High)											
REF	FERI	ENCI	ES:												
1.	Ja	mes l	R. Gr	off, P	Paul N	V. We	inberg	g and	Andy	, Opp	el, "!	SQL:	The	Com	plete
	Re	ferenc	ce", Th	hird E	dition,	McGi	raw-H	ill Edı	ication	n India	a Pvt 1	Ltd, 20)11.		

17S	PC3()8	0	BJEC	CT O	RIEN	TEL) PR(OGR	AMN	IING	ſ	L	T	P	С
				I)RA1	TOR	Y US	ING	C++						-
				_						•••			0	0	4	2
OBJ	ECTI	VES:											U	U	•	-
	•	G	et Intro	oduced	d to the	e objec	ct orie	nted p	rogran	nming	using	C++				
	•	Le	earn to	create	e simp	le C+-	+ prog	rams u	sing I	O stat	ement	s.				
	•	В	e fami	liar wi	th con	cepts	of ove	rloadir	ng in C	C++						
	•	B	e expo	sed to	imple	menta	tion of	Inhe	ritance	eusing	; C++					
	•	Eı	nable e	effectiv	ve use	of ten	plates	s, virtu	al fun	ctions	etc.					
LIST	[OF]	EXPE	RIMF	ENTS:												
In 1 2 3 4 5 6 7 8 9 1 1 1 1 1 1 1 1 1 1 1	mplen . Clas . Func . Call . Inlin . Stati . Cons . Frier . Obje . Arra 0. Sta 1. Con 2. Op 3. Dat 4. Inh 5. Vir 6. Sec 7. Ter	nent pr ses and tion C by val e Func c Data stant F nd func ects as y of O tic and nstruct erator ca Con eritanc tual fu puentia nplate	ogram d Obje overloa ue and ction. and M unctio ction. Argun bjects. l Dyna or and Overlo version ce. nction l and l Funct	as to de ects. ading. I Call I Aembe ns. mic O I Destr bading n. s. Rando ions a	emons by Ref er Func bjects uctor. m Acc nd Ter	trate Ference ction.	e. g of Fil Class	les.								
		•				-			Т)TAI	• 60	PFR		S		
OU	ГСО	MFC	• 1	n cor	nnleti	on of t	his cou	irce ef	udent	s will	$2 \cdot 00$		100	0		
		rite pr	• · ·	$\frac{31001}{0}$			hiecte		uuent	5 W111		- 10				
2	. ••• Im	nleme	ogram	s using rloadi	5 Class	ione ir	n prog	rame								
3	. III. 	se file	nrocee	sing fi	unction	$\frac{10115}{11}$ II	roorar	ns								
Δ 	. 08 W	rite oe	neric 1	ornora	ms	no m þ	nograf	113.								
		E AP				MA'	TRIN	ζ.								
	P01	PO2	PO3	PO4	P05	PO6	P07	PO8	PO9	PO1	PO1	PO1	PSO	PSO	F	so
										0	1	2	1	2	З	3
CO1	Н	М	L										Η		Ι	
CO2	М			Н			L						Η	Μ		
CO3	М	Η		L			М						Η		Ι	

CO4	М	Н		L			М						Н	M	
(L- Lo	ow, M-	Modera	ate, H-H	ligh)											
REFERENCES :															
1	. Herbert Schildt, "C++: the Complete Reference", Tata McGraw Hill Publishing Company, New Delhi, 2011.														
2	. Su	Sumita Arora, "Practical World of C++", Dhanpat Rai & CO.(Pvt.)Ltd, 2005.													

17S	VSES309 DIGITAL PRINCIPLES AND SYSTEMS											S	L	Τ	Р	C	
					DES	IGN	LAB	ORA	TOF	RY							
													0	0	4	2	
OBJ	ECTI	VES:		1.1		1											
	•	U	nderst	and th	e vari	ous log	gic ga	tes.									
	•	B	e fami	liar w	ith var	ious c	ombir	ationa	l circu	uits.							
	٠	U	nderst	and th	e vari	ous co	mpon	ents us	sed in	the de	sign o	f digita	al co	mpu	ters.		
	•	В	e expo	osed to	seque	ential o	circuit	S									
	•	L	earn to	o use H	IDL.												
LIST	r of e	EXPE	RIM	ENTS													
1	. Veri	ficatio	on of E	Boolea	in The	orems	using	basic	gates.				_				
2	. Desi	gn an	d impl	lemen	tation	of con	nbinat	ional c	circuit	s using	g basic	gates	for a	rbit	rary		
11 3	Inctior Desi	18, CO on an	de con	lemen	8. t a 4 -h	it hing	rv ado	ler / si	uhtract	or							
4	. Desi	gn an	d impl	lemen	t Parit	v gene	rator /	check	ker.	.01.							
5	. Desi	gn an	d impl	lemen	t Magi	nitude	Comp	arator									
6	6. Design and implement an application using multiplexers.7. Design and implement shift –registers.																
7	 Design and implement shift –registers. Design and implement synchronous counters. 																
8	8. Design and implement synchronous counters.9. Design and implement asynchronous counters.																
1	10. Coding combinational circuits using HDL.																
11. Coding sequential circuits using HDL.																	
12. Design and implementation of a simple digital system (Mini Project).																	
TOTAL : 60 PERIODS																	
OU'	ΓΟΟΙ	MES	: (On co	mpleti	on of	this co	ourse, s	studen	ts will	be ab	le to					
1	. Use	e theo	orems a	and K	-maps	to sin	plify	boolea	in fund	ctions.							
2	. De	sign a	und im	pleme	nt con	nbinat	ional o	circuit	s like a	arithm	etic ci	rcuits,	deco	lecoder/encoder			
3	. An	alyze	a give	en digi	tal cir	cuit –	combi	nation	al and	l seque	ential.	4040.0			1		
4	. De	sign s	synchr	onous	seque	ential (circuit	s like	regist	ers an	a cour	iters a	na a	sync	nron	ous	
5	. De	sign a	and im	pleme	nt a si	mple o	digital	svster	n for a	a giver	1 spec	ificatio	ons.				
CO	URSE		TICU	JLA'	ΓΙΟΝ	MA	TRI	X:		0	T						
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO1	PO1	PO1	PSO	PS	0	PSO	
601		М	TT		м		т			0	1	2	1	2		3 r	
01		IVI	н		M		L							н		L	
CO2	М	Н					L						М	Η			
602	М	11			т		М							TT		r	
03	IVI	н			L		IVI							п		L	
CO4	М	Н					L						М	Η			
CO5		М	Н		М									Н		L	
(L-Lo	ow, M- 1	Moder	ate, H-F	ligh)											•		
REF	FERE	NCI	ES:					-		a = :		. –					
1	. Ste VH	phen 'DL",	Browr Third	ı, Zvol <u>E</u> diti	nko Vr <u>on</u> , Ma	anesio Graw	c, "Fur <u>H</u> ill Ir	idame <u>idi</u> a, 2	ntals 6 2 <u>01</u> 2.	of Dig	ital Lo	gic De	esign	Wit	h		

SEMESTER IV

THEORY 3 2 0 OBJECTIVES: The students should be made to To provide the required mathematical support in real life problems and develop probabilistic models which can be used in several areas of science and engineering. UNIT I RANDOM VARIABLES 9+6 Discrete and continuous random variables – Moments – Moment generating functions – Binomial, Poisson, Geometric, Uniform, Exponential, Gamma and Normal distributions. UNIT II TWO DIMENSIONAL RANDOM VARIABLES 9+6 Joint distributions – Marginal and conditional distributions – Covariance – Correlation and Linear regression – Transformation of random variables. UNIT II RANDOM PROCESSESS 9+6 Classification – Stationary process – Markov process - Poisson process – Discrete parameter Markov chain – Chapman Kolmogorov equations – Limiting distributions. UNIT IV QUEUEING MODELS 9+6 Markovian queues – Birth and Death processes – Single and multiple server queueing models – Little's formula - Queues with finite waiting rooms – Queues with impatient customers: Balking and reneging. 9+6 ADVANCED QUEUEING MODELS<
OBJECTIVES: 7 0 4 OBJECTIVES: The students should be made to 7
The students should be made to • To provide the required mathematical support in real life problems and develop probabilistic models which can be used in several areas of science and engineering. UNIT I RANDOM VARIABLES 9+6 Discrete and continuous random variables – Moments – Moment generating functions – Binomial, Poisson, Geometric, Uniform, Exponential, Gamma and Normal distributions. 9+6 UNIT II TWO DIMENSIONAL RANDOM VARIABLES 9+6 Joint distributions – Marginal and conditional distributions – Covariance – Correlation and Linear regression – Transformation of random variables. 9+6 Classification – Stationary process – Markov process - Poisson process – Discrete parameter Markov chain – Chapman Kolmogorov equations – Limiting distributions. 9+6 Markovian queues – Birth and Death processes – Single and multiple server queueing models – Little's formula - Queues with finite waiting rooms – Queues with impatient customers: Balking and reneging. 9+6 WINT V ADVANCED QUEUEING MODELS 9+6 Finite source models - M/G/1 queue – Pollaczek Khinchin formula - M/D/1 and M/E _K /1 as special cases – Series queues – Open Jackson networks. TOTAL (L : 45 + T : 30): 75 PERIODS OUTCOMES: On completion of this course, students will be able to 1. Have a fundamental knowledge of the probability concepts.
• To provide the required mathematical support in real life problems and develop probabilistic models which can be used in several areas of science and engineering. UNIT I RANDOM VARIABLES 9+6 Discrete and continuous random variables – Moments – Moment generating functions – Binomial, Poisson, Geometric, Uniform, Exponential, Gamma and Normal distributions. 9+6 UNIT II TWO DIMENSIONAL RANDOM VARIABLES 9+6 Joint distributions – Marginal and conditional distributions – Covariance – Correlation and Linear regression – Transformation of random variables. 9+6 Classification – Stationary process – Markov process - Poisson process – Discrete parameter Markov chain – Chapman Kolmogorov equations – Limiting distributions. 9+6 Markovian queues – Birth and Death processes – Single and multiple server queueing models – Little's formula - Queues with finite waiting rooms – Queues with impatient customers: Balking and reneging. 9+6 UNIT V ADVANCED QUEUEING MODELS 9+6 Finite source models - M/G/1 queu – Pollaczek Khinchin formula - M/D/1 and M/E _K /1 as special cases – Series queues – Open Jackson networks. 9+6 OUTCOMES: On completion of this course, students will be able to 1. 1. Have a fundamental knowledge of the probability concepts. 1
and engineering. UNIT I RANDOM VARIABLES 9+6 Discrete and continuous random variables – Moments – Moment generating functions – Binomial, Poisson, Geometric, Uniform, Exponential, Gamma and Normal distributions. 9+6 UNIT II TWO DIMENSIONAL RANDOM VARIABLES 9+6 Joint distributions – Marginal and conditional distributions – Covariance – Correlation and Linear regression – Transformation of random variables. 9+6 UNIT III RANDOM PROCESSESS 9+6 Classification – Stationary process – Markov process – Poisson process – Discrete parameter Markov chain – Chapman Kolmogorov equations – Limiting distributions. 9+6 Markovian queues – Birth and Death processes – Single and multiple server queueing models – Little's formula - Queues with finite waiting rooms – Queues with impatient customers: Balking and reneging. 9+6 UNIT V ADVANCED QUEUEING MODELS 9+6 Finite source models - M/G/1 queue – Pollaczek Khinchin formula - M/D/1 and M/E _K /1 as special cases – Series queues – Open Jackson networks. 9+6 OUTCOMES: On completion of this course, students will be able to 1. Have a fundamental knowledge of the probability concepts. 0 1.
Discrete and continuous random variables – Moments – Moment generating functions – Binomial, Poisson, Geometric, Uniform, Exponential, Gamma and Normal distributions. UNIT II TWO DIMENSIONAL RANDOM VARIABLES 9+6 Joint distributions – Marginal and conditional distributions – Covariance – Correlation and Linear regression – Transformation of random variables. 9+6 UNIT III RANDOM PROCESSESS 9+6 Classification – Stationary process – Markov process - Poisson process – Discrete parameter Markov chain – Chapman Kolmogorov equations – Limiting distributions. 9+6 UNIT IV QUEUEING MODELS 9+6 Markovian queues – Birth and Death processes – Single and multiple server queueing models – Little's formula - Queues with finite waiting rooms – Queues with impatient customers: Balking and reneging. 9+6 VINIT V ADVANCED QUEUEING MODELS 9+6 Finite source models - M/G/1 queue – Pollaczek Khinchin formula - M/D/1 and M/E _K /1 as special cases – Series queues – Open Jackson networks. 9+6 OUTCOMES: On completion of this course, students will be able to 1. Have a fundamental knowledge of the probability concepts. 0 1.
Binomial, Poisson, Geometric, Uniform, Exponential, Gamma and Normal distributions. 9+6 Joint distributions – Marginal and conditional distributions – Covariance – Correlation and Linear regression – Transformation of random variables. 9+6 UNIT III RANDOM PROCESSESS 9+6 Classification – Stationary process – Markov process – Poisson process – Discrete parameter Markov chain – Chapman Kolmogorov equations – Limiting distributions. 9+6 UNIT IV QUEUEING MODELS 9+6 Markovian queues – Birth and Death processes – Single and multiple server queueing models – Little's formula - Queues with finite waiting rooms – Queues with impatient customers: Balking and reneging. 9+6 UNIT V ADVANCED QUEUEING MODELS 9+6 Finite source models - M/G/1 queue – Pollaczek Khinchin formula - M/D/1 and M/E _K /1 as special cases – Series queues – Open Jackson networks. 9+6 OUTCOMES: On completion of this course, students will be able to 1. 1. Have a fundamental knowledge of the probability concepts. 0
UNIT IITWO DIMENSIONAL RANDOM VARIABLES9+6Joint distributions – Marginal and conditional distributions – Covariance – Correlation and Linear regression – Transformation of random variables.Ovariance – Correlation and Linear regression – Transformation of random variables.9+6UNIT IIIRANDOM PROCESSESS9+6Classification – Stationary process – Markov process - Poisson process – Discrete parameter Markov chain – Chapman Kolmogorov equations – Limiting distributions.9+6UNIT IVQUEUEING MODELS9+6Markovian queues – Birth and Death processes – Single and multiple server queueing models – Little's formula - Queues with finite waiting rooms – Queues with impatient customers: Balking and reneging.9+6UNIT VADVANCED QUEUEING MODELS9+6Finite source models - M/G/1 queue – Pollaczek Khinchin formula - M/D/1 and M/E _K /1 as special cases – Series queues – Open Jackson networks.TOTAL (L : 45 + T : 30): 75 PERIODSOUTCOMES:On completion of this course, students will be able to 1.In adamental knowledge of the probability concepts.
Joint distributions – Marginal and conditional distributions – Covariance – Correlation and Linear regression – Transformation of random variables. 9+6 UNIT III RANDOM PROCESSESS 9+6 Classification – Stationary process – Markov process - Poisson process – Discrete parameter Markov chain – Chapman Kolmogorov equations – Limiting distributions. 9+6 UNIT IV QUEUEING MODELS 9+6 Markovian queues – Birth and Death processes – Single and multiple server queueing models – Little's formula - Queues with finite waiting rooms – Queues with impatient customers: Balking and reneging. 9+6 UNIT V ADVANCED QUEUEING MODELS 9+6 Finite source models - M/G/1 queue – Pollaczek Khinchin formula - M/D/1 and M/E _K /1 as special cases – Series queues – Open Jackson networks. 9+6 OUTCOMES: On completion of this course, students will be able to 1. 1. Have a fundamental knowledge of the probability concepts. 1
Linear regression – Transformation of random variables. Parts UNIT III RANDOM PROCESSESS 9+6 Classification – Stationary process – Markov process - Poisson process – Discrete parameter Markov chain – Chapman Kolmogorov equations – Limiting distributions. 9+6 UNIT IV QUEUEING MODELS 9+6 Markovian queues – Birth and Death processes – Single and multiple server queueing models – Little's formula - Queues with finite waiting rooms – Queues with impatient customers: Balking and reneging. 9+6 UNIT V ADVANCED QUEUEING MODELS 9+6 Finite source models - M/G/1 queue – Pollaczek Khinchin formula - M/D/1 and M/E _K /1 as special cases – Series queues – Open Jackson networks. 9+6 OUTCOMES: On completion of this course, students will be able to 1. 1. Have a fundamental knowledge of the probability concepts. 1
UNIT III RANDOM PROCESSESS 9+6 Classification – Stationary process – Markov process - Poisson process – Discrete parameter Markov chain – Chapman Kolmogorov equations – Limiting distributions. UNIT IV QUEUEING MODELS 9+6 Markovian queues – Birth and Death processes – Single and multiple server queueing models – Little's formula - Queues with finite waiting rooms – Queues with impatient customers: Balking and reneging. UNIT V ADVANCED QUEUEING MODELS 9+6 Finite source models - M/G/1 queue – Pollaczek Khinchin formula - M/D/1 and M/E _K /1 as special cases – Series queues – Open Jackson networks. 9+6 OUTCOMES: On completion of this course, students will be able to 1. Have a fundamental knowledge of the probability concepts. 9+6
Classification – Stationary process – Markov process – Poisson process – Discrete parameter Markov chain – Chapman Kolmogorov equations – Limiting distributions. UNIT IV QUEUEING MODELS 9+6 Markovian queues – Birth and Death processes – Single and multiple server queueing models – Little's formula - Queues with finite waiting rooms – Queues with impatient customers: Balking and reneging. UNIT V ADVANCED QUEUEING MODELS 9+6 Finite source models - M/G/1 queue – Pollaczek Khinchin formula - M/D/1 and M/E _K /1 as special cases – Series queues – Open Jackson networks. 9+6 OUTCOMES: On completion of this course, students will be able to 1. Have a fundamental knowledge of the probability concepts. Procest
Initial Kolmogorov equations – Enhling distributions. UNIT IV QUEUEING MODELS 9+6 Markovian queues – Birth and Death processes – Single and multiple server queueing models – Little's formula - Queues with finite waiting rooms – Queues with impatient customers: Balking and reneging. UNIT V ADVANCED QUEUEING MODELS 9+6 Finite source models - M/G/1 queue – Pollaczek Khinchin formula - M/D/1 and M/E _K /1 as special cases – Series queues – Open Jackson networks. 9+6 OUTCOMES: On completion of this course, students will be able to 1. Have a fundamental knowledge of the probability concepts.
Markovian queues – Birth and Death processes – Single and multiple server queueing models – Little's formula - Queues with finite waiting rooms – Queues with impatient customers: Balking and reneging. UNIT V ADVANCED QUEUEING MODELS 9+6 Finite source models - M/G/1 queue – Pollaczek Khinchin formula - M/D/1 and M/E _K /1 as special cases – Series queues – Open Jackson networks. TOTAL (L : 45 + T : 30): 75 PERIODS OUTCOMES: On completion of this course, students will be able to 1. Have a fundamental knowledge of the probability concepts. Impact Series (Impact)
Markovian queues – Birth and Death processes – Single and multiple server queueing models – Little's formula - Queues with finite waiting rooms – Queues with impatient customers: Balking and reneging. UNIT V ADVANCED QUEUEING MODELS 9+6 Finite source models - M/G/1 queue – Pollaczek Khinchin formula - M/D/1 and M/E _K /1 as special cases – Series queues – Open Jackson networks. 9+6 TOTAL (L : 45 + T : 30): 75 PERIODS OUTCOMES: 0n completion of this course, students will be able to 1. Have a fundamental knowledge of the probability concepts.
Difference ADVANCED QUEUEING MODELS 9+6 Finite source models - M/G/1 queue – Pollaczek Khinchin formula - M/D/1 and M/E _K /1 as special cases – Series queues – Open Jackson networks. TOTAL (L : 45 + T : 30): 75 PERIODS OUTCOMES: On completion of this course, students will be able to On completion of the probability concepts.
UNIT V ADVANCED QUEUEING MODELS 9+6 Finite source models - M/G/1 queue – Pollaczek Khinchin formula - M/D/1 and M/E _K /1 as special cases – Series queues – Open Jackson networks. M/E/1 as M/E/1 as TOTAL (L:45 + T:30):75 PERIODS OUTCOMES: On completion of this course, students will be able to 1. Have a fundamental knowledge of the probability concepts. Image: Concepts in the second state is a second state in the
Finite source models - M/G/1 queue – Pollaczek Khinchin formula - M/D/1 and M/E _K /1 as special cases – Series queues – Open Jackson networks. TOTAL (L : 45 + T : 30): 75 PERIODS OUTCOMES: 0 On completion of this course, students will be able to 1. Have a fundamental knowledge of the probability concepts.
special cases – Series queues – Open Jackson networks. TOTAL (L: 45 + T: 30): 75 PERIODS OUTCOMES: On completion of this course, students will be able to 1. Have a fundamental knowledge of the probability concepts.
TOTAL (L: 45 + T: 30): 75 PERIODS OUTCOMES: On completion of this course, students will be able to 1. Have a fundamental knowledge of the probability concepts.
OUTCOMES: On completion of this course, students will be able to 1. Have a fundamental knowledge of the probability concepts.
1. Have a fundamental knowledge of the probability concepts.
2. Acquire skills in analyzing queueing models.
3. Understand and characterize phenomenon which evolve with respect to time in a
COUDSE ADTICULATION MATDIX.
PO1 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO1 PO1 PO1 PSO PSO PSO
CO1 M M H L H M
CO2 M H M L H CO2 M H M H
Low M. Moderate H High) H L H M
TEXT BOOKS:
1. Ibe.O.C., "Fundamentals of Applied Probability and Random Processes", 2 nd Edition,
Academic press (Elsevier), 2014.
 Academic press (Elsevier), 2014. 2. Gross. D., Harris. C.M., "Fundamentals of Queueing Theory", 4th Edition, John Wiley and Sons, 2008.

1. Robertazzi T, "Computer Networks and Systems: Queueing Theory and Performance Evaluation", 3rd Edition, Springer, 2006.

2. Taha H.A., "Operations Research", 10th Edition, Pearson Education, India, 2017.

3. Trivedi.K.S, "Probability and Statistics with Reliability, Queueing and Computer Science Applications", 2nd Edition, John Wiley and Sons, 2016.

4. *Hwei Hsu, "Schaum's Outline of Theory and Problems of Probability, Random Variables and Random Processes", 3rd Edition, Tata Mc Graw Hill Edition, New Delhi, 2014.*

5. *Yates. R.D., Goodman. D.J., "Probability and Stochastic Processes", 3rd Edition, Wiley India Pvt. Ltd., Bangalore, 2014.*

OBJECTIVES: 3 0 0 3 • To understand the underlying principles, techniques and approaches in													
OBJECTIVES: • To understand the underlying principles, techniques and approaches in													
• To understand the underlying principles, techniques and approaches in operating systems.													
operating systems.													
To Learn functionality and processing of program execution													
• To understand various memory management Schemes.													
• To know how operating system interact and provides services for execution of application software.													
• To Learn the basics of Linux system and perform administrative tasks on Linux Servers													
UNIT I OPERATING SYSTEMS OVERVIEW 9													
Introduction to operating systems – Computer system organization, architecture –													
Operatingsystem structure, operations – Process, memory, storage management – Protection													
and security– Distributed systems – Computing Environments – Open-source operating													
systems – OSservices – User operating-system interface – System calls – Types – System													
programs – OS structure – OS generation – System Boot – Process concept, scheduling -													
Operations on processes – Cooperating processes – Inter-process communication – Examples –													
Multithreadingmodels – Thread Libraries – Threading issues – OS examples.													
UNIT II PROCESS MANAGEMENT 9													
Basic concepts – Scheduling criteria – Scheduling algorithms – Thread scheduling -													
Multipleprocessor scheduling - Operating system examples - Algorithm Evaluation - The													
critical-section problem - Peterson's solution - Synchronization hardware -Semaphores -													
Classic problems of synchronization– Critical regions – Monitors –Synchronization examples													
– Deadlocks – System model – Deadlock characterization – Methods for handling deadlocks –													
Deadlock Prevention – Deadlock Avoidance – Deadlock detection – Recovery from deadlock.													
UNIT III STORAGE MANAGEMENT 9													
Mamory Management Swapping Contiguous memory allocation Deging Segmentation													
Example: The Intel Dentium Virtual Memory Background Demand paging Convert													
-Example. The line Fentium - Vintual Memory. Dackground – Demand paging – Copy of write Page replacement Allocation of frames. Threshing													
White - Fage replacement - Anocation of manies - Thrashing.													
UNITIV I/O SYSTEMS													
File concept – Access methods – Directory structure – File-system mounting – Protection –													
Directory implementation – Allocation methods – Free-space management – Disk scheduling													
-Disk management - Swap-space management - Protection.													
UNIT V CASE STUDY 9													
The Linux System - History - Design Principles - Kernel Modules - Process Management -													
Scheduling - Memory management - File systems - Input and Output - Inter-													
processCommunication – Network Structure – Security – Windows 10 – History – Design													
Principles -System Components - Terminal Services and Fast User - File system -													
Networking. Mac OS – Kernel -X Structure- Debugging –IPC in Mac OS.													
TOTAL : 45 PERIODS													
OUTCOMES: On completion of this course, students will be able to													
1. Articulate the main concepts, key ideas, strengths and limitations of operating													
systems.													
2. Explain the core issues of operating systems.													
3. Know the usage and strengths of various algorithms of operating systems.													

CO	URSI	E AR	TICU	JLA'	FION	I MA	TRL	X:							
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO
										0	1	2	1	2	3
CO1	М	Н		М	L								Η		М
CO2	Η	М		Н	L		М						Η		М
CO3	Η	М		М	L								М		Η
(L- Low, M- Moderate, H-High)															
TEXT BOOKS:															
1. Abraham Silberschatz, Peter B. Galvin, Greg Gagne," Operating System Concepts															
Essentials", John Wiley & Sons Inc., 2010.															
REI	REFERENCES:														
1	. An	ndrew	S. Ta	inenba	um,	"Mode	ern O	perati	ng Sy	stems	", Sec	cond i	Edition	ı, Ade	dison
	W	esley, 1	2001.					-							
2	. D	M Dh	amdhe	ere, "C	Dperat	ing Sy	stems.	: A Co	ncept	based	l Appr	oach"	, Seco	nd Ed	ition,
	Ta	taMc(GrawE	lill Ed	ucatio	n, 200)7.		-						
3	. <i>Cl</i>	narles	Crowl	ley, "C	Operat	ing Sy	stems.	: A De	sign-(Drient	ed App	proach	", Tat	a Mc	Graw
	Hi	llEduc	cation,	1996	,				-						
4	. Wi	illiam	Stalli	ngs, "	<i>Operc</i>	ting S	System	s: Int	ernals	and	Desig	n Prin	ciples	", Se	venth
	Ea	lition, l	Prenti	ce Hal	l, 201	1.	-				Ũ		-		

17SPC403	COMPUTER ARCHITECTURE AND	L	Т	Р	C								
	ORGANIZATION												
		3	0	0	3								
OBJECTIVE	<u>S:</u>												
•	To understand Memory addressing modes used by the instruct	ions	and	to									
	expose the major differentials of RISC and CISC architectural	chai	racte	eristic	cs								
	with performance evaluation of CPU.		and	to.									
•	perform operations like addition and subtraction of signed integrations	gers	ren	resen	ted								
	multiplication and floating point addition.	5013	Tep		icu								
•	To understand Organization of a computer system including th	e Cl	PU d	lata									
	path and control												
•	To understand Concept of pipelining and the various hazards t	hat a	arise	in a									
	pipeline and the typical solutions to the hazards.												
•	• To understand Concept of memory Technologies and Parallelism and Memory Hierarchies.												
 Hierarchies. To understand Concepts of Multicore and Shared Memory Multiprocessors. 													
•	To understand Concepts of Multicore and Shared Memory Mu	ltıpr	oces	sors									
UNIT I	FUNDAMENTALS				9								
Functional Un	its of a Digital Computer – Hardware – Software Interface –	Гran	slati	on fi	om								
aHigh Level Language to the Hardware Language – Instruction Set Architecture – Styles and Features – RISC and CISC Architectures – Performance Metrics – Amdabl's Law –													
andFeatures – RISC and CISC Architectures – Performance Metrics – Amdahl's Law – CaseStudies of ISA.													
	A RITHMETIC FOR COMPLITERS				0								
Addition and S	Subtraction – East Adders – Binary Multiplication - Binary Divis	sion	-F	oatir	<u></u> 1σ								
Point Number	6 – Representation, Arithmetic Operations.	51011	11	outin	5								
UNIT III	BASIC PROCESSING UNIT				9								
Components o	f the Processor – Data path and Control – Execution of a Comp	lete	Inst	ructi	on–								
Hardwired and	d Micro programmed Control. Instruction Level Parallelism –	Bas	sic C	Conce	epts								
ofPipelining -	Pipelined Implementation of Data path and Control - Hazar	rds -	– St	ructu	ral,								
Dataand Contr	ol Hazards – Exception Handling.			1									
UNIT IV	MEMORY AND I/O			<u> </u>	9								
Need for a l	Hierarchical Memory System – Types and Characteristics	of I	Men	orie	s –								
ManagementT	echniques Associative Memories Accessing I/O devices	ry I	- J	ram	ory								
Input/Output -	Interrupts – Direct Memory Access	- 1	liug	Tann	neu								
UNIT V	ILP AND PARALLEL PROCESSING				9								
Exploitation	of more ILP – Dynamic Scheduling – Speculation –	Mu	ltipl	e Is	sue								
Processors.Par	allel Processing - SISD, MIMD, SIMD, SPMD and Vector	Arc	hite	cture	s –								
Hardware.Mul	tithreading- Shared Memory Multiprocessors – Multicore	e P	roce	ssors									
GraphicsProce	ssing Units. Study of a Basic Architectural Simulator.												
	TOTAL : 45 PER) S										
OUTCOMI	ES: On completion of this course, students will be able to												
1. Identi	fy the functional units of a computer system and their operation.												
2. Point	out the various metrics of performance.												
3. Critic	ally analyze the different types of ISA styles.												
4. Expla	in the data path and control path implementation of a processor.												

5	. [Ľ	iscuss	the im	pleme	entatio	ns of v	various	s funct	ional	units.					
6	. P	oint ou	t the c	haract	eristic	s of th	e men	nory a	nd I/O) syste	ms an	d discu	uss the	eir des	ign.
CO	URS	E AR	TICU	ULA'	ΓΙΟΝ	I MA	TRE	X:							
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO
					T					0	1	2	1	2	3
CO1	Н	M		М	L								н		М
CO2	Н	М	М	М	L								Н		М
CO3	М	Н		М	L									Н	М
CO4	М	Н	М	М	L								Н		М
CO5	Н	М		М	L								Н		М
CO6	Н	М		М	L								Н		М
(L- Low, M- Moderate, H-High)															
TEXT BOOKS:															
1	1. David A. Patterson and John L. Hennessy, "Computer Organization and Design: The														
	H	lardwar	e/Soft	ware	Interfa	.ce", F	ourth	Editio	n, Mo	rgan k	Kaufm	ann / I	Elsevie	er, 200	19.
REF	FER	ENCI	ES:												
1	. 0	Carl Ha	mache	er, Zvo	onko	Vrane	sic, So	afwat	Zaky d	and N	araig	Manji	kian,	"Com	puter
	0	Organiz	ation a	and Er	nbedd	ed Sys	tems"	, Sixth	Editi	on, Ta	ta Mc	Graw	Hill, 2	2012.	
2	. И	Villiam	Sta	llings,	"(lompu	ter	Organ	izatio	n a	nd	Archit	ecture	e,Desig	gning
2	fo	orPerfo	rmanc	$\frac{2e^{2}}{3}, \frac{5i}{3}$	xth Ea	lition,	Pears	on Edi	ucatio	n, 200	<u>13.</u>	" TL:	1 F	1:4:	Tutu
3	. J	onn P. IcCraw	- Науе .11:11	2S, C	omput	er Ar	cnitec	ture a	ina O	rganiz	zation	, 1 <i>n</i> i	ra Ea	ution,	Tata
	1	ohn I		1990. nn 2557			mid	1 D	attorac		mmut	or Ar	ahitaa	11110	Λ
4	. 5	uantita	. IIel ntive An	nnesse	sy un ∽h" M	u Du Iorgai	n Kau	ч. IC fmann	1110 SO	m, CC sovior	Puhli	si Ai ishors	Four	iure •th Fd	— л ition
	$\frac{2}{2}$	007.	1111021	prou	, 1,	101 541	i iiuu	jmann	· / L1	sevier	1 11011	sners,	1000	in Du	
5	\overline{V}	.P. He	uring.	H.F.	Jorda	n, "C	omput	er Svs	stems	Desig	n and	Archi	tectur	e", Se	econd
	E	dition,	Pears	on Ed	ucatio	n, 200	4.	2		0					
6	. <i>B</i>	ehrooz	Parha	ami, "	Comp	uter A	rchited	cture"	, Oxfo	rd Un	iversit	ty Pres	s, 200	07.	

17S	PC4	04]	DESI	GN A	AND	ANA	LYS	IS O	F AL	GOF	RITH	MS	L	Т	Р	С
													3	0	0	3
OBJ	ECTI	IVES:														
	•	E	Be fam	iliar w	vith Di	ifferen	t appr	oaches	s for a	lgorith	ım ana	lysis.				
	٠	F	Be fam	iliar w	vith De	ecrease	e and (Conqu	er tecl	hnique	.					
	•	E	Be fam	iliar w	vith G1	reedy a	approa	ich, D	ivide a	and Co	nquer	and D	ynan	nic		
		F	rogran	nming	g techr	nique.										
	•	E	Be fam	iliar w	vith Ba	acktrac	cking a	and Br	anch a	and Bo	ound to	echniq	ue.			
	٠	E	Be fam	iliar w	vith Ap	pproxi	matio	n and I	Rando	mized	algor	ithms.				
UN	ΤI	A	NAI	LYSI	NG A	ALG(ORIT	THM	S							9
The l	Role o	of Algo	orithm	s in C	omput	ing - C	Growtl	n of Fu	unction	ns – R	ecurre	ences -	The	Sub	stitu	tion
Meth	Method - The Recurrence Tree Method - The Master Method - Probabilistic Analysis and Randomized Algorithms – Amortized Analysis – Aggregate Analysis – Accounting Method.															
Rand	omiz	ed Alg	orithm	$\frac{1S - A}{2}$	mortiz	zed An	alysis	- Agg	gregate	e Anal	ysis –	Accou	inting	g Mo	etho	d.
UNI	ТП			DE .		CC	DNQU	JER	&	GRE	CEDY	(DI	ESIC	ΪN		9
Analysis of Quick Sort, Merge Sort – Quick Sort Randomized Version – Sorting in Linea																
Anal	Analysis of Quick Sort, Merge Sort – Quick Sort Randomized Version – Sorting in Linear Time- Lower Bounds for Sorting - Selection in Expected Linear Time - Selection in Worst															
Time	Time- Lower Bounds for Sorting - Selection in Expected Linear Time - Selection in Worst case .Linear Time - Greedy Algorithms - Elements of Greedy Strategy - Huffman Code															
case ,Linear Time – Greedy Algorithms - Elements of Greedy Strategy - Huffman Code, Dijkstra'sShortest Path Algorithm																
Dijks	Dijkstra`sShortest Path Algorithm. UNIT III DVNAMIC PROCRAMMING AND OTHER DESIGN 0															
UNIT III DYNAMIC PROGRAMMING AND OTHER DESIGN													9			
STRATEGIES																
Dynamic Programming – Matrix Chain Multiplication - Elements of Dynamic programming																
-Lon	gest		ion Se	quenc	es –	warsh	all's a	and F	loyds	Algor	ithm -	-1rai	1SItIV		losu	re -
AllPa	airs S aband	nortes	d Strot	Algo	Knong	– Ana	19818 - roblan	– Bac	Ktrack	ing –	Graph	1 C010	ring	Prot	biem	l –
				U NF	TW/		C AN	п. П СЛ	PIN	СМ		HING	r			0
Flow	Net	works	- Eo	rd Fu	lkerso	n Me	thod	Stri	$n\sigma M$	otchin	$\frac{\mathbf{AIC}}{\alpha - \mathbf{N}}$	Jaive	J Strine	α Μ	[[atc]	hing
Algo	rithm	– Knii	h Mor	ris Pr	att Alg	porithr	n - An	alvsis	ing ivi	atenni	g - 1	Varve	Sum	5 IV.	later	inng
UN	ТV		NP PI	ROB	LEM	S		ur y 515	•							9
NP-C	Compl	letenes	<u>s –</u>	Polv	nomia	1 Tir	ne V		ation	_ 7	heorv	of	Red	ucib	ility	/ _
Circi	iitSati	isfiabil	itv –	NP	- Co	mplete	eness	Proof	fs –	NP (Compl	ete P	roble	ms:	Ve	rtex
Cove	r,Han	niltoni	an Cy	cle an	d Tra	veling	Sales	man I	Proble	ms – .	Appro	ximati	on A	lgoi	ithn	ns –
Appr	oxim	ation A	Algorit	hms to	o Verte	ex - Č	over a	nd Tra	vellin	g Sale	sman	Proble	ems.	υ		
									TO	TAL	: 45	PER	IOD	S		
OU'	ГСО	MES	: (On con	mpleti	on of	this co	ourse, s	studen	ts will	be ab	le to				
1	. Pr	opose	the co	rrect a	algorit	hmic s	trateg	y to so	olve ar	ny pro	olem.					
2	. W	rite al	gorith	ns for	any p	roblen	n base	d on tl	he stra	itegy.						
3	3. Analyze any given algorithm and express its complexity in asymptotic notation.															
4. Identify any problem as belonging to the class of P, NP-Complete or NP-Hard.																
5	. Pr	opose	appro	ximati	on alg	orithn	n for a	ny NF	p robl	em.						
CO	URS	E AR	TICU	JLA'	ΓΙΟΝ	N MA	TRE	X:	1	1	r	1				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PS 2	0	PSO 3

CO1	Η		М	М									Н		М
CO2	Η	М	L	М									Н		М
CO3	Η		М	М									Н		М
CO4	Η	М	L	М									Н		М
CO5	Η		М	М									Н		М
(L- Low, M- Moderate, H-High)															
TEXT BOOKS:															
1	1. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Cliford Stein,														
	"Introduction to Algorithms", Third Edition, Prentice Hall, 2010.														
2	. El	lis H	orowit	z, Sa	rtaj S	ahni	and	Sangu	thevar	Raja	asekar	an, "I	Fundar	nental	ls of
	Co	ompute	erAlgo	orithm	s", See	cond E	Edition	, Univ	versitie	es Pres	ss, 200)8.			
REI	FERI	ENCI	ES:												
1	. <i>Ke</i>	enneth	A. Be	erman	and	Jerom	e L. 1	Paul,	"Algo	rithms	s", Ce	ngage	Lear	ning I	India,
	20	10.							_						
2	Al	fred V	Aho, .	John H	E Hope	croft a	nd Je <u>f</u>	frey D	0 Ullm	an, "T	The De	esign a	nd An	alysis	of
	Ca	ompute	er Alge	orithm	s", Fi	rst Ed	ition,	Pearso	on Edi	ication	n, 200	6.			

.
17SPC405	JAVA ESSENTIALS	L	Т	Р	C							
		3	0	0	3							
OBJECTIVE	S:				L							
•	Be familiar with the Java concepts constructor and destructor., overloading and	pol	ymo	rphis	sm,							
•	Understand the concept of Inheritance and exception handling											
•	Be known to the polymorphism and overloading, overriding co	once	pt.									
•	Get familiar with files and streams.											
•	Be known to Java GUI application methods											
UNIT I	INTRODUCTION				9							
Introduction to Java –JVM – Initialization Namespaces – Member Funct	OOP – Thinking Object Oriented - Object Oriented Design Classes and methods – Varieties of Classes – Messages -Constructors and Destructors – Object and Class in j Scope – Method Overloading – Arrays – Type Casting - Cons jons – Composition - this Pointer – Static Instances	. Int , In ava. tant	rodu stan lang Obj	ction ces .class ects	1 to and s - and							
	INHERITANCE AND EXCEPTION HANDLING	IN			9							
	JAVA				,							
Package Access - Java API Packages – Inheritance - Sub Classes and Subclass Types - Replacement and Refinement – Implications of Inheritance - Exception Handling- JavaException Hierarchy - Declaring New Exception Types – Assertions - Garbage Collection andMethod finalize – String Class - Converting between Types - Inheritance – an IntuitiveDescription of Inheritance - Subclass, Subtype, and Substitutability - Forms of Inheritance, is-aand has-a rule – Multiple Inheritance .												
	POLYMORPHISM IN JAVA				9							
Polymorphism PolymorphicV Processing,Op - Interface –Im	- Abstract Classes and Methods - Varieties of Pol ariables – Overloading and Overriding – Pure Polymorphisn erator instance of and Down Casting - final Methods and Class plementation – Multithreading.	ymc 1 - 1 es –	orphi Poly Cloi	sm morp ne C	- bhic lass							
UNIT IV	FILES AND STREAMS IN JAVA				9							
Files and Str Collections- O Introspection -	eams – Formatted Output - Object Concurrency - Serializ Generic Classes and Methods - Visibility and Dependency – Java Utility Packages and Bit Manipulation – Java Collections.	ation Re	n - flect	Gen	eric and							
UNIT V	GUI, MULTIMEDIA AND DATABASE IN JAVA				9							
GUI Components – Graphics, 2D and 3D - Introduction to Java Applets – Frameworks - Multimedia: Applets and Applications – Example Frameworks: Swing and AWT – AccessingDatabases with JDBC – Introduction to JavaFX - Case Study: ATM System, Payroll System.												
TOTAL : 45 PERIODS												
OUTCOMI	ES: On completion of this course, students will be able to											
1. Desig	n problem solutions using Object Oriented techniques.											
2. Apply	2. Apply the concepts of data abstraction, encapsulation, polymorphism, overloading,											
3 Use th	e OOP concepts of Iava appropriately in problem solving											
COURSE A	RTICULATION MATRIX:											

	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO
										0	1	2	1	2	3
CO1		Н	Μ		L		Μ						Μ		Η
					.										
CO2	Μ	Н	Μ		L		Μ						Μ	L	Н
CO3		Н	М		L		М						М		Н
(L- L0	(L- Low, M- Moderate, H-High)														
TEX	TEXT BOOKS:														
1	. Ti	mothy	Budd	l, "An	Intro	ductio	n to (Object	-Orier	nted P	rogran	nming	", Thi	rd Ed	ition,
	Pe	arsonl	Educat	ion, 2	008.										
2	. Pa	ul De	itel a	nd Ha	arvey	Deitel	l," Jav	va Ho	w to	Progr	am (E	Early	Object	ts)", 7	Fenth
	Ec	lition,	Pearso	on Pre	ntice I	Hall 20)14.								
REI	FERI	ENCI	ES:												
1	. <i>Pc</i>	itrick.	Nieme	yer, L	Daniel	Leuck	;, "Lea	arning	Java	", Foi	irth E	dition,	Shrof	ſſ/O'R	eilly,
	20	2013.													
2	. Jo	shua I	Bloch,	"Effe	ctive J	ava: A	Prog	ramm	ing La	inguag	ge Gui	de ", S	econd	Editic	on,
	Pe	earson	, 2008	•					-						

17SPC406	0	BJE	CT O	RIE	NTE	D AN	ALY	SIS .	AND		L	T	P	C
]	DESI	GN								
											3	0	0	3
OBJECTIVE	<u>S:</u>		1.1	1 0			C.			1 1				
•	To und	erstan	d the r	ole of	objec	ts in so	oftwar	e proc	ess m	odels				
•	To ana	lyze th	ie imp	ortanc	e of u	se case	es							
•	To mo	lel the	system	n usin	ig stan	dard d	lesign	diagra	ams					
•	To desi	ign and	d man	age ob	ject b	ased s	ystems	6						
•	To stuc	ly stan	dard (DO pat	tterns	and th	eir im	pact of	n testi	ng				
UNIT I	INTR	ODU	CTI	ON										9
Object Oriente	d Analy	ysis ar	nd Des	sign –	Itera	tive, E	Evoluti	ionary	and	Agile	– Ne	extG	en 1	POS
system – Incep	tion – Ir	nceptio	on vs.]	Requi	remen	ts – Ev	volutio	onary l	Requir	rement	s.			
UNIT II	USEC	CASE	S											9
Usecases - Oth	er requi	remen	ts – D	omain	Mod	el – Sy	/stem	Seque	nce Di	iagram	s - 0	Dper	atio	n
Contracts - Fro	m Requ	iremeı	nts to l	Desigr	1.									
UNIT III	DESI	GN												9
Logical archite	cture an	nd UN	IL pac	ckage	diagra	ams –	Onto	Objec	t Desi	ign – T	UML	. Int	erac	ction
Diagrams – U	ML Cl	ass di	agram	s - G	RASI	P: Des	signing	g Obj	ects v	vith R	espo	nsib	iliti	es –
ObjectDesign 1	ObjectDesign Examples with GRASP – Designing for Visibility – Mapping Design to Code –													
TestDriven Development and Refactoring – UML Tools and UML as blueprint.														
UNIT IV	ELA	BORA	ATIO	N										9
More patterns – More objects with Responsibilities – Applying GoF Design Patterns – LIML Activity Diagrams and Modeling – LIML State Machine Diagrams and Modeling														
UMLActivity	Diagran	is and	Moda	eling	- UN	IL Sta	ate Ma	achine	Diag	rams	and	MO(1g –
Analysis Loo	ical Ar	bitact	\mathbf{W}	a Kell	nemei	II - IV	$\frac{1010}{2000}$	SDS a	na Co Mo	ra Ob	S - F	AICH Daci	an	urai with
GoF patterns –	UML de	enlovn	nent ar	nd Cor	nnone	nt Dia	orams	CSIGI	- 1010		jeer	DUSI	gn	witti
UNIT V		FRN	BAS	SED	ANA				ASE	STU	DY			9
Designing a Pe	rsistenc	e Fran	neworl	with	Patter	ms - 0	reatio	nal Pa	tterns	: Absti	ract F	Facto	orv -	_
Builder – Fact	ory Met	hod –	Proto	type –	Sing	leton -	· Struc	tural	Patter	ns: Ad	apter	: –]	Brid	ge –
Composite –	Decora	tor –	Faça	de –	Flyw	eight	– Pr	oxy-	Behav	vioral	Patte	erns	: C	hain
ofResponsibili	y – Co	mman	d – In	terpre	ter –	Iterato	or – N	Iediate	or – N	/lemen	to –	Ob	serv	ver –
State –Strategy	r – Tem	plate 1	Metho	d – V	isitor	- Cas	se stud	ly: Ba	nk A7	ΓM - Ι	Mana	ging	g Ol	bject
OrientedProjec	ts - Aga	te Ltd	– Foo	d Co l	Ltd - A	ATM -	– Payr	oll.						
							TO	TAL	· : 45	PER	IOD	DS		
OUTCOME	S:	On coi	npleti	on of	this co	ourse, s	studen	ts will	be ab	le to				
1. Apply	object o	oriente	d conc	epts to	o desig	gn.								
2. Impro	vise on o	creativ	e desig	gn usi	ng obj	ect ori	entati	on.						
3. Identif	y and and $\frac{1}{2}$	halyze	evolu	tionar	y requ	iremei	its to o	design	•					
4. Deplo	y differe		$\frac{1}{2}$ pac	kage (nagra	ms. ita ann	ligatio	n to t	octina					
		ITT AT				ns app V •	meatic		sung.					
				PO6	PO7	A. PO8	PO۹	PO1	PO1	PO1	₽S∪	D	<u>so</u>	PSO
			. 05	. 00		. 00	. 05	0	1	2	1	2		3
CO1 M	Н		М	L	L						Μ			Η

	М	Н		М	L	L						М	L	Н
	М	Н		М	L	М						М	L	Н
	М	Н		М	L	М						Н		М
	М	Н		М	L	М						Н		М
(L- Low, M- Moderate, H-High)														
TEXT BOOKS:														
1. Craig Larman, "Applying UML and Patterns: An Introduction to Object-Oriented														
Analysis and Design and Iterative Development", Third Edition, Pearson Education,														
20	05.													
. Er	ich G	amma	, Ricl	hard l	Helm,	Ralpl	n Johr	nson,	John	Vlissi	des, "	Desig	n Pat	terns:
El	ement	s of H	Reusal	ole O	bject-(Drient	ed So	ftware	", Ad	dison	Wesl	ey, 19	995, 7	hirty
Se	venth	Reprin	t, 200	9.										
FERI	ENCI	ES:												
. Sin	non B	ennett,	Steve	e McR	obb, R	ay Fa	rmer, '	'' Obje	ct-Ori	ented	System	ns And	alysis a	and
$D\epsilon$	esign l	Using	UML'	', Fou	rth Ed	ition,	Tata N	1cGra	w-Hill	l Educ	ation,	2004.		
	ow, M- XT B X Cr A1 20 . Er El Se FERI . Sin De	M M M M M M M M M M M M M M M M M M M	M H M H M H M H M H M H M H M H M H M H	M H M H M H M H M H M H M H M H M M H M M H M M M M	M H M M H M M H M M H M M H M M H M M M H M M M H M M M M	M H M L M H M L M H M L M H M L M H M L M H M L w, M- Moderate, H-High) M L XT BOOKS:	M H M L L M H M L M M H M L M M H M L M M H M L M M H M L M M H M L M www.m-Moderate, H-High) M L M XT BOOKS:	M H M L L M H M L M M H M L M M H M L M M H M L M M H M L M M H M L M www.m-Moderate, H-High) M L M XT BOOKS:	M H M L L M H M L M M H M L M M H M L M M H M L M M H M L M M H M L M www.M-Moderate, H-High) M L M XT BOOKS:	M H M L L Image: Constraint of the state o	M H M L L Image: Constraint of the state o	M H M L L Image: Constraint of the system of the s	M H M L L M M M M H M L M M M M M H M L M M M M M H M L M M H M M H M L M M H H www.methoderate, H-High) M L M M H H Wwww.methoderate, H-High) KT BOOKS: H H H Craig Larman, "Applying UML and Patterns: An Introduction to Obje Analysis and Design and Iterative Development", Third Edition, Pearson 2005. Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, "Desig Elements of Reusable Object-Oriented Software", Addison Wesley, 19: SeventhReprint, 2009. FERENCES:	M H M L L M M L M H M L M M L M M L M H M L M I M L M I M L M H M L M I M I H I M H M L M I M I H I www.M-Moderate, H-High) M L M I M H I H Craig Larman, "Applying UML and Patterns: An Introduction to Object-Orion Analysis and Design and Iterative Development", Third Edition, Pearson Educa 2005. Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, "Design Patternets of Reusable Object-Oriented Software", Addison Wesley, 1995, T SeventhReprint, 2009. SeventhReprint, 2009. SeventhReprint, 2009. SeventhReprint, 2009. FERENCES: Simon Bennett, Steve McRobb, Ray Farmer, "Object-Oriented Systems Analysis of Design Using UML", Fourth Edition, Tata McGraw-Hill Education, 2004.

17S	PC40	7	OP	PERA	TIN	G SY	STE	MS I	ABC)RAT	FOR	Y	L	T	Р	C
													0	0	4	2
OBJ	ECTI	VES:														
	•	Le	earn sl	hell pr	ogram	ming	and th	e use	of filte	ers in t	he UN	VIX en	viron	men	ıt.	
	•	Be	e expo	osed to	progr	ammi	ng in (C usin	g syste	em cal	ls.					
	•	Le	earn to	o use tl	he file	system	m rela	ted sys	stem c	alls.						
	•	Le	earn to	o use tl	he pro	cess c	reation	n relate	ed sys	tem ca	ılls.					
	•	Be	e expo	osed to	inter	proces	ss com	nmunic	cation.							
	•	Be	e fami	liar w	ith imj	pleme	ntatio	n of Cl	PU Sc	heduli	ng					
	•	A	lgorith	ıms, p	age re	placer	nent a	lgorith	nms an	ld Dea	dlock	avoida	ance			
LIST	r of e	EXPE	RIMI	ENTS	:											
1 2 3 4 5 e 6 7 7 9 1 1 1 1	 Basic UNIX commands – learning and usage. Shell Programming. Grep, sed, awk. File system related system calls. (Learn to create, open, read, write, seek into, close files; open, read, write, search, close directories). Process management – Fork, Exec (Learn to create a new process and to overlay an executable binary image on an existing process). Inter-process communication between related processes using pipes. Process synchronization using semaphores (Solutions to synchronization problems like producer consumer problem, dining philosophers' problem etc). Inter-process communication among unrelated processes using Message Queues. CPU Scheduling algorithms. Contiguous memory allocation strategies – best fit, first fit and worst fit strategies. Page replacement algorithms. 															
			<u> </u>	0	1	6	.1 •				· : 60		IOL	05		
UU'		VIES	<u> </u>	$\frac{\text{On col}}{11}$	mpleti	on of t	tnis co	ourse, s	studen	ts will	be ab	ole to				
	. Ap	ply sy	stem	calls f	or diff	erent	purpos	ses.	nok1.							
$\frac{2}{2}$. An	alyze	and so	orve pi	rocess	synch	iron1za	ation p	robler	11S.						
						among JN/IA	g proc TDT	esses. V •								
	PO1		11CI			POG	P07	A: PO8	PUd	PO1	PO1	PO1	PSO.	DC	0	PSO
		. 52	105			1.00		1.00		0	1	2	1	2	-	3
CO1	Μ	Н	М		L		L			-			Н			Μ
CO2	М	Н	Μ				L						Η	Μ		L
CO3	М	Н	М		L								Н			M
				T' 1 \												
(L- L0	ow, M- l	Modera	ıte, H-F	ligh)												

OBJECTIVE	LS:
•	To learn the basics of OO analysis and design skills.
•	To be exposed to the UML design diagrams.
•	To learn to map design to code.
•	To be familiar with the various testing techniques
LIST OF EX	PERIMENTS:
To develo 1. To develo 2. Identify 3. Identify 4.Using th using UM 5.Draw re 6.Identify layered, lo 7.Develop 8.Develop 9.Develop 9.Develop 8.Develop 9.Develop 8.Develop 9.Develop 9.Develop 8.Ceclop 9.Develop 9.Develop 8.Ceclop 9.Develop 9.Develop 9.Develop 9.Develop 1. Passpor 2. Book ba 3. Exam re 4. Stock m 5. Online 6. E-ticket 7. Softwar 8. Credit o 9. e-book 10. Recrui 11. Foreig 12. Confer 13. BPO re 14. Librar 15. Studer	p a mini-project by following the 9 exercises listed below: lop a problem statement. 'Use Cases and develop the Use Case model. 'the conceptual classes and develop a domain model with UML Class diagram. te identified scenarios, find the interaction between objects and represent them L Sequence diagrams. levant state charts and activity diagrams. the User Interface, Domain objects, and Technical services. Draw the partial ogical architecture diagram with UML package diagram notation. and test the Technical services layer. and test the Tochnical services layer. and test the User interface layer. TED DOMAINS FOR MINI-PROJECT: t automation system. and, egistration. aintenance system. course reservation system. ing. te personnel management system. ard processing. management system. itment system. n trading system. management system.
OUTCOM	FS • On completion of this course students will be able to
1. Desig	and implement projects using OO concepts.
2. Use t	he UML analysis and design diagrams.
3. Apply	y appropriate design patterns.
4. Creat	e code from design.
GCEB –UG-CS	SE – REGULATIONS-2017 Page 78

CASE TOOLS LABORATORY

L T P 3 0 0 C 3

17SPC408

5	. Co	mpare	e and c	contra	st vari	ous tes	sting to	echniq	ues.						
CO	URSI	E AR	TICU	JLA'	FION	I MA	TRL	X:							
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO
										0	1	2	1	2	3
CO1	Η	М			М		L						М		Н
CO2	Η	М		L			М						М		Н
CO3	М	H L M H H													
CO4	М	Н		L			М						М	L	Н
CO5	М	Η			М		L						М	L	Н
(L- Lo	ow, M-	Modera	ate, H-F	High)											•
REF	FERF	ENCE	ES:												
1	. We	endy B	, Boggs	"Mas	tering	UML	with F	Ration	al Ros	e", S	vbex F	Publica	itions,	2002.	
2	. <i>Pe</i>	r Kro	oll and	d Phil	ippe I	Kruch	en," 1	The R	ationa	l Unij	fied P	rocess	s Maa	le Eas	sy: A
	Pr	actitic	oner's	Guide	e to the	RUP	" Addi	ison N	⁷ esley,	2003.					

17S	PC40	9	DA	FAS	RU	CTU	RES A	AND	ALG	GORI	THN	1S	L	T	Р	C
						LAB	ORA	TOF	RY							
													0	0	4	2
OBJ	ECTI	VES:														
	•	E	Be fam	iliar w	vith Im	pleme	entatio	n of li	near d	lata sti	ucture	es.				
	•	E	Be fam	iliar w	ith In	pleme	entatio	n and	analy	sis of s	sorting	g and s	earch	ning		
		te	echniq	ues.												
	•	E	Be fam	iliar w	vith Pe	rform	ing va	rious o	operat	ions o	f nonl	inear d	ata s	truct	ures	•
	•	E	Be fam	iliar w	ith In	pleme	entatio	n of d	ynami	ic men	nory n	nanage	men	t.		
	•	E	Be fam	iliar w	ith Re	eal tim	e appl	icatio	n Dev	elopm	ent.					
LIST	r of I	EXPE	RIMI	ENTS	:											
1 2 3 4 5 6 7 8 9 1 1 1 1 1	 Array Implementation of Stack and Queue ADTs. Array Implementation of List ADT. Linked list Implementation of List, Stack and Queue ADTs(Use Inheritance). Applications of List, Stack and Queue ADTs. Implement lists using generic classes. Implement List ADT and use operator overloading to implement functions in List ADT. Implementation of Binary Trees, Traversal. Implementation of Quick Sort and Merge sort (Divide and Conquer). Implementation priority queues – Insert, Delete, FindMin / Max. To implement the search trees - Insert, Delete, search. Graph representation and traversal. Prim's Algorithm, Kruskal's algorithm (Greedy Technique). Hashing – any two collision resolution techniques. Dikstra shortest path Algorithm(Dynamic Programming). 															
									TC	DTAL	.:60	PER	IOL	DS		
OU'	ΓΟ	MES	: (On con	npleti	on of t	this co	urse, s	studen	ts will	be ab	le to				
1	. Ar	oply ge	eneric	progra	ammir	ig tech	inique	to im	pleme	nt any	data s	structu	re.			
2	. Ar	oply ap	propr	late se	earch t	rees fo	or an a	pplica	t10n.							
		7 AD				T N/T A	TDI	v .								
	PO1		PO3		PO5	PO6		A: POS	PO9	PO1	PO1	PO1	PSO	PS	0	PSO
	101	102	105	104	105	100	107	100	105	0	1	2	1	2		3
CO1	Η	М	L	L	М		L						Η	M	[
CO2	Η	М	М		М		L						Η	M	[
CO3	Η	М	М	L	М		L						Н	M	[
(L- Lo	ow, M-	Modera	ate, H-H	High)			•								1	
REF	FERI	ENCI	ES:													
1	. Na	irasim	ha K	arumo	inchi,	"Dat	a Str	ucture	s and	d Alg	orithn	ns Ma	ide ditio	Easy	v: D	ata
	SI	uctur	es una	AIg01	unnill	, Г ИДД,	ies, C	Jureer	топк	r uvil	Junon	s, 5 e	anno	n,20	10.	

SEMESTER V

17S	7SBS501DISCRETE MATHEMATICSL3														С
												3	2	0	4
OBJ	ECT	IVES:													
The	stude	ents sho	ould b	e mad	e to										
•			To e	extend	stude	nt's L	ogical	and M	Aather	natical	l matu	rity an	d abi	lity to	deal
			with	abstra	action	and to	o intro	oduce	most	of the	basic	termi	nolog	ies us	ed in
			comj	puter lems.	scienc	cou	irses	and a	applica	tion	of ide	eas to	solv	e pra	ctical
			proof												
UNI	TI		LO	GIC A	AND	PRO	OFS								9+6
Prop	ositio	nal Lo	gic –	Prop	ositio	nal ec	uivale	ences	- Pre	dicates	s and	Quan	tifiers	– N	ested
Quar	tifier	s – Rul	es of i	nferen	ce - In	ıtroduc	ction to	o proo	fs – Pr	oof m	ethods	and st	rategy	/.	
UNI	TI		CO	MBI	NAT	ORIC	CS								9+6
Math	emat	ical ind	luctior	1 - Str	ong ii	nductio	on and	i well	orderi	ng – ′	The ba	sics of	cour	nting -	- The
pigeonhole principle – Permutations and combinations – Recurrence relations – So recurrence relations – Generating functions – Inclusion and exclusion princip													lving 1	inear	
recur	ecurrence relations – Generating functions – Inclusion and exclusion principle and its applications.														
	recurrence relations – Generating functions – Inclusion and exclusion principle and itsapplications.UNIT IIIGRAPHS9+6														
UNIT III GRAPHS Graphs and graph models – Graph terminology and special types of graph													ronho	<u>ار ا</u>	9+0 Lotrix
renre	Graphs and graph models – Graph terminology and special types of graphs – Matrix representation of graphs and graph isomorphism – Connectivity – Euler and Hamilton paths														
UNI	Image: Tepresentation of graphs and graph isomorphism – Connectivity – Euler and Hamilton paths.UNIT IVALGEBRAIC STRUCTURES9+6														
Algebraic systems – Semi groups and monoids - Groups – Subgroups – Homomorphisms –															
Norn	nal si	ubgrou	o and	cosets	– Lag	grange	's the	orem -	– Defi	nition	s and o	examp	les of	Ring	s and
Field	s.														
UN	TV		LA	ГТІС	ES A	ND I	300	LEA	NAL	GEB	RA				9+6
Partia	al or	dering	– Pose	ets – l	Lattice	es as p	osets	– Pro	perties	s of la	attices	- Latti	ices a	is alge	braic
syste	ms –	Sub la	ttices	– Dire	ect pro	duct a	nd ho	momo	rphisn	1 – So	me spo	ecial la	attices	5 – Bo	olean
alget	ora.														
							T	ОТА	LL (L	: 45	+ T :	30): 7	'5 PH	ERIO	DS
OU'	ГСО	MES	•	On	compl	etion of	of this	course	e, stud	ents w	ill be a	ble to			
1	. H	Iave kn	owled	ge of t	$\frac{he cor}{\cdot \cdot \cdot}$	ncepts	neede	d to te	st the l	logic o	f a pro	gram.			
2	. F	lave an	under	stand	$\frac{ng}{c}$ 1n 1	dentify	ying st	tructur	es on i	many I	evels.	41	<u> </u>		
3	. A	ware of the second seco	of a cla	iss of I	runctio	ons wr funatio	nch tr	anstor	m a m	nite se	t into a	anothe	r Tinit	e set v	vnich
4		ware c	of the c	ountin	o nrin	ciples	JIIS III	compt		lence.					
5	. 1 . E	Expose	to cor	cepts	and n	ropert	ies of	algeb	raic st	ructur	es suc	h as g	roups	, ring	s and
	fi	ields.		pis	una p	10p - 11							rompo	,	
CO	URS	E AR	TICU	JLAT	ION	MA	<u> FRIX</u>	K:							
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO1	PO1	PO1	PSO 1	PSO	PSO
CO1	Н	М	М		L					0	-	۷	M	и Н	3
CO2	H	L			L								M	H	
CO3	H	L	Μ		L								M	Н	
CO4	Η	М			L				_				Μ	Н	
CO5	Η	Μ	Μ		L			T					Μ	Н	

(L-]	Low,	M- Moderate, H-High									
TE	XT	BOOKS:									
	1.	Kenneth H.Roser	n, "Discrete Mathematics and its Applications", 7 th Edition, Tata Mc								
		Graw Hill Pub. C	o. Ltd., New Delhi, Special Indian Edition, 2011.								
	2. Tremblay J.P., Manohar R, "Discrete Mathematical Structures with Applications to Computer Science" Mc Gray Hill Education New Delbi Indian Edition 2017										
		Computer Science	e", Mc Graw Hill Education, New Delhi, Indian Edition, 2017.								
RF	REFERENCES:										
1.	Ral	ph.P.,Grimaldi., ".	Discrete and Combinatorial Mathematics: An Applied Introduction",								
	4^{th} .	Edition, Pearson E	ducation Asia, Delhi, 2007.								
2.	The	omas Koshy., "Disc	crete Mathematics with Applications", Elsevier Publications, 2006.								
2	Sey	mour Lipschutz, I	Mark Lipson, Varsha H Patil, "Discrete Mathematics", Schaum's								
э.	Ou	tlines, Tata Mc Gra	aw Hill Pub. Co. Ltd., New Delhi, Revised 3 rd Edition, 2017.								

17SPC502	EMBEDDED COMPUTING SYSTEMS	L	Τ	Р	С									
		3	0	0	3									
OBJECTIVES:														
•	Understand the basic hardware and software components a for embedded computing systems.	and th	neir se	election	on									
•	Understand the hardware software co-design and firmware	e desi	gn ap	proac	ches.									
•	Be familiar with programming concepts and embedded pro	ogran	nming	g in c	, c++									
•	Gain knowledge of programming and RTOS and apply for applications.	diffe	erent											
•	Learn various system design techniques and design method	dolog	gies.											
UNIT I	INTRODUCTION TO EMBEDDED PROCESSORS				9									
Introduction to F	Embedded Computing, Issues and Challenges in Embedded	ded s	syster	n De	sign.									
Trends: SC, custo	m designed chips, configurablesigned chips, configurable p	roces	sors	and n	nulti-									
core processors.E	Embedded processor architecture: General concepts, inst	ructio	on se	ts, L	evels									
inarchitecture,	Functional description-hardware/software trade-off,	Int	rodu	ction	to									
RISCarchitecture,	Pipelining, Instruction issue and execution, Ir	nstruc	ction	for	mats,									
Addressingmodes	, Data alignment and byte ordering, Introduction to VLIW a	and D	SP p	roces	sors.									
Addressingmodes, Data alignment and byte ordering, Introduction to VLIW and DSP processors.UNIT IIDEVICES AND BUSES FOR DEVICES9VETWODE														
	Distriction Devices and buses for devices 9 NETWORK 9													
I/O Devices:- T	Types and Examples of I/Odevices, Synchronous, Is	so-syı	nchro	nous	and									
Asynchronous C	Communications from SerialDevices - Examples o	of In	nterna	al S	erial-									
Communication I	Devices:- SPI, UART, Parallel PortDevices - Timer and	Coun	ting	Devie	ces –									
Serial Communic	ation using: 'I2C', 'USB', 'CAN'- Advanced I/O Serial hig	gh spo	eed b	uses:	ISA,									
PCI, PCI-X, cPCI	and advancedbuses.													
UNIT III	PROGRAMMING CONCEPTS AND				9									
	EMBEDDED PROGRAMMING IN C, C++													
Programming ina	ssembly language (ALP) vs High Level Language - C	Prog	ram 1	Eleme	ents:-									
Macros andfuncti	ons, Use of Date Types, Structure, Pointers, Function (Calls	- Co	oncep	ts of									
EmbeddedProgram	nming in C++:- Objected Oriented Programming, Embedo	ded F	Progra	ummi	ng in									
C++, 'C' Program	compilers - Cross compiler - Optimization of memory nee	ds.												
UNIT IV	REAL TIME OPERATING SYSTEMS				9									
Definitions of pro	cess, tasks and threads - Inter ProcessCommunication:- S	hared	d data	a proł	olem,									
Use of Semaphor	re(s), Priority Inversion Problemand Deadlock Situations	s, Mo	essag	e Qu	eues,									
Mailboxes, Pipes,	Virtual (Logical) Sockets, Remote Procedure Calls (RPCs)	- Op	oerati	ng Sy	vstem									
Services:- Goals,	, Structures, Kernel, Process Management, Memory M	lanag	emen	t, D	evice									
Management - R	eal Time OperatingSystem - RTOS Task scheduling mo	odels	:- Co	-oper	ative									
Round Robin Sch	eduling, CyclicScheduling with Time Slicing.													
UNIT V	SYSTEM DESIGN TECHNIQUES				9									
Design Methodol	ogies, Requirement Analysis, Specification, System Analysis	sis a	nd Ai	rchite	cture									
Design. Design H	Examples:- Telephone PBX- SystemArchitecture, Ink jet	prin	ter -	Hard	ware									
Design and Softw	are Design, Personal DigitalAssistants, Set-top Boxes.													
	TOTAL: 45 PER	IOI	DS											
OUTCOMES:	On completion of this course, students will be able	e to												

	1.	Ex	plain	the ba	sic of	embed	lded pi	ocess	ors.							
	2.	Di	scuss	the dif	ferent	input	outpu	t devic	ces.							
	3.	W	rite th	e emb	edded	progra	ammin	g in C	& C+	+.						
	4.	Be	e expo	sed to	real ti	me op	erating	g syste	ms.							
	5.	De	esign r	eal tin	ne syst	ems.										
CC	UR	SE	E AR'	TICU	JLAT	ION	MA	FRIX	:							
	PC	D1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO1	PO1	P01	PSO	PSO	PSO
											0	1	2	1	2	3
CO1	Η		М	Μ		L		Μ						L		Н
CO2	Μ	[Η			L		Μ						L		Н
CO3	Μ	[Η	Μ		L		Μ							М	Н
CO4	Μ	[Η			L		Μ						L		Н
CO5	COS H M L M (L June M. Medenne H. Heigh) M H															
(L- Low, M- Moderate, H-High)																
TEXT BOOKS:																
	1. Rajkamal, "Embedded Systems Architecture, Programming and Design", Tata															
		M	cGraw	/-Hill,	First r	eprint	Oct. 2	.003.								
	2.	W	ayne	Wolf,	"Coi	npute	rs as	Com	ponent	s: Pri	nciple	s of	Embe	dded	Comp	uting
		Sy	stem	Design	", Hai	court	India,	Mor	gan K	laufma	ın Puł	olisher	s, Firs	st Ind	ian Re	eprint
	-	20	01.	• (7)								• • • •				
	3.	Ste	eve He	eath, "	Embec	lded S	ystems	Desig	gn", Se	econd I	Edition	n, 2003	3, New	nes,		
RE	FE	RE	NCE	ES:												
1.	Dav	vid I	E.Simo	on, "A	n Emb	edded	Softwo	are Pr	imer",	Pears	on Ed	ucatio	n Asia,	First		
	Indi	ianl	Reprin	nt 2000).											
2	Fra	nk	Vahid	and T	ony Gi	vargis	, "Em	bedded	d Syste	ms De	esign –	A unij	fied Ha	ardwa	re/Soft	ware
2.	Intr	odu	iction	", Johr	ı Wiley	v, 2002	2.									
3.	Mi	cha	el Bar	r, "Pr	ogram	ming I	Embed	ded Sy	stems	in C a	nd C+	+", 0	"Reilly	•		
4.	Joh	n C	atsoul	lis, "D	esignir	ıg Emi	beddea	l Hard	ware"	O"Re	eilly.					

17S	PC5	03			COM	IPUT	ER N	IETV	VOR	KS		L	, T	P	C
												3	0	0	3
OBJ	ЕСТ	IVES:													
	•		Unde Mod	erstand el.	l basic	s of C	omput	er Net	works	and g	et fam	iliar w	ith IS	O/OSI	
	٠		Intro	duce t	he con	cepts	and va	rious	modes	of tra	nsmiss	sion in	physi	cal lay	ers.
	•		Unde	erstand	l in de	tail the	e proto	cols ir	n Data	Link	layer				
	٠		Unde	erstand	l in de	tail the	e proto	cols in	n Netw	ork la	yer				
	٠		Be fa	miliar	with	variou	s proto	ocols i	n trans	sport la	ayer ar	nd app	icatio	n laye	r
UNI	ΤΙ		INT	ROD	UCT	TION									9
Evol Arch	ution itectı	of Coure (TC	mpute P/IP).	er Net	workiı	ng –	Layere	ed Ar	chitect	ture –	ISO/	OSI N	Iodel	– Int	ernet
UNI	T I	[PHY	YSIC	AL L	AYE	R								9
Tran	smiss	sion – I	mpair	nents	– Ban	dwidt	h Lim	itation	s – M	lodula	tion –	Frequ	ency	Spectr	um –
Mult	iplex	ing – E	ncodin	g Tec	hnique	es - Tr	ansmi	ssion	Media	- Cop	per –	Fiber -	- Opti	cal – F	Radio
(wire	eless)	-Cable	e Pino	uts - C	crosso	ver - S	Straigh	t Thro	ugh –	Rollo	ver.				0
			DATA LINK LAYER Framing – Addressing – Error Detection/Correction – Multiple Access lution Protocol (ARP) – Ethernet Basics – CSMA/CD – Frame												
Link	Laye	er – Frai Resolut	ming -	- Addr	essing	(-Err)	or Det	ection	/Corre	ction -	- Mult	iple A	ccess Fromo	Protoc	cols –
Swite	css chino	r = Tvn	es (da	tagran	1 (AR)	1) - 11al) -	Hubs	Brid	ges S	– CS. witche	$v_{A} = V$	'irtual	LAN	(VLA	N =
Wire	less I	LAN (8)	02.11)	– WA	N Tec	chnolo	gies –	ATM	– Frar	ne Rel	lay – N	APLS.			
UNI	Link Layer – Framing – Addressing – Error Detection/Correction – Multiple Access Protocols – Address Resolution Protocol (ARP) – Ethernet Basics – CSMA/CD – Frame Format – Switching – Types (datagram, virtual) – Hubs, Bridges, Switches – Virtual LAN (VLAN) – Wireless LAN (802.11) – WAN Technologies – ATM – Frame Relay – MPLS. UNIT IV NETWORK LAYER 9 Interest Destanded IPV4 Destate Format – IP Addressing – Schwatting – Verights Length Schwatt														
Inter	net P	rotocol	– IPV	4 Pack	tet For	mat –	IP Ad	dressi	ng – S	ubnet	ting –	Variab	le Lei	ngth S	ubnet
Mask	K(VL	SM) –	Class	less Ir	iter D	omain	Rout	ing (CIDR)	– Pr	ivate	Addres	ssing	– Net	work
Addr	ess	Transla	tion	- BO	OTP/I		-ICMI		Routin	ig Pri	inciple	(S - D)	Dista	ice V	ector
IPV6	lng(F)	(IP) – I uality ot	JNK S f Servi	tate \mathbf{R}	outing	(OSP	F) – P	ath v	ector I	Coutin	g (BG	P) – F	louter	Intern	ais -
	TV			NSF	<u>,,,,,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	TA	VFR		АРР	TIC		N			9
011				YER											,
Tran	spor	t Laye	r:End	to End	d Prote	cols -	- Conr	nection	nless T	ransp	ort – l	Jser D	atagra	m Pro	tocol
(UDI	P) –	Reliabl	e Dat	a Tra	nsfer	– Cor	nectio	n Ori	ented	Trans	port -	Trans	smissi	on Co	ontrol
Proto	ocol ((TCP) -	Flow	Contr	ol – C	Conges	tion C	ontrol	– Tra	anspor	t Laye	er Alte	rnativ	es (RF	PC) –
Tran	sport	for Rea	l Time	e Appl	ication	1.				_			~		
App	licati	on Lay	yer:Pr	otocol	s – ł	ATTP	– F1	Ρ –	Telnet	: – E	mail -	– DN	S –	Applic	ation
Perio	ormai	1ce - Pe	riorin	ance N	Tetrics			, r	гот	AT .	45 D	EDIC	DC		
				On	aamnl	ation	of this	2011	101	AL:	$\frac{45 P}{11 ha}$	EKIU	D 2		
		DIVIES:	a floru	of inf	ormoti	enon fro	$\frac{1}{m}$ on $\frac{1}{m}$	node	$\frac{1}{10000000000000000000000000000000000$	thor no	ni be a	$\frac{1010}{100}$	work		
2	. І Г	Develop	own r	or inter			in one	node	to ano	ther no	Jue III	the net	work	•	
3	. 1	Thoose t	functio	nalitie	es at ea	ach lay	ver for	differ	ent ani	olicati	ons				
4	. E	Evaluate	the p	otoco	ls in no	etwork	layer	from	QoS p	erspec	tive.				
CO	URS	E AR	ΓΙϹ	LAT	ION	MA	FRIX	•	<u> </u>	1.0					
_	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO
										0	1	2	1	2	3

CO1	Μ	Η	М	М			М						Н		М
CO2	Μ	Η	М	М			L						Н		М
CO3	Μ	Η	М	М			L						Н		М
CO4	Μ		Н				L						Н		М
(L- I	.ow, N	I- Moder	ate, H-H	igh)											
TE	XT]	BOOK	S :												
	1.	James F	. Kuro	se, Ke	ith W.	Ross, '	'Com	puter	Netwo	rking,	A Top	p-Dow	'n App	roach	
		Featurir	ng the l	nterne	et", Six	th Edit	ion, I	Pearson	n Educ	ation,	2012.				
	2.	Larry L	. Peters	son, Bi	ruce S.	Davie	, "Co	mpute	r Netw	orks:	A Syst	tems A	Approa	ch", F	ïfth
	Edition, Morgan Kaufmann Publishers Inc., 2011.3.Nader F. Mir, "Computer and Communication Networks", Second Edition, Prentice														
	 3. Nader F. Mir, "Computer and Communication Networks", Second Edition, Prentice Hall 2014 														
	3. Nader F. Mir, "Computer and Communication Networks", Second Edition, Prentice Hall, 2014.														
RE	FEF	ENC	ES:												
1.	Will	am Sta	allings,	"Da	ta an	d Com	ipute	r Con	nmunie	cations	s", Te	enth 1	Editior	ı, Ped	arson
	Educ	cation, 2	2013.												
2	Dou	glas E. (Comer,	"Inter	rnetwo	rking w	vith T	CP/IP	(Volu	me I) l	Princi	oles, P	rotoco	ols and	ļ
۷.	Arch	itecture	e", Sixt	h Editi	ion, Pe	arson I	Educo	ation, 2	2013.						
2	Ying	-Dar Li	n, Ren	Hung	Hwan	g and H	Fred I	Baker,	"Com	puter l	Vetwor	rks: Ar	1 Орен	Sour	ce
5.	Аррг	oach:, I	McGra	w Hill	l Publi	sher, 20	011.								
1	Behr	ouz A. I	Forouz	an anc	d Firoi	ız Mosl	harra	f, "Co	mpute	r Netw	orks a	Top 1	Down		
4.	Аррг	oach",	Tata M	1cGrav	w-Hill,	2011.									
5	Rich	Seifert,	James	Edwa	ırds, ["]	The All	New	Switch	h Book	: The	Comp	lete \overline{G}	uide to	LAN	
5.	Swit	ching Te	echnol	ogy", l	Wiley I	Publish	ing I	nc, 200)8.						

17S	PC	504		T	HEO	RY C	FC	OMP	UTA	ΓΙΟΝ	1	Ι	Τ	P	C
												3	0	0	3
OR1	EC	TIVES:													
		•	Be fa	amilia	r with	Regul	ar lang	guages	and F	inite A	Automa	ita			
		•	Be k	nown	to Coi	ntext F	Free La	anguag	es and	l Push	Down	Autor	nata		
		•	Be e	xpose	d with	Turin	g Mac	hines							
		Ð	Be fa	amilia	r with	Recur	sively	and R	ecursi	vely E	numera	able L	angua	ges	
		Ð	To L	earn v	with U	ndecid	lable p	oroblen	ns.						
UN	IT]	[RE	GUL	AR L	ANG	JUA	GES							11
Finit Auto Regu Mini	e A omat ular imiz	utomata a (NFA) Expressi ation of	(FA)) – Fir ions – Autom	– De nite Ar Pump nata.	etermi utoma ing Le	nistic ta witl emma	Finite h Epsi for Re	e Auto lon Tr egular	omata cansitio Langu	(DFA ons - l ages –) – N Regula: Prope	on-det r Expr erties -	ermin essior Equiv	istic I n – FA valence	Finite A and e and
UN	IT]	II	CO	NTE	XT F	REE	LAN	IGUA	GES						11
Equi Chor Lang Lem	vale msk guag ma	ence of y Norma es of a F for CFL	Parse al Forr Pushdo – Clos	Trees n – G wn Au ure Pr	and breibac atomat	Deriv h Nor a – Ec es - De	ration rmal F quivale etermi	 – Sin Form - ence of nistic I 	nplific Defin Pushdo Pushdo	ation ition of down 2 own A	of Co of the Autom	ntext- Pushd ata an	free (own A d CFC	Gramm Autom G– Pun	ata – nar – nping
UN	IT III TURING MACHINES 8														
Tech of O Mac	JNIT III TURING MACHINES 8 Curing Machines – Language of a Turing Machine – Turing Machine as a Computing Device - Cechniques for TM – Modifications of Turing Machines – Two-way Infinite Tape, Equivalence of One Way Infinite Tape and Two-way Infinite Tape Turing Machines – Multi Tape Turing Machines, Non-deterministic Turing machine. 8														
UN.		L V	СН	UMS	SKY I	HIER	KARC	HY						_	1
Regu Gran Lang	ilar nma guag	Gramm rs – Ec es – Lin	ars – Juivale ear Bo	Equivance o nce o unded	alence f Typ Autor	of R e 0 C mata –	egular Gramn Equiv	Gram ar an alence	imar a d Tur e of LH	ind Fi ing M BA's a	nite A lachine nd CS	utoma es – C G's.	ta - l Contex	Jnresti at Sen	ricted sitive
UN	IT Y	V	UN	DEC	IDAH	BILIT	ГҮ								8
A La Unde Enur Corr	angu ecid mera respo	age that able Pro ble La ondence	is not blems nguag Proble	about about es – m.	rsively Turin Post	y Enur ng Ma 's Co	nerabl chine orresp	e (RE – Rice ondenc) – Ar e Theo ce Pr TOT	n Unde orem fe oblem AL :	ecidabl or Rec (PCI 45 P	e Prot ursive P) – PERI	olem t and l Mod	hat is Recurs lified	RE – sively Post
OU	TC	OMES	:	On	comp	letion	of this	cours	e, stud	ents w	ill be a	able to			
	1.	Constru	ct auto	mata,	regula	ar expr	ression	for an	y patt	ern.					
	2.	Write co	ontext	tree gi	ramma	$\frac{1}{r}$ and $\frac{1}{r}$	iny con	nstruct	•						
	3. 4	Pronose	comp	utation	nes 10 1 solut	i ally 1	angua sing ti	ge. Iring n	nachin	es					
	5.	Derive v	whethe	er a pro	oblem	is deci	idable	or not		-5.					
CO	UR	SE AR	TICU	JLAJ	ΓΙΟΝ	MA'	TRIX	K:							
	РО	1 PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO1	PO1	PO1	PSO 1	PSO	PSO 2
CO1	M	Н	Н				L				-	2	H	2	M
CO2	Μ	Н	Η		L		L						Η		М

CO3	Μ	Н	Η		L		L						Н		М
CO4	Μ	Н	Η		L		L						Н		L
CO5	М	Н	Η		L		L						Н		М
(L- L	.ow, M-	Modera	ate, H-Hi	igh)											
TE	XT B	OOK	S:												
	1. John E Hopcroft and Jeffery D Ullman, "Introduction to Automata Theory, Languages and Computations". Narosa Publishing House, 2002.														
	and Computations", Narosa Publishing House, 2002.														
RE	and Computations", Narosa Publishing House, 2002. REFERENCES:														
1.	H.R. 1	Lewis	and C.	Н. Ра	apadin	itriou	, "Ele	ements	of the	e Theo	ory of	Comp	utation	n", Se	econd
	Edition	n, Pea	rson Ed	ducati	ion, 20	03.									
	J. Mar	tin, "I	Introdu	ction	to Lan	guage	s and	the Th	eory o	f Com	putatio	on", T	hird Ed	dition,	
Ζ.	Tata M	1cGra	w Hill,	2003.						-					
3.	Miche	al Sips	er, "In	trodu	ction d	of the T	Theory	, and C	Сотри	tation	", Tho	mson .	Brokec	cole, 1	997.

17S	PC50	5		AI	RTIF	ICIA	L IN	TEL	LIGI	ENCE	C	Ι	. T	P	C
												3	B () 0	3
OBJ	ECTI	VES:													
	٠		To u	nderst	and th	e vario	ous cha	aracter	istics	of Inte	lligent	t agent	S		
	•		To le	earn ab	out th	e diffe	erent se	earch s	strateg	ies in	AI				
	•		To le	earn to	repres	sent kr	nowled	lge in	solvin	g AI p	roblen	ns			
	•		To u	nderst	and th	e diffe	rent w	ays of	Mach	ine Le	arning	g.			
	•		To k	now a	bout th	ne vari	ous ap	plicati	ions of	f AI.					
UNI	ΤΙ		INT	ROE	DUCT	TION									9
Intro	ductio	n–Def	inition	1 - F1	uture	of Ar	tificia	l Inte	lligend	ce –	Charao	cteristi	cs o	f Inte	lligent
Ager	nts-Ty	pical l	ntellig	ent Ag	gents -	- Probl	lem So	olving	Appro	each to	Туріс	cal AI	probl	ems.	
UN	IT II		PRO	OBL	EM S	OLV	ING	MET	THOI	DS					9
Prob	lem so	olving	Meth	ods -	Search	h Stra	tegies	- Unir	nforme	ed - Ii	nforme	ed - H	leuris	stics -	Local
Sear	ch Al	gorith	ms an	Id Op	timiza	tion l	Proble	ms -	Searc	ching	with	Partial	l Ob	servati	ons -
Plavi	no - C	Sausi Intima	action 1 Decis	sions i	n Gam	-Corles - A	Istrain	i Prop . Reta	Prunir	011 - Γ 1σ-Sta	ochast	ic Gan	sea res	ren -	Game
IINI		-puilla	KN	\mathbf{OWI}		$\mathbf{F} \mathbf{R}$	EPRI	TSEN	TAT	$\frac{15}{10N}$	Jenuse		105.		9
First	Order	Predi	cate L	ogic –	Prolog	g Prog	ramm	ing – U	Unifica	ation –	Forw	ard Ch	nainir	1g-Bac	kward
Chai	ning –	Reso	lution	– Kno	wledg	ge Rep	resent	ation	- Onto	ologica	l Eng	ineerir	ng-Ca	tegorie	es and
Obje	cts –	Events	s - Me	ental E	events	and N	/Iental	Objec	cts - F	Reason	ing S	ystems	for	Catego	ories -
Reas	oning	with I	Default	Inform	mation	1.									
UNI	T IV		MA	CHI	NE L	EAR	NIN	Ĵ							9
Macl	nine L	earnin	g - bas	ic con	cepts,	linear	mode	ls, K n	earest	neigh	bors, t	raining	g and	testing	g, over
fittin	g and	under	fitting	, perce	eptron	s, neur	al net	works,	logis	tic reg	ression	n, unsu	iperv	ised le	arning
and r	einfor	cemen	it learn	ing. In	troduc	ction to	o Deep	b Learn	ung –	deep g	genera	tive m	odels	, deep	neural
	Orks.					NC									0
		ions	Lang		AII	JINS s Int	format	ion D	atriave	l Inf	rmati	on Evi	racti	on N	9 [atural
Lano	uage l	Proces	- Lang sing -	Machi	ine Tr	s – m anslati	on = S	Speech	Reco	onition	n = Rc	botics	-Pat	h Plan	ning _
Hand	lwritte	n digi	t classi	ificatio	on usin	ng deer	o learn	ing.	neeo	5	1 100	000000	Iut	II I Iull	
		<u> </u>					-	'	ГОТ	AL:	45 F	PERI	ODS	5	
OU	ΓΟΟ	MES	:	On	compl	letion of	of this	course	e, stud	ents w	ill be	able to)		
	1. U	se app	ropriat	e sear	ch algo	orithm	s for a	ny AI	proble	em.					
	2. Re	eprese	nt a pr	oblem	using	first o	rder a	nd pre	dicate	logic.					
	3. Pr	ovide	the ap	t agent	t strate	egy to a	solve a	a giver	n prob	lem.					
	$\frac{4}{5}$	ndersta	and the	e funda	amenta	al issue	es and	challe	nges o	of mac	hine le	earning	5.		
	5. D	esign a	applica	tions f	tor NL	P that	uses A	Artifici	ial Inte	elligen	ce.				
									DOD	PO1	DO1	DO1	DCO.	DEO	DSO.
	101	102	105	104	105	100	10/	100	109	0	1	2	1	2	3
CO1		Η	Μ				Μ								Н
CO2	Μ	Н	М		L								Μ	L	Н
CO3		H	M				Μ						M		H
CO4	M	H	M		L								M	T	H
05		Н	M			1	M			1		1	M		H

(L- 1	Low,	M- Moderate, H-High)
TE	XT	BOOKS:
	1.	S. Russell and P. Norvig, "Artificial Intelligence: A Modern Approach", Prentice Hall,
		Third Edition, 2009.
	2.	I. Bratko, "Prolog: Programming for Artificial Intelligence", Fourth edition, Addison-
		Wesley Educational Publishers Inc., 2011.
	3.	Kevin P. Murphy, "Machine learning A Probabilistic Perspective", MIT Press, 2012.
RE	CFE	RENCES:
1.	М.	Tim Jones, "Artificial Intelligence: A Systems Approach (Computer Science)", Jones
	anc	l Bartlett Publishers, Inc.; First Edition, 2008.
2.	Nil	s J. Nilsson, "The Quest for Artificial Intelligence", Cambridge University Press, 2009.
2	Wil	liam F. Clocksin and Christopher S. Mellish, "Programming in Prolog: Using the ISO
5.	Sta	ndard", Fifth Edition, Springer, 2003.
1	Da	vid L. Poole and Alan K. Mackworth, "Artificial Intelligence: Foundations of
4.	Co	mputational Agents", Cambridge University Press, 2010.
5.	ww	w.edx.org–Artificial Intelligence Course by Columbia University.

17SPC5	07 COMPUTER NETWORKS LABORATORY	L	Τ	P	С
		0	0	4	2
OBJEC	FIVES:				
٠	To learn socket programming.				
•	To learn and use network commands.				
•	To gain knowledge about the working of routing algorith	ms.			
•	To use simulation tools to analyze the performance of p layers in computer networks.	roto	cols	in di	fferent
•	To use simulation for implementation of error correction	code	e		
LIST O	F EXPERIMENTS:				
1. C 2. Si	at program using TCP Sockets. nulation of HTTP protocol using TCP Sockets.				
3. Si	nulation of DNS using UDP Sockets.				
4. Si	nulation of Ping using Raw Sockets.				
5. Lo	arn to use commands like tcpdump, netstat, ifconfig, nslookup and g and traceroute PDUs using a network protocol analyzer and example	d tra mine	cero	ute.C	apture
6. E	ercise on ARP using live network.			1	
7. D	vice IP address plan for a mid-size Org network using ideas of sub	netti	ng a	nd V	LSM.

- 8. Implement the plan on a simulated network and assign addresses using a DHCP server.
- 9. Study and configure functionalities of a router and switches (or by simulation).
- 10. Experiment to understand the concept of network address translation.
- 11. Simulation of Distance Vector/ Link State Routing algorithm.
- 12. Study of TCP/IP performance using simulation tool.
- 13. Performance evaluation of routing protocols using simulation tool.
- 14. Simulation of error correction code(CRC).

PLATFORM NEEDED

- Java / Equivalent Compiler
- Network simulator like NS2/Glomosim/OPNET/Equivalent

									TOT	AL:	60 I	PERI	ODS		
OU	ГСС	MES	:	On co	omplet	ion of	this co	ourse,	studer	nts wil	l be ab	ole to			
1		Implen	nent pi	otoco	ls usin	g TCF	and U	JDP S	ockets	•					
2		Compa	re the	perfor	mance	e of di	fferent	routir	ng algo	orithm	s using	g simu	lation	tools.	
3		Config	ure fu	nction	alities	of rou	ter and	l switc	hes.						
4. Compare the performance of different transport layer protocols.															
CO	COURSE ARTICULATION MATRIX:														
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO1 PO1 PO1 PS0 PS0 PS0														
										0	1	2	1	2	3
CO1	Μ	Н		Μ		L							Η		Μ
CO2	М	Η	Н	Μ		L							Н		Μ
CO3	М	Η	Μ	Μ		L							Н		Μ
CO4	Μ	Η	L	Μ		L							Η		Μ
(L-Lo	ow, M	- Modera	ite, H-H	ligh)											

17S	PC50	8	E	MBE	DDE	D CC	OMPU	JTIN	GSY	STE	MS	Ι	7 J	P	C
						LAB	ORA	TOR	Y						
OBI	ECTI	VES										() (4	2
•			Be	famil	iar wi	th Imp	lemen	itation	of As	sembl	y prog	rams (on A	RM b	ased
			Pro	ocesso	r	. 1	.1		ст.	<u> </u>	•.1	.1	1 .		
•	1		Ве	able t	o unde	erstand	theco	ncept	of Inte	rfacin	g with	other	devi	ces.	
•	1		Be	famil	iar wit	h Usag	ge of T	imer a	ind Int	errupt	handle	er			
•)		Be	famil	iar wit	h Impl	ement	tion of	zigbee	e proto	col				
LIST	ſ OF I	EXPE	RIME	NTS:											
1 2 3 4 5 6 7 7 8 9 9 1 1 1	 Study of ARM evaluation system. Interfacing ADC and DAC. Interfacing LED and PWM. Interfacing real time clock and serial port. Interfacing Keyboard and LCD. Interfacing EPROM and Interrupt. Mail Box. Interrupt performance characteristics of ARM and FPGA. Flashing of LEDS. Interfacing stepper motor and temperature sensor. Implementing Zigbee Protocol with ARM. Reading of analog sensor data and digital sensor data over UART using 12C,SPI protocols. TOTAL : 60 PERIODS														
OU	ГСО	MES	•	On co	omplet	tion of	this c	ourse,	studer	nts wil	l be ab	le to			
1	. \	Write j	orogra	ms in	ARM	for a s	pecifi	c write	e Appl	icatior	<u>1.</u>				
2	.]	nterfa	ce mei	mory a	and pro	ogram	s relate	ed to n	nemor	y oper	ations	•			
<u>3</u>	. 1	nterra	ce A/L) and]	D/A constraints	of int	ors Wil	th AR	vi syst	em.					
		$\overline{\mathbf{T}} \mathbf{A} \mathbf{R}^{I}$			TION	MA'	FRIX								
	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO1	PO1	PO1	PSC	PSC	PSO
	T	1.5			1.5		Ŧ			0	1	2	1	2	3
CO1		M	H U		M								H	_	M
(02		M	п Н		M								п Н	_	M
CO4	L	M	H		M		L						H		M
(L- Lo		Modera	te, H-H	ligh)		I	~	I	I	I	1	I	* *		111

SEMESTER VI

17	SH	S601	PF	ROFE	ESSIC	DNAI	L ET	HICS UES	ANI) HU	MAN	I	, T	Р	C		
												3	0	0	3		
OBJ	EC	FIVES:										_	-	_			
Upor	n coi	npletior	n of thi	s cours	se, the	studer	nts wil	l be ab	le								
		•	To e	mphas	size int	o awa	reness	on En	gineer	ing Et	hics an	d Hun	nan Va	alues.			
		•	To u	nderst	and so	cial re	sponsi	bility	of an e	ngine	er						
		•	To a	ppreci	ate eth	ical di	lemma	a while	e disch	arging	duties	s in pro	fessio	nal lif	e.		
UNI	ΤΙ		HU	MAN	VAI	LUES	5								10		
Mora forot Coop Intro	als, V hers berat duct	Values a – Livi ion –C ion to Y	and Eth ng pea Commit Coga ar	nics – acefull tment ndmed	Integri y – C – Er itation	ity – V Caring npathy for pr	Vork e – Sha / – Star ofessia	ethic – aring – Self-co onal ex	Servi – Hon nfiden kceller	ce lean lesty - lice – lice and	ning – Cour Char d stress	- Civic rage – acter s mana	virtuo Valu – Spi gemen	e – Re ing ti irituali nt.	spect me – ity –		
UNI	T I	Ι	EN	GINE	EERI	NG E	THI	CS							9		
Sense Mora Mode – Use	es of al au els c es of	f Engin utonomy ofprofes f <u>Ethical</u>	eering y – Ko sional Theor	Ethics ohlber roles - ies.	s' – Va g's th Theoi	ariety (eory – ries ab	of mor - Gilli out rig	al issu igan's ght acti	theor ion – S	ypes o y – C Self-in	of inqu onsens terest -	iry – N sus an – Cust	Aoral d d Cor oms a	dilemi ntrove nd Rel	mas – rsy – ligion		
UNI	[T]	II	EN	ENGINEERINGAS SOCIAL 9													
			EX	EXPERIMENTATION													
Engin Balar	neer	ing as E	Experin	nentati	ion – E	Engine	ers as	respon	sible 1	Experi	mente	rs – Co	odes o	f Ethio	≥s −A		
UNI		V		FETY	. RE	SPO	NSIB	ILIT	IES A	AND	RIGI	HTS			9		
Safet	y ar	nd Risk	– Asse	essmer	nt of S	afety a	and Ri	sk – R	isk Be	enefit	Analys	sis and	Redu	cing F	Risk -		
Resp	ect	for Au	thority	- Co	ollectiv	ve Ba	gainir	ng – (Confid	entiali	ity –	Confli	cts of	Inter	est –		
Occu	ipati	onalCri	me –	Profes	sional	Right	s - E	mploy	vee Ri	ghts –	- Intel	lectual	Prop	erty R	lights		
	$\frac{1}{T}$	V	GL	OBA		SUES									8		
Mult	inati	, ional Co	orporat	ions –	Envir	onmen	tal Etl	nics –	Comp	uter Et	hics –	Weap	ons D	evelor	ment		
-Eng	ginee	ers as M	lanagei	cs - Co	onsulti	ng En	gineer	s – En	gineer	s as E	xpert '	Witnes	ses an	ıd Adv	visors		
-Moi	ral L	Leadersh	ip –Co	ode of	Condu	ict - C	orpora	ate Soc	cial Re	sponsi	ibility.						
								,	ТОТ	AL:	45 P	PERIC	DDS				
OU.	ГС	OMES	:	On	comp	letion	of this	course	e, stud	ents w	ill be a	able to					
	1.	Apply e	thics in	n socie	ety and	l discu	ssthe o	ethical	issues	s relate	ed to er	nginee	ring.				
	2.	Realize	the res	sponsil	bilities	and r	ghts 11	n these	ociety.								
	3. 1	Analyse Gain the	e the re	sponsi	of safe	s to the	e socie	ety as a	in eng	ineer.	of hum	on righ	nte				
	4. 5	Study th	e mult	tinatio	$\frac{01}{\text{nal con}}$	rnorati	$\frac{K}{ONS}$ ar	ysis ai nd ethia	$\frac{10}{10} \frac{11}{10} \frac{1}{10}$	n engi	neer	an ngi	ns.				
CO		SE AR	TICI		FION	MA'	FRIX	<u>.</u>	<u></u>								
	PO	1 PO2	PO3	PO4	P05	PO6	P07	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO		
					<u> </u>		ļ			0	1	2	1	2	3		
CO1								H		M	L	M	M		M		
CO2	<u> </u>							H		M		M	M		M		
03					1			п		IVI	L	IVI	IVI		11/1		

CO4									Н		Μ	L	Μ	Μ		Μ
CO5									Η		М	L		М		Μ
(L- I	Low,]	M- N	Iodera	te, H-H	igh)											
TE	XT	BO	OK	S:												
	1.	Mil	ke W	. Mart	in and	Rola	nd Sch	inzing	er, "E	thics i	n Eng	gineeri	ng", T	'ata Mo	cGraw	Hill,
		Nev	w Del	lhi, 20	03.											
	2.	Gov	vinda	rajan I	M, Na	tarajar	n S, Se	nthil H	Kumar	V. S,	"Engi	ineerir	ng Ethi	ics", P	rentice	Hall
		of I	India,	New I	Delhi, 1	2004.										
	3. R. Subramanian, "Professional Ethics", OUP India, 2013. EFERENCES:															
RE	S. R. Subrahaman, Trocssional Eurics , OOT mula, 2015. EFERENCES:															
1.	REFERENCES: 1. Charles B. Fleddermann, "Engineering Ethics", Pearson Prentice Hall, New Jersey, 2004.															
2	Cha	rles	E. 1	Harris	Mich	ael S.	Pritc	hard d	and M	lichael	J. R	abins,	"Eng	ineerir	ng Eth	ics –
2.	Con	cept	tsand	Cases	s", Ce	ngage	Learn	ing, 20	009.							
3	Joh	n R	Boat	right,	"Ethic	cs and	the C	Conduc	t of B	usines	s", Pe	earson	Educ	ation,	New L	Delhi,
5.	200	3.														
1	Edn	iuna	d G	Seeba	uer ar	nd Ro	bert L	. Barr	у, "F	undam	netals	of Et	hics f	°or Sci	entists	and
4.	Eng	inee	ers",	Oxford	d Univ	ersity	Press,	Oxfor	d, 200)1.						
	Lau	ra F	P. Hai	rtman	and Jo	e Des	jardin	s, "Bu	siness	Ethics	s: Dec	ision I	Making	g for P	Persona	ıl
5.	Inte	grit	y ana	l Soci	al Res	ponsil	oility"	McG	raw F	Iill ed	ucatic	on, Inc	lia Pv	t. Ltd.,	New 1	Delhi
	201	3.														

175	SBS60	2		R	ESO	URC	E MA	NA(GEM	ENT		Ι	, T	P	С
						TEC	CHN	IQUE	ES					0	4
OR	IFCTI	VFS.										3	2	U	4
UD	JLUII	VES.	Do fe	milio	with	***	<u></u>	20.000	ont to	hniau	20				
	•		Dela					lagem						· · ·	
	•		Lear	n to so	lve pr	oblem	$\frac{1}{1}$	$\frac{1}{2}$	ogram	ming	and Int	eger p	orogra	mming	5
	٠		Be ex	xposed	to CI	PM and	d PER	Т					I		
UN	IT I		LIN	EAR	PRO)GR A	AMM	IING							9+6
Prin solu	icipal c ition – I	ompor Resour	nents of the termination of termination	of dec	ision _I 1 probl	problei lems –	m – M Simpl	Iodelii lex me	ng pha ethod –	ases – - Sensi	LP Fo itivity a	ormula analys	ition a is.	and gr	aphic
UN	IT II		DUA	ALIT	'Y Al	ND N	ETW	ORI	KS						9+6
Def	inition	of du	al pro	blem	– Prir	nal –	Dual	relatio	onship	s – D	oual sin	nplex	meth	ods –	Post
opti	mality	analys:	$\frac{1}{1}$	anspo	rtation	and a	ssignn	nent m	$\frac{10}{C}$	Short	est rou	te prol	olem.		0.6
	11 11	no ola	IN I orithm	EGE	K Ph	d hou	KAIVI	IVIIIN thods	<u>G</u> Multi	stage (Dunan	nic) n	ogran	mina	9+0
	ITT IV			ΔSSI						THE(inc) pi	ogran	ming	9+6
Unc	constrai	ned ex	ternal	proble	ems. N	lewton	-Ral	phson	metho	d - E	auality	const	raints	– Jaco	bean
met	ethods – Lagrangian method – Kuhn – Tucker conditions – Simple problems.NIT VOBJECT SCHEDULING9+6														
UN	IT V		OB	JECT	SCI	HEDU	U LIN	G							9+6
Net PEF	Initial Stagrangian method Rum Fracker conditions Simple proteins: INIT V OBJECT SCHEDULING 9+6 letwork diagram representation – Critical path method – Time charts and resource leveling – ERT. ERT.														
	JNIT V OBJECT SCHEDULING 9+6 Jetwork diagram representation – Critical path method – Time charts and resource leveling – PERT. TOTAL (L: 45 + T: 30): 75 PERIODS														
OU	TCO	MES	:	On	compl	etion of	of this	course	e, stud	ents w	ill be a	ble to			
	$\frac{1}{2}$ $\frac{1}{2}$	olve op	otimiza	tion p	roblen	ns usin	ng sim	plex m	nethod		1	1 1:6.	1: .	- 4 :	
	$\frac{2.}{3} \text{Us}$	opiy in se PER	T and	progra CPM	for pr	g and i oblem	$\frac{1}{s \text{ in } pr}$	progra piect r	manag	g to sc ement	olve rea	u-me	аррпс	ations	•
CC	URSI	$\overline{\mathbf{E} \mathbf{A} \mathbf{R}'}$	TICU	JLAT	ION	MA	FRIX	<u>.</u>			•				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO
CO1	н	М	M		M		I			0	1	2	1 M	2 H	3
CO2	H	M	M		M		L						M	H	
CO3	Н	М	М		М		L						М	Н	
(L- I	Low, M-	Modera	ite, H-H	ligh)											
TE	XT BO		<u>S:</u>			1	•• • • • •				F 1	• •		015	
DE	1. H.	A. Tal	ha, "O	peratio	ons Re	esearch	1 ⁷⁷ , 10 ¹¹	Editio	on, Pe	arson	Educat	ion, Ir	idia, 2	017.	
	FERE		.S:)n ov st	ong D		1, " n	d E J:4:	on Du		II all of	India	200/	1	
1.	r uneel Andor	r serva	$\frac{1}{4} \frac{1}{2} \frac{1}$	$\frac{1}{1}$	ons Ke	tive M	$n, 2^{m}$	Ealth	usings	$\frac{c}{c}$ $\frac{c}{c}$ $\frac{c}{12}$	11411 0J	inaia	, 2004	+. o I oar	nina
2.	2015.	50n D.	а, ег.и	ı, Qu	unnu	<i>uve w</i>	emous	. <i>јог</i> Б	usines	5,15	Lun	<i>011</i> , Ce	engug	e Leur	ning,
3.	Wayne	Winst	ton, "(Operat	ion Re	esearch	$h'', 4^{th}$	Editio	n, Tho	mson .	Learni	ng, 20	03.		
4.	Vohra, Educa	"Qua tion. N	intitati Iew De	ve Tec elhi. 20	chniqu 017.	es in N	<i>lanag</i>	ement	", 5 th 1	Editior	ı, Tata	Mc-G	raw E	Iill	
5.	Anand	Sarmo	а, "Op	eratio	n Rese	earch"	', Him	alaya I	Publis	hing H	Iouse, 1	2010.			

17	17SPC603MOBILE COMMUNICATIONSLTPC														
												3	6 0	0	3
OBJ	ECTI	VES:													
	٠		To L	earn b	asics o	of Mol	oile co	mmun	icatio	n.					
	•		Be fa	amilia	with	variou	s wire	less L	AN an	d wire	less s	ystems	•		
	٠		Be fa	amilia	with	basic o	operati	ons of	î mobi	le netv	vork la	ayer.			
	٠		To st	tudy th	e deta	ils of l	lower	layers	of mo	bile ar	chitec	tures.			
	٠		To le	earn to	devel	op app	licatio	ons for	vario	us mol	oile O	S.			
UN	ΤΙ		INT	ROE	DUCT	TION									9
Intro	ductio	n – A	pplica MA	tions	– Sig	nals –	Signa	al Proj DMA	pagati	$\frac{1}{M}$	Multip	lexing	- M	odulati	on –
UN	IT II	cuum		RELI	ESS I				- CD.						9
IEEE	E 802.	11 - Sy	stem A	Archite	ecture	and Pi	otoco	Arch	itectui	e of II	EEE 80	02.11 -	- Phys	ical an	ıd
MAG	C laye	r - MA	C mai	nagem	ent – 8	802.11	b - 80	2.11a	– HIP	ERLA	N - B	luetoo	th.		
UN	TII	[WI	RELI	ESS S	SYST	EMS								9
GSM	I – DE	ECT –	UMTS	S - Mo	bile A	AD HC	C Net	tworks	s - AD	HOC	Routi	ng Pro	otocols	s - DS	DV -
	and P	$\frac{1}{7}$	Routin	ng lec		$\frac{\text{es} - Q}{TWO}$		$\frac{1}{1}$ serv	$r_{1Ce 1n}$	MODI	e Ad I	noc Ne	twork	s.	11
Moh	Mobile Internet Protocol - IP Packet Delivery - Tunneling and Encapsulation - Reverse														
Tunr	ne ing	- DH	CP - II	- 201 206 - 5	Securi	tv Con	cerns	– Moł	oile IP	ning a 9v6 – (Dvervi	ew – F	Basic (- Re Operat	ion –
Head	ler Ex	tension	n – Ali	gnmer	nt Req	uireme	ents –	Home	Addr	ess Op	tion –	Type	2 Rou	ting H	eader
- Mo	obility	Head	er – M	lobility	y Opti	ons –	Neigh	bor Di	iscove	ry Me	ssages	– Pro	cedure	e of M	obile
IPv6	- Roi	ute Op	timiza	tion –	Move	ment l	Detect	ion –]	Dynar	nic Ho	me A	gent A	ddress	s Disco	overy
		renx s		ation /			$rac{r}{r}$		nsnip	with II	sec.				- 7
				PLIC	ATI(DNS	ILN	AND	115						/
Trad	itional	TCP	- T(CP Im	prove	ments	for N	Aobile	Devi	ices –	TCP	over	2.5/3	G Wi	reless
Netw	orks -	– Wire	less A	pplicat	tion P	rotocol	(WA	P) – M	Iobile	Applie	cations	5.			
								,	ТОТ	AL:	45 I	PERIC	ODS		
OU	ΓርΟ	MES	:	On	compl	etion of	of this	course	e, stud	lents w	ill be	able to			
	$\frac{1}{2}$ D	xplain	the fea	atures	of sma	art mol	oiles a	$\frac{\text{nd oth}}{2}$	er sma	art dev	ices.				
	$\frac{2}{3} = \frac{D}{E}$	evelop volain	protoc	cations	ated to	$\frac{naroic}{2}$	$\frac{1}{1}$ and $\frac{1}{1}$	<u>US.</u> nohile	netw	orks					
CO	URSI	E AR	TICI		ION	MA	FRIX		netwo	01K5.					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO
601	т		м		M		М			0	1	2	1	2	3
(0)		н н	M		M		M						M		н Н
CO2	L	H	M		M		M						M		H
(L- Lo	<u></u>	Modera	ite, <u>H-</u> H	ligh)		I		I	I	I	I	I		L	
TEX	кт в	OOK	S:												
	4. A	soke	K. Ta	alukde	r and	Roo	pa R	Yava	agal,	"Mobi	ile Co	omputi	ng, 7	Techno	logy,
	A	pplicat	tion an	d Serv	vice Ci	reation	", Sec	ond E	dition,	, Tata I	McGra	aw Hill	, 2010).	

	5.	Jochen Schiller, "Mobile Communications", Second Edition, Pearson Education, 2003.									
RF	EFE	RENCES:									
1.	Jon	W.Mark and Weihua Zhuang, "Wireless Communication and Networking", Prentice									
	Hai	11, 2002.									
2	С.	D M Cordeiro and D. P. Agarwal, "Adhoc and Sensor Networks: Theory and									
۷.	Applications", World Scientific, 2006.										
	Pei	Zhang, Feng Zhao, David Tipper, Jinmei Tatuya, Keiichi Shima, Yi Qian, larry L.									
2	Pet	erson, Lionel M. Ni, Manjunath D, Qing Li, Joy Kuri, Anurag Kumar, Prashant									
5.	Kri	shnamurthy, Leonidas Guibas, Vijay K. Garg, Adrian Farrel, Bruce S. Davie, "Wireless									
	Net	working Complete", Elsevier, 2010.									

17	17SPC604COMPILER DESIGNLTPC														
												3	B 0	0	3
OBJ	ECTI	VES:													
	٠		To 1	earn th	ne vari	ous pa	rsing	techni	ques a	nd dif	ferent	levels	of tra	nslatio	n
	•		To 1	earn h	ow to	obtain	specif	fic obj	ect co	de froi	n sour	ce lang	guage	•	
	٠		To l	earn h	ow to	optimi	ize the	code	and sc	hedule	e for o	ptimal	perfo	ormanc	e
	•		To L parel	earn h lelism	ow to	schedu	ule coo	le and	to be	famili	ar witl	n the co	oncep	ot of	
UNI	TI		FR(DNT	END	OF (COM	PILF	ERS						10
The	Struct	ure of	Comp	iler –	Lexio	cal An	alysis	: Role	e of L	exical	Analy	zer -	Speci	ficatio	n and
Reco	gnitio	n of T	okens	- Synt	ax An	alysis	: Top	Down	Parsir	ng - Bo	ottom	up Par	sing -	LR Pa	arsers:
		R - LA	LR.		TEDI		COL								0
	$\mathbf{I} \mathbf{I}$	rootod	Dofin	EKN		AIL	$\frac{\text{COL}}{\text{n Ord}}$	DE G		KAI	ivento	1 Dofi	nitio		9 Vintox
Direc	ted T	ranslat	ion Sc	hemes	- Eva s - Int	ermed	liate L	angu	ages: S	Svntax	Tree	- Thre	e Ad	dress C	Code -
Postf	ix Co	de-Dec	claratio	ons - T	ransla	tion of	f Expre	ession	s - Tyj	pe Che	ecking	- Back	c Pato	hing.	
UNI	T III	[RUI	N TII	ME A	ND (OBJE	ССТ (COD	E					9
GENERATION															
Storage Organization – Stack Allocation Space - Access to Non local Data on the Stack - Heap															
Mana	ageme	nt - Is	sues in	Code	e Gene	ration	- Desi	ign of	Code	Gener	ator -	Regist	er Al	locatio	n and
Expr	Assignment – Instruction Selection by Iree Rewriting – Optimal Code Generation for Expressions – Dynamic Programming Code Generation														
UNI	TIV		CO	DE O	PTI	MIZA	TIO	N							9
Basic	Blo	cks ar	nd Flo	w Gr	aphs	– Opt	imizat	ion o	f Bas	ic Blo	ocks -	- Prin	cipal	Sourc	es of
Optin	nizati	ons – I	Data F	low A	nalysi	is - Co	onstan	t Prop	agatio	n – Pa	rtial F	Redund	lancy	Elimi	nation
- Pee	phole	Optin	nizatio	ns.											
UNI	ΤV		SCI	IEDU	JLIN		ND O	PTIN	AIZI	NG F	'OR				8
~ 1	~ .		PAL	RALI	<u>LELI</u>	<u>SM</u>				~	1.0				D
Code	Sche	duling	g Cons	straints	B - Bara	asic B	lock S	Schedu	iling -	- Glol	oal Co	ode Sc	hedu	ling -	Basic
Array	v Inde	n Faia	illeliza		- Fala	nenzn	ig Ma	UIX IV.	luiupi		I - Ite	ration	Spac	es - I	Anne
- ma	, mae	1051						,	ГОТ	AL:	45 H	PERI	ODS		
OU	ΓΟΟ	MES	:	On	compl	etion of	of this	course	e, stud	ents w	ill be	able to			
	1. D	esign c	compil	er pha	ses fro	om lan	guage	specif	ication	1.					
	2. D	esign c	code ge	enerato	ors for	the sp	ecifie	d macl	nine.						
	3. A	pply th	ne vari	ous op	timiza	tion te	chniq	ues.							
CO	URSI	<u>E AR'</u>	TICU	LAT	<u>'ION</u>	MA	FRIX								
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
CO1		М	Н	М	М		L						Н		М
CO2	L	Μ	H	M	Μ		L						H		M
CO3		Μ	Η	Μ	Μ		L						Η		Μ
(L-Lo	w, M-	Modera	ite, H-H	igh)											
TEX	<u>(T B</u>	UOK	<u>S:</u>		~ ~				<u> </u>	D 1			•1	D · · ·	1
	1. Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffrey D. Ullman, "Compilers: Principles,														

	Techniques and Tools", Second Edition, Pearson Education, 2009.											
RF	CFERENCES:											
1.	Randy Allen, Ken Kennedy, "Optimizing Compilers for Modern Architectures: A											
	Dependence-based Approach", Morgan Kaufmann Publishers, 2002.											
n	Steven S. Muchnick, "Advanced Compiler Design and Implementation", Morgan Kaufmann											
۷.	Publishers - Elsevier Science, India, Indian Reprint 2003.											
2	Keith D Cooper and Linda Torczon, "Engineering a Compiler", Morgan Kaufmann											
5.	Publishers Elsevier Science, 2004.											
1	V. Raghavan, "Principles of Compiler Design", Tata McGraw Hill Education Publishers,											
4.	2010.											
5.	Allen I. Holub, "Compiler Design in C", Prentice-Hall Software Series, 1993.											

17SPC605	PAI	PARALLEL AND DISTRIBUTED L T P C SYSTEMS												
		515	1 EN15		3	Λ	0	3						
OBJECTIVES:					3	U	U	5						
•	To understa	and the need and	l fundamentals of pa	arallel com	putin	g par	adign	ıs						
•	To learn the	e nuances of par	allel algorithm desi	gn										
•	To understa architecture	and the program	ming principles in p	arallel con	nputii	ng								
•	To be fami	liar with the con	cept of distributed of	computing	archit	ectu	res							
•	To learn fe	w problems that	are solved using pa	rallel algor	ithms	5								
UNIT I	INTROD COMPU	UCTION TO) PARALLEL					9						
Scope of Paralle Limitations of M Communication Mapping Technic	Scope of Parallel Computing – Parallel Programming Platforms – Implicit Parallelism – Limitations of Memory System Performance – Control Structure of Parallel Platforms – Communication Model of Parallel Platforms – Physical Organization of Parallel Platforms – Communication Costs in Parallel Machines – Impact of Process - Processor Mapping and Mapping Techniques.													
UNIT II	PARALI	EL ALGOR	ITHM DESIGN	I				9						
Preliminaries – Decomposition Techniques – Characteristics of Tasks and Interactions – Mapping Techniques for Load Balancing – Methods for Containing Interaction Overheads – Parallel Algorithm Models – Basic Communication Operations – One-to-All Broadcast and All- to-One Reduction – All-to-All Broadcast and Reduction – All-Reduce and Prefix Sum Operations – Scatter and Gather – All-to-All Personalized Communication- Circular Shift – Improving the Speed of some Communication Operations. UNIT III PROGRAMMING USING MESSAGE PASSING AND SHARED ADDRESS SPACE Principles of Message Passing Programming – Duilding Discles – Sund and Precise Operation														
– MPI – Mes Communication v Groups and Com Parallel Program Solving Systems First Search.	 MPI – Message Passing Interface – Topologies and Embedding – Overlapping Communication with Computation – Collective Communication and Computation Operations – Groups and Communicators – POSIX thread API – OpenMP: a Standard for Directive based Parallel Programming – Applications of Parallel Programming - Matrix-Matrix Multiplication – Solving Systems of Equations – Sorting Networks - Bubble Sort Variations – Parallel Depth First Search. 													
UNIT IVDISTRIBUTED COMPUTING PARADIGM9														
Paradigms for Dis Election in Rings	Paradigms for Distributed applications – Basic algorithms in Message passing Systems – Leader Election in Rings – Mutual Exclusion in Shared Memory.													
UNIT V	FAULT 7	FOLERANT	DESIGN					9						
Synchronous Syst Systems - Form Broadcast Servic Shared Memory -	Synchronous Systems with Crash Failures – Byzantine Failures – Impossibility in Asynchronous Systems - Formal Model for Simulation – Broadcast and Multicast – Specification of a Broadcast Service – Implementing a Broadcast Service – Multicast in Groups – Distributed Shared Memory – Linearizable – Sequentially Consistent Shared Memory – Algorithms. TOTAL: 45 PERIODS													
OUTCOMES :	On	completion of th	is course, students	will be able	e to									
1. Apply pa	rallel and di	stributed compu	ting architectures for	or any give	n pro	blem								
2. Apply p	roblem solv	ving (analysis,	design, and deve	iopment) s	SK111S	to	aistrit	outed						

		ap	plicati	ons.												
	3.	De	evelop	applic	cations	s by in	corpor	ating _[paralle	and o	distrib	uted c	omput	ing arc	chitect	ures.
	4.	De	evelop	applic	cations	s by in	corpor	ating f	fault to	oleranc	ce.					
	5.	Co	onvert	a sequ	ential	algori	thm to	a para	allel or	ne.						
CO	UF	RSE	E AR'	TICU	JLAT	ION	MA	ΓRIX	:							
	PO	D1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO
											0	1	2	1	2	3
CO1			М	Н		Μ		L						М		Н
CO2			М	Н		Μ		L						Μ		Η
CO3			Μ	Н		Μ		L						Μ		Н
CO4			М	Н		L		L						М		Н
CO5			M H M L M H													
(L- L	(L- Low, M- Moderate, H-High)															
TE	TEXT BOOKS:															
	1.	Ar	nanth	Grama	a, Ans	hul G	lupta,	Georg	ge Kar	ypis a	and V	ipin K	Lumar,	"Intro	oducti	on to
		Pa	rallel	Comp	uting"	, Seco	nd Edi	tion, F	Pearson	n Educ	cation,	2009.				
	2.	Ha	nggit	Attiya	ı and	Jenr	nifer	Welch	, "Di	istribu	ted (Compu	ting	– Fui	ndame	ntals,
		Si	mulati	ons an	d Adv	anced	Topic	s", Se	cond E	Edition	ı, Wile	ey, 201	2.			
	3.	No	orman	Matlo	ff, "Pa	arallel	Comp	outing	for Da	ata Sci	ence V	With E	Examp	les in]	R, C+-	+ and
		CU	JDA"	, Chap	man a	nd Ha	ll/CRC	C, 2015	5.							
RE	FE	RE	NCE	S:												
1.	Mie	chae	el Qu	inn, "	Paral	lel Ca	omputi	ng -	Theor	y and	l Prac	ctice",	Seco	nd Ed	lition,	Tata
	Мс	Gra	w Hil	l, 2002	2.			2	•	•						
2.	Wa	n F	okkink	k, "Dis	tribut	ed Alg	orithm	s: An	Intuiti	ve App	proach	ı", MI	T Pres	s, 201	3.	
	M.I	L. L	iu. "D	listrihi	ited C	omput	ing - F	Princin	les an	d Ann	licatio	ns". F	irst Ea	lition.	Pears	on
3.	Edi	icat	tion. 2	011.		p.ut		·				,1				
			, =	•												

175	PC6	7	ΜΟΙ	RILE	ЛРР	IIC			WFI	OPN	/FN	г т	Т	Р	С
1701		<i>.</i>							V					•	C
						LAD	OKA	IUK	1			- 0	0	4	2
OBJ	ECT	VES:											v		
020	•	K	Know t	he cor	npone	nts and	1 struc	ture of	mobi	le app	licatio	n deve	opme	ent	
	•	fi	ramew	orks f	or And	lroid a	nd wii	ndows	OS ba	used m	obiles		- F		
	•	L fi	Jnders ramew	tand h	ow to	work v	with va	arious	mobile	e appli	cation	develo	opmer	nt	
	٠	L n	earn t nobile	he bas applic	ic and ations.	impor	tant de	esign c	oncep	ts and	issues	of dev	elopr	nent o	f
	•	U	Inders	tand th	ne capa	bilitie	s and	limitat	ions o	f mobi	ile dev	rices			
LIST	OF	EXPE	RIMF	NTS:	_										
				11201											
1 2 3 4 5 6 7 8 9	. Ins toc . W1 rad . W1 . W1 . W1 . W1 . W1	tall the is are p io butt ite a p ite a p	Andro properil rogram cogram rogram rogram rogram rogram rogram rogram rogram	bid SE by instant represent to sent to plant to plant to cap to sent to sent to sent to sent to sent t	DK and alled a g a Ta ent the g activi nd user ay aud ay vide pture i nd SM nvert t	devel nd cor ble La type ty class from to files co files mage S. ext to	oper to afigure yout f of dep ss to sh one aj s. s. using l speecl	ools ar ed. For our artmen now di pplicat built ir	d buil depan nts. fferen ion to came	d a tes rtment t even anothe era.	data e data e ts. er (eg.	ect to c entry f	onfiri orm, a	n that add a to ma	those set of up).
1	0. W1	rite a pi	rogran	n to ca	ll a nu	mber.									
PLA	\TF(•	ORM Stanc Appl	NEE lalone icatior	DED deskto Deve	ops wi	th Wir nt too	ndows ls with	or And appro	droid o priate	oriOS emula	or Equ itors ar	ivalen nd deb	t Mot ugger	oile s.	
									TOT	'AL :	60 P	PERIC	DDS		
OU	ГСО	MES	:	On co	omplet	ion of	this c	ourse,	studer	ts wil	l be ab	le to			
1		Gain h	ands o	n expe	erience	in Ar	droid	SDK.							
2		Design	and de	evelop	ing ap	plicati	ons in	Andro	id bas	ed dev	vices.				
3		Design	and d	evelor	oing de	plova	ble An	droid	applic	ations					
CO	JRS	E AR	TICU	JLAT	TION	MA	FRIX	:							
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO
										0	1	2	1	2	3
CO1	L	H	M		Μ		L						Μ	L	H
CO2	M	H	M		M		L						M	L	H
CO3	Μ	H	M		Μ		L						Μ	L	H

CO3MHM(L- Low, M- Moderate, H-High)

17S	PC6()8		C	OMP	ILEI	R LA	BOR	ATO	RY		Ι	T	P	С
		·										() ()	4	2
OB.	IEC	ΓΙΥΕ	S:												
	٠	E	Be expo	osed to	o comp	oiler w	riting	tools.							
	٠	Ι	earn te	o impl	ement	the di	fferen	t Phase	es of c	ompile	er				
	٠	E	Be fam	iliar w	ith cor	ntrol fl	ow an	d data	flow a	analys	is				
	٠	Ι	earn s	imple	optimi	zation	techn	iques							
	٠	Ι	earn te	o impl	ement	transl	ator w	ith inp	out and	l objec	t langu	lage.			
LIS	T OF	FEXI	PERI	MEN	TS:										
1 2 3 4 5 6 7 8 9 1 1 1 1 1 9 1 1 1 9	 Tokenizer with LEX for declarations in C language. Tokenizer with LEX for assignment statement. Parser with LEX and YACC to validate "for" statement. Evaluation of arithmetic expression with LEX and YACC. Symbol table creation from a list of declarations. Syntax tree creation for control constructs. Three address code generation for "assignment" statement with array references. Three address code generation for "while" statement. Construction of flow graph from list of three address statements. Constant propagation in a flow graph. Translation of three address code to assembly language with fixed number of registers. Stack and heap management at run time. PLATFORM NEEDED C/C++/Equivalent Compiler 														
									TOT	TAL :	60 P	PERI	ODS		
OU'	ΓርΟ	MES	:	On co	omplet	ion of	this c	ourse,	studer	nts wil	I be ab	le to			
1	. []	Implen	nent th	e toke	n reco	gnizer	trom	token	specif	ication	1.				
2	•	Implen Implen	nent th	e pars	media	te cod	e gene	specif	for the	n. Snecit	fied int	ermed	liate 1	anoua	Je
4	.]	Implen	nent si	mple of	optimiz	zation	s.			speen				angua	30.
5	.]	Implen	nent tr	anslate	or with	speci	fic inp	out and	lobjec	t lang	uage.				
CO	URS	E AR	TICU	JLAT	ION	MA	FRIX	:	_						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO
CO1	I	н	М	I	М					U	1	2	1 1	2 M	3
CO2	L	H	M	L	M								H	M	
CO3	L	M	H	L	M								H	M	
CO4	L	M	H	L	M								H	M	
CO5	L	М	Н	L	М					1	1		Н	Μ	
(L- Lo	ow, M-	Modera	te, H-H	ligh)			•			•	•		•	•	•

17	ZEE	609	COMMUNICATION AND SOFT SKILLS L LABORATORY												C
												0	0	4	2
OB	JECT	TVE	S:												
	•		To d refer	evelop ence t	o their o their	comm speak	unicat	ive co d liste	mpeten ning.	ncy in	Englis	sh with	speci	ific	
	٠		To e	nhanc	e their	ability	y to co	mmun	icate e	effectiv	vely in	interv	iews.		
	•		To s	trengtl	nen the	eir pro	spects	of suc	cess in	n comp	oetitive	e exam	inatio	ns.	
	٠		To s	trength	nen a g	good co	omma	nd ove	er of th	e lang	uage p	roficie	ncy.		
	٠		To com	compi munic	rehend ation	a d	ifferer	nt typ	es of	acce	nt an	d use	ther	n in	their
UN	ΤΙ		LIS	TEN	ING	AND	SPE	AKI	NG S	KILI	LS				12
Conv	versati	onal sl	kills (f	formal	and in	nforma	al)- gr	oup di	scussi	on – r	naking	g effect	ive p	resenta	ations
using	g com	puters	, lister	ning/	watchi	ing in	terviev	ws, co	nversa	ations,	docui	mentar	ies. I	Listeni	ng to
lectu	res and	d disci	issions	3. A DIN					<u>CIZI</u>	TC					10
UN	ing d	ifforon	KEA	ADIN		ND V	VKII		<u>SKII</u>	JLS	araati	NO MIT	iting 1	Writin	$\frac{12}{1}$
appli	cation	s - co	ver let	ter- re	sume-	e-mai	lls- me	emos-	vspape report	s Wri	ting al	stracts	ung. - sun	marie	g job
inter	interpreting visual texts.														
UN	T II	[EN	GLIS	H FC	DR N	ATIC	DNAI	L AN	D					12
INTERNATIONAL EXAMINATIONS AND															
			PLA	ACE	MEN'	TS									
Inter	nation	al Eng	lish L	angua	ge Tes	ting S	ystem	(IELT	S)- Te	st of E	English	as a F	oreig	n Lang	guage
(TOF	EFL)-	Civil S	Service	e(Lang	guage 1	related	$\frac{1}{1}$)- Ver	bal At	oility -	Articu	ilation	of Sou	ınds-	Intona	tion.
				ERV	<u>TEW</u>	SKI	LLS	•						•	12
Diffe	erent	types Podu	of It	itervie	ew to	rmat-	answ	ering	quest	ons-	offerir	ng inf	ormat	10n-	mock
TINI		Bouy		uage.		C									10
UNI Moti	LIV	017	SU	$\frac{1}{1}$	tolligo	$\frac{10}{100}$	[u]tin]/	, int	alligar	2005	mono	aina	ohon	000	12
mana	anon	- en nt-leac	lershir	ar m strait	s- tean	n work	anupic x- care	er plar	ning-	creati	mana ve and	critica	1 thin	ges- king	ume
	-8		<u>-</u>					<u>' '</u>	TOT	AL:	60 P	PERIC	DDS		
OU	ΓΟ	MES	:	On	comp	letion	of this	course	e, stud	ents w	ill be a	able to	- 10		
	1. D	evelop	their	comn	nunica	tive co	ompete	ency in	n Eng	lish w	ith spe	ecific 1	efere	nce to	their
	sp	eaking	g and l	istenir	ng.		-	•	-		-				
	2. E1	nhance	their	ability	to con	nmuni	icate e	ffectiv	ely in	interv	iews.				
	3. St	rength	en the	ir pros	spects	of suc	cess in	comp	etitive	exam	inatior	18.			
CO			TICU						DO0	DO1	DO1	DO1	DCO	DEO	DCO
	101	P02	PU3	P04	PU5	100	107	100	PU9	0	1	2	rs0 1	2	3
CO1							L		Μ	Н	Н		Μ	L	Μ
CO2							L		Μ	Н	Н		Μ	L	Μ
CO3		Mail		[i ala]			L		Μ	Н	H		Μ	L	Μ
(L- L0)W, M-	wodera	ue, H-H	ugn)											

RF	CFERENCES:
1.	Craven, Miles. "Listening Extra-A resource book of multi-level skills activities",
	Cambridge University Press, 2004.
2.	Seely, John. "The Oxford guide to writing & Speaking", New Delhi: Oxford University
	Press, 2004.

SEMESTER VII
17	TSPC701 CLOUD COMPUTING L T P C 3 0 0 3															
													3	0	0	3
OB J	JEC	CTIV	E :													
				To u	nderst	and the	e conc	ept of	cloud	and ut	ility c	omput	ing.			
				To u	nderst	and the	e vario	ous issi	ues in	cloud	compi	iting.				
				To fa	amilia	rize the	emselv	ves wit	h the l	ead pl	ayers	in clou	ıd.			
				To ap parac	pprecia digm.	ate the	emerg	gence	of clou	ıd as tl	ne nex	t gene	ration	compi	uting	
				To b	e able	to set	up a p	rivate	cloud.							
UNI	TI			INT	ROD	DUCI	TION									8
Intro	duct	tion - 1	His	storica	l Deve	elopm	ent - C	Cloud	Comp	uting A	Archite	ecture	– The	Cloud	l Refe	rence
Mod	el –	Clou	ıd (Charao	cteristi	cs –	Cloud	Deplo	oymen	t Mod	lels -	Public	c, Priv	ate, C	Comm	inity,
Hybr	id (Clouds	S -	Cloue	d Deli	very	Model	s - la	aS, Pa	aS, S	aaS –	Open	Sour	ce Pri	vate (Cloud
	vare	- Euc	ary	vid			a, Ope A TIC	n Stac	K.							0
Data		.∎ nter ′	Tec	hnolo			alizatio	$\frac{1}{2}$	harac	teristi	rs of	Virtu	alized	Envi	ronme	9 nts -
Taxo	non	iv of V	Virt	tualiza	ation T	Cechni	aues –	Virtu	alizati	on and	Clou	d Com	puting	- Pro	s and	Cons
of V	irtua	alizatio	on	- Imp	lemen	tation	Leve	ls of '	Virtua	lizatio	n - To	ools a	nd Me	chanis	sms -	Xen,
VMV	Vare	e, Mici	ros	oft Hy	/per-V	•										
UNI	ΤΙ	II		CLO	OUD	CON	IPU	ring	ME	CHA	NISN	ſ				9
Clou	d In	frastru	ıctu	ire Me	echani	sm - C	Cloud S	Storage	e, Clou	ıd Usa	ge Mo	onitor,	Resou	rce Re	eplicat	ion –
Spec	ializ	ed Cl	lou	d Me	chanis	m - I	Load H	Balanc	er, SL	A Mo	onitor,	Pay-j	per-use	Mor	itor, 1	Audit
Mon	itor,	Fail	ove	er Sy	stem,	Нуре	ervisor	, Res	ource	Clust	ter, N	Aulti	Device	e Bro	oker,	State
Mana	agen	nent I	Dat	abase	- Cle	oud M	lanage	ement	Mech	anism	- Rei	note	Admin	istrati	on Sy	stem,
Reso	urce	$\frac{1}{3}$	age	ment	Syster	$\frac{n, SL}{D}$	A Man	ageme	nt Sys	tem, E	silling	Mana	gemen	t Syst	em.	10
UNI		.V		HA		P AN		AP K	EDU	CE			~			10
Apac	he .	Hadoo	op	– Ha	doop	Map	Reduc	e – H	ladoop) Disti	ributed	1 File	Syste	m-H	adoop	I/O-
Deve	lopi	ng a	Ma	ap Re	duce	Applic	cation	- Ma	p Rec	luce T	ypes	and F	ormate	s - M	ар Ке	educe
Feat	TT	- паце	oop			<u>up – Р</u> тv т				<u>oop.</u>						0
Basic		v arme	and			<u>тт</u>	reat A	IE CI		oud S	ocurit	v Thr	onte	Clor	d Sac	9 Durity
Mech	, 10 nani	sm_ F	anci	vntio	n – Ha	– 111 Ishing	- Digi	tal Sio	– CI nature	ouu s	lic Ke	y Infr	cais –	ure - I	dentity	v and
Acce	ss N	Janago	em	ent - S	Single	Sign-a	con - C	loud B	ased S	Securit	v Gro	ups - F	Harden	ed Vi	tual S	erver
Imag	es.	0			0	0					J	1				
									r	ΓΟΤΑ	AL :	45 P	ERI	DDS		
OU'	ГС	OME	ES:		On	compl	etion of	of this	course	e, stude	ents w	ill be a	able to			
	1.	Articu	ılat	e the	main	conce	epts, k	key te	chnolo	gies,	streng	ths ar	d lim	itation	s of o	cloud
		compi	utir	ng.				-								
	2.	Identi	fy t	he arc	chitect	ure, in	frastru	icture	and de	livery	mode	ls of c	loud co	omput	ing.	
	3.	Expla	in	the	core	issues	of	cloud	com	outing	such	as	securit	y, pi	rivacy	and
	4	Choose Choose	per se f	auiiity he anr	y. proprie	te tecl	hnolog	ries al	gorith	ms and	annr	naches	for th	a relat	ed icer	165
	<u>,</u> [] D (י יים ב י			TON	MA	res, al	<u>501111</u>		* սրրո	Jaciies			CU 1881	<i>a</i> co.
	PO		2	PO3	PO4	POS	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO
											0	1	2	1	2	3

CO1	Μ	Η	Μ		Μ		L						М		Н
CO2	М	Η	Μ		Μ		L						М		Н
CO3	М	Н	Μ		Μ		L						М		Н
CO4	М	Η	Μ		Μ		L						М		Н
(L- L	ow, M-	Modera	ate, H-H	igh)											
TE	XT B	OOK	S:												
	1. Thomas Erl, Zaigham Mahood, Ricardo Puttini, "Cloud Computing, Concept,														
	Technology and Architecture", Prentice Hall, 2013.														
	2. Tom White, "Hadoop: The Definitive Guide", O'Reilly Media, 4th Edition, 2015.														
RE	REFERENCES:														
1.	Toby	Velte,	Anth	ony V	'elte,	Rober	t C.	Elsen	peter,	"Clo	ud Ca	omputi	ng, A	Pra	ctical
	Appro	ach",	Tata M	lcGra	w-Hill	Editio	on, 201	10.							
2	Rajkur	nar Bi	uyya, (Christi	an Ve	cchiol	a, S. 7	Thama	rai Sel	lvi, "M	lasteri	ing Cle	oud C	omput	ing",
۷.	Tata M	1cGra	w-Hill,	2013											
3	Arshde	eep E	Rahga,	Vija	y Ma	disetti	, "C	loud	Comp	uting:	A I	Hands-	On A	Approd	ach",
5.	Univer	sities	Press,	2014.											
4.	4. James E Smith and Ravi Nair, "Virtual Machines", Elsevier, 2005.														
5	John I	Ritting	house	and J	ames .	Ransor	me, "C	Cloud (Сотри	iting, .	Implen	nentati	ion, M	lanage	ement
5.	and St	rategy	", CR	C Pres	rs, 201	0.									

17	17SPC702CRYPTOGRAPHY AND NETWORK SECURITYL														C	
						0										
			~										6 0	0	3	
OR'	IECI	IVE	5:													
	٠		To u	nderst	and se	curity	desig	1 princ	iples							
	٠		To le	earn se	cure p	rograr	nming	g techn	iques							
	٠		To u	nderst	and th	e math	emati	cs beh	ind cry	ptogr	aphy					
	•		To k and a	now tł authen	ne stan ticity	dard a	lgoritl	nms us	ed to j	provid	e conf	identia	lity, i	ntegrit	У	
	٠		To u	nderst	and th	e secu	rity re	quiren	nents i	n oper	ating s	ystem	s and	databa	ses	
	٠		To le	earn ab	out th	e secu	rity ap	plicati	ions in	wirel	ess env	vironn	ent.			
UNI	ΤΙ		SECURITY DESIGN PRINCIPLES													
Secu	rity C	boals -	– Seci	- Secure System Design – Understanding Threats – Designing Security												
Conv	venien	ce and	l Secu	ırity –	Secu	rity in	Soft	ware l	Requir	ement	s – Se	ecurity	by o	Obscur	ity –	
Secu	re Des	sign P	Principles – Defense in Depth – Diversity in Defense – Securing the Weakest													
	– ган Т П	-Sale		tance. SECURE PROGRAMMING TECHNIOUES 9												
Worr	ns and	d Othe	r Maly	ware –	- Buffe	er Ove	rflows	$\frac{1110}{5-Cli}$	ent St	ate Ma	anipula	ation -	SOL	Inject	ion –	
Passy	word S	Securit	y - Cr	oss Do	omain	Securi	ity in V	Web A	pplica	tions -	- Attac	ck Patt	erns –	- Preve	nting	
XSR	F – Pr	eventi	ng XS	SI - Pr	reventi	ng XS	S.								0	
UNI	T II	[SYN	MME	TRI	CCI	PHEI	RS Al	ND II	NTRO	ODU	CTIC	N		9	
			TO	NUM	IBEF	R TH	EOR	Y								
Over	view -	- Class	ical E	ncrypt	ion Te	chniq	ues – I	Block	Ciphe	rs and	the Da	ata En	crypti	on Star	ndard	
– Bas	sic Co	ncepts	in Nu	mber '	Theory	y and]	Finite	Fields	- Adv	anced	Encry	ption	Stand	ard – I	Block	
Ciph	er Ope	eration	- Ferr	nat's a	ind Eu	ler's T	heory	r' - CR'	$\Gamma - Di$	screte	Logar	ithms.			-	
UNI	TIV		PU	BLIC	KEY	(EN	CRY	РТІС	N Al	ND H	ASH				9	
Dubli	o Vor	Carro	FUI			Di	ffa II	-11	Var	Erroha		Floor		to or	ombio	
Publi Syste	ic Key	Cryp Ellir	tograp	ny and	1 KSA Crypt	a – Dil ograpi	me-H	Cryp	togran	Excha	nge – Jach	Elgan Euncti	ial Cr	yptogr Me	apnic	
Auth	entica	tion C	ode - I	ui ve Digital	Signa	ture –	Certif	icates.	iograp	inc i	14511	runcu	0115		ssage	
UN	TV		SEC		TY A	PPL	ICA'	ΓΙΟΝ	IS						9	
Secu	rity in	Opera	ting S	vstem	s - Sec	curity	in the	Design	n of O	S - Ro	ootkit-	Open	Web	Applic	ation	
Secu	rity –	Wire	less N	etwor	k Sec	urity -	– Intro	oductio	on to	Mobil	e Sec	urity -	– Intr	oductio	on to	
stand	lard cr	yptogi	aphic	modul	le valio	dation	progra	am – F	TPS ce	ertifica	tion.					
								,	ГОТ	AL:	45 P	PERI	ODS			
OU'	ΓΟΟ	MES	ES: On completion of this course, students will be able to													
	1. Ill	ustrate	e the a	pproac	hes, tr	ade-of	ffs in s	securit	y desig	gn prin	ciples					
	$\frac{2}{2}$	pply n	umber	theory	y in pu	blic k	ey enc	ryptio	n tech	niques	•					
	$\frac{3}{4}$ D	esign a	the year	e oper	ating s	system	l. 	ndala	in o m	obila	nuiro	nmont				
			TICI				nny fi FPIV		m a m	oone (2111110	ment	•			
	P01	PO2	P03	PO4	POS	PO6	PO7	PO8	P09	PO1	PO1	PO1	PSO	PSO	PSO	
CO1		L	Н	М		М							Н		Μ	
CO2		L	Н	Μ	L	Μ							Η		Μ	

CO3		L	H	ł	М	L	Μ							Н		М
CO4		L	H	I	М	L	Μ							Н		М
(L- I	LOW,	M- Mod	erate,	H-Hi	igh)											
TE	ХT	BOO	KS:													
	1.	Neil I	Dasw	vani,	Chris	stoph	Kern,	and A	nita k	Kesava	n, "Fo	oundat	ions o	f Secu	arity:	What
		Every	Prog	gram	mer N	Veeds	to Kno	w", F1	rist Ed	ition, .	Apress	s, 2007	7.			
	2.	Willia	m S	tallir	ngs, ʻ	' Crypt	ograpł	ny and	l Netv	vork S	Securit	y: Pri	nciples	s and	Practi	ices",
	Sixth Edition, Pearson Education, 2014.															
RE	REFERENCES:															
1.	1. Charles P. Pfleeger, Shari Lawrence Pfleeger and Jonathan Margulies, "Security in															
	Cor	nputing	;", F	ifth I	Editic	on, Ped	rson E	Educat	ion, 20	015.			-			-
2.	Atu	l Kaha	e, "(Cryp	togra	phy ar	nd Netw	vork S	ecurit	у", <i>Та</i>	ta Mc	Graw	Hill, 2	003.		
3.	Brı	ce Sch	neier	r, "A	Applie	ed Cry	ptogra	iphy F	Protoc	ols, A	lgorith	ms ar	nd Sou	rce C	ode in	ı <i>C</i> ",
	Sec	ond Ed	ition	, Joh	ın Wi	ley and	l Sons	Inc., 2	2006.							
4.	Ma	tt Bishc	р, "	Com	puter	Secur	ity: Ar	t and S	Scienc	e", Fi	rst Edi	ition, A	Addisor	n Wesi	ley, 20	02.
5.	http	os://ww	w.ow	vasp.	org/ii	ndex.p	hp/Top	<i>_10_2</i>	2013.							
6.	5. N. Asokan, Lucas Davi, Alexandra Dmitrienko, Stephan Heuser, Kari Kostianen, Elena															
	Reshetova, Ahmad-Reza Sadeghi, "Mobile Platform Security", First Edition, Morgan and												ı and			
	Cla	ypool I	Publi	sher	s Seri	es, 20	14.									

17SPC706	CRYPTOGRAPHY AND NETWORK SECURITY LABORATORY	L	T	P	С
		0	0	4	2
OBJECTIV	ES:	•	•		
•	To understand SQL injection and Buffer Overflow				
•	To understand cross scripting				
•	To learn to implement the algorithms DES, RSA, SHA-1				
•	To understand the trusted OS models				
•	To learn to use tools				
LIST OF EX	KPERIMENTS:				
1. Implem	ent the SQL injection attack.				
2. Implem	ent the Buffer Overflow attack.				
3. Implem	ent Cross Site Scripting and Prevent XSS.				
4. Underst	anding malwares working and detection.				
5. Implem	ent Hacking windows – Windows login password.				
6. Implem	ent Hacking windows – Acessing restricted drives.				
7. Implem	ent the symmetric cryptography algorithm simplified DES al	goritl	ım.		
8. Implem	ent the public key cryptographic RSA algorithm.				
9. Implem	ent the secure hash algorithm.				
10. Implem	ent set of rules combining the secrecy controls of the l	Bell-I	La P	Padula	n with
integrit	y controls of the Biba model.				

- 11. Installation of rootkits and study about the variety of options.
- 12. Demonstrate intrusion detection system using any tool.

PLATFORM NEEDED

- C / C++ / Java or equivalent compiler
- Snort, Net Stumbler or Equivalent

	TOTAL : 60 PERIODS														
OU.	ГСО	MES	••	On co	omplet	tion of	this c	ourse,	studer	nts wil	l be ab	ole to			
1	•	Write p	orogra	m to p	erform	n SQL	injecti	ion att	ack an	d buff	er ove	rflow a	attack.		
2	•	Write p	orogra	ms on	crypto	graph	ic and	hashir	ng algo	orithm	•				
3		Design trusted operating system models.													
4		Discuss various functionality of rootkit.													
5	5. Demonstrate the working of intrusion detection system.														
CO	COURSE ARTICULATION MATRIX:														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO
										0	1	2	1	2	3
CO1		L	Η	Μ		Μ							Η		Μ
CO2		L	Η	Μ	L	Μ							Н		Μ
CO3		L	Н	Μ	L	Μ							Н		М
CO4		L H M L M H M													
CO5	CO5 M 1 H L M														
(L- Lo	ow. M-	Modera	te. H-H	ligh)											

17SPC707	CLOUD COMPUTING LABORATORY	L	Τ	P	С
		0	0	4	2
OBJECTIVES	S:				

The student should be made to:

•	Be exposed to tool kits for cloud environment.
٠	Learn to run virtual machines of different configuration.

• Learn to use Hadoop

LIST OF EXPERIMENTS:

- 1. Find procedure to run the virtual machine of different confiruration. Check how many virtual machines can be utilized at particular time.
- 2. Find procedure to attach virtual block to the virtual machine and check whether it holds the data even after the release of the virtual machine
- 3. Install a C compiler in the virtual machine and execute a sample program.
- 4. Show the virtual machine migration based on the certain condition from one node to the other.
- 5. Find procedure to install storage controller and interact with it.
- 6. Find procedure to set up the one node Hadoop cluster.
- 7. Mount the one node Hadoop cluster using FUSE.
- 8. Write a program to use the API's of Hadoop to interact with it.
- 9. Write a wordcount program to demonstrate the use of Map and Reduce tasks

PLATFORM NEEDED

•	Eucalyptus or	Open Nebula	or equivalent
---	---------------	-------------	---------------

TOTAL : 60 PERIODS On completion of this course, students will be able to **OUTCOMES:** Use the grid and cloud tool kits. 1. Design and implement applications on the cloud. 2. **COURSE ARTICULATION MATRIX:** PO2 PSO PO1 PO3 PO4 PO5 PO6 PO7 **PO8 PO9** PO1 PO1 PO1 PSO PSO 0 2 2 3 1 1 CO1 Μ Η Μ Μ Μ Η L CO2 Η Η Μ Μ Μ L Μ

(L- Low, M- Moderate, H-High)

SEMESTER VIII

17SEE803	PROJECT WORK	L	T	P	С
		0	0	12	6
OBJECTIVE	S:				
•	To identify the problem based on societal needs				
•	To interview people on societal problems that require compu	teriz	atior	1	
•	To suggest creative solutions to societal problems				
•	To explore possible alternative solutions				
•	To estimate risk and develop a prototype				

The aim of this course is to encourage the students to identify projects that help in exploring variables that promote creativity and innovation. Each student is expected to choose a real life or socially relevant problem. At the end of the project, students should be familiar with the state of art in their respective fields. They would be able to apply the concepts learnt to relevant research problems or practical applications. This course is to motivate them to learn concepts, models, frameworks, and tools that engineering graduates need in a world where creativity and innovation is fast becoming a pre-condition for competitive advantage.

1. Internals

a. First Review

- i. Block Diagram of the proposed solution for a societal / creative problem
- ii. New Contribution in terms of modifications to existing algorithm or suggestion of new ones
- iii. Detailed Design of each module
- iv. Evaluation Metrics
- v. Test Cases

b. Second Review

- i. Implementation Justifying pros and Cons
- ii. Coding highlighting what has been reused and what is being written
- c. Third Review
 - i. Test Runs
 - ii. Performance Evaluation based on Metrics
 - iii. Project Documentation

2. Externals

Presentation, Viva-Voce, Report submission.

				ТОТА	L: 180 PE	RIODS	
OUTCO	OMES:	On completion of the	his course,	students	will be able to)	
1.	Analyzing pr	ofessional issues, ir	ncluding et	nical, leg	gal and securi	ty issues, r	elated to
	computing pr	ojects.					
2.	Synthesizing	and applying prior	knowledge	to desig	ning and imp	lementing	solutions
	to open-end	ed computational	problems	while	considering	multiple	realistic
	constraints.						
3.	Practice CAS	E tools for solving c	case studies	•			
4.	Analyze Data	base, Network and	Application	Design	methods.		
5.	Design and u	se performance met	rics to evalu	ate a de	signed system		
6.	Perform SW	OT Analysis.					

COURSE ARTICULATION MATRIX:															
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO
										0	1	2	1	2	3
CO1		L	М	Η	М	Н							М		Н
CO2		L	Μ	Н	М	Н							Μ		Н
CO3		L	Μ	Н	Μ	Н							Μ		Н
CO4		L	Μ	Н	Μ	Η							Μ		Η
CO5		L	Μ	Н	Μ	Η							Μ		Η
CO6	CO6 L M H M H M H														
(L- L0	ow, M-	Modera	te, H-H	ligh)											

PROFESSIONAL ELECTIVES

17S	PE0)1		FU	J ND A	AME	NTA	LS O	F IM	AGE	1	L	Τ	P	С
						PR	OCE	SSIN	G						
												3	0	0	3
OB J	JEC	FIVE S	S:												
•		Intro	duce l	pasic c	oncep	ts and	metho	dologi	es for	digital	image	e proce	essing	,	
•		Intro deteo	oduce s	spatial echniq	metho ues.	ods for	image	e proce	essing	, image	e smoo	othing	and e	dge	
•		Ana	lyze in	nages	in the	freque	ncy do	omain	using	variou	s trans	forms			
•		Cate	gorize	vario	us con	npressi	on tec	hnique	es and	evalu	ate cor	npress	ion st	andaro	ls
•		Und	erstand	1 3D i	mage 1	represe	entatio	n and	proces	sing to	echniq	ues.			
UNI	ΤΙ		INT	ROE	DUCT	TION									9
The i	image	mode	and a	cquisi	ition -	image	shape	e – sar	npling	g - inte	nsity i	images	- co	lor im	ages -
range	range images - image capture - scanners - Statistical and spatial operations - Gray level transformations - histogram equalization - multi image operations.														
trans	transformations - histogram equalization - multi image operations.UNIT IISEGMENTATION AND EDGE DETECTION9														
	<u>T II</u>	1	SEC	<u>FME</u>		FION		D ED	GE I						9
Spati	directional smoothing - other smoothing techniques -Segmentation and Edge detection - region														
opera	operations - Basic edge detection - second order detection.														
UNI	UNIT IIIMORPHOLOGICAL OPERATIONS9														
Cracl	Crack edge detection - edge following - gradient operators - compass & Laplace operators -														
Morp	pholog	gical ar	nd othe	er area	opera	tions -	basic	morpl	hologi	cal op	eration	is - op	ening	and c	losing
opera	ations	, area o	perati	ons - r	norpho	ologica	al trans	sforma	tions.						
UNI	TI	7	CO	MPR	ESSI	ON									9
Imag	e cor	npressi	on - T	ypes a	and re	quiren	nents -	- statis	tical o	compre	ession	- spat	al co	mpres	sion -
LINI	$\mathbf{T} \mathbf{V}$	ung - u	3D	VISI	ON	551011.									9
Repr	esenta	ation a	nd De	escript	$\frac{1}{100}$	Obiec	t Rec	ognitic	on - 3	BD vis	ion a	nd Ge	ometi	·v - Г)igital
Wate	ermarl	king - T	Texture	e Anal	ysis.	oojee		<u> </u>			ion u		011101	. j	igitui
								r	ГОТ	AL:	45 P	ERI	DDS		
OU.	<u>FCO</u>	MES		On	compl	etion of	of this	course	e, stud	ents w	ill be a	able to			
1	. U	Indersta	and im	age re	presen	tation	and m	nodelir	ng.						
2	. A	<u>pply in</u>	nage ti	ransfo	rmatio	n meth	nods.								
3	. li	npleme	ent ima	ige pro	ocessii	ng algo	orithm	$\frac{S}{n}$							
		$\mathbf{F} \mathbf{A} \mathbf{P}'$					retv	n aigo. •		•					
	P01		PO3	PO4	POS	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO
										0	1	2	1	2	3
CO1	Μ		Μ	Η	Μ		L						L	L	Н
CO2	Μ	7.5	Μ	H	M		L						M	L	H
CO3		M		H	M		L								H
	w M.	W Modera	te H-H	H igh)	IVI		L						IVI		Н
TEX	$\overline{\mathbf{T}} \mathbf{R}$	OOK	<u>S:</u>	<u></u>											
1	. D	D. A. Fo	orsyth,	J. Por	ice, "C	Comput	ter Vis	sion: A	Mod	ern Ap	proacl	n", PH	I Lea	rning 2	2009.

RE	ERENCES:
1.	Milan Soanka, Vaclav Hlavac, Roger Boyle, "Digital Image Processing and Computer
	Vision", Cengage Learning.
2.	R.C. Gonzalez, R.E. Woods, "Digital Image Processing", Pearson Education.

17SI	PE0	002			ADV	ANC	CED	DAT	ASTI	RUC	TURI	ES	L	Τ	P	С
													3	0	0	3
OBJ	IEC	TIV	VES	5:												
•		U	Jnde	erstand	and e	evaluat	te the	variou	s impl	ementa	ations	of dict	ionari	es.		
•		Iı	ntro	duce s	skip lis	sts and	their J	probab	oilistic	analys	sis.					
•		E	Evalı	uate th	ne vari	ous ha	shing	techni	ques.							
•		A	Anal	yse th	e vario	ous sea	urch da	ıta stru	ctures	•						
•		E	Expe	rimen	t string	g matc	hing a	lgorith	nms.							
•		C	Cons	truct a	algorit	hms fo	or simp	ole geo	metri	cal pro	blems	•				
UNI	ΤI			DIC	TIO	NAR	IES									8
Defin	nitio	n - D	oictio	onary	Abstra	ict Dat	a Type	e - Imp	olemei	ntation	of Di	ctiona	ries.			
UNI	ΤI	Ι		SKI	PLIS	STS A	AND	HAS	HIN	Ĵ						9
Opera Hash Separ Reha	atior ing: rate shin	ns or Rev Chai g - E	n Sl iew ining Exter	kip Li of Ha g - Op ndible	sts - ashing en Ad Hashi	Probal - Has dressinng.	bilistic h Fun ng - L	Anal ction - inear I	ysis o Colli Probin	of Skij sion F g - Qu	p List Resolu adrati	s - Do tion To c Prob	etermi echniq ing - I	nistic ues in Doubl	Skip n Has e Has	Lists hing - hing -
UNI	ΤI	II	TREES													10
Red I Red I Trees 2-3 T Splay	Trees: Binary Search Trees (BST) - AVL Trees - Red Black Trees: Height of a Red Black Tree - Red Black Trees Bottom-Up Insertion - Top-Down Red Black Trees - Top-Down Deletion in Red Black Trees - Analysis of Operations - 2-3 Trees: Advantage of 2-3 trees over Binary Search Trees - Search and Update Operations on 2-3 Trees - Analysis of Operations - B- Trees: Advantage of B- trees over BSTs - Height of B-Tree - Search and Update Operations on 2-3 Trees - Analysis of Operations - Splay Trees: Splaying - Search and Update Operations on Splay Trees - Amortized Analysis of Splaying.															
UNI	ΤI	V		TEX	KT PI	ROC	ESSI	NG								9
Text - The Huffi Dyna	Proc e Kn man mic	cessir uth-l Cod Prog	ng:S Mor ling gram	ting C ris-Pra Algon ming	Dperati att Alg rithm - to the	ons -] gorithn - The LCS I	Brute- n - Sta Longe Proble	Force 2 andard st Cor m.	Pattern Tries nmon	n Mate - Cor Subse	ching - npress equenc	The E ed Tri e Prob	Boyer-] es - S blem (Moore uffix LCS)	e Algo Tries - Apj	orithm - The olying
UNI	TV	/		CO	MPU	TAT	IONA	AL G	EOM	IETR	Y					9
Comj Searc Rang	puta ching e Tr	tiona g - C œes –	ıl G Cons -Qua	eome tructin adtree	try:On 1g a P s - k-E	e Dir riority) Trees	nensio Searc S.	nal R ch Tre	ange e - Se	Search earchin	hing lg a P	- Two riority 45 P	Dim Searc	ension h Tre	nal R e - Pi	anges riority
OU	OUTCOMES: On completion of this course, students will be able to															
1.	. 1	Unde	ersta	nd im	pleme	ntatior	n of sy	mbol t	able u	sing h	ashing	g techn	iques.			
2.	. []	Deve	elop	and a	nalyze	algori	thms f	for red	-black	trees,	B-tree	es and	Splay	trees.		
3	.]]	Deve	elop	algori	thms f	or tex	t proce	essing	applic	ations						
4	•	iaent probl	itty s lems	suitabl 5.	e data	struct	ures ai	nd dev	elop a	igorith	ims to	r com	outatio	nai ge	eomet	ry
COU	URS	SE A	AR7	ΓΙΟυ	JLAT	ION	MAT	FRIX	:							
	PO1	L PC	02	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3

CO1	L	Μ	Η	Μ	L							М		Н		
CO2	L	М	Η	Μ	L							Μ		Н		
CO3	L	M	Η	Μ	L							М		Н		
CO4	L	M	Н	Μ	L							М		Н		
(L- L0	ow, M-	Moderate, H-H	ligh)													
ТЕХ	KT B	OOKS:														
1	. N	lark Allen V	/eiss,	"Data	Structur	es a	und Al	lgorith	m An	alysis	in C+	-+", 21	nd Ed	ition,		
	P	Pearson, 2004.														
2	. N	M T Goodrich, Roberto Tamassia, "Algorithm Design", John Wiley, 2002.														
3	 3. Venkatesan R and Lovelyn Rose S, "Data Structures", Wiley India Pvt Ltd, New Delhi, 															
	2015.															
REI	EFERENCES:															
1.	FERENCES: Salaria R S, "Data Structures and Algorithms using C", Fifth Edition. Khanna Book															
	Publi	ishing, New I	Delhi,	2012.		U		c		v						
2	Ellis	Horowitz, S	artaj S	Sahni a	nd Sang	uthe	evar R	ajasek	xaran,	"Fund	damen	tals of	^c Com	puter		
Ζ.	Algo	rithms", Seco	ond Ec	dition, l	Universit	ies .	Press,	<i>2</i> 011.				v				
2	Jean	Paul Tren	nblay	and	Sorensor	<i>1</i> ,	"An	Introd	uction	to	Data	Struct	tures	with		
5.	Appl	cations", M	cGraw	v Hill P	ublishing	$\frac{1}{2}Cc$	mpan	y, New) Delh	i, 2012	2.					
4	Aho,	Hopcroft and	l Ullm	nan, "L	ata Stru	ctur	es and	l Algoi	rithms	", Pea	rson E	Educat	ion, 20)11.		
· ·	,	A V		-				C					-			

17SPE003	3	PROJECT MANAGEMENT	L	Τ	P	С							
			3	0	0	3							
OBJECT	IVES	ð:											
•	Unde proje	erstand and articulate the importance of Project Managements of the sector of the sect	nt in	any	busi	ness							
•	Аррі	oach project planning in an organized step-by-step manner											
•	Carr	y out an evaluation and selection of projects against stratege omic criteria.	ic, te	chni	cal a	nd							
•	Аррі	aise the importance of manageable project schedule.											
•	Visu	alize and assess the state of a project.											
•	Form	nulate ways to adminster a contract from its signing to comp	oleti	on									
• Understand the characteristics of the various team structures that can be employed.													
UNIT IINTRODUCTION TO SOFTWARE PROJECT9MANAGEMENT													
Problem wi Managemen UNIT II	Management, Plan, Methods and Methodologies- Ways of Categorizing Software ProjectsProblem with Software Projects – Setting Objectives Stakeholders- Requirements Specification, Management Control – Overview of Project Planning – Stepwise Project Planning.UNIT II PROJECT EVALUATION 9												
Managemer Managemer – Cost Ben Effort Estim	nt - nt-Eva efit E nation.	Creating a Programme - Aids to Programme Mana luation of Individual Projects – Technical Assessment – C valuation Techniques – Risk Evaluation –Cash Flow Fo	gem ost I reca	gic ent Bene sting	- B fit A g –Sc	enefits nalysis oftware							
UNIT III		ACTIVITY PLANNING				9							
Objectives Scheduling the Time Di – Shortenin Risk Manag Managemer Resource A Resources – UNIT IV	UNIT IIIACTIVITY PLANNING9Objectives of Activity Planning – Project Schedule – Project and Activities - Sequencing and Scheduling Activities – Network Planning Models – Formulating a Network Model – Adding the Time Dimension -Forward Pass – Backward Pass –Identifying Critical Path - Activity Float – Shortening Project Duration – Identifying Critical Activities - Activity on Arrow Networks – Risk Management – Categories -Risk - Framework – Identification – Assessment – Planning – Management – Evaluating Risk to the Schedule – PERT Technique – Monte Carlo Simulation – Resource Allocation – Nature of Resources – Identifying Resource Requirements – Scheduling Resources – Creating Critical Paths – Counting the Cost - Publishing the Resource Schedule.9UNIT IVMONITORING AND CONTROL9												
Framework	- Co	llecting the Data -Visualizing Progress - Cost Monitori	ng -	- Ea	rned	Value							
Analysis – Managing C Contract – S – Acceptance	Analysis – Prioritizing Monitoring – Getting Project Back to Target – Change Control – Managing Contracts – Introduction – The ISO/IEC 12207 Approach –Supply process –Types of Contract – Stages in Contract Placement – Typical Terms of a Contract – Contract Management - Acceptance.												
UNIT V		MANAGING PEOPLE AND ORGANIZING TEAMS				9							
Introduction for the Job	n - Ur - Ins	derstanding Behavior – Organizational Behavior - Selecti	ng ti am	he R	ight Ickm	Person an Job							

Char Lead	acter ersh	ristics 1 ip – Org	Model ganizat	– W ional S	orking Structu	$\frac{1}{1}$ in C	Groups Stress	– B – Heal	ecomi	ng a Safet	Team v.	–Dec	cision	Maki	ng –
		<u> </u>	<u>,</u>					r	ΓΟΤ	AL:	45 P	ERIC	DDS		
OU	ГСС	OMES	:	On	compl	etion of	of this	course	e, stud	ents w	ill be a	able to)		
1	. (Compre	hend t	he role	s of th	ie proj	ect ma	nager.							
2	•	Identify	the th	reats a	nd opp	ortuni	ties in	proje	et man	ageme	ent.				
3	. (Gain kn	owled	ge abo	ut size	, effor	t and c	cost es	timatio	on tech	nnique	s.			
4		Apply th	ne tech	niques	s avail	able to	keep	the pro	oject's	aims	and ob	ojectiv	es, uno	ler coi	ntrol.
5		Analyze	the di	fferen	t appro	baches	of not	n-techi	nical p	roblen	ns.				
6		Appreci	ate the	mana	gemen	it issue	es like	team s	structu	re, gro	oup dy	namic	s.		
CO	COURSE ARTICULATION MATRIX:														
	PO1	D1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO1 PO1 PO1 PSO PSO PSO PSO PSO 2 3													
CO1		M H M L 0 1 2 1 2 3													
<u> </u>		I	M H M L H M												
CO3		L	H	M			M						H		M
CO4			H	M	L		M						H	L	M
CO5			Н	M	L		Μ						H		M
CO6			Н	М	L		Μ						Н		М
(L- L0	ow, N	I- Modera	ate, H-H	ligh)											
TEX	XT]	BOOK	S:												
1	•	Bob Hu	ghes,	Mike	Cotter	ell, "S	Softwa	re Pro	oject N	Manag	ement	", Fou	irth Eo	dition,	Tata
		McGrav	v Hill,	2006.											
RE	FER	RENCE	ES:												
1.	Ran	nesh, Go	opalas	wamy,	"Man	aging	Globa	l Proj	ects", '	Tata N	1cGra	w Hill,	, 2001.		
2.	Roy	vce, "Soj	ftware	Proje	ct Man	nagem	ent", F	Pearso	n Edu	cation,	, 1999	•			
З.	Jalo	ote, "Soj	ftware	Proje	ct Mar	nagem	ent in .	Practi	ce", P	earsor	ı Educ	ation,	2002.		
4.	Rob Mai	pert T. nagemei	Futrel nt", Pe	l, Dor earson	ald F Educe	T. Shej ation, 2	fer an 2003.	d Lin	da I.	Shefer	; "Qι	uality	Softwo	are Pi	roject

17SPE004	ESSENTIALS OF INFORMATION TECHNOLOGY	L	T	Р	С
		3	0	0	3
OBJECTIVE	S:				
• Dev	velop algorithms for user problem statements.				
• Intr	oduce object oriented modeling using UML.				
• Un	derstand fundamentals of object-oriented programming in Jav	/a.			
• Des	ign ER-models to represent simple database application.				
• Ab	lity to write SQL queries.				
• Des	ign webpages using HTML, CSS and Javascript.				
• Illu	strate how to test java code and web application.				
UNIT I	FOCUS AREA 1: OBJECT ORIENTED				9
	PROGRAMMING USING JAVA				
Problem Solving	g Techniques: Introduction to problem solving - Computation	nal p	orob	lem a	nd it's
classification - I	logic and its types - Introduction to algorithms - Implement	tatic	n of	f algo	rithms
using flowchart	- Searching and sorting algorithms - Introduction and cla	assif	icat	ion to	o Data
Structures - Bas	c Data Structures - Advanced Data Structures.	r 1		F1	1
1001s: Underst	anding basic programming constructs using Scratch I	001	-	FIOW	charts/
					0
		1 <i>.</i>	4.000.0	4	0
conversion - ca	asics: Identifiers – variables - data types – operators - contraction to UMI : Use case	roi s die	ara	ms _	- type
diagrams	sung - arrays - sumgs - muoduction to owill. Ose case	, un	igra	1115 -	Class
Object Oriented	Concepts fundamentals: class & object – instance variables	& 11	etho	ods –	access
specifiers – refe	rence variables – parameter passing techniques – constructor	rs –	this	refer	ence –
static – comman	d line arguments-Tools-Eclipse IDE for Java programming.				
UNIT III					10
Relationships -	Inheritance – types of inheritance – aggregation – as	soc	iatio	n –	Static
Polymorphism	method overloading – constructor overloading – Dynam	nic	pol	ymorj	ohism-
method overridi	ng – abstract – interface – introduction to packages - Industry	y C	odin	g Sta	ndards
and Best Practic	es – code tuning & optimization – clean code & refactoring.				
UNIT IV	FOCUS AREA 2: RELATIONAL DATABASE	C			9
	MANAGEMENT SYSTEM				
RDBMS: data j	processing - the database technology - data models- ER n	nod	eling	g con	cept –
notations – co	nverting ER diagram into relational schema - Logical	dat	abas	e de	sign -
normalization (1	NF, 2NF and 3NF).				
SQL: DDL state	ements – DML statements – DCL statements - Joins - Sub	qu	eries	s - V	iews -
LINIT V	FOCUS AREA 3. WER TECHNOLOCIES AN	J			0
	COETWADE ENCINEEDING	U			7
Introduction to	DUF I WARE ENGINEERING			haar	tont
HTMI toxt for	user interface and web technologies: web fundamentals $-t_{\rm s}$	ypes	s we	tage	tent = text
formatting using	CSS-embedded CSS inline CSS and external CSS – JavaSc	u <s rint</s 	and	its fe	atures

Software Engineering: Definition – role of software and software crisis – SDLC modelswaterfall model, incremental model and spiral model – software testing – static & dynamic testing – types testing-unit testing, integration testing, system testing, performance testing and regression testing.

								,	ТОТ	AL:	45 H	PERI	ODS		
OU'	ГСС	MES	:	On	compl	etion of	of this	course	e, stud	ents w	ill be	able to)		
1	. I	o prob	lem so	lving	using	algorit	hms.								
2	. I	Design a	and tes	st simp	le pro	grams	to imp	lemer	nt obje	ct orie	nted c	oncept	s usin	g Java	•
3	. I	ocume	nt arti	facts u	sing c	ommo	n qual	ity sta	ndards	5.		1		0	
4	. I	Design s	simple	data s	tore us	sing R	DBMS	S conc	epts a	nd imp	lemen	ıt.			
5	. k	Lnow th	ne basi	cs of s	oftwa	re engi	neerin	g and	web to	echnol	ogy.				
CO	URS	E AR	TICI	JLAT	ION	MA	ΓRIX	[]							
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO
										0	1	2	1	2	3
CO1	L		Μ	Η	Μ		L						Н	L	Μ
CO2	L	Μ	Μ	Η	Μ		L						Η		Μ
CO3	L	Μ	Μ	Η	Μ		L						Н		Μ
CO4	L	Μ	Μ	Н	Μ		L						H	L	Μ
CO5	L M H M L H L M Low, M- Moderate, H-High)														
(L- Lo	Low, M- Moderate, H-High) EXT BOOKS:														
TE	EXT BOOKS:														
1	1. M T Goodrich, Roberto Tamassia, "Algorithm Design", John Wiley, 2002.														
2	 Ni i Goodrich, Roberto Famassia, Algorithm Design, John Wiley, 2002. Alfred V.Aho, Ullman, Hopcroft, "Data Structures and Algorithms", Addison-wesely. 														
3	 Alfred V.Ano, Uliman, Hopcroft, "Data Structures and Algorithms", Addison-wesely. Elmasri, Navathe, "Fundamentals of Database Systems", Third ed, Addison Wesley. 														
4	4. Thomas Powell, "HTML & CSS: The Complete Reference", Fifth Edition (Complete														
	Reference Series) Paperback.														
REFERENCES:															
1.	1.Andrew S. Tanenbaum, "Structured Computer Organization", PHI, 4th edition, 1999.2.John L. Hennessy, David Goldberg, David A. Patterson, "Computer Architecture: A														
2.	 John L. Hennessy, David Goldberg, David A. Patterson, "Computer Architecture: A Quantitative Approach", 2nd Edition Published by Morgan Kaufman Publishers, 1996. Silberschatz and Galvin, "Operating System Concepts", John Wiley & Sons Sixth edition 														
3.	Silberschatz and Galvin, "Operating System Concepts", John Wiley & Sons, Sixth edition.														
4	Andrew Tanenbaum, "Modern Operating Systems". Pearson Education.														
5	Mila	n Miler	nkovic	"One	rating	Svste	ms: co	ncents	s and a	design	$\frac{Dance}{Mc}$	Graw-1	Hill		
<i>6</i> .	Cha	rles Cro	wlev.	, ope "Oner	rating	Syster Syster	ns: A 1	Design	n-Orien	nted A	nnroa	ch".	1000		
7.	Droi	nev. R.	<u>G "H</u>	low to	solve	it by c	omput	ers". 1	Prentic	ce Hal	l. 200.	5.			
8.	Lips	chutz. S	Sevmoi	ur & G	AVE	Pai. "I	Data S	tructu	res". T	Tata M	cGrav	v – Hil	1.		
9.	Bala	win, D	ouglas	5 & Sc.	ragg.	Greg	W., "A	lgorit	hms a	nd Da	ta Stri	ictures	s - The	e Scien	ce of
	Com	puting	", Dre	amtecl	<i>i</i> .	0	,	0							5
10.	Kerr	ighan,	Ritchi	e, "AN	ISI C	Langu	age", 1	Prenti	ce Hai	ll of In	dia, N	ew De	lhi, 19	92.	
11.	Yash	want K	Canitke	er, "Le	t Us C	Z", Sec	ond E	dition.		0	,		,		
12.	Scho	um ser	ies, "I	Progra	mmin	g in C	", Thir	d Edit	ion.						
13.	Jon	Bentley	, "Pro	gramn	ning P	earls'	', Pear	son E	ducati	on pul	blicatio	on.			
14.	Aho,	Alfred	V, "C	Compile	er Prir	iciples	, Tech	niques	s and T	Tools "	,Pears	son Ed	ucatio	n.	
15.	Tha	p Alan	L, "F	ile Org	ganiza	tion ar	ıd Pro	cessin	g", Jo	ohn Wi	lley ar	nd Son	s.		
16.	Hen: McC	ry F I Graw-H	Korth, ill Inte	Abra	ham	Silber	schatz Comr	, "De	atabas Science	e sys	tem c s 100	oncept 1	ts", S	lecond	ed.,
17	CI	Date "	An inti	roducti	in eu	Datah	ase Su	stome'	" Sirtl	h od N	5, 1791 Jarosa	n. Puhli	ration	6	
18	Crai	o Gran	nel "	The Es	sentia	l Guid	e to C	$\frac{SS}{SS}$ and	, 51,11] HTM	I. Wel	n Desi	<u>1 uuu</u> 9n."	anons		

- 19. David Flanagan, "JavaScript: The Definitive Guide", 6th Edition.
- 20. Thomas Powell, "JavaScript: The Complete Reference".

21. Roger S Pressman," Software Engineering: A Beginner's Guide".

NOTE: The Infosys Certification will be given for respective courses as per the evaluation procedures given in Annexure – I

17SPE0	05		DATA MINING	L	Т	P	С					
				3	0	0	3					
OBJEC	TIVES	5:										
•	Inter supp	pret the ort syste	contribution of data warehousing and data mining tems.	o th	e de	cisior	l-					
•	Diffe frequ clust	erentiate lent patter er and c	be between situations for applying different data-minitern mining, association, correlation, classification, putlier analysis.	ng t pred	echr ictic	niques on, an	s: d					
•	Eval	uate the	performance of different data-mining algorithms.									
•	Unde	erstand	he algorithms for association rule mining.									
•	Appr	aise the	impact of big data for business decisions and strate	gy.								
•	Intro	duce the	e challenges of text mining and web mining.									
UNIT I	•	INTE	RODUCTION TO DATA MINING				9					
Data Min Data Min Language preproces Reduction Association	ing - KI ning Tec s, Integ sing – n, Discr on-Corr	DD vers chnique ration Data etization elation.	us Data Mining, Stages of the Data Mining Process s - Data Mining Knowledge Representation – I of a Data Mining System with a Data Warehov Cleaning, Data Transformation, Feature Selection n and Generating Concept Hierarchies - Mining	s- T Data use on, g Fr	ask Mi – I Din eque	Primi ning ssues nensio ent P	tives - Query , Data onality atterns					
UNIT I	[CLA	SSIFICATION AND PREDICTION				9					
Classifica	tion an	d Pred	iction: Classification by Decision Tree Introdu	uctio	on -	– Ba	yesian					
Classifica	tion – I	Rule B	ased Classification - Classification by Back prop	paga	tion	– S	upport					
Vector M	achines	– Lazy	Learners – Other Classification Methods – Predict	ion	- A	ccura	cy and					
Error Mea	asures –	Evalua	ting the Accuracy of a Classifier or Predictor – E	nser	nble	Met	nods –					
Model Se	ction.											
	L I		SIEKING	.1.	D:	- 4	9					
	g tecnnic	lues – I	artitioning Methods - k-means Hierarchical Method	ous -	-D1		ebased					
Grid Base	auve an A Meth	d D W = M	odel Based Clustering Methods – Constraint Based	i Ch	ister	· Ana	lvsis –					
Outlier A	nalvsis.	Jus 11	oder Bused Clustering Methods Constraint Bused		uster	1 111a	19313					
UNIT I	V	ASSO	OCIATION RULE MINING				9					
Associatio	on Rule	Mining	: Efficient and Scalable Frequent Item set Mining	Me	thoc	ls - l	Mining					
Various K	Kinds of	Associ	ation Rules – Association Mining to Correlation A	naly	sis -	- Con	straint					
based Ass	ociation	Mining	5.									
UNIT V	r	TRE	NDS IN DATA MINING AND BIG DATA				9					
		MIN	ING									
Introducti	on to B	ig Data	-Case Studies on Big Data Mining Tools - Apache	e Ha	adoc	p - A	spache					
Mahout a	nd R -	Mining	Complex Data Objects - Spatial Databases - Ter	mpo	ral	Datab	bases -					
Multimed	1a Data	bases -	Time Series and Sequence Data - Text Minin	ıg –	W	eb N	lınıng-					
Applicatio	Applications and Trends in Data Mining.											
			IUIAL: 45 PER		D2							
OUTCO	<u>JMES:</u>		On completion of this course, students will be able	το 								
1. (_ompreh	end the	various architectures and its application with data r	nini	ng.							
2.	write pro	ograms	tor classification, clustering and association rule mi	nıng	5.							

3	. E	valuate	e vario	us mir	ing te	chniqu	les on	compl	ex dat	a obje	cts.				
4	. D	evelop	applic	cations	susing	Big D	Data M	ining '	Tools.						
CO	URS	E AR	TICU	JLAT	ION	MA	ΓRIX	:							
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO
						_	_			0	1	2	1	2	3
CO1		Μ	M	H		L	L						Μ		H
CO2		M	M	H		L	L						M		H
CO3		M	M	H		L	L						M		H
CO4			M	H		L	L						Μ		Н
(L- L)	(L- Low, M- Moderate, H-High) TEXT BOOKS:														
TE2	TEXT BOOKS: 1 Jiawai Han Michalina Kambar "Data Mining: Concents and Techniques" Margan														
1	1. Jiawei Han, Micheline Kamber, "Data Mining: Concepts and Techniques", Morgan Kaufmann Publishers, Third Edition, 2011														
	Kaufmann Publishers, Third Edition, 2011.														
2	2. Paul Zikopoulos, Chris Eaton, Dirk DeRoos, Tom Deutsch, George Lapis, "Understanding Dig Data: Analytics for Enterprise Class Hadson and Streaming"														
		Unders	tandin	g Big	Data	Anal	lytics	for E	nterpri	se Cl	ass H	adoop	and	Stream	ung",
2			/-H111 (Usbori		11a, F1	rst Edi	tion, 2	$\frac{2011}{2}$	ant T	:11. :				
3	. U	tatistic	ol L on	Dame	vith A	nelia	tions	паsu in D"	e, Rot	rar 20	105mm^2	uni, A	in mur	oducti	on to
DEI	ני נידי			innig.	with F	appilea	1110115	шк,	spring	gei, 20	/14.				
KE			79:	• "			C	<i>(</i>)	1 1 1	16.0	1	1 41	1 .1	,,	117.1
1.	Meni	ned Ko	antara	ZlC, I	Datam	ining	Conce	epts, M	lodels,	, Meth	iods, d	ana Al	gorith	ms,	wiley
	Inter	science	2, 2003).			11.	•.1	a	G 1		7 .	<u> </u>		
2.	G. K	. Gupta	a, Int	roduci	tion to	Data	Minin	ig with	i Case	Studi	es", E	aster 1	Econol	my Ed	ition,
2	Pren	tice Ho	$\frac{uu}{ct}$	$\frac{1010}{2}$	1		4:	···	1	Darta		- T1		1.0	·· - ·'
3.	K.P.	Soman E	i, Snya	mDiwi Zdidi ora	akar a	na v. 1	Ajay,	Insigi India	nt into 2006	Data	mining	g Ineo	ry and	i Praci	ace,
1	East	er Ecol	iomy E		, Pren	Duce H	$\frac{all of I}{M^{c}}$	inaid,	2000.	<u><u><u></u></u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u>		7	F	.	• . •
4.	G. K	. Gupta	a, Int	roduci	tion to	Data	Minin	ig with	i Case	Studi	es, E	aster 1	Econo	my Ed	ition,
_	Pren	1000000000000000000000000000000000000	$\frac{uu}{\pi}$	$\frac{1}{1}$	1.000.		7	T 7	17	,, <u> </u>	. 1			1.0	. ,,
5.	Pang	-Ning	Tan, 1	Micha	el Stei 7	inbach	and	Vipin	Кита	r," In	trodu	ction t	o Dat	a Min	ing",
	Pear	son Ed	ucatio	n, 200	7.										

17SPE	2006			С	# AN	D.N	ET F	RAN	IEW	ORK		L	T	P	С
												3	0	0	3
OBJE	CTI	VE	5:												
•		Writ	e and	unders	stand C	C# lan	guage	constr	ucts, s	yntax	and se	mantic	cs.		
•		Crea	te, con	npile	and ru	n obje	ct-orie	ented C	C# prog	grams.					
•		Deve patte	elop re erns.	eusable	e .NET	Com	ponent	s via i	nterfac	e real	ization	and st	tandar	d desi	ign
•		Impl	ement	ing da	ta-que	erv log	ic for	databa	ses						
•		Aca	uire th	e knov	vledge	and s	kills to	n desig	m and	devel	on dyn	amic v	veh a	onlicat	tions
•		Utili	ze the	NET	frame	work	to buil	d distr	ibuted	annli	cations		veo uj	prica	
LINIT	T	oun						C#	Ioutou	uppin	cution				0
	I	<u><u> </u></u>					10	C#	- f O#	т :4	1	X 7	1 T	2-4- 7	9
Introduc	cing	C# -	• Und	erstand	ling .	NET -	- over	view	of C#	- Lite	erals,	Variab	les, I	Jata 1	ypes,
operato	ors, c	necke	ioit or	unche	Con	operat	OTS - 1	Expres	sions	- Brai	Arro	– LOO	- ping Str	– Meu	nous - String
Builder	anu Sti	expi	$re E_1$	numer	– Coll ations	- bovi	– Alla ng ang	iys - F Lunho	ving v		- Alla	y List	– su	ing -	Sumg
UNIT	II	uctu	OR.	IECT		IENT	FED		CEP	rs in	IC#				9
Class –	- Ob	iects	- Cor	nstruct	ors ar	d its	types	- inh	eritan	$\frac{10}{10} = 1$	oropert	ties –	index	ers -	index
overloa	ding	– pol	vmori	ohism	- seale	d clas	s and i	metho	ds – in	terfac	e - abs	tract cl	ass -	abstra	ct and
interfac	nterface - operator overloading - delegates - events - errors and exception –Threading.														
UNIT	UNIT IIIAPPLICATION DEVELOPMENT ON .NET9														
UNIT III APPLICATION DEVELOPMENT ON .NET Building windows application - Creating our own window forms with events and controls														rols –	
menu ci	reatio	on - i	nherit	ing wi	indow	forms	- SD	I and I	MDI a	pplica	tion -	Dialog	g Box	(Moda	al and
Modele	ss) -	acces	ssing o	lata w	ith AI	DO.NE	ET – D	ataSet	: - type	ed data	aset - I	Data A	dapte	r - up	dating
database	e us	ing s	stored	proce	dures	- SQ	L Sei	rver v	vith A	DO.N	ET -	handl	ing e	xcepti	ons -
validati	ng co	ontrol	s - wi	ndows	applic	cation	config	guratio	n.						
UNIT	IV		WE	B BA	SED	APP	PLIC	ATIC	ON O	N .NI	ET				9
Progran	nmin	g we	b app	licatio	n with	n web	forms	- AS	P.NET	` intro	ductio	n - wo	orking	with	XML
and .NE	ET - (Creat	ing Vi	irtual l	Directo	ory an	d Web	o Appl	icatior	i - ses	sion m	lanagei	nent 1	techni	ques -
web.cor	nfig ·	- web	servi	ces - j	passin	g data	sets -	return	ing da	tasets	from v	web se	rvices	s - hai	ndling
transact	10n -	hanc	lling e	xcepti	ons - r	eturni	ng exc	eption	s from	i SQL	Serve	r.			0
UNIT	<u>V</u>		CL	K AN	<u>D.N</u>	ELE	<u>KAN</u>	IEW(<u>URK</u>						9
Assemb	olies	- V	erson	ng –	Attrib	utes –	- refle	ction	- VIEV	ving r	neta d	lata -	type	discov	very -
reflectio	on on	i type	- ma	rsnam	ng - re	motin	g- seci	urity ii			4 7 T				
					-		6.1.				45 F		JDS		
OUTC	CON	1ES:		On	compl	etion	of this	cours	e, stud	ents w	ill be	able to			
1.	Lis	t the	major	eleme	nts of	the .N	ET fra	me wo	ork.						
2.	Exp	plain	how C	# fits	into th	e .NE	T plat	torm.							
3.	Ana	alyze	the ba	isic str	ucture	$\frac{1}{1}$	<u># app</u>		n.						
4.	Det	oug, c	compi	le, and	run a	simple		cation	•						
<u> </u>	Dev	velop	progr	anis us	Wah h	# UII .I	nEI.	tions	n NE	T					
0. 7	Die	onee Chee		verop	W CU U	astu a	ирриса		лі .INE	.1.					
	SE SE			TLAT	ION	ΜΛ	TRIV	•							
		PO2				PO6		P08	POQ	PO1	PO1	PO1	DSU)	DSU	ps0
	<u> </u>	. 52	103	104	1.03	100		100	105	1.01	1.01	.01	130	1.30	1.50

										0	1	2	1	2	3
CO1	L		Н		Μ								Н		
CO2	L	М	Η		Μ								Η		
CO3	L	М	Η		Μ								Η		
CO4	L	М	Н		Μ								Μ	L	
CO5	L	М	М		Μ								Μ	L	
CO6	L	М	М		Μ								Μ	L	
CO7	CO7 L M M (L - Low, M-Moderate, H-High) M L														
(L- L	(L- Low, M- Moderate, H-High)														
TEX	TEXT BOOKS:														
1	1. Herbert Schildt, "The Complete Reference: C# 4.0", Tata Mc Graw Hill, 2012.														
2	. Cl	hristia	n Nage	el et al	. "Prof	ession	al C#	2012 v	with .N	VET 4.	5", W	iley In	dia, 20	012.	
RE	FERE	ENCE	ES:												
1.	Andre	ew Tre	oelsen,	"Pro	gram	ning (C# 201	10 and	the .	NET -	4 Plat	form"	, Fifth	editio	on, A
	Press	, 2010).		-	÷					·		÷		
2.	Ian (Griffith	hs, Ma	ıtthew	Adan	ıs, Jes	se Li	berty,	"Pro	gramn	ing C	C# 4.0	", Six	th Ed	ition,
	O'Re	illy, 20	010.							_	-				

17SPE00'	7	GREEN COMPUTING	L	Т	P	С
			3	0	0	3
OBJECT	IVES:		U	v	v	
•	Acquire kn impacts on	owledge to adopt green computing practices to minin the environment.	nize	neg	ative	
•	Examine te	chnology tools that can reduce paper waste and carbo	on fo	otpr	int b	y user.
•	Understand	how to minimize equipment disposal requirements.				
•	Impart nec	essary skills in energy saying practices in their use of	har	dwar	e	
	D		mar	u tr ui	·	
-	Demonstra studies	tethe application of the principles and practices of Gr	een	II W	ith c	ase
•	Manage im	proved environmental sustainability.				
UNIT I	FUN	DAMENTALS				9
Green IT Fu Green Com Dimensions	undamentals nputing - Ca s, and Goals	- Business, IT, and the Environment – Benefits of a carbon Foot Print, Scoop on Power – Green IT S – Environmentally Responsible Business - Polic	Gree trate ies	en D egies - Pr	ata C - D actic	entre - Privers, es and
INTERIOS.	GRI	TEN ASSETS AND MODELING				9
Green Asse	ts - Building	zs -Data Centers – Networks – Devices - Computer	and	l Eat	th Fi	riendly
peripherals Optimizatio Green Supp	- Greening on, and Colla ly Chains –	Mobile devices – Green Business Process Manag boration – Green Enterprise Architecture – Environn Green Information Systems - Design and Developme	geme nent nt N	ent - al In Iode	Mo tellig ls.	deling, gence –
UNIT III	GRI	D FRAMEWORK				9
Virtualizing Teleporting Framework Collaboratin	g of IT Syste – Materials - Optimizing and Cloue	ems – Role of Electric Utilities, Telecommuting, Te Recycling – Best Ways for Green PC – Green Data (ng Computer Power Management, Seamless Sharin Computing, Virtual Presence.	eleco Cent ng A	onfei er – Acros	encii Gree s Sy	ng and n Grid stems-
UNIT IV	GRI	EEN COMPLIANCE				9
Socio-Cultu Compliance Future. Best	ural Aspects e -Protocols, t Ways to M	of Green IT – Green Enterprise Transformation Standards, And Audits – Emergent Carbon Issues ake Computer Greener.	Roa - Te	adma echn	ıp – ologi	Green es and
UNIT V	GRI STU	EEN INITIATIVES WITH IT AND CASE DIES				9
Green Initi Initiatives - Initiative In Responsible Applying C Telecom Se	ative Driver - Green Init nplementatic e Business S Green IT Stra- ector.	s and Benefits with IT - Resources and Offering iative Strategy with IT - Green Initiative Plannin on with IT - Green Initiative Assessment with IT - T trategies (ERBS) – Case Study Scenarios for Trial Ru ategies and Applications to a Home, Hospital, Pack	gs t g w he H ins - tagii	o A vith Envin - Cas ng In	ssist IT - onm se Stu ndust	Green Green entally idies – ry and
	MEC.	IUIAL: 45 PER		D 2		
	VIES:	On completion of this course, students will be able	ω			
$\begin{array}{c c} 1. & Ex \\ 2 & O \end{array}$	plain the neo	cessity of Green 11.	1054			
2. UU	magicto the	biogles for creating Green Assets and their managem	ient	•		
3. Ap 4 De	velop case s	tudies related to Environmentally Responsible Rusing	255	Strate	ojes	

COURSE ARTICULATION MATRIX:															
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO
										0	1	2	1	2	3
CO1	Μ		Η	Μ	L		Μ						Μ		Н
CO2	Μ		Η	Μ	L		Μ						Μ		Н
CO3	М		Н	М	L		Μ						Μ		Н
CO4	XO4 M H M L M H Low M-Moderate H-High) M M H														Н
(L- L0	(L- Low, M- Moderate, H-High)														
TEX	TEXT BOOKS:														
1	1. Bhuvan Unhelkar, "Green IT Strategies and Applications using Environmental													nental	
	In	tellige	nce", (CRC P	Press, J	une 20	011.	C							
2	 Carl Speshocky, "Empowering Green Initiatives with IT", John Wiley and Sons, 2010. 													010.	
RE	REFERENCES:														
1.	Alin (Gales,	Micha	iel Sch	naefer,	Mike	Ebber	rs, "G	reen D	ata C	enter:	Steps.	for the	e Jour	ney",
	Shoff	IBM r	ebook,	2011.											•
2.	John	Lamb,	"The	Green	ing of	TT", F	Pearso	n Edu	cation,	, 2009					
3.	Jason	Harr	ris, "C	Green	Comr	outing	and (Green	IT- E	Best P	ractic	es on	Regul	ations	and
	Indus	trv", 1	Lulu.co	om, 20	08.	0							0		
4.	Wood	v Leo	nhard.	Kath	errine	Murr	av. "	Green	Home	e com	outing	for d	ummie	s". A	ugust
	2009.											<i>j</i>		,	

17SPE 0	08	A	GIL	E SO	FT	WA	ARE	DF	EVF	ELO	P N	1EN	T	L	T	Р	С
														3	0	0	3
OBJEC	TIVES	5:															
•	Exan meth	nine the ods: L	e prin .ean, S	ciples Scrum	s and n, eX	l pra (tren	nctices ne Pr	s as ogra	socia amm	ated	with Fea	n eacl ture-	h of t drive	he ag n dev	ile de elop	evelo ment	pment
•	Prov	ide kno	owled	lge on	how	v to r	mana	ige a	a pro	oject	usin	g Sc	rum f	rame	work		
•	Appl prog	y agile rammin	e practing to	tices s their s	such a softw	as te vare	est-dr engir	river neer	n dev ring j	velop pract	pmei tices	nt, st	anduj	o mee	tings	s, and	l pair
•	Abili Agile	ty to id e metho	dentif ods.	y and	addr	ress	most	con	nmo	on pro	oble	ms e	ncou	nterec	l in a	dopti	ing
•	Com	pare ag	gile so	oftware	e dev	velo	pmer	nt to	o trac	ditio	nal s	oftw	are d	evelo	pmer	nt mo	dels.
UNIT I		FUN	DAN	MEN	[TA]	LS	OF	AG	JIL	E							9
The Gen Overview Developm - Test Dri Design -	esis of 7 of Scru nent - Ag iven Dev User Sto	Agile um - E gile pro velopme ries - A	- Int Extren oject : ent - (Agile '	roduct ne Pro manag Contin Testin	tion ogran geme nuous ng - A	and mmi ent - is Int Agile	d bac ing - Desi tegra e Toc	ckgr Fea ign ition ols.	roune ature and n – R	d - e Dri deve Refac	Agil iven elopi torir	le M deve ment ng - I	lanife elopn pract Pair P	esto a nent tices i rogra	ind 1 - Lea n Ag mmi	Princ an So gile p ng -	iples - oftware orojects Simple
UNIT I	Ι	AGI	LE S	SCRU	U M I	FR	RAM	EV	VO]	RK							9
Sprint ba stories - planning Scrum Te UNIT I The Agil	cklog - 1 Acceptar and retr eam - Scr II le lifecy	Iteration nce test ospecti rum cas AGII cle and	on pla sts and ive - se stu LE 7 d its	nning d Veri Daily dy - T FEST impad	- Us ifyin scru Cools CINC ct or	ser s ng st rum s for G on te	story tories - Scr Agile	def s - F rum e pr g -	inition Projectori Test	on - ect v es – et ma t-Dri	Cha eloc Pro nage	ity - ity - oduct emen	eristic Burr Owr t.	n dow ner - nent	l con vn ch Scru	tent art - m M D) -	of user Sprint faster - 9 xUnit
framewor and mana	rk and to aging tes	ols for ting cy	TDE ycle -) - Tes Explo	sting orato	g use ory to	er sto testing	ories g -	s - ac Risk	ccept c bas	tance ed t	e test estin	ts and g - R	l scer egres	arios sion	s - Pl tests	anning - Test
Automati	on - Too	ls to su	uppor	t the A	Agile	e test	$\frac{\text{ter.}}{\mathbf{F} \mathbf{D}}$	FCI		TAN							10
UNITI	V	AGII DEV	LE S /FL (SOF I SPM	L VV A 'EN'	АКІ Т	EDI	E91	IGN	N AI	ND						10
Agile des Open Cle Depender Refactori UNIT V Market s	sign prac osed Pri ncy Inve ng Techi 7 cenario	tices - nciple prision 1 niques INDU and ad	- Role - Lis Princ: - Con UST doptic	e of de skov s iple in ntinuou RY 1 on of	lesigr Subs n Ag us In FRE Agil	n Pr stitut gile ntegr E NE le -	rincip Ition Desi ration DS Agi	oles Prin ign n - A le A	incl ncipl - N Autor	udin le - leed mate	g Si Inte and d bu Role	ingle rface sign ild to s in	Resp e Seg nifica pols - an A	oonsil regat nce o Vers Agile	pility ion 1 of Ro ion c proj	Princ Princ efacto ontro ect -	ciple - iples - oring - ol. 8 Agile
applicabi Mitigatio developm	lity - Ag n - Agi nent tech	ile in I le pro nologie	Distri ojects es.	buted on C	team Cloud	ns - d -	Busi Bala	iness ancii	s bei ng 4	nefit Agili	s - C ity v	Chall with	enges Disc	in A ipline	gile -	- Ris Agile	ks and rapid
									T	OTA	۱L	: 45	5 PE	RIC	DD		
OUTCO	OMES:		On	compl	letior	n of	this of	coui	rse, s	stude	ents	will	be ab	le to			
1.	Understa	nd the	back	ground	d and	d dri	iving	for	ces f	for ta	king	g an I	Agile	appro	bach	to so	ftware
2.	Understa	nd the	busin	ness va	alue o	of ac	dopti	ng A	Agile	e apr	oroa	ches.					

3	 Understand the Agile development practices. Drive development with unit tests using Test Driven Development 														
4	.]	Drive de	velop	ment v	vith ur	it test	s using	g Test	Driver	n Deve	elopme	ent.			
5	i. .	Apply de	esign p	orincip	les an	d refac	ctoring	g to acl	nieve A	Agility	<i>.</i>				
6	5.]	Deploy a	automa	ated bu	uild to	ols, ve	rsion o	control	l and c	ontinu	ious in	itegrati	ion.		
7	'.]	Perform	testing	g activ	ities w	ithin /	an Agi	le proj	ject.						
CO	URS	SE AR'	TICU	JLAT	ION	MA	ΓRIX	:							
	PO1	L PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO
		-	-							0	1	2	1	2	3
CO1		L	L	H	M								M		H
CO2		L M H M H													
CO3		L M M M L M H M													
CO4		L M H M H M M H M H													
CO5		M	Μ	Н			М						М		Н
CO6		Μ	Μ	Н			Μ						Μ		Н
CO7		Μ	L	Н			Μ						Μ		Н
(L- L	ow, N	<u>1- Modera</u>	te, H-H	ligh)											
TE	XT I	BOOK	S:												
1	• /	The cou	rsewa	re inc	luding	Powe	erPoin	t slide	es is a	vailab	ole for	the c	ourse.	Follo	wing
		websites	pro	vides	artic	les/ f	reely	dowi	iloada	ble e	Book	on	Agile	Sof	tware
		Develop	ment:	www.	1t-ebo	oks.ini	to/tag/	agile,	http://	martır	ntowle	r.com/	agile.	ntml	
RE	FER	RENCE	S:												
1.	Ken	ı Schav	wber,	Mike	e Bee	edle,	"Agil	e So	ftware	Dei	velopn	ient	with	Scrun	ı",
	Pea	rson200	98.(Un	it I,II)											
2.	Rob	pert C. I	Martir	ı, "Ag	ile So	oftware	e Deve	elopme	ent, Pi	rincipl	les, Pa	atterns	and	Practi	ces",
	Pre	ntice Ha	ull, 200	D2. (U)	it III)										
3.	3. Lisa Crispin, Janet Gregory, "Agile Testing: A Practical Guide for Testers and Agile Teams" Addison Wesley, 2008. (Unit IV)														
	Alis	tair Coc	khurn	"A oil	e Soft	vare I	Develor	nment	The (Cooper	ative (Game'	' Addi	son W	eslev
4.	200	6.(Unit I		1.91	2 50/11	C L			2.000	per			, 110000	2011 11	<i></i> ,
5.	Mik	e Cohn ,	"User	Storie	s Appl	ied: Fa	or Agil	e Softv	, ", vare	Addis	on We	sley, 2	004. (l	Unit II,)

NOTE: The Infosys Certification will be given for respective courses as per the evaluation procedures given in Annexure - I

17S	PE00	9		SOFT	[WA]	RE D	EFIN	NED I	NET	WOF	RKS	L	Τ	P	С
												3	0	0	3
OBJ	IEC	TVE	S:												
•		Con	pare a	ind con	ntrast o	conver	ntional	netwo	orking	appro	aches a	ind SE	DN.		
•		Disc	uss th	e basic	conce	epts an	nd arch	itectu	re of S	DN.					
•		Ana	lyse th	e imp	ement	ation of	of SDI	N throu	ugh Oj	pen Fl	ow Swi	itches.			
•		Eval	uate tl	ne pros	s and c	cons of	fapply	ing SI	ON in	WAN	and da	ta cen	ters.		
•		Prog	gram a	sampl	e SDN	l for a	given	task.							
•		Con	figure	an exa	mple	service	e using	g SDN	and N	FV.					
•		Intro	duce	he dif	ferent	SDN f	framev	vorks i	in prac	ctice.					
UNI	ΤI		INT	ROL	DUCI	TION									9
Histo Arch Cont	ory of itectur	Softw re – W d Date	are D hy SD Plane	efined N – E s.	Netw volutio	orking on of S	g (SDN SDN –	N) – N How	/Ioderi SDN V	n Data Works	Cente – Cent	er – T tralize	raditio d and	onal S Distri	witch buted
UNI	TI		OP	EN F	LOW	/ ANI	D SD	N CC	NT F	ROLI	LERS				9
Open	Flow	v Spec	ificati	on -]	Drawb	acks of the	of Ope	en SD	N, SD	N via	APIs,	SDN	via l	Hyper	visor-
UNI		11ays – [$\Gamma A C$	ENT	$\frac{1}{\mathbf{ERS}}$		ce - s		ontron	ers - c	Jenera		cepts.	9
Mult	itenan	t and	Virtua	alized	Multi	tenant	Data	Cente	r – S	DN S	olution	s for	the I	Data C	lenter
Netw	ork –	VLAN	$\frac{Vs - E}{C}$	VPN -	-VxLA	$\frac{AN - N}{AN - N}$	NVGR	<u>E.</u>							0
UNI		na CD		N PR	OGR		/IING	r Decomo		~ Inta	face	Cuma	at Lon	<u></u>	9
Tools	s - Co	mposi	tion of	SDN:	s - Ne	twork	Funct	ions V	'irtuali	zation	(NFV)) and S	Softwa	are De	fined
Netw	orks -	- Conc	epts -	Imple	mentat	tion an	id App	licatio	ons.		. ,				
UNI	TV		SD	N			_					~			9
Junip	er SL roller	DN Fra – Band	amewo dwidth	ork – 1 Caler	lETF : daring	SDN I	Frame [®] ta Cen	work - ter Or	– Ope	n Day	light (Contro	ller –	Floo	llight
Cont	loner	Duik	a vv ratn	Culer	iduini	5 Du		r	ГОТ	AL:	45 P	ERIC	DDS		
OU.	ГСО	MES	•	On	compl	etion of	of this	course	e, stud	ents w	ill be a	ble to			
1	. C	riticall	y anal	yze an	d appr	reciate	the ev	olutio	n of sc	oftware	e define	ed net	works	•	
2	. Po	oint ou	$\frac{t}{the v}$	arious	comp	onents	s of SE	DN and	l their	uses.					
<u> </u>	$\cdot E$	xpiain esign a	and de	velon	JN 111 variou	<u>the cu</u> s appli	ication	s of S	king so DN	cenario).				
CO	URSI	E AR		JLAT	TON	MA'	FRIX		0111						
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO
CO1	L	М	Н		М		L			0	1	2	M	2	з Н
CO2	L	Μ	Η		Μ		L						Μ		Н
CO3		Μ	Н	L	Μ		L						Μ		Н
CO4		M	H	L	Μ		L						Μ		H
(L-Lo	ow, M-	Modera	ite, H-H	ligh)											
1 62		homae	<u>.</u> М. П.	adeau	Ken (Grav '	"SDN	Soft	vare F)efine/	l Netw	orke"		illy N	[edia
1	20)13.	J. 140	au,		Gruy,		. 5010	uit L		4 1 I U U W	JIKS ,		7111y 1V.	icuia,

2	2.	Paul Goransson	and Chuck Bla	ick, "Soft	ware Defined	Netw	orks: A	Compre	ehensive
		Approach", First	Edition, Morga	n Kaufmai	nn, 2014.				
RE	FE	RENCES:							
1.	Sic	umak Azodolmolk	ty, "Software	Defined	Networking	with	Open	Flow",	Packet
	Pu	blishing, 2013.							
2.	Vi	vek Tiwari, "SDN	and Open Flow	for Begin	ners", Amazo	n Digi	tal Serv	ices, Inc.,	2013.
3.	Fe	i Hu, Editor, "N	etwork Innova	tion throu	igh Open Flo	ow an	d SDN.	: Princip	les and
	De	esign", CRC Press,	, 2014.						

17SPE010)		OCIAL NETWORKS ANAL	LYSIS	L	Τ	Р	С
					3	0	0	3
OBJECT	IVES	5:						
٠	Appl	ly know	dge for current web development i	n the era of So	cial	Web		
•	Deve	elop a m	lel for integrating data for knowled	dge representat	ion			
•	Appl	ly the to	s and an algorithm for mining in s	ocial networks				
•	Exan	nine the	uman behavior and trust disputes of	of social netwo	rks			
•	Appl	ly visua	ation technique in Social network					
UNIT I		INTE	DUCTION					9
Introduction Emergence Analysis -K analysis: Ele Application	to Se of the Cey co ectron s of So	emantic e Socia oncepts ic discu ocial Ne	Veb: Limitations of current Web Web - Social Network analysis: nd measures in network analysis ion networks, Blogs and online co vork Analysis.	 Development Development Electronic mmunities - W 	of of sour veb-l	Sema Soci ces f basec	antic al N for n l netv	Web - etwork etwork vorks -
UNIT II		MOD	LING AGGREGATING A	ND				9
		KNO	LEDGE REPRESENTATI	ON				
Ontologylar Language - representation social relat representation	nguage Model on -Or tionshi ons.	es for the lling ar ntologic ips -Ag	Semantic Web: Resource Descri aggregating social network data representation of social individu regating and reasoning with s	ption Framewo : State-of-the- als - Ontologic ocial network	ork - art i cal r da	We n ne epres ta -	eb Or etwor senta Ad	tology k data tion of vanced
UNIT III		EXT	ACTION AND MINING CO	DMMUNIT	IES			9
		IN W	B SOCIAL NETWORKS					
Extracting communitie for commun detecting co	evolut s inso nitydet ommu	tion of ocial net tection a nitiesso	Web Community from a Serie orks - Definition of community - 1 d mining - Applications of commu- al network infrastructures and co- ational characterization of dynami	s of Web A Evaluating con unity mining al ommunities - 1	archi nmu Igori Dece	ve - nities thms ntral	- De s - M s - To lized	tecting lethods ools for online
	<u> 1 K5 - 1</u>	PREI	CTING HUMAN BEHAVI				unnut	<u>28.</u> Q
		PRIV	CY ISSUES	OURIND				,
Understandi - Inference Awareness based on su and reputat countermeas	ing and and D - Priv bjectiv tion - sures.	d predic Distribut vacy in ve logic – Trust	ng human behaviour for social con n - Enabling new human experie lline social networks - Trust in c Trust network analysis - Trust tra derivation based on trust comp	mmunities - Us nces - Reality online environn nsitivity analys parisons - At	ser d min nent sis - ttack	ata n ing - T Com spe	nanag - Cor rust 1 lbinir ectrur	gement ntext – models ng trust m and
UNIT V		VISU	LIZATION AND APPLICA	ATIONS OF	7			9
		SOC	L NETWORKS					
Graph theo Visualizing representation Cover netwo	ry - onli ons - orks -	Central ine soo Matrix Commu	- Clustering - Node-Edge Dia I networks, Visualizing socia nd Node-Link Diagrams - Hybri ity welfare - Collaboration networ	ngrams - Mata al networks d representations ks - Co-Citations AL • 45 PF1	rix 1 with ons - n ne RIO	repre n m Ap twor	senta natrix plica ks.	tion – -based tions -
OUTCON	/ES·		n completion of this course. stude	nts will be able	e to	00		
		•	- completion of this course, stude		0			

1	. Develop semantic web related applications.														
2	. F	Represe	nt kno	wledg	e using	g ontol	logy.								
3	. F	Predict h	numan	behav	viour in	1 socia	ıl web	and re	lated of	comm	unities	5.			
4	. I	/isualiz	e socia	al netw	vorks.										
CO	URS	EAR	TICU	JLAT	FION	MA	FRIX	:							
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO
										0	1	2	1	2	3
CO1	L	Μ	H		L		L						Μ		Η
CO2	L	L M H L L M H													
CO3		L M H L L M H													
CO4		L M H L L M H													
(L- Lo	ow, M	- Modera	ate, H-H	ligh)											
TEX	KT E	<u>BOOK</u>	S :												
1	. F	Peter Mi	ika, "S	ocial l	Netwo	rks an	d the S	Seman	tic We	eb", Fi	rst Edi	ition, S	Springe	er 200'	7.
2	. E	Borko I	Furht,	"Han	dbook	of S	ocial	Netwo	ork Te	echnol	ogies	and A	Applic	ations	", 1 st
	E	Edition,	Spring	ger,20	10.										
3	. (Juandor	ng Xu	, Yan	nchun	Zhang	g, Lin	Li, '	'Web	Minir	ng and	1 Soci	al Ne	tworki	ing –
	Г	echniq	ues an	d appl	icatior	ns", Fi	rst Edi	tion S	pringe	er, 201	1.				
REI	FER	ENCE	ES:												
1.	Dior	ı Goh,	Schub	ert Fo	o, "Sc	ocial in	nforme	tion F	Retriev	al Sys	tems:	Emerg	ging T	echnol	ogies
	and	Applica	itions j	for Sec	archin	g the V	Veb Ej	ffective	ely", I	GI Gla	obal Si	nippet,	2008.		
2.	Max	Cheve	alier,	Christ	tine J	ulien,	Char	ntal S	oulé-L	Эириу,	"Co	llabora	ative	and S	Social
	Info	rmation	n Retri	eval a	nd Ace	cess: 7	Techni	ques f	or Imp	proved	user	Model	ling",	IGI G	lobal
	Snip	pet, 200	09.												
<i>3</i> .	Johr	$G G. \overline{B}$	reslin,	"Alex	xander	Pass	ant ar	ıd Ste	fan \overline{D}	ecker,	The	Social	Sema	ntic V	Veb",
	Spri	nger,20	009.												

17SPE011		PATTERN RECOGNITION	L	Τ	P	С
			3	0	0	3
OBJECTIVES	S:					
•	Enable	e the students to understand the fundamentals of Pat	tern	reco	gniti	on.
•	Under	stand the pattern classification algorithm for a patter	rn re	cogr	nition	1
	proble	m, properly implement the algorithm.				
•	Enrich	the student's knowledge with non linear and linear	clas	sific	ation	along
	With it	s applications.	nlata	mo	tohin	a
•	Dafan	satand the techniques of feature generation and tem				5
•	De Tall		g Ap	proa	ches	
UNITI	INTE	RODUCTION TO CLASSIFICATION				9
Discriminant Fu Distributions -Es Parameter Estima Maximum Entrop Classifier - The N	timation ation - by Estim	and Decision Surfaces - Bayesian Classific n of Unknown Probability Density Functions: M Maximum a Posteriori Probability Estimation - B nation - Mixture Models - Nonparametric Estimation Neighbor Rule - Bayesian Networks.	catio axin ayes 1 - T	n f num sian 'he N	or N Like Infer Jaive	Jormal Iihood ence - Bayes
UNIT II	NON	LINEAR CLASSIFICATION				9
Perceptrons - A Backpropagation Choice - Choice of Generalized Line Polynomial Class Support Vector M Boosting Aprroac	Algorith Algorith of the N ar Class ifiers -F Machine ch to Co	ms Based on Exact Classification of the Tr hm - Variations on the Backpropagation Theme - etwork Size - A Simulation Example - Networks with sifiers - Capacity of the <i>l</i> -Dimensional Space in L Radial Basis Function Networks - Universal Approx s: The nonlinear Case - Decision Trees - Combinin mbine Classifiers.	aini The ith V inea imat ng C	ng Veig r Die ors. lassi	Set st Fu ht Sh choto fiers	- The inction aring - omies - - The
UNIT III	LINE	EAR CLASSIFICATION				9
Linear Classifiers Algorithm - Le Discrimination - S Feature Selection The Receiver Op Subset selection Selection - The B	s: Linea east Sc Support : Prepro erating - Optin ayesian	r Discriminant Functions and Decision Hyperplan puares Methods - Mean Square Estimation Vector Machines occessing - Feature Selection Based on Statistical F Characterisitcs (ROC) Curve - Class Separability nal Feature Generation - Neural Networks and F Information Criterion.	es - Revi Hypo Mea Teatu	The sited thes asure re C	Perc l: L is Te es - F dener	eptron ogistic sting - Feature ation /
UNIT IV	FEA'	FURE GENERATION AND TEMPLATE	E			9
	MAT	CHING				
Feature Generati Characterization Template Matchi Techniques - Mea	on: Lin - Typica ing: Int asures B	tear Transforms -Regional Features - Features f al Features for Speech and Audio Classification roduction - Similarity Measures Based on Optimased on Optimased on Correlations - Deformable Template Mode	for S mal ls.	Shap Path	e and Sea	d Size
UNIT V	CLU	STERING ALGORITHM				9
Context Depende Clustering Algori Algorithms- Supe	nt Class ithms: C ervised I	Sification: Markov Chain Models - Hidden Markov E Clustering Algorithms Based on Graph Theory - Co Learning Vector Quantization.	Mod omp	els etitiv	ve Le	arning
		TOTAL: 45 PER		DS		
OUTCOMES		On completion of this course, students will be able	e to			

1.	1. Determine classifiers for pattern recognition. 2. Analyze feature selection and dimensionality reduction techniques.														
2	. A	nalyze	featur	e seleo	ction a	nd din	nensio	nality	reduct	tion te	chniqu	les.			
3.	. A	pply N	IC and	I HMN	1 mod	els.									
4	. C	lassify	the d	lata ol	ojects	and d	levelo	p tem	plate	match	ing m	odule	to rea	cogniz	e the
	pa	atterns.	,												
5.	. A	pply u	nsuper	vised	learnii	ng algo	orithm	s to da	ta obj	ects.					
6	. A	nalyze	cluste	ring a	lgorith	ms.									
COU	U RS I	E AR'	TICU	JLAT	ION	MA	ΓRIX	:							
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO
			_							0	1	2	1	2	3
CO1	Μ	Н	L		Н								Н		Μ
CO2	Μ	Η	L		Н								Н		Μ
CO3		Μ	Η	L	Н								Н		Μ
CO4		Μ	Η	L	Н								Η		Μ
CO5		М	Η	L	Н								Η		Μ
CO6		М	Н	L	Н								Н		Μ
(L-Lo	w, M-	Modera	ate, H-H	ligh)											
TEX	KT B	OOK	S:												
1.	. S	Theod	loridis	, K K	outrou	mbas,	"Patte	ern Re	cogni	tion",	4th E	dition,	Acad	emic l	Press,
	20)09.													
2	. St	ephen	Marsl	and, "	Machi	ne Lea	arning	- An	Algori	thmic	Persp	ective'	', Seco	ond Ed	lition,
	C	hapma	n and	Hall/C	RC M	lachine	e Lear	ning a	nd Pat	tern R	ecogni	ition S	eries,	2014.	
REF	FERI	ENCE	ES:												
1.	C Bis	hop, "	'Patter	n Reco	ognitic	on and	Mach	ine Le	arning	g", Spi	ringer	2006.			
2.	Mala	v K. F	Pakhira	a, "Di	gital I	Image	Proce	essing	and F	Pattern	Reco	gnitio	n", Fi	rst Ed	lition,
	PHI	Learni	ng Pvt	. <i>Ltd.</i> ,	2011.	0		0				0	,		,

17SPE012	BUILDING ENTERPRISE	L	Т	Р	С
	APPLICATIONS		0	0	
	~	3	0	0	3
OBJECTIVE	<u>S:</u>				
•	Exposed to essentials of building enterprise applications.				
•	Exposed to analysis of enterprise application and business	pro	cess	mod	eling.
•	Learn to design high quality enterprise applications.				
•	Learn to develop enterprise applications.				
•	Be familiar with the approaches of testing enterprise applied	catio	on		
UNIT I	INTRODUCTION TO ENTERPRISE APPLICATION				9
Introduction to e	nterprise applications and their types - software engineeri	ng i	neth	odol	ogies -
life cycle of rai	sing an enterprise application - introduction to skills re	equi	red	to bi	ild an
enterprise applica	ation - key determinants of successful enterprise application	s an	d m	easur	ing the
	INCEPTING ENTERDORSE ADDITICATION				0
	AND BUSINESS PROCESS MODELING				o
Inception of ente	erprise applications - enterprise analysis - business mode	ling	- re	equir	ements
elicitation - use	case modeling - prototyping - non-functional requirement	ents	- re	equir	ements
validation - plann	ing and estimation.				
UNIT III	ENTERPRISE ARCHITECTURE AND				10
	DESIGNING ENTERPRISE APPLICATION				
Concept of archi	tecture - views and viewpoints - enterprise architecture - le	ogic	al ai	chite	cture -
technical architec	ture – design - different technical layers - best practices - d	lata	arch	itectu	ire and
design – relationa	al - XML and other structured data representations - Infrast	truc	ure Dro	archi	
Hardware and So	of tware – Middleware - Policies for Infrastructure Manage	mer	r10 t_1	Denlo	ovment
Strategy - Docum	intervale introduce in one is for infrastructure managementation of application architecture and design.	men		Joph	<i>yment</i>
UNIT IV	CONSTRUCTING ENTERPRISE				9
	APPLICATION				-
Construction rea	diness of enterprise applications - defining a construction	n pl	an -	defi	ning a
package structure	e - setting up a configuration management plan - setting	g up	a d	evelo	opment
environment - ir	troduction to the concept of Software Construction Map)S -	con	struc	tion of
technical solution	ns layers - methodologies of code review - static code a	inaly	/sis	- bui	ld and
testing - dynamic	TESTING AND DOLLING OUT ENTERDING				0
UNIIV	APPLICATION	SE			9
Types and metho	ds of testing an enterprise application - testing levels and a	anni	oacł	nes -	testing
environments - in	ntegration testing - performance testing -penetration testing	- u	sabil	ity te	sting -
globalization test	ing and interface testing - user acceptance testing - rolling	ng o	ut a	n ent	erprise
application.					
	TOTAL: 45 PER	RIO	DS		
OUTCOMES	On completion of this course, students will be able	to			
1. Familiar	ize with concept of Enterprise Analysis and Business Mode	ling	•		

 4. Design and document the application architecture. 5. Understand the importance of application framework and designing other approximation components. 6. Construct and develop different solution layers. 7. Perform Code review, Code analysis, build process. 8. Understand different testing involved with enterprise application and the process. 	plication													
 Understand the importance of application framework and designing other approximation components. Construct and develop different solution layers. Perform Code review, Code analysis, build process. Understand different testing involved with enterprise application and the process. 	rocess of													
 components. 6. Construct and develop different solution layers. 7. Perform Code review, Code analysis, build process. 8. Understand different testing involved with enterprise application and the p 	rocess of													
 6. Construct and develop different solution layers. 7. Perform Code review, Code analysis, build process. 8. Understand different testing involved with enterprise application and the p 	rocess of													
 Perform Code review, Code analysis, build process. Understand different testing involved with enterprise application and the p 	rocess of													
8. Understand different testing involved with enterprise application and the p	rocess of													
rolling out an enterprise application.														
COURSE ARTICULATION MATRIX:														
PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO1 PO1 PO1 PSO F	SO PSO													
	3													
	<u>H</u>													
L M H M M L H														
CO3 L M H L M L L														
L M H L M L L M														
$\begin{array}{c c c c c c c c c c c c c c c c c c c $														
$\begin{array}{c cccc} COC & M & M & M & L & M \\ \hline COZ & M & M & M & L & M & L \\ \hline \end{array}$														
$\begin{array}{c c c c c c c c c c c c c c c c c c c $														
(L-Low M-Moderate H-High)	IVI													
TEXT BOOKS.														
1 Anubhay Pradhan Satheesha B Nanjanna Senthil K Nallasamy Ve	erakumar													
Esakimuthu, "Raising Enterprise Applications". John Wiley.	Jakumai													
2. Brett McLaughlin, "Building Java Enterprise Applications", O'Reilly Media.														
REFERENCES:														
1. "Software Requirements: Styles & Techniques", Addison-Wesley Professional.														
2. "Software Systems Requirements Engineering: In Practice", McGraw-Hill Media	/Osborne													
3 "Managing Software Requirements: A Use Case Approach", 2/e, Pearson														
4. "Software Architecture: A Case Based Approach", Pearson.														
5. "Designing Enterprise Applications with the J2EE Platform" (PDF avai	lable at-													
nttp://java.sun.com/blueprints/guidelines/designing_enterprise_applications_2e/. 6 "Software Testing", 2/e, Pearson.														
7 "Software Testing Principles and Practices" Oxford University Press														

NOTE: The Infosys Certification will be given for respective courses as per the evaluation procedures given in Annexure - I

17 S	PE01	13	N	ATU	RAL	LAN	GUA	GE	PRO	CESS	SING	L	T	P	С	
			•									3	0	0	3	
OB.	OBJECTIVES:															
The	stude	nt sho	uld be	made	e to:											
	٠		To learn the concept of speech processing in NLP.													
	٠		To understand the morphological fundamentals of various words and word forms in NLP													
	•		Be fa	amilia	with	the the	eories	of pars	sing in	NLP.						
	٠		To understand the role of semantics and pragmatics													
	٠		Expo	osed to	repre	sentati	ons of	sema	ntics a	nd app	olicatio	ns of	natura	l langı	iage	
TINI			processing.												0	
			SUUND												. 9	
Argmax based computations - HMM and Speech Recognition.																
UNIT II			WORDS AND WORD FORMS												9	
Morp	Morphology fundamentals - Morphological Diversity of Indian Languages - Morphology														ology	
Paradigms - Finite State Machine Based Morphology - Automatic Morphology Learning -																
Shall		arsing · T	- Name	ed Ent	Ities -	Maxin	num E	ntropy	y Mode	eis - K	andom	Field	s.		0	
UNIT III STRUCTURES													9 Web			
docu	ments	s - Hvh	rid of	Rule F	Aigoin Based a	and Pr	obabil	istic P	arsing	$- Sco^{2}$	ne Aml	hignit	y iex v and	t as m Attach	ment	
Amb	iguity	v resolu	tion.	11010 1	Juseu		oouon	15010 1	aising			51 9 410	y und			
UNIT IV			MEANING												9	
Lexical Knowledge Networks, Wordnet Theory - Indian Language Wordnets and Multilingu													ngual			
Dictionaries - Semantic Roles - Word Sense Disambiguation - WSD and Multilinguality -																
Meta	phors	-Core	Terences.												0	
UNIT V WEB 2.0 APPLICATIONS								lation		9 setion						
Ansv	vering	g in Mu	ltiling	ual Se	tting -	Cross	Lingu	al Info	ormati	on Re	trieval	(CLIF	lation L).	- Que	suon	
								'	ТОТ	AL:	45 P	ERI	ODS			
OUTCOMES: On completion of this course, students will be able								ble to								
1	1. Compare and contrast approaches to natural language processing.															
2	2. Comprehend and analyze the various elements of speech processing.															
3. Design and develop machine learning techniques in the area of NLP.																
CO	COURSE ARTICULATION MATRIX:															
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3	
CO1	L	Μ	Н	Μ			L						Μ		Н	
		M	H	M			L						M		H	
		Moder		[Index]			L						М		H	
TEXT BOOKS.																
1		irafsky	Dan	Marti	n. Iam	es "S	neech	and I	anouad	e Pro	cessing	". 2 nd	Editio	on Pre	ntice	
	. J	[all, 20	, Dan, 08.	1,10111	, Juill	, D	recen		unguaz	50110	Cossing	,, _	Lann	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
2	2. Manning, Christopher, Heinrich, Schutze, "Foundations of Statistical Natural Language												guage			
	Processing", MIT	[°] Press, 1999.														
----	---------------------	--														
RE	FERENCES:															
1.	Allen James, "Natur	al Language Understanding", 2 nd edition, Benjamin Cumming, 1995.														
2.	Charniack, Eugene,	"Statistical Language Learning", MIT Press, 1993.														

17SPE014	INFORMATION RETRIEVAL	L	Τ	P	С							
	TECHNIQUES											
		3	0	0	3							
OBJECTIVES	S:											
•	Understand the theoretical basis behind the standard mode	els o	f IR									
•	Understand the difficulty of representing and retrieving do speech	ocun	nents	s, ima	iges,							
•	Understand the standard methods for Web indexing and se	earcl	ning									
•	Understand how techniques of web retrivel is established architecture in IR	usin	g sea	arch e	ngine							
•	Be familiar with Parallel and Distributed IR along with its	s app	olicat	ions.								
UNIT I	INTRODUCTION				9							
Information Retri	eval – Early Developments – The IR Problem – The User's	s Tas	sk –	Infor	mation							
versus Data Retr	ieval - The IR System - The Software Architecture of th	ne IF	R Sy	stem	– The							
Retrieval and Ra	nking Processes - The Web – The e-Publishing Era – Ho	w tl	ne w	eb cł	anged							
Search – Practic	al Issues on the Web – How People Search – Search	Inte	rface	es To	oday –							
					0							
UNII II ID modele Clo	NODELING AND REIRIEVAL EVALUATI		1	A 160	y							
Algebraic Model	ssic information Retrieval – Alternative Set Theoretic M	Ioue Hym	IS — artav	Allel t Mo	dels							
Web based Mode	s – Anternative Trobabilistic Models – Other Models – I ls – Retrieval Evaluation – Cranfield Paradigm – Retrieval	Met	rics.	– Ref	erence							
Collections – Us	er-based Evaluation – Relevance Feedback and Ouerv F	xnai	nsior	h = F	xnlicit							
Relevance Feedb	ack – Clicks – Implicit Feedback Through Local Analysis	– G	lobal	Ana	lvsis –							
Documents: Lang	guages & Properties – Queries - Languages & Properties.	0			19818							
UNIT III	TEXT CLASSIFICATION, INDEXING AND				9							
	SEARCHING											
A Characterizatio	n of Text Classification – Unsupervised Algorithms – Supe	ervis	ed A	lgori	thms –							
Feature Selection	or Dimensionality Reduction – Evaluation metrics – Orga	anizi	ng tl	he cla	usses –							
Indexing and Sea	rching - Inverted Indexes -Signature Files - Suffix Trees	s &	Suff	ix Aı	rays –							
Sequential Search	ning – Multi-dimensional Indexing.											
UNIT IV	WEB RETRIEVAL AND CRAWLING				9							
The Web – Sear	ch Engine Architectures – Search Engine Ranking – Ma	nagi	ng V	Veb 1	Data –							
Search Engine U	ser Interaction – Browsing – Applications of a Web Cra	wler	– T	`axon	omy –							
Architecture and	Implementation – Scheduling Algorithms – Evaluation	1 -	Strue	ctured	l Text							
Retrieval.												
UNIT V	TYPES OF IR AND APPLICATIONS				9							
Parallel and Distr	ibuted IR – Data Partitioning – Parallel IR – Cluster-based	IR –	Dist	ribute	ed IR -							
Multimedia Information Retrieval – Challenges – Content Based Image Retrieval – Audio and Music Retrieval – Retrieving and Browsing Video – Fusion Models – Segmentation –												
Music Retrieval	– Retrieving and Browsing Video – Fusion Models	- 5	Segn	nenta	tion –							
Compression - I	Enterprise Search – Library Systems – Digital Libraries.											
Enterprise Search	Enterprise Search Evaluation - Library Systems – Digital Libraries.											
OUTCOMES	TOTAL: 45 PERIODSOUTCOMES:On completion of this course, students will be able to											
	OUTCOMES: On completion of this course, students will be able to 1 Use an open source search engine framework and explore its capabilities											
2 Represent	1. Use an open source search engine framework and explore its capabilities. 2 Represent documents in different ways and discuss its effect on similarity.											
3 Do calcu	lations and on search	11011	ı y .									

4	. D	esign a	and im	pleme	nt an i	nnova	tive fe	ature i	n a se	arch e	ngine.				
CO	URS	E AR'	TICU	JLAT	ION	MA	ΓRIX								
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO
										0	1	2	1	2	3
CO1	Μ	Н	L		Μ		L						Μ		Н
CO2	Μ	Н	L		Μ		L						М		Н
CO3	Μ	Η	L		Μ		L						Μ		Н
CO4	Μ	Н					L						М		Н
(L- L0	- Low, M- Moderate, H-High)														
TEX	XT BOOKS:														
1	±XT BOOKS: 1. Ricardo Baeza-Yates, Berthier Ribeiro-Neto, "Modern Information Retrieval: The Concepts and Technology behind Search" Second Edition. ACM Press Books. 2011														
	1. Ricardo Baeza-Yates, Berthier Ribeiro-Neto, "Modern Information Retrieval: The Concepts and Technology behind Search", Second Edition, ACM Press Books, 2011.														
2	. St	tefan E	Buettch	ner, Cl	harles	L. A.	Clark	e, Go	rdon V	V. Coi	mack	,"Infor	matio	n Retr	ieval:
	In	npleme	enting	and E	valuati	ing Sea	arch E	ngines	s", The	e MIT	Press,	2010.			
RE	FERI	ENCE	ES:												
1.	<i>C. N</i>	Iannin	ig, P.	Ragi	havan,	Н.	Schütz	ze, "1	Introdi	uction	to 1	nform	ation	Retrie	eval",
	Cami	bridge	Unive	rsity P	ress, 2	2008.									
2.	Bruc	e Croft	t, Done	ald Me	etzle, T	Trevor	Stroh	man, '	"Searc	ch Eng	ines: I	Inform	ation .	Retrie	val in
	Prace	tice", I	First E	dition	Addis	son We	esley, 2	2009.		, e		-			

17S	PE0	15		(FPU A	ARCI	HITE	CTU	RE A	ND		L	T	P	С
]	PRO	GRA	MMI	NG						
												3	0	0	3
OB.	JEC	TIVE	S:												
	•		To u	nderst	and the	e basic	es of p	arallel	ism w	ith GP	U				
	•		To k	now p	rogran	nming	for va	rious	GPU p	aradig	gms				
	•		To u	nderst	and th	e prog	rammi	ing iss	ues in	GPUs					
	•		To le	earn va	rious	algorit	hmson	n GPU	S						
	•		To in	ntrodu	ce diff	erent (GPU p	rogran	nming	mode	ls				
UNI	IT I		GP	U AR	CHI	ГЕСТ	FUR	E							9
Unde	erstar	ding Pa	aralleli	sm wi	th GP	U –Ty	pical	GPU A	Archite	ecture	- CUI	DA Ha	rdwar	e Ove	rview
– Th	reads	s – Bloo	cks –	Grids	– Wai	rps - S	Schedu	ling -	Mem	ory Ha	andling	g with	CUD	A - S	hared
Mem	ory -	Global	Mem	ory - C	Consta	nt Mer	nory a	ind Te	xture l	Memo	ry.				
UNI	[T]]	[GPU	U PR	OGR	AMN	MIN	r J							9
Usin	g CU	DA - N	Iulti C	SPU -	Multi	GPU S	Solutio	ons - C	Optimi	zing C	UDA	Appli	cation	s - Pro	oblem
Deco	Decomposition - Memory Considerations – Transfers - Thread Usage - Resource Contentions - Self-tuning Applications.														
Self-tuning Applications. UNIT III PROGRAMMING ISSUES 9															
UNIT IIIPROGRAMMING ISSUES9Common Problems - CUDA Error Handling - Parallel Programming Issues – Synchronization -															
Com Algo	Common Problems - CUDA Error Handling - Parallel Programming Issues – Synchronization - Algorithmic Issues - Finding and Avoiding Errors.														
TINI	Algorithmic Issues - Finding and Avoiding Errors.														
Daral		V		JUK				-U	1	Matu	1	1 a tuire	N/14		9
Paral	ramn	atterns	– Co teroge	neous	Cluste	er - CU	IX SUI JDA D	m - S Dynam	parse ic Para	llelisr	n. – N	latrix	Mult	ipiicai	10n -
UNI	TV		OT	HER	GPU	PRC)GR/	<u>,</u> MM	ING	MO	DELS	5			9
Intro	ducii	ng Open	CL - (Open A	CC - '	Thrust	•								
		0 1		1				,	ТОТ	AL:	45 P	PERI	ODS		
OU	ГСС	MES		On	compl	etion of	of this	course	e, stud	ents w	ill be a	able to			
1	. I	Describe	GPU	Archi	tecture	e.									
2	. 1	Write pr	ogram	s usin	g CUI	DA.									
3	. I	mpleme	ent alg	orithm	is in G	PUs to	o get n	naximi	um oco	cupanc	y and	throug	ghput.		
4	. I	Program	in any	y heter	rogene	ous pr	ogram	ming	model						
CO	URS	E AR	TICU	JLAT	TON	MA	ΓRIX	:	1	1	1	1			-
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
CO1		L		Н			L				-	-	M	-	H
CO2		L	Μ	Н	Μ		L						М		Н
CO3 M L M L M H															
CO4		L	Μ	Η	Μ		Μ						М		Η
(L- Lo	ow, M	- Modera	ite, H-H	ligh)											
TEX	<u>KT</u>	<u>SOOK</u>	<u>S:</u>		D 4 T ²	11	1 .	0	1	• -		~~~	TP		• ••
1	I. []	Nicholas	s Wilt	, "CU.	DA H	andbo	ok: A	Comp	orehen	sive C	ruide 1	to GPU	J Pro	gramn	ung",
) [<i>I</i>	Javid P	- wes	Wer	013.	w ц.	VII "E	Program	nmino	Mag	ivolu	Darall	1 Dro	00000	·ς _ Λ
4	I I	Hands-0	n App	roach'	'. Seco	ond Ed	ition.	Morga	in Kau	fmann	, 2012	1 ai ai ()	. 110	US501	5 - A

RE	FERENCES:	
1.	Shane Cook, "CUD.	A Programming: A Developer's Guide to Parallel Computing with
	GPUs (Applications of	of GPU Computing)", First Edition, Morgan Kaufmann, 2012.
2.	Jason Sanders, Edv	vard Kandrot, "CUDA by Example: An Introduction to General
	Purpose GPU Progra	amming", Addison - Wesley, 2010.
3.	http://www.nvidia.com	m/object/cuda_home_new.html

17SPE016	BUSINESS INTELLIGENCE AND ITS APPLICATIONS	L	Τ	Р	С							
		3	0	0	3							
OBJECTIVE	S:	-		-	-							
•	Be exposed with the basic rudiments of business intelligen	nce s	syste	m								
•	To know the basics of data integration											
•	Understand the modeling aspects behind business intellige	ence										
•	To learn the basics of enterprise reporting											
•	Be exposed with different data analysis tools and technique	ies										
UNIT I	INTRODUCTION TO BUSINESS				4							
	INTELLIGENCE											
Introduction to C	LTP and OLAP - BI Definitions & Concepts - Business Ap	plic	atior	s of l	BI - BI							
Framework - Rol	e of Data Warehousing in BI - BI Infrastructure Componer	nts –	BII	Proce	ss - BI							
UNIT II	BASICS OF DATA INTEGRATION				12							
Concepts of data	a integration need and advantages of using data integration	on -	intr	oduct	tion to							
Framework - Role of Data Warehousing in BI - BI Infrastructure Components – BI Process - BI Technology - BI Roles & Responsibilities. UNIT II BASICS OF DATA INTEGRATION Concepts of data integration need and advantages of using data integration - introduction to common data integration approaches - introduction to ETL using SSIS - Introduction to data quality - data profiling concepts and applications. UNIT III INTRODUCTION TO MULTI-DIMENSIONAL DATA MODELING Introduction to data and dimension modeling - multidimensional data model - ER Modeling vs. Multi-dimensional modeling - concepts of dimensions - facts - cubes - attribute – hierarchies - star and spowflake schema - introduction to business metrics and KPIs - creating cubes using												
quality - data pro	filing concepts and applications.		<u> </u>									
UNITII	DATA MODELING	AL			6							
Multi-dimension star and snowfla SSAS.	al modeling - concepts of dimensions - facts - cubes - attr ke schema - introduction to business metrics and KPIs - o	ibute creat	e – ł ing	ieraro cubes	chies - using							
UNIT IV	BASICS OF ENTERPRISE REPORTING				12							
Introduction to introduction to S	enterprise reporting - concepts of dashboards - bala SRS Architecture - enterprise reporting using SSRS.	ance	d so	corec	ards -							
UNIT V	CASE STUDIES				11							
The assignments	for the course can include the following.											
1. Seminars	Irom the topics related to Business Intelligence space											
2. Kelevalit			ng									
OUTCOMES	• On completion of this course, students will be able	to	00									
1. Different the need	tiate between Transaction Processing and Analytical appli for Business Intelligence.	catio	ons a	nd de	escribe							
2. Demonstrate understanding of technology and processes associated with Business Intelligence framework.												
3. Demons project l	trate understanding of Data Warehouse implementation ife cycle.	n m	etho	dolog	y and							
4. Given a	business scenario, identify the metrics, indicators and mal	ke re	ecom	menc	lations							
to achieve the business goal.5.Design an enterprise dashboard that depicts the key performance indicators which helps												
in decisi	on making.											
6. Demons	trate application of concepts in Microsoft BI suite.											

CO	COURSE ARTICULATION MATRIX: P01 P02 P03 P04 P05 P06 P07 P08 P09 P01 P01 PS0 PS0 PS0														
	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO
										0	1	2	1	2	3
CO1		Μ	Η	Μ			L						Μ		Η
CO2		Μ	Η	Μ	Μ		L						Μ		Н
CO3		Μ	Н	Μ	М		L						Μ		Н
CO4			Μ	Н	Μ		L							L	Н
CO5	Μ		Μ	Н			L							L	Н
CO6	Μ		Μ	Н			L							L	Н
(L- L0	ow, M-	Modera	te, H-H	ligh)											
TEX	TEXT BOOKS:														
1	1. R.N. Prasad, Seema Acharya, "Fundamentals of Business Analytics ".														
RE	1. R.N. Prasad, Seema Acharya, "Fundamentals of Business Analytics ". REFERENCES:														
1.	David	l Losh	in, "B	usines	s Intel	ligence	e ".								
2.	Mike	Biere,	"Busi	ness in	ntellig	ence fo	or the	enterp	rise".						
3.	Laris	sa Terj	peluk I	Moss,	Shaku	Atre,	"Busir	iess in	tellige	nce ro	oadma	<i>p"</i> .			
4.	Cindi	Ном	vson,	"Suce	cessful	Bus	iness	Intell	igence	: Sec	rets	to m	aking	Kille	r BI
	Appli	cation	<i>s"</i> .		·										
5.	Brain	, Lars	on, "L)eliver	ing bu	siness	intelli	gence	with M	Aicros	oft SQ	L serv	er 200)8 <u>"</u> .	
6.	Lynn	Langi	t, "Foi	undati	ons of	SQL S	Server	2005 1	Busine	ss Inte	elligen	ce ".			
7.	Steph	en Fev	v, "Infe	ormati	on das	shboar	d desi	gn ".							

NOTE: The Infosys Certification will be given for respective courses as per the evaluation procedures given in Annexure - I

17S	PE0	17			INT	ERN	ET (OF T	HINC	S		L	T	P	С
												3	0	0	3
OB.	JEC	FIVE	S:												
	•		To L	earn tl	he con	cepts	of Iot								
	٠		To g	et exp	osed to	o vario	ous Iot	Proto	cols						
	٠		To u	nderst	and th	e resou	urce m	nanage	ment t	echnic	ues in	Iot			
	•		Be k	nown	to Iot .	Applic	ation	develo	pment	conce	epts				
	•		To a	nalyse	Web	of Thi	ngs ve	ersus In	nternet	of Th	ings				
UNI	ΤΙ		INT	ROL	DUCT	TION									9
Defin intern Com Wire	nition net o muni d Cor	– Fou f thing cation 7 mmunio	ndatio s -Co Fechno cation-	ns – C ntrol ologies IoT P	Challer Units s – RF latforn	nges a – Ser ID – E n Over	nd Iss nsors Blueto rview-	ues - 1 – Con oth – 7 Raspb	Identif hmuni Zigbee erry pi	ication cation – Wif -Ardu	n – Se modu i – Rf ino bo	curity 1les –l links – vards.	- Cor Power Mobi	npone Sour le Inte	nts in ces – rnet –
UNI	T II		IOI	PR	OTO	COL	S								9
Proto Issue Arch	Protocol Standardization for IoT - M2M and WSN Protocols - SCADA and RFID Protocols - Issues with Iot Standardization – Protocols –IEEE 802.15.4 - BACnet Protocol - Zigbee Architecture - Network layer – APS Layer – Security.														
UNI	UNIT III RESOURCE MANAGEMENT 9														
Auto RFII Obje	Sync nomy D-base cts.	-Enabl ed EPC	ing Au Netw	tonor vork to	of Ne ny and o an A	l Agili gent b	ity by	the In Interne	es - Fi ternet et of T	of Thi hings-	ngs - Agen	The E	voluti the B	Agint on fro ehavio	y and m the our of
UNI		/	IOI	API	PLIC	ATI	DN D	EVE	LOP	MEN	Т				9
IoT a of B Inter	pplic ig Da facing	ations i ata and g using	in hom Visua Raspb	ie – in alizatio erry P	frastru on in Pi/Ardu	ctures IoT - iino - '	- secu Indus Web E	irity-Ir try 4.0 Enableo	idustri) conc d Cons	es - Io cepts - ctraine	T elec Sense d Devi	tronic ors an ices.	equip d sen	ments sor N	- Use ode –
UN	T V		WE	BOI	TH	INGS	•								9
Web Midd Clou senso	of T llewa d Co or pla	hings re for V mputin tform.	versus VoT - g - Cle	Intern WoT oud St	net of Portals tandar	Thing s and l ds – C	gs - A Busine Cloud	archite ess Inte of Thi	cture S elligen ngs A FOT	Standa ce - C rchitec AL :	rdizati loud o cture - 45 F	ion for f Thin Open	r Wo' gs:Gr Sour	T- Pla id/SO ce e-H	tform A and Iealth
OU	OUTCOMES: On completion of this course, students will be able to														
1	. I	dentify	the co	mpone	ents of	IoT.									
2	. А г	analyze	variou	is prot	tocols	of IoT	minta 1	boorda							
3 4	· L . L	vesigii <u>i</u> Develon	schen	nes foi	the a	approp oplicat	tions	of IOT	in real	time	scenar	ios.			
5	. [Design b	ousines	ss inte	lligenc	e and	inforr	nation	Secur	ity for	WoT.				
CO	URS	EAR	TICU	JLAT	TION	MA	TRIX	K:							
	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
CO1		М		Н	М		L				-	-	- M		H
CO2	L	М		Η	Μ								Μ		Н

CO3	L	M	Η	M								Μ		Н	
CO4	L	M	Η	M		L						М		Н	
CO5	L	M	Η	M		L						М		Н	
(L- Lo	ow, M-	Moderate, H	I-High)											
TEX	KT B	OOKS:													
1.	A	rshdeep Ba	ahga,	Vijay N	[adisett	i, "Inte	ernet o	f Thin	gs (A	Hands	s-On-A	Approa	uch)",	VPT,	
	20)14.													
2	2. Honbo Zhou, "The Internet of Things in the Cloud: A Middleware Perspective", CRC														
	Press 2012.														
REI	FERF	ENCES:													
1.	Olivie	er Hersen	t, Da	wid Bos	warthi	ck, Oi	mar E	lloumi	, "Th	e Inte	ernet d	of Thi	ngs –	Key	
	appli	cations an	d Pro	otocols",	Wiley,	2012.						-	-	-	
2.	Diete	r Uckelma	inn, M	1ark Ha	rison,	"Arch	itecting	g the I	nterne	t of Th	ings",	Sprin	ger 20	<i>)11.</i>	
З.	3. Luigi Atzori, Antonio Lera, Giacomo Morabito, "The Internet of Things: A Survey",												vey",		
	Journ	al on Netw	vorks	, Elsevie	r Publi	cation	s, Octo	ober, 2	010.						
4.	http://	/www.thei	ntern	etofthing	s.eu/wi	hat-is-	the-int	ernet-	of-thin	gs					

17S	PE	018	3				GAN	IE T	HEO	RY			L	Τ	P	С
													3	0	0	3
OB	JE(CT	IVES	S:												
	(•		Be fa	amilia	with	the pro	ocess (of gam	e desi	gn and	devel	opmen	ıt		
	(•		To le	earn th	e proc	esses,	mecha	anics, i	ssues	in gan	ne desi	gn			
	(•		To u	nderst	and th	e archi	tectur	e of ga	ime pr	ogram	ming				
	(•		To k fram	now a ework	bout g	ame er	ngine	develo	pment	, mode	eling, t	echnic	lues a	nd	
UN	IT I	[INT			TION									9
Elen	nents	5 0	f Gar	ne Pla	ay —	Artific	ial In	tellige	nce –	Getti	ng Ing	out fro	om the	e Play	ver -	Sprite
Prog	gram	mir	ng – S	prite A	Anima	tion - I	Multit	hreadi	ng – Ir	nporta	ince of	Game	e Desig	gn – C	Game 1	Loop.
UN	IT]	I		3D (GRA	PHIC	CS FC)R G	AME	E PRO	OGR	AMN	IING			9
Coo	Coordinate Systems, Ray Tracing, Modeling in Game Production, Vertex Processing, Rasterization, Fragment Processing and Output Merging, Illumination and Shaders, Parametric															
Rast	Rasterization, Fragment Processing and Output Merging, Illumination and Shaders, Parametric Curves and Surfaces.															
	Curves and Surfaces. UNIT III GAME DESIGN PRINCIPLES 9															
Cha	Character Development, Story Telling, Narration, Game Balancing, Core mechanics, Principles															
of le	of level design, Genres of Games, Collision Detection, Game Logic, Game AI, Path Finding, Case study : Tetris															
Case	of level design, Genres of Games, Collision Detection, Game Logic, Game AI, Path Finding, Case study : Tetris.UNIT IVGAMING ENGINE DESIGN9															
UN	Case study : Tetris.UNIT IVGAMING ENGINE DESIGN9Renderers, Software Rendering, Hardware Rendering, and Controller Based Animation, Spatial Sorting, Level of Detail, Collision Detection, Standard Objects, and Physics, Case study : The															
Ren	UNIT IVGAMING ENGINE DESIGN9Renderers, Software Rendering, Hardware Rendering, and Controller Based Animation, Spatial Sorting, Level of Detail, Collision Detection, Standard Objects, and Physics, Case study : The															
Sort	UNIT IV GAMING ENGINE DESIGN 9 Renderers, Software Rendering, Hardware Rendering, and Controller Based Animation, Spatial Sorting, Level of Detail, Collision Detection, Standard Objects, and Physics, Case study : The Sims. 9															
Sim:	5. TT 1	7		CA	лг і	TVL			NT							0
Dev	elon	ν inσ	2D a	nd 3D	Inter	DE VI active	Game		n I Ig One	nGI	Direct	X _ Is	ometri	c and	Tile	9 Based
Gam	nes, l	Puz	zle G	ames,	Single	e Playe	er Gam	es. M	ulti-Pl	aver G	lames.	Case	study:	Mine	craft.	Dascu
				,	0			,	,	ΓΟΤ	AL:	45 P	PERIC	DDS		
OU	TC	ON	AES		On	compl	etion of	of this	course	e, stud	ents w	ill be a	able to			
1	l.	De	velop	game	progr	ammir	ng skill	ls and	create	intera	ctive g	games				
CO	UR	SE	AR'	TICU	JLAT	TON	MA	FRIX	K:							
	РО	1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO 1	PSO	PSO
CO1	L			М	Н	Н		М			0	1	2	M	L	H
(L- L	ow, N	M- N	Aodera	ite, H-H	ligh)											
TE	ХT	BC)OK	S:												
	1. David H. Eberly, "3D Game Engine Design: A Practical Approach to Real Time															
	Computer Graphics", Second Edition, Morgan Kaufmann, 2010.															
	2.	Jui Ha	ig Hy 11/CR	un Ha C 201	un, 31 1	J Graj	phics I	or Ga	ine Pr	ogram	ming	, First		on, C	napina	in and
3	3.	Err	$\frac{1}{10000000000000000000000000000000000$	Adams	, And	rew F	Rolling	s, "Fu	undam	entals	of G	ame I	Design	', Th	ird E	lition,
		Pea	arson	Educa	tion, 2	2014.										-
RE	FEI	RE	NCE	ZS:												
1.	Jor	ath	ian S	S. Ha	rbour,	"Begi	nning	Gam	e Pro	gramn	ning",	Cour	rse Te	echno	logy,	Third
2	Edi	tio	n PTF Rogar	<u>k, 2009</u> s "T	$\frac{9.}{100}$	n. Tha	Caril	$\frac{1}{2}$ to C	roat V	ideo (-ana	Dosia	," <i>F</i> :	ct E.J.	ition	Wilow
Ζ.	SCO	ott I	koger	s, Le	evel Up	o: The	Guide	e to G	reat V	iaeo (лате І	Design	, Fir	st Edi	ttion,	wiley,

	2010.
3.	Jim Thompson, Barnaby Berbank-Green, Nic Cusworth, "Game Design: Principles,
	Practice, and Techniques - The Ultimate Guide for the Aspiring Game Designer", First
	Edition, Wiley, 2008.

17SI	PE01	.9			OPE	N SO	URC	E SY	STE	MS		L	T	P	С
												3	0	0	3
OBJ	IEC	TVE	S:												
	٠		To le	earn al	oout O	pen so	ource c	operatio	ng sys	tems					
	•		To e	xplore	on op	en sou	rce da	tabase	S						
	٠		To a	cquire	the kr	nowled	lge of	open s	ource	progra	mmin	g lang	lages		
	•		To g	et intr	oduces	s to Py	thon p	orogran	nming	const	ructs				
	•		To e	xplore	on op	en sou	irce to	ols and	ł techr	niques					
UNI	ΤI		INT	ROI	DUCT	ΓΙΟΝ									9
Introd Appli Gene – Per	Application of Open Sources – Need of Open Sources – Advantages of Open Sources – Application of Open Sources - Open source operating systems – LINUX - Introduction – General Overview – Kernel Mode and user mode – Process – Advanced Concepts – Scheduling – Personalities – Cloning – Signals – Development with Linux.														
UNI	ΤI		OP	EN S	OUR	CE D	ATA	BAS	E						9
MyS0 progr Query and V	MySQL - Introduction – Setting up account – Starting - terminating and writing your own SQL programs – Record selection Technology – Working with strings – Date and Time – Sorting Query Results – Generating Summary – Working with metadata – Using sequences – MySQL and Web.														
UNI	JNIT IIIOPEN SOURCE PROGRAMMING9LANGUAGES														
Conn Temp	ession ectivi plates.	- File ty $-$ S	Sendin	g and		ving E	ge – P -mails	= De	a SQI buggii	ng and	ase – l erroi	PHP a handl	ing –	- Secu	- PHP rity –
Sunto		l Ctul	$\mathbf{P}\mathbf{Y}$	THO:	N Object		umbo	r a C		200	String		ata ar	d Tu	9
Dictio	onarie tions -	s – C - Mod	onditio ules –	onals a Classe	and Lo es and	oops – OOP -	Files - Exec	- Inp ution	ut and Enviro	Outp	ut – E t.	s – Lis Errors a	ind E	xcept	ions –
UNI	ΤV		OP	EN S	OUR	CE T	IOOI	LS AN	ND T	ECH	NIQI	UES			9
Web web s UML	Serve servic 2 Profi	er - Ap es ME iles – M	ache V DA - In MDA 2	Veb se itroduc Applic	erver – etion to etions	- Work o MD4	ting w A – G	ith We enesis	b Ser of MI	er = 0 DA = N AL:	Config Aeta C	uring a bject I PERIO	and U Facilit	sing a ty – U	pache ML –
OUT	OUTCOMES: On completion of this course, students will be able to														
1.	. D	escribe	e open	source	e syste	emsanc	l datał	bases.							
2.	. W	rite pr	ogram	is usin	g oper	n sourc	e prog	gramm	ing laı	nguage	es.				
3. 1	. In	npleme	ent pro	ograms	using	; pytho veb se	n. rver								
COI	URSI	E AR	TICI		TION	MA'	FRIX	:							
	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO
CO1		T	М	и	М		T			0	1	2	1 I	2 T	3 Ц
CO2		L	M	H	M		L						L		H
CO3		Μ	Μ	Н			L						L		Μ

CO4		Μ	М	Η	Μ		L						L	L	Μ
(L- Lo	ow, M-	Modera	ate, H-H	ligh)											
TEX	KT B	OOK	S:												
]	l. R	emy C	ard, E	ric Du	mas, I	Frank I	Mevel	, "The	Linux	Kern	el Boo	ok", W	viley l	Public	cations,
	20	003.													
2	· S	teve S	uchrin	g, "M	ySQL	Bible'	', John	n Wiley	y, 2002	2.					
3	. F	Rasmus	s Lerdo	orf, Le	vin Ta	troe, "	Progr	ammir	ng PHF) ", O'I	Reilly,	2002.	•		
4	. W	Vesley	J. Chu	n, "Co	ore Phy	thon H	Progra	mming	g", Pre	ntice l	Hall, 2	2001.			
5	. St	tephen	J. N	lellor,	Marc	e Balo	ces, "	Execu	table	UMS:	A f	founda	tion	for 1	MDA",
	A	ddison	Wesle	y, 200)2.										
REI	FERI	ENCE	ES:												
1.	Peter	· Wain	wright	, "Pro	fessio	nal Ap	ache"	, Wrox	c Press	, 2002					

17SPE020	BIG DATA AND ANALYTICS	L	Τ	P	С
		3	0	0	3
OBJECTIVE	5:				
•	To understand the competitive advantages of big data anal	ytic	s		
•	To understand the big data frameworks				
•	To learn data analysis methods				
•	To gain knowledge on Hadoop related tools such as Mong	oDI	3,HE	Base,	
	Cassandra, Pig and Hive for big data analytics				
•	To learn about Jasper Reports				
UNIT I	INTRODUCTION TO BIG DATA				8
Digital Data: Ty	pes of Digital Data - Structured - Sources of structured	l da	ta -	Eas	e with
Structured data -	Semi-Structured - Sources of semi-structured data - Uns	truc	turec	1 - S	ources
of unstructured da	ata - Issues with terminology - Dealing with unstructured d	lata.			
Introduction to B	g Data: Characteristics of data - Challenges with big data -	Big	data	stac	k.
UNIT II	HADOOP				10
Technology Land	dscape:Big Data Analytics - Analytics 1.0, Analytics 2.0	0, A	naly	vtics	3.0 -
Traditional BI vs.	Big Data Environment - Big Data technology Landscape	- No	SQI	Dat	abases
- NoSQL Vs. RE	BMS- New SQL - Hadoop - Hadoop 1.0 vs. Hadoop 2.0	- 0	Data	a Sci	ence is
multi-disciplinary	- Data Scientist - Your new best friend.				
Introduction to I	Hadoop: Introducing Hadoop - Why not RDBMS - Dist	tribu	ited	Com	puting
Challenges - A	Brief History of Hadoop - Hadoop Overview - Hadoop C	Com	pone	ents	- High
Level Architectu	re of Hadoop - Hadoop Distributed File System -HD	FS	Arch	nitect	ure -
Daemons Related	l to HDFS - Working with HDFS Command - Special Fe	eatu	res o	f Ha	doop -
Processing Data	With Hadoop - Introduction - How Map Reduce Wor	ks	- N	lap H	Reduce
Example - Wor	d Count Example using Java - Managing Resources and	i A	oplic	ation	s with
YARN - Introduc	ction - Limitation of Hadoop 1.0 - Hadoop 2: HDFS - H	Iado	op 2	2: YA	ARN -
Interacting with I	ladoop EcoSystem - Hive - Pig - HBASE - Sqoop - Busi	ness	Inte	ellige	nce on
Hadoop.				U	
UNIT III	MONGO DB. CASSANDRA, HIVE				11
Mongo DB:Reca	p of NoSOL databases - MongoDB - CRUD - Mong	oDI	3- A	rravs	Java
Scripts. Cursors.	Map Reduce Programming, Aggregations.	,			,
Cassandra:Cassar	ndra- COLSH - CRUD, Counter, List, Set, Map, Tracing.				
Introduction to H	live:Introduction to Hive - The Problem -Solution - Hiv	e U	se C	Case	- Data
Growth - Schema	Flexibility and Evolution - Extensibility - What is Hive -	Hist	ory (of Hi	ve and
Recent Releases	of Hive - Hive Features - Hive Integration and Work Flow	- H	ive I	Data	Units -
Hive Architecture	e - Hive Primitive Data Types and Collection Types - Hive	File	Form	nats	- Hive
Query Language	- Statements - DDL - DML - Hive Partitions, Bucketing,	Vie	ews,	Sub	query,
joins, Hive User	Defined Function - Aggregations in Hive, Aggregations in	Hi	ve, S	erial	ization
and Deserialization	on, - Hive Analytic Functions.				
UNIT IV	PIG				10
Introduction to H	Pig:Introducing Pig - History and Anatomy of Pig - Pig	on	Had	000	- Pig
Features - Pig Ph	ilosophy - Word count example using Pig - Use Case for	Pig	- Pi	g Pr	imitive
Data Types . Co	ollection Types and NULL - Pig Latin Overview - Pig	g La	tin	Gran	ımar -
Comments, Kevy	vords, Identifiers - Case sensitivity in Pig - Common Op	erate	ors i	n Pis	g - Pig
Statements - LO	AD - STORE - DUMP - Interactive Shell - GRUNT - F	FILT	ΈR	- S	ORT -
GROUP BY - O	RDER BY - JOIN - LIMIT - Pig Latin Script - Local M	lode	- N	lap H	Reduce

Mode - Running	g Pig Script	- Working witl	ı -Field -	Tuple -	- Bag -	User	Defined	Function	-
Parameters in Pig	g.	-		-	-				

UN	T V		JAS	SPER	REF	ORT									6
Intro	ntroduction to Jasper Report:Introduction to Jasper Report using Jasper Soft Studio - Reporting using MongoDB - Reporting using Cassandra.														
using	g Mon	IgoDB	- Repo	orting	using	Cassar	ndra.								
								,	ГОТ	AL:	45 I	PERI	ODS		
OU	ГСО	MES	:	On	comp	etion	of this	course	e, stud	ents w	ill be	able to)		
1	. K	now th	e con	cepts o	of big o	lata.									
2	. D	escribe	e abou	t hado	op.										
3	. H	lave Kr	nowled	lge on	Mong	ODB a	and Ca	ssandı	a.						
4	. E	xplain	the co	ncepts	s on pi	g and	jasper	studio).						
CO	URS	E AR'	TICU	JLA'I	ION	MA'	FRIX	:	1	T	1		T	r	r
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO 1	PSO	PSO
CO1	L		М		н	М				0	1	2	M	2	з Н
CO2	L	М	M		H	M							M		H
CO3		М	Μ		Н	М	L						М		Н
CO4		М	Μ		Η	М	L						М		Η
(L- L0	ow, M-	Modera	ite, H-H	ligh)											
TEX	KT B	OOK	S:												
1	. T	he cou	rsewar	e (Pov	verPoi	nt and	notes) is ava	ailable	e for th	e cour	se.			
RE	FER	ENCE	S:					~						_	
1.	Davi	d Losh	in, "B	ig Da	ta An	alytics	: Froi	m Stra	itegic	Plann	ing to	Enter	rprise	Integr	ation
	with	$\frac{100ls}{100l}$	Techn	iques,	NoSQ	L, and	Grap	h", 20	$\frac{13}{13}$		D:-	M	." 17:1		1 0 4 0
2.	Fran Rusii	K J ON 1888 Sei	lNOTSI, ries 2(Big .)12	Data 1	4nalyti	CS: IU	rning	Big D	ata ini	o Big	Money	, W11	ey and	i SAS
	Bill I	Franks.	" <i>Tam</i>	ing the	e Big I	Data Ti	idal W	ave: F	inding	Oppo	rtuniti	es in H	luge D	ata Str	eams
3.	with	Advanc	ed And	alytics	", Wile	ey and	SAS B	usiness	s Serie	s, 2012	2.				
1	Paul	Zikopo	oulos,	Chris	Eaton	, Paul	l Zikoj	poulos,	"Und	derstar	nding	Big D	ata: A	nalytic	s for
4.	Enter	rprise (Class H	Iadoop	o and S	ˈtreami	ing Da	ta", M	cGraw	, Hill,	2011.				
5.	Fran	k J. Oh	lhorst	, "Big	Data	Analy	tics", l	st Editi	on, Wi	iley, 2	012.				
6	Edwa	ard Ca	priolo	, Dear	ı Wam	pler, c	and Ja	son Ri	utherg	len, "	Progra	ammin	g Hive	e", O'I	Reilly
0.	Medi	ia,2017	, secc	ond edi	ition.	<u> </u>		<i>0</i>	~		<u> </u>	- 14 -	0.17		r 1-
7.	Krist	ina Cl	iodore	w, "I	Mongo	DB: T	The D	efinitiv	ve Gu	ide",	2nd E	dition	O'Re	illy M	edia,
	2013 Tim	Roralu	nd M	atthe	v Mal		ah "	Master	ring (assan	dra f	or Ara	hiteets	יי מי	Q _{ailby}
8.	Medi	a. 201	710, 1 1 2.	unnev		-41104	511,	musiel	ing C	Jussun	uru jt	ΠΛΙ	nnecis	, 01	xeniy
9.	Alan	Gates,	Danie	el Dai,	"Pro	gramn	ing P	ig", 0	'Reilly	Medi	a, 201	6.			

NOTE: The Infosys Certification will be given for respective courses as per the evaluation procedures given in Annexure - I

17SPE021	MACHINE LEARNING	L	T	P	С
		3	0	0	3
OBJECTIVE	S:				
•	To introduce students to the basic concepts and techniques Learning.	of	Mac	hine	
•	To have a thorough understanding of the Supervised and U learning techniques	Insu	perv	vised	
•	To study the various probability based learning techniques				
•	To be known to evolutionary models of machine learning				
•	To understand graphical models of machine learning algori	ithn	ns		
UNIT I	INTRODUCTION				9
Learning – Type Design a Learnin Task – Concept Spaces and the C Separability – Li	es of Machine Learning – Supervised Learning – The Brain ng System – Perspectives and Issues in Machine Learning – Learning as Search – Finding a Maximally Specific Hyp Candidate Elimination Algorithm – Linear Discriminants – F near Regression.	n an - Co poth Perc	d th once nesis eptr	e Nei pt Le - V on -	uron – arning 'ersion Linear
UNIT II	LINEAR MODELS				9
Multi-layer Perce layer Perceptron Propagation – R Dimensionality –	eptron – Going Forwards – Going Backwards: Back Propaga in Practice – Examples of using the MLP – Overview adial Basis Functions and Splines – Concepts – RBF Net Interpolations and Basis Functions – Support Vector Machine	etw nes	n Eri Deri ork	ror – ving – Cu	Multi- Back- irse of
UNIT III	TREE AND PROBABILISTIC MODELS				9
Learning with T Regression Tree Classifiers – Pro Mixture Models Vector Quantizat	 Trees – Decision Trees – Constructing Decision Trees – s – Ensemble Learning – Boosting – Bagging – Different bability and Learning – Data into Probabilities – Basic St – Nearest Neighbor Methods – Unsupervised Learning – K n tion – Self Organizing Feature Map. 	Cla wa atis nea	assif ays t tics ns A	icatio to Co – Ga lgorit	on and ombine sussian thms –
UNIT IV	DIMENSIONALITY REDUCTION AND				9
	EVOLUTIONARY MODELS				
Dimensionality I Factor Analysis Least Squares Op- Genetic Opera Getting Lost Exa	Reduction – Linear Discriminant Analysis – Principal Com – Independent Component Analysis – Locally Linear Ember ptimization – Evolutionary Learning – Genetic algorithms – Genetic algorithms – Genetic algorithms – Reinforcement Learn mple – Markov Decision Process.	npon edd Ger ing	nent ing netic – (Anal – Iso Offsj Overv	lysis – map – pring - riew –
	GRAPHICAL MODELS				9
Markov Chain I Monte Carlo – Markov Models Flow – Apache M	Monte Carlo Methods – Sampling – Proposal Distributior Graphical Models – Bayesian Networks – Markov Randor – Tracking Methods-Introduction to Machine Learning Tool Mahout – Apache Spark.	n — m F 1s —	Ma Field Lin	rkov s – F ne – T	Chain Iidden Fensor
	TOTAL: 45 PER	IO	DS		
OUTCOMES	: On completion of this course, students will be able	to			
1. Distingu	hish between supervised, unsupervised and semi-supervised le	ear	ning	•	
2. Apply the 2	he apt machine learning strategy for any given problem.	41.			_ !
3. Suggest problem	supervised, unsupervised or semi-supervised learning algorithe	thm	IS TO	r any	given
4. Design	systems that use the appropriate graph models of machine lea	arni	ng.		

5. Modify existing machine learning algorithms to improve classification efficiency.															
CO	URSE	E AR'	TICU	JLAT	ION	MA	ΓRIX								
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO
										0	1	2	1	2	3
CO1	Μ		Μ	Н	М								Μ	L	Η
CO2	Μ		Μ	Η	М		Μ						Μ	L	Η
CO3	L		М	Η	М		Μ						Μ		Н
CO4		L	М	Η	М		Μ						Μ	L	Н
CO5	COS L H M M (L - Low M-Moderate H-High)														
(L- L0	(L- Low, M- Moderate, H-High)														
TEXT BOOKS:															
	1. Stephen Marsland, "Machine Learning – An Algorithmic Perspective", Second Edition,														
	Cł	napma	n and]	Hall/C	RC M	achine	e Leari	ning ar	nd Patt	tern Ro	ecogni	tion S	eries, 2	2014.	
2	. To	om M I	Mitche	ell, "M	achine	e Lear	ning",	First I	Editior	n, McC	Graw H	Hill Ed	ucatio	n, 201	3.
REI	FERE	CNCE	ES:												
1.	Peter	Flach	, "Ma	chine	Learn	ing: T	he Art	t and S	Scienc	e of A	lgorith	hms th	at Ma	ke Sen	se of
	Data'	", Firs	t Editi	on, Ca	mbrid	lge Un	iversit	y Pres	s, 201	2.	~				·
2.	Jason	Bell,	"Maci	hine le	earnin	g - H d	ands o	n for l	Develo	pers c	ind Te	chnica	ıl Proj	fession	als",
	First Edition, Wiley, 2014.														
3.	Ethen	ı Alpa	aydin,	"Intr	oducti	on to	Mach	ine L	earnin	ıg 3e	(Adap	otive (Сотрі	itation	and
	Mach	ine <i>L</i> e	arning	, Serie	s)", T	hird E	dition,	MIT I	Press,	2014.	· •		•		

17SI	PE()22			GEO	GRA	PHI	CAL	INF	ORM	ATI	ON	L	Τ	P	С
							S	YSTI	EMS							
			l										3	0	0	3
OBJ	IE (CTIV	VES	5:												
				To ir syste	ntrodu m	ce the	fundaı	nental	s and o	compo	nents	of geo	graphi	c info	ormati	on
				Be k	nown	to deta	ails of	data cl	assific	ation	and m	ap pro	jection	s.		
				To p	rovide	detail	s of va	arious	geopro	ocessir	ng tool	s.				
		•		To h	ave a t	horou	gh unc	lerstan	ding o	of editi	ng fea	tures i	n GIS			
				To L	earn tl	ne app	licatio	ns of g	geogra	phical	inforr	nation	systen	ns.		
UNI	ΤI	-		INT	ROL	DUCT	TION	TO	GIS							9
Brief	His	story	of C	JIS- T	ypes o	f Map	s - Ele	ements	of Ca	rtogra	phy.			·		
UNI	ΤI	Ι		MA	P PR	OJE	CTIC	ONS								9
Data	Cla	assifi	catio	on - N	Лар Р	rojecti	ions -	Read	ing M	etadat	a - U	ndersta	anding	Cen	sus D	ata &
Geon	netr	y - A	cces	ssing (Census	Data.										
UNI	IT III GEOPROCESSING TOOLS 9 rpreting Census Variables - Charts & Graphs for Data Display- Geoprocessing Tools - 9															
Interj Buffe	Interpreting Census Variables - Charts & Graphs for Data Display- Geoprocessing Tool Buffers, Clips, Unions- Address Mapping - Location-based Services- Geocoding. UNIT IV EDITINC FEATURES													ools -		
UNI	UNIT IV EDITING FEATURES 9 ENDITING FEATURES 9															
Editi	Editing features - Point, Line, and Polygon -Rubbersheeting & Georeferencing - Web mapping –															
QGIS	5	Addi	tion	al pla	tforms	and	softwa	re- Go	ogle	Fusior	n Tabl	es and	l/QGIS	- Ra	aster	Data -
Decis	QGIS - Additional platforms and software- Google Fusion Tables and/QGIS - Raster Data - Decision Support Methods with Rasters.															
UNI	UNIT V APPLICATIONS OF GIS 9															
GPS GIS.	Dat	a Col	llect	ion–F	ieldSu	rveys	– GPS	- Aer	ial Im	agery	- Crea	ting M	etadat	a-Apj	olicati	ons of
									r	ΓΟΤ	AL:	45 P	ERI	DDS		
OU	ГС	OM	ES:		On	compl	etion of	of this	course	e, stud	ents w	ill be a	able to			
1		Desc	ribe	graph	nical ir	nforma	tion s	ystem.								
2		Knov	w ab	out ge	eocodi	ng.										
3		Expl	ain t	the ba	sic cor	ncepts	of wel	o map	ping ar	nd QG	IS.					
4		Knov	w the	e appl	icatio	is of C	<u>JIS.</u>									
COL		SE A	A R'.	<u>FICU</u>		ION	MA'	<u>rrix</u>	:							
	PO	1 P(02	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
CO1	L	H	I			Μ					-		_	L		H
CO2	L	H	I	М	Μ	Μ								L		Μ
CO3	CO3 H M M L L L L											L		Μ		
CO4 H M M L L													Μ			
(L-Lo	L- Low, M- Moderate, H-High)															
TEX		BOC	<u>JK</u>	<u>S:</u>		IG F		1 1 1	2000							
<u> </u>		Uote	, Pai	ul,"Ra	ster G	15 Fui		ntals",	2008.	- 217	4 14		D:4£-1	la f-	• D1 -	
2.		rent Jouri	, ко nal o	of the	ы., кі Ameri	chard can Pl	E. K.	g Asso	ciatior	n.2000	. 66: 2	pping: , 189-	rmal 198.	15 101	Plan	mers",
2	\neg	Maai	ntay	, Julie	e, Johi	n Zieg	ler, "(GIS fo	or the	Urban	Envi	ronme	nt", R	edlan	ds, C	A:Esri
3.	•	Press	s, 20	06.											-	

	Peters, Alan H., Heather MacDonald, "Unlocking the Census with GIS", Redlands,												
4	^{4.} CA:EsriPress, 2004.												
	5 Schlossberg, Marc. "GIS, the US Census and Neighbourhood Scale Analysis",												
	^{5.} Planning, Practice & Research. 2003, 18(2-3): 213-217.												
RE	RENCËS:												
1.	ongley, Paul A, et al, Eds. "Geographical Information Systems and Science (2nd Ed)",												
	Hoboken,NJ: John Wiley & Sons, 2005.												
2.	Monmonier, Mark, "Drawing the Line", New York: Henry Holt and Co, 1995.												
3.	US Census Bureau, "A Compass for Understanding and Using American Community												
	Survey Data: What General Users Need to Know (Issued October 2008)", Washington,												
	DC: US CensusBureau, 2010.												
4.	Peterson, Gretchen, "Colors for Maps", 2011.												

17S	PE02	3	SE	RVI	CE O	RIE	NTEI) AR	CHI	FEC	rure	E L	T	P	С
												3	0	0	3
OB J	IEC	FIVE	S:												
	•		Lear	n XMl	L fund	ament	als								
	٠		Be fa	amilia	with	the we	b serv	ices te	chnol	ogy ele	ements	for re	alizin	g SOA	ł
	•		Unde	erstand	l the k	ey prir	nciples	behin	d SOA	4					
	٠		Be e	xposed	l to bu	ild app	olicatio	ons ba	sed on	XML	•				
	٠		Lear	n the v	various	s web s	service	e stand	ards						
UNI	ΤΙ		XM	L TE	CHN	OLO	OGY								9
XMI	L - X	ML and	l Web	- Nan	ne Spa	ices –	XML	Docur	nent S	tructu	re - St	ructuri	ng wi	th Scl	nemas
and I	DTD -	Mode	ling D	atabas	es in X	KML –	- XQu	ery.					_		
UNI	IT II		SOA	A BA	SICS										9
Servi	ice O	riented	Arch	itectur	e (SO	A) –	Comp	aring	SOA	with (Client-	Server	and	Distri	buted
archi	architectures - Characteristics of SOA – Benefits of SOA - Principles of Service orientation – Service layers - Business Process management.														
UNIT IIIWEB SERVICES9															
OINTERN WED SERVICES SOA and Web Services – Web Services Protocol Stack – Service descriptions – WSDL –													DL –		
Messaging with SOAP – Service discovery – UDDI – Service Level Interaction patterns – XML												XML			
and V	and Web Services - Enterprise Service BusNET and J2EE Interoperability.														
UNIT IVWS TECHNOLOGIES AND STANDARDS9															
Web	Web Services Technologies - JAX-RPC, JAX-WS - Web Service Standards – WS-RM, WS-														
Addr	ressing	g, WS-	Policy	- Ser	vice (Drchest	tration	and (Choree	ograph	y – Co	ompos	ition	Standa	ards –
BPE	L - Se	rvice (Driente	d Ana	lysis a	nd De	sign.	тту							0
VMI		rity O			anonia	S SE		<u>III</u> VMI (Socuri	ty Fra	mauuar	↓ V		norun	9 tion
XMI	Sign	ature –	- XKN	w – C IS Stru	anonic	- Web	Servi	ces Se	curity	- XAC	INC -	K = A WS-S	ecurit	neryp v.	uon –
11011	10181	uture	11111					<u>'''''''''''''''''''''''''''''''''''''</u>	<u>ΓΟΤ</u>	$\overline{AL:}$	45 P	PERIC	ODS	<i>.</i>	
OU	ГСО	MES	:	On	compl	etion of	of this	course	e, stud	ents w	ill be a	able to	- 10		
1	. D	esign	and d	evelop	real	work	appli	cations	s usin	g the	conce	pts of	SOA	A and	Web
	se	ervices.		_						-		-			
2	. C	ompre	hend	approa	aches	for p	rovidi	ng seo	curity	for Y	KML (docum	ents	as w	ell as
2	m	essage	s exch	anged	amon	g Web	Servi	ces.		• ,	1 1				
	. <u> </u> D []]DC]	evelop	an ap			ng .NE	rand	JZEE	enter	orise te	echnolo	ogy.			
	PO1		PO3	PO4	POS	PO6		PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO
	.01	. 02	100	104	105	100	107	100	105	0	1	2	1	2	3
CO1	Μ		Н	Μ	Н		L						Μ		Н
CO2	CO2 M H M L L														
CO3		Modara		M (ich)	L		L						Μ		H
TES	TR		<u>ме, п-п</u> S:												
1	L. R	on Sch	melze	r et al.	"XM	L and	Web 3	Servic	es". Po	earson	Educa	ation.	2008.	(Unit	1 and
	3)														
2	. T	homas	Erl,	"Servi	ce Or	iented	Arch	itectu	re: Co	ncepts	s, Tecl	hnolog	gy, ar	nd De	sign",

	Pearson Education, 2005. (Unit 2, 3, 4, and 5)												
3	B. James McGovern, Sameer Tyagi, Michael E Stevens, Sunil Mathew, "Java Web												
	Services Architecture", Elsevier, 2011.												
RE	EFERENCES:												
1.	Frank P. Coyle, "XML, Web Services and the Data Revolution", Pearson Education,												
	2002. (Unit 5)												
2.	Eric Newcomer, Greg Lomow, "Understanding SOA with Web Services", Addison Wesley,												
	2005.												
З.	Mark O' Neill, et al., "Web Services Security", Tata McGraw-Hill Edition, 2003.												
4.	Sandeep Chatterjee and James Webber, "Developing Enterprise Web Services: An												
	Architect's Guide", Prentice Hall, 2004.												

17SPE024	SOFT COMPUTING	L	Τ	Р	С								
		3	0	0	3								
OBJECTIVE	5:												
•	To give students knowledge of soft computing theories fur	ndar	nent	als,									
•	To learn the fundamentals of non-traditional technologies solving hard real-world problems.	and	app	roach	ies to								
•	To learn and apply artificial neural networks, fuzzy sets an genetic algorithms in problem solving and use of heuristic experience	nd fu s ba	ızzy sed o	logic on hu	, and Iman								
•	To introduce the ideas of fuzzy sets, fuzzy logic and to be neural networks that can learn from available examples an form appropriate rules for inferencing systems	com d ge	e far enera	nilia dize	to								
•	To familiarize with genetic algorithms and other random s useful while seeking global optimum in self-learning situa	earc tion	ch pr s.	oced	ures								
UNIT I	NEURAL NETWORKS -I				9								
Introduction and its Model - Activ Feed Forward N Convergence Ru	Architecture – Neuron - Nerve Structure and Synapse - Ar ation Functions - Neural Network Architecture - Single La etworks - Recurrent Networks - Various Learning Technique e - Auto-Associative and Hetro-Associative Memory.	rtifi ayeı ues	cial anc -Per	Neur I Mu cepti	on and ltilayer on and								
UNIT II	NEURAL NETWORKS -II				9								
Back Propagation Artificial Neural - Effect of Learn Propagation Trai	n Networks – Architecture - Perceptron Model – Solut: Network - Multilayer Perception Model - Back Propagation ing Rule Co-Efficient - Back Propagation Algorithm - Fact ning - Applications.	ion n Le tors	- Si arni Aff	ingle ng M ecting	Layer lethods g Back								
UNIT III	FUZZY LOGIC -I				9								
Basic Concepts of Properties of Fuz	f Fuzzy Logic - Fuzzy Sets and Crisp Sets -Fuzzy Set Theo zy Sets - Fuzzy and Crisp Relations - Fuzzy to Crisp Conver	ory a rsio	ind (Opera	tions -								
UNIT IV	FUZZY LOGIC -II	1010			9								
Fuzzy Members	ip Rules - Membership Functions - Interference in Fuzzy	v Lo	ogic	- Fu	zzy If-								
Then Rules - Fuz Fuzzy Controller	zy Implications and Fuzzy Algorithms - Fuzzifications and - Industrial Applications	De	fuzz	ificat	aions -								
UNIT V	GENETIC ALGORITHM				9								
Basic Concepts	- Working Principle - Procedures of GA - Flow Chart	t of	GA	- (Genetic								
Representations Generational Cvo	- Encoding - Initialization and Selection - Genetic Oper le - Applications.	rato	rs -	Mut	ation -								
	TOTAL: 45 PER	RIO	DS										
OUTCOMES	On completion of this course, students will be able	to											
1. Awake	1. Awake the importance of tolerance of imprecision and uncertainty for design of robust and low cost intelligent machines.												
2. Acquire knowledge of soft computing theories fundamentals and so they will be able to design program systems using approaches of these theories for solving various real-world problems.													
3. Try and integrate the knowledge of neural networks, fuzzy logic, genetic algorithms, probabilistic reasoning, rough sets, chaos, hybrid approaches (combinations of neural networks, fuzzy logic and genetic algorithms).													

COURSE ARTICULATION MATRIX:															
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO
										0	1	2	1	2	3
CO1		Η	Μ	Μ	L		L						Μ		Н
CO2	L	Η	Μ	Μ	L		L						Μ		Н
CO3		Η	Μ	Μ	L		L						Μ		Н
(L- Lo	w, M-	Modera	ate, H-H	ligh)											
TEX	KT B	OOK	S:												
1	1. S. Rajasekaran, G.A. Vijayalakshmi Pai, "Neural Networks, Fuzzy Logic and Genetic														
	Algorithm: Synthesis and Applications", Prentice Hall of India, 2003.														
2	2. N.P.Padhy, "Artificial Intelligence and Intelligent Systems", Oxford University Press,														
	2005.														
3	3. Timothy J. Ross, "Fuzzy Logic with Engineering Applications", Third Edition, Wiley														
	Ir	idia, 20)10.												-
REF	FER	ENCE	ES:												
1.	J.S.R	. Jang	д, С.Т	. Sun	, <i>E</i>	Mizute	ani, "	Neuro	-Fuzzy	v and	Soft	Comp	outing	", Pe	arson
	Educ	ation,	2004.												
2.	<i>S.Y.k</i>	Sung, "I	Digita	l Neur	al Net	work"	, Pren	tice H	all Inte	ernatio	onal, 1	<i>993</i> .			
3.	Aliev	R.A, A	Aliev, I	R. <i>R</i> , "	Soft C	omput	ting ar	ıd its .	Applic	ation'	', Wor	ld Sci	entific	Publi	shing
	Com	pany, 2	2001.		U	1	0						v		Ũ
4.	Wulf	ram G	erstne	r, Wer	ner K	ristler	; "Spi	iking 1	Veural	Netw	orks",	Cam	bridge	Univ	ersity
	Pres	5.					1	Ũ					5		•
5.	Bart Kosko, "Neural Networks and Fuzzy Systems: Dynamical Systems Application to														
	Maci	hine In	tellige	nce", I	Prenti	ce Hal	l, 1992	2.		·		·	11		
6.	Sima	n Hayk	kin, "N	leural	Netwo	orks",	Prenti	ce Hai	ll of In	dia, 19	999.				

17S	PE0	25			W	EB T	ECH	NOL	.OGY	ζ		L	T	P	С
												3	0	0	3
OB.	IEC	TIVE	S:												
	•		Lear	n to cr	eate w	veb pag	ges and	d web	applic	ations	using	HTMI	-		
	٠		Unde	erstand	l the n	nethod	of add	ling cl	ient si	de beł	avior	to HT	ML pa	ages us	sing
	•		Be fa	amilia	with	servlet	progr	ammi	ng						
	•		Lear	n web	devel	opmen	t using	g PHP	0						
	•		Unde appli	erstanc	l how devel	DB co	nnecti nt tools	vity is	estab	lish wi	ith vari	ious fr	ont w	nd wel)
UNI	ΤΙ		INT	ROL	DUCT	ΓΙΟΝ	TO	HTM	L						9
HTM	IL- I	List – Ta	ables -	- Imag	jes – F	Forms	– Fran	nes - (Cascad	ling St	yle sh	eets -	XML	- Doci	iment
type	defir	nition - X	XML S	Schem	as -Do	ocumei	nt Obje	ect mo	del.						
UNI	TI	[JAV	/A SC	CRIP	T									9
Java Java	Scrij Scrij	pt -Cont ot - Ajax	rol sta ĸ.	temen	ts – Fi	unction	ns – A	rrays -	- Obje	cts – I	Events	- Dyn	amic 1	HTML	with
UNI	UNIT III SERVLETS 9 Web servers US (XAMPD, LAMPD) and Tomest Servers Leve Web Technologies Servers														
Web servers – IIS (XAMPP, LAMPP) and Tomcat Servers - Java Web Technologies – S												s – Se	rvlets		
- Jav	JavaServer Pages - Java Server Faces - Web Technologies in Netbeans - Building a Web														
Appl	Application in Netbeans - JSF Components - Session Tracking - Cookies.														
UN	TT	V	PHI	P											9
PHP Logi	-B	asics -	String	Proce	essing	and R	Regular	r Expi	ression	ns - Fe	orm Pi 'bart	rocess	ing ar	nd Bus	siness
LUGI	T V	nig Coc					<u>- Ope</u>		TV		11 a 1 t.				9
Data	base	Connec	tivity	with N	IvSOI	L - Sei	vlets -	- JSP	- PHP	- Case	e Studi	es- Sti	ıdent	inform	nation
syste	m - 1	Health N	Janage	ement	Syster	m.									
								'	ТОТ	AL:	45 P	PERI	ODS		
OU.	ГС(OMES		On	compl	letion of	of this	cours	e, stud	ents w	ill be a	able to			
1	. 1	Design a	and dev	velop	client	side sc	ripting	g techr	niques	•					
2	.]	Build rea	al wor	ld app	licatio	ns usir	ng clie	nt side	e and s	erver	side sc	ripting	langı	uages.	
3	. 1	Design a	ind de	velop a	an e-G	overn	ance a	pplica	tion us	sing w	eb tecł	nolog	у.		
CO		<u>SE AR</u>	FICU					:							
	P01	P02	PO3	P04	P05	P06	P07	P08	P09	0	1	2	PSO 1	2	3
CO1	Η		М		L		Μ						М		Н
CO2		М	М		L		Μ						Μ		Н
CO3	CO3 M M L M H														
(L-Lo	ow, M	I- Modera	$\frac{1}{\mathbf{C}}$	igh)											
			Doital	Hame		Doital	A 1- 1	w Dat	4a1 60		0_ 117		Vide V	Vak II	ow 40
	·. 1	Paul J. I Program	", Dei	tel ser	ies, 5t	h editi	, Abbe on, 20	ey Dei 12.	tei, n	nterne		oria w	ide v	ved H	ow to
2	.]]	lason G	lilmor	e,"Beg	ginning	g PHF	o and	MyS	QL F	rom 1	Novice	to P	rofess	sional'	', 4th
DDT		dition,	Apres	s Publ	icatio	ns, 201	0.								
KE	ER	ENCE	S:												

1.	Robert W. Sebesta, "Programming with World Wide Web", Pearson, 4th edition, 2008.
2.	David William Barron, "The World of Scripting Languages", Wiley Publications, 2000.

17SPE026		COMPUTER GRAPHICS AND	L	Τ	P	С						
			3	0	0	3						
OBJECTIVES	S:		•	•								
•	ToUnd	lerstand the basic 2D and 3D Graphics viewing pi	pelii	ne th	at in	cludes,						
	Model	ing, manipulation and rendering along with adv	ance	ed C	hraphi	ics for						
	visual	realism										
•	To Lea	arn the various shanding models and Visible Surfac	e De	etecti	on m	ethods						
•	To be	introduced to OpenGL programming										
•	To Un	derstand basic elements of multimedia and to learn	the	theor	ry bel	nind						
	data co	Ompression										
•	To get	hands on different Multimedia Applications										
UNIT I	INTF	RODUCTION TO GRAPHICS				9						
2G:Coordinate S	ystems	- Graphics Apis and Hardware - Display Tec	hnol	ogie	s –	Output						
Primitives – Line	, Circle	- Attributes of Output Primitives – 2D Geometric	Fran	sfori	natio	ns -2D						
Viewing – Line, Polygon Clipping Algorithms. 3D Modeling and Viewing:3D Object representations – Polygonal Mesh Modeling – Bezier												
3D Modeling and Viewing:3D Object representations – Polygonal Mesh Modeling – Bezier Curves and B-Splines - Transformations –3D Viewing.												
UNIT II	ANIN	MATION				9						
UNIT II ANIMATION Rendering: Color Models - Rendering - Shading Models - Flat shading and Smooth S												
Visible Surface D	Detectior	n - Adding Textures and Shadows. Ray Tracing, Vo	lum	e Re	nderi	ng						
Fractals and Anir	mation:	Fractals and Self Similarity – Peano Curves – Ma	ndell	brot	Sets	– Julia						
Sets – Random	Fractals	, Data Structures for Graphics - Graphics File I	Form	ats,	Anir	nation,						
Virtual Reality.	ODE					0						
Craphics program		NGL with OpenCL: Drewing 3D Seenes – Removel of H	idda	n Fa	000	9 Using						
Shading Models	- Colors	And Light - Adding Texture and Shadows - Ann	luue	лга га Б	lees - Pay T	bally balls						
Understanding 3I	D Model	ling and Animation Tools like 3D Studio Max – Ma	iva -	Blei	nder.	iucei						
UNIT IV	MUL	TIMEDIA				9						
Basic Elements:C	Creation	- Editing - Design - Usage - Tools and Hardwar	e –]	File	Form	ats for						
Text, Image / Gra	aphics, A	Audio, Video, Animation - Color Models - Multim	edia	Dat	a Stru	ıctures						
- KD Trees – R T	rees.	Compression DLE Uniffman Arithmetic	Dia	tion	D	lacad						
Image Compressio	$\sin - IP$	EG IPEG 2000 IPEG - IS Audio Compression	- P($^{\rm M}$		PCM -						
LPC. MPEG Aud	lio. Vide	2000, 3120, 2000, 3120 $200, 7420$ $200, 7420$ $2000, 740$ $2000, 7400$ $2000, 7$	1									
UNIT V	ÁPPI	LICATIONS				9						
Multimedia App	Multimedia Applications: Multimedia Databases - Content Based Information Retrieval -											
Multimedia Com	municat	ions - Multimedia Information Sharing and Retrie	val -	- Ap	plica	tions –						
Social Media Sha	aring - (Online Social Networking - Virtual Reality - Mul	time	dia	for P	ortable						
Devices - Collabo	orative N	Aultimedia Applications.										
		TOTAL : 45 PEI		DS								
OUTCOMES	OUTCOMES: On completion of this course, students will be able to											
1. Devise,	solve, d	emonstrate 2D applications of computer graphics a	nd d	levis	e, sol	ve and						
demonst	rate 3D	modeling, transformations and projections.										

2	2. <i>I</i>	Appreciate advanced 3D Graphics that leads to visual realism and perceive knowledge on fractal theory, color models, Animation.													
	2 1	on fracta	ii theo	$\frac{1}{1}$	Or IIIO	Leis, P	drowi	.1011.	ia 2D	aanaa	anda	dd raa	liam		
	5. 1	$\frac{10}{0}$ progr		ng m v	olomo	$\frac{JL}{ntc} \frac{101}{c}$	f mult	ing Das	o and	to 10	anu a	$\frac{1}{100}$ the	IISIII.	ohind	data
	+. r	ompres	sion b	oth los	sless a	and los	ssv.	inneur	a allu		calli u	ne me	bory t	ennu	uata
4	5. I	mpleme	ent mu	ltimed	lia app	licatio	ons.								
CO	URS	E AR	TICU	JLAT	TON	MA	FRIX	:							
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO
		_								0	1	2	1	2	3
CO1		Μ		Н	Μ		L						Н		Μ
CO2	L		M	Н	Μ		L						Н		Μ
CO3	L		Μ	Н	Μ		L						Н		Μ
CO4	L		Μ	Н	Μ		L						Н		Μ
CO5		Μ		Н	Μ		L						Н		Μ
(L-Lo	(L- Low, M- Moderate, H-High)														
TEXT BOOKS:															
1.		Donald DpenGL	D. He .", Fot	earn, 1 Irth Ed	M. Pa lition,	uline Pearso	Baker on / Pr	, War entice	ren C Hall, 2	arithei 2010.	:s, "C	omput	er Gra	aphics	with
2.	H	Francis	S Hill	l, Jr.,	Steph	en M	Kelle	y,"Coi	mpute	r Graț	ohics	Using	Open	GL", ′	Third
3	1	$\frac{2}{2}$ Ni	n Li	Mark	$\frac{1}{S}$ Dro	/. w lia	nachu	an Liu	· "Fm	ndame	ntale (of Mu	ltimed	ia" Se	cond
5.	F	Edition	Spring	$rac{1}{2}$	14	w, 51a	ingeniu		, iu	luame	intais (Ji wiu	umeu	ia , 50	conu
REI	TER	ENCE	CS•	501, 20	1 1.										
1.	Pete	r Shirle	ey, "Fi	ındam	entals	of Con	mpute	r Grap	hics",	Third	l Editio	on, A K	K Peter	rs, 200	9.
2.	Shai	ini Gov	vil Pai.	"Prir	iciples	of Co	mpute	er Gra	phics '	Theor	v and	Practie	ce Usi	ng Ope	enGL
	and	Mava"	, Sprin	ger. 2	004.	-j 20	-r	<u> </u>		,				0 - P	
3.	Pare	ag Have	aldar d	and G	erard .	Medio	ni, "N	Iultim	edia S	ystems	s - Alg	orithn	ıs, Sta	ndard	s and
	Indi	stry Pr	actices	s", Co	urse T	echno	logy, (Cengag	ge Lea	rning,	2010.				
4.	Nige	el Chap	man ai	nd Jen	ny Ch	apman	ı, "Dig	gital M	lultime	edia",	Third	Editio	n, Wil	ey, 200)9.
5.	Ralf	Steinn	netz a	nd Kl	lara N	Vahrst	edt, "	Multir	nedia	Com	outing,	Com	munic	ations	and
	App	lication	s", Fi	rst Edi	tion, F	Pearso	n 2003	5.		1	0,				
6.	wwv	v.webst	yleguid	le.com	ı										

OPEN ELECTIVES

CSE:

17S	OE0	01			PRO	GRA	MM	ING	IN C	++		L	Τ	P	С
												3	0	0	3
OBJ	IEC	FIVE	S:												
	٠		To g	et intro	oduced	l to ba	cis of	C++ p	rograr	nming					
	٠		To b	e fami	liar wi	th OO	PS co	ncepts							
	٠		To u	nderst	and the	e conc	ept of	Inheri	tance	and its	types				
	٠		To u	nderst	and the	e conc	ept of	Polym	orphi	sm					
	٠		To b	e fami	liar wi	th tem	plates	and fi	le han	dling	concep	ots			
UNI	TI		BAS	SIC C	C++ P	ROC	GRAN	MMI	NG						9
C++	Prog	rammi	ng fea	atures	–Data	ı type	s, Va	riables	and	Array	vs – C	Operate	ors -	Point	ers –
Refe	rences	s – Fun	ctions	- Strin	ng Har	dling.									
UNI	TI		00	PS C	ONC	EPTS	S								9
Data	Abst	raction	- Enca	apsula	tion - (Class -	Obje	ct - Co	onstru	ctors -	Destru	ictors	- Stat	ic Me	mbers
-C0	nstan	t Mem	bers –	Mem	ber Fi	inctioi	ns - F	riend	Functi	ons- F	sole of	this p	pointe	r - St	orage
	UNIT IIIINHERITANCE9														
Inher	Inheritance – Types of Inheritance – public, protected and private inheritance – Method														
Over	Overriding – Abstract and Concrete Class – Virtual Class - Virtual Functions - Dynamic														
Mem	Overriding – Abstract and Concrete Class – Virtual Class - Virtual Functions - Dynamic Memory Allocation - Nested Classes.														
UNI	TI	7	POI	LYM	ORP	HISN	/[9
Polyı	norpl	nism –	Com	pile T	'ime a	ind Ru	ın Tiı	ne Po	lymor	phism	s – F	unctio	n Ov	erload	ing –
Oper	ators	Overlo	ading	– Dyn	amic I	Bindin	g - Ex	ceptio	n Han	dling.					
UNI	TV		AD	VAN	CED	OOP	S FE	ATU	RES						9
Stand	lard I	Librarie	es - Ge	neric l	Progra	mming	g - Tei	mplate	s – Cl	ass Te	mplate	e - Fun	ction	Temp	late –
neral	ors –	Functi	on Ad	aptors	– Allo	ocators	- File	Hand	nng co		5. <u>45</u> D		אסר		
	ГСО	MFS	•	On	compl	etion (of this	COUISE	stud	AL: ents w	HJ I ill be a	ble to	505		
	<u>гсо</u> н	ave the	• • knou	vledge		the co	ncents	course of oh	$\frac{1}{1}$	iented	nrogr	ammin	o lan	0119.00	
2	. K	now th	e vari	ous co	ncepts	relate	d to in	herita	nce an	d poly	morph	ism.		<u>suage</u>	
3	. D	escribe	e abou	t the co	oncept	s of te	mplate	es and	error	handli	ng.				
CO	URS	E AR	TICU	JLAT	ION	MA	ΓRIX	:							
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO 1	PSO	PSO 2
CO1	L		Н	Μ	Н		М				-	-	H	-	L
CO2		L	Н	Μ	Н		Μ						Н		М
CO3		L	Η	Μ	Н		Μ						Η		L
(L-Lo	ow, M-	Modera	te, H-H	ligh)											
TEX	CT B	<u>OOK</u>	<u>S:</u>					• •			1 1'			D 1	
	$\begin{bmatrix} I \\ I \end{bmatrix} \begin{bmatrix} I \\ 2 \end{bmatrix}$	jarne S 007.	stroust	rup, "	the C-	⊦+ Pro	gramr	nıng L	angua	ge'', 3	rd edit	ion, Pe	earsor	l Educ	ation,
2	2. K	RV	enugoj	pal, R	ajkum	ar Bu	yya, '	"Maste	ering	C++",	2nd	Editio	n, M	cGraw	/ Hill

	Education, 2013.	
RE	FERENCES:	
1.	Ira Pohl, "Object O 1997.	priented Programming using $C++$ ", 2nd edition, Pearson Education,
2.	Herbert Schildt, "C- 2003.	++: The Complete Reference", 4th Edition, McGraw Hill Education,

17S	17SOE002 JAVA PROGRAMMING L T P C 3 0 0 3														
												3	0	0	3
OB	JE(CTIVE	ES												
			To g	et intr	oduced	d to fu	ndame	entals of	of java	progr	ammiı	ng			
	•		To b	e fami	liar w	ith con	cepts	of clas	sses an	d obje	cts in	java			
	•	•	To u	nderst	and ho	ow info	ormati	on hid	ing an	d reus	ability	is imp	leme	nted in	n java
	•	•	To u	nderst	and th	e conc	ept of	excep	tion, c	oncur	rency a	and str	eams		
			To b	e fami	liar w	ith gra	phical	progr	ammir	ng usin	ig app	lets			
UN	[T]		FU	NDA	MEN	TAL	S OF	JAV	A						7
Java rules & A for Ja	Buz Au ssoc ava	zwords tomatic iativity Prograr	- Over Type (– Exp ns.	view o Conver ressior	of Java rsion- 1- Con	- Data Type trol S	types Castin tateme	s, Vari g and ents- C	ables Array: Compa	and A s- Ope rison o	rrays - erators of C+-	- Simp - Oper + and .	le typ ators Iava-	es- So Prece Entry	coping dence point
UN	UNIT II CLASSES AND OBJECTS 11 Introducing Classes - Class fundamentals- Declaring objects- Assigning object reference														11
varia Cons final objec class	variable- Methods & Method Signatures- Method retuning Values- Method with parameters – Constructors- Default Constructor Parameterized constructor- this keyword- Garbage Collector- finalize() method- Overloading methods and constructors- Using object as parameters- returning object in methods – recursion- Access control- static and final keyword- Nested and Inner classes- Command Line argument- String and String Buffer class.														
UN	[T]	Π	INF	ORN	/IAT]	ION I	HIDI	NG A	ND]	REUS	SABI	LITY	r		9
Inher dispa Path Inher	ritan atch Env ritan	ce - Abstrac vironme ce in Ja	Dasics- et classent Var out Var	Using - Using iables- tending	g supe g final Packa g inter	r- Met with i age lev face-V	thod (nherit vel aco Wrapp	Overrie ance - cess- 1 er clas	ding- Packa mport ss.	Consti ges - I ing Pa	uctor Defaul Ickage	call- 1 t Packa s – Int	Jynai ige- F erfac	mic m Path & e - M	ethod Class ultiple
UN	[T]	V	EX	CEP	ΓΙΟΝ	(, CO	NCU	RRE	NCY	NAI) STI	REAN	/IS		9
Exce input Thre Deac	eptio t- Re ad c llocl	n Hand eading (class & c.	lling m console c Runn	echani input able I	sm -] & Wr nterfac	I/O Ba iting c ce- Int	isics - onsole ter Th	Byte e outpu nread	stream 1t- Rea Comm	n & C ading a aunicat	haracte and W tion- S	er Stre riting f Synchr	am- (ïles- ' onize	Gettin Threa d key	g user ding – word-
UN	[T]	V	GR	APH	ICAI	_ PR(DGR	AMN	IING	r					9
Appl Even user	Applet Basics – methods – creation - designing and examples - Event handling- event classes - Event listener interfaces - AWT classes - working with frames - AWT controls-layout manager - user interface components –Swings – JDBC Connectivity – Introduction to JavaFX. TOTAL : 45 PERIODS														
1	•	Differe	ntiate b	etwee	n Java	and of	ther O	OPs la	inguag	ges.					
2	2.	Develo	p progr	ams u	sing cl	asses a	and ob	jects.							
3	5.	Implen	nent mu	lti thre	eading	•									
4		Design	a page	using	applet			7							
									POQ	PO1	PO1	PO1	pso	Deu	ρςο
			.03				,	100		0	1	2	1	2	3
CO1	L		H		M	M							H		M
CO2	L		H		Μ	Μ							Н		Μ

CO3		Н		Μ	Μ		L					Н		Μ	
CO4		Н		М	Μ		L					Н		М	
(L- Lo	ow, M-	Moderate, H-H	igh)												
TEX	KT B	OOKS:													
]	1. Patric Naughton & Herbert Schildt, "The Complete Reference Java 2", Tata Mcgraw														
	Hill, New Delhi, 2001, 4th Edition.														
2	2. Bruce Eckel, "Thinking in Java", Pearson Eduction Asia, 2000, 2nd Edition.														
REI	FERF	ENCES:													
1.	Deite	l & Deitel, "	Java I	How to	Prog	ram",	Prent	ice Ha	ll, 200	2, 5th	Editio	n.			
2.	Ken Arnold & James Gosling, "The Java Programming Language", 2000, AWL.														
3.	3. Peter Haggar, "Practical Java: Programming Language Guide", Addison Wesley Pub Co.												b Co.		
	2000. 1st Edition.														

17S	OE0	03		I	PYTH	ION	PRO	GRA	MMI	ING		Ι	L T	P	С
													3 0	0	3
OB	JECT	FIVE	S:												
	•		To U	Inders	tand th	ne basi	c of P	ython	Progra	mmin	g				
	٠		To L	earn a	bout s	tring i	n Pyth	on							
	•		To b	e intro	duced	to Cla	asses in	n pyth	on						
	•		ToU	Inders	tand b	asic co	oncept	s on fi	es.						
	•		To g	et han	ds on 2	XML a	and sea	rializa	tion						
UNI	ΤΙ		INT	ROI	DUCT	TION	ΤΟ	PYTI	HON						9
Func	tion I	Declara	tion -	Impo	rt - O	bjects	- Inde	enting	as Re	quirer	nent -	Exce	ptions	- Un	oound
Varia	ables -	Case	Sensit	ive - S	cripts	- Nati	ve Da	ta Typ	es - B	oolear	ıs - Nu	mber	s - Lis	ts - Tu	ples -
Sets	- Dict	ionarie	es - Co	mpreh	nension	ns - Li	st Cor	nprehe	ensions	s - Dic	tionar	y Con	nprehe	ensions	s - Set
Com	prehe	nsions.													
UN	UNIT II STRING 9 Strings - Unicode - Formatting - String Methods - Bytes - Encoding - Regular Expressions - 9														
Strin Vorb	Strings - Unicode - Formatting - String Methods - Bytes - Encoding - Regular Expressions - Verbose - Case Studies.														
verb	Verbose - Case Studies. UNIT III CLASSES 9														
	UNIT III CLASSES 9 Closures - List of Functions - List of Patterns - File of Patterns - Generators - Defining Classes -														
UIOS	Closures - List of Functions - List of Patterns - File of Patterns - Generators - Defining Classes -														
UN	Instantiating Classes - Instance Variables - Iterators – Itertools - Assert - Generator Expressions.														
Read	ling a	nd Wri	iting T	ext Fi	iles - 1	Rinary	Files	- Stre	am O	hiects	- Star	dard	Innut	Outru	ut and
Erro	nng a		iting 1			Dinary	1 1103	- Suc		ojects	- Stan	luaru	mput,	Outpt	n and
UN	TV		XM	LAN	ND SI	ERIA	LIZA	ATIO	N						9
XMI	At	om Fe	ed - F	Parsing	g HTN	1L - S	earchi	ng for	Node	es - ht	ml - C	Genera	ation -	Seria	lizing
Obje	cts - F	Pickle H	Files -	Versio	ons - D	ebugg	ging - S	Seriali	zing to	JSON	٧.				
								'	ГОТ	AL:	45 F	PERI	ODS		
OU	ГСО	MES	•	On	compl	etion	of this	cours	e, stud	ents w	ill be	able to)		
1	. U	ndersta	and the	e conc	epts of	f objec	t orier	nted pr	ogram	ming.					
2	. U	se gen	erators	s and i	terator	s.									
3	. D	evelop	test c	ases ai	nd han	dle ref	actori	ng.							
4		se obje	TICI	progra	am ove	er the v	web.	-							
	UKS					IVIA.			Þ۵۵		PO1	P O1	D SU	D SU	DSU)
	FOI	F02	FUS	F04	FUJ	FOU	107	FUO	103	0	1	2	1	2	3
CO1	L		М		Η	М	М						Μ		Н
CO2	L		М		Н	Μ	L						Μ		Н
CO3		L	Μ	Μ	Η	Μ							Μ		Н
CO4		L	M	M	Н	Μ							Μ		Н
(L-Lo	ow, M- z r p		ite, H-H	ligh)											
162		UUK	J.J.	"Dirro	into T	author	3" 1	nroad	2000						
-	$1 \cdot 1 \vee 1$	ohn	v c	hittag	"Into P	troduct	$\frac{J}{100}$	$\frac{10000}{10}$	2009.	tation	and	Pro	oramn	ning	using
4		ython"	Prenti	ice Ha	ll of Ir	ndia. 2	014.	C	Jinpu		and	110	5-4111		45111 <u>5</u>
REI	FERI	ENCE	ES:												

1.	Mark Lutz, "Learning Python: Powerful Object-Oriented Programming", Fifth Edition,
	O'Reilly, Shroff Publishers and Distributors, 2013.
2.	Allen Downey, Jeffrey Elkner, Chris Meyers, "How to Think Like a Computer Scientist -
	Learning with Python", Green Tea Press, 2002.

17SOE004	WEB DESIGNING	L	Τ	Ρ	С								
		3	0	0	3								
OBJECTIVE	S:												
•	To Learn about basics of websites and get introduced to H WEB 2.0	TM	L 5,	CSS	3,								
•	To understand client side programming using java script												
•	To Learn about java servlets and DB connectivity												
•	To Learn web development using PHP and XML												
•	To Get Introduced to AJAX and web services												
UNIT I	WEBSITES BASICS, HTML 5, CSS 3, WEB 2	2.0			9								
Web 2.0: Basics	s-RIA Rich Internet Applications – Collaborations tool	s –	Un	derst	anding								
websites and we	b servers: Understanding Internet – Difference between	we	bsite	es an	d web								
server- Internet	technologies Overview –Understanding the difference be	etwe	en i	ntern	et and								
intranet.													
HTML and CSS:	HTML 5.0, XHTML, CSS 3.												
UNIT II CLIENT SIDE PROGRAMMING 9 Java Script: An introduction to JavaScript JavaScript DOM Model Date and Objects Decular													
Java Script: An i	ntroduction to JavaScript–JavaScript DOM Model-Date a	nd (Obied	ctsR	egular								
Expressions- Exception Handling-Validation-Built-in objects-Event Handling- DHTML with													
JavaScript.													
VB Script: VB Script programming – Forms – Scripting Object.													
UNIT III	SERVLETS AND JSP				9								
Servlets: Java Se	rylet Architecture- Servlet Life Cycle- Form GET and PO	ST :	actio	ns- S	ession								
Handling- Unde	erstanding Cookies-Installing and Configuring Apac	he	То	ncat	Web								
Server.Database	Connectivity: JDBC perspectives, JDBC program example.												
JSP: Understandi	ng Java Server Pages-JSP Standard Tag Library(JSTL)-Cro	eatir	ng H	TML	forms								
by embedding JS	P code.		0										
UNIT IV	PHP AND XML				9								
An introduction	to PHP: PHP- Using PHP- Variables- Program control-	Bu	ilt-ir	n fun	ctions-								
Connecting to Da	tabase – Using Cookies-Regular Expressions.												
XML: Basic XN	IL- Document Type Definition- XML Schema DOM an	d Pi	reser	nting	XML,								
XML Parsers and	Validation, XSL and XSLT Transformation, News Feed (F	RSS	and	ATO	M).								
UNIT V	INTRODUCTION TO AJAX AND WEB				9								
	SERVICES				-								
AIAX · Aiax Clie	nt Server Architecture-XMI Http Request Object-Call Back	k Me	etho	le									
Web Services I	ntroduction- Java web services Basics – Creating Publi	ishir	ng [us. Festin	o and								
Describing a We	h services (WSDI)-Consuming a web service Database	Drix	ien v	veh s	ervice								
from an application –SOAP – Introduction to modern tools / framework – AngloIS – Jauery													
	TOTAL: 45 PERIODS												
OUTCOMES	On completion of this course students will be able	to	DD										
	basic website using HTML and Cascading Style Sheets	10											
1. Cleate a	basic website using III will and Cascading Style Sheets.	C	• • •	1. 1 4									
2. Design a VB Scri	pt objects and by applying different event handling mechani	aScr isms	ipt o	oject	s and								
3. Design r	ich client presentation using AJAX.												
4. Design a	and implement simple web page in PHP, and to present data	in Y	KML	form	nat.								
5. Design a	and implement server side programs using Servlets and JSP.												

COURSE ARTICULATION MATRIX:															
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO
										0	1	2	1	2	3
CO1	М	Н		L	М		Μ						Μ		Η
CO2	М	Н		L	М		Μ						Μ		Н
CO3	М	Н		L	Μ		Μ							L	Н
CO4		Н		L		Μ								L	Н
CO5		Н		L		Μ								L	Н
(L- Lo	Low, M- Moderate, H-High)														
TEX	TEXT BOOKS:														
1	1. Deitel and Deitel, Nieto, "Internet and World Wide Web – How to Program", Prentice														
	Hall, 5 th Edition, 2011.														
2	2. Herbert Schildt, "Java-The Complete Reference", Eighth Edition, Mc Graw Hill														
	2. Reform Schnut, Java-The Complete Reference, Eighth Edition, MC Graw Hill Professional, 2011.														
REF	FERF	ENCE	ZS:												
1.	Steph	en Wy	nkoop,	John	Burke	"Runn	iing a	Perfec	et Web	site",	QUE,	2 nd Ea	lition, I	1999.	
2.	Chris	Bates	s, "We	eb Pro	gram	ning -	- Buile	ding I	ntrane	t App	licatio	ns", 3	rd Edi	ition,	Wiley
	Publi	cation	s, 2009	9.	0	U		U							2
3.	Jeffre	у <i>С</i> , .	Jackso	n, "N	Veb Te	echnol	ogies-	A (Сотри	ter Sc	cience	Persp	ective	", Pea	arson
	Educe	ation, 2	2011.	,			0		1			1			
4.	Paul	Dietel,	Harv	ey Dei	tel, "J	ava H	ow to	Progra	am", 8	th Edi	tion P	rentice	Hall	of Indi	a.
5.	5. Gopalan N.P., Akilandeswari J., "Web Technology", Prentice Hall of India, 2011.														
6.	6. Mahesh P. Matha, "Core Java A Comprehensive Study", Prentice Hall of India, 2011.														
7.	Uttan	ı K.Ro	y, "W	eb Tec	hnolog	gies",	Oxfor	d Univ	versity	Press,	2011				
17S	OE00	5			AND	ROII	DAP	PLIC	CATI	ON		L	Τ	P	С
----------------------------	--	-----------------	---	--	-------------	----------------	---------------------------------	-----------	---------	---------	----------	----------------	--------	---------	---------------
				•	DEV	ELO	PME	NT							
												3	0	0	3
OBJ	IECT	IVE	S:											1 1	
	•		Unde	Understand how to work with various mobile application development											
			fram	frameworks.											
•		Lear	Learn how UI for mobile application development is done for Android												
	٠		Knov	w the t	ools u	sed in	andro	id app	licatio	n deve	elopme	ent			
	•		Lear mobi	n the b ile app	basic a	nd imp ons.	portan	t desig	n conc	cepts a	nd issu	ues of	devel	opme	nt of
	٠		Unde	erstanc	l the p	rocess	of and	droid a	pplica	tion d	evelop	ment			
UNI	ΤI		INT	ROL	DUCI	TION									9
Mobi	ile Ap	plicati	ons –	Chara	cterist	ics an	d Ben	efits –	Fram	ework	s and	Tools	– Int	roduct	ion to
Java	– Clas	sses a	nd Ob	jects -	– Inhe	eritance	e – Pa	ackage	s and	Interf	aces –	String	gs –	I/O –	Event
hand	ling.		TTOT												
UNI				<u>CR IN</u>	<u>NTER</u>		$\frac{\mathbf{E}}{\mathbf{E}}$	N. 1.1	. 1	1 1 1 1		• •		• 1	<u>9</u>
Gene	ric U	1 Dev	elopm	ent –	Mult	1moda	l and		ichann		– De	esignin Sor	g th	e righ	t UI-
	uucuo		IVIL –	AWL	Dasics	– Au	ributes	s – DI	D - A	IVIL SO	Inema	- 500	en E	lemen	ts and
Layo	T III		ТО												0
Goog	le An	droid	Platfo	orm _	Andr	oid A	nnlicat	tion A	rchite	cture -	_ And	roid S	tudic	- A	ndroid
Widg	gets an	d Mer	us - E	Event h	andlir	$\log - Pa$	ackagi	ng and	l Deple	ovmen	t - Ap	ple iPł	one]	Platfoi	m.
UNIT IV APPLICATION DESIGN					9										
Mem	ory M	Ianage	ment - Design patterns for limited memory - Work flow for							for	Appli	cation			
Deve	lopme	nt – 7	Techni	ques f	or cor	nposin	ng App	plication	ons –	Intents	s and S	Service	es - 1	Fragm	ents –
Grap	hics –	Anim	ation.												
UNI	TV		APPLICATION DEVELOPMENT								9				
Stori	ng and	d Ret	rieving	g data	– Co	ommu	nicatic	n via	the V	Neb -	- Noti	ficatio	n an	d Ala	rms –
Telep	bhony Intive I	– Loc Discin	ation	based	servic	es - A	Apps v	with F	irebas	e Real	Time	Datat	ase -	- Proj	ect on
Tespe		Jiscip	iiiie.					,	тот	ΔΤ •	15 D	FDI	סת		
OU	FCO	MES	•	On	compl	etion	of this	course	stud	ents w	ill be s	able to	508		
		vico a	• and im	nlama	nt the		or uns	eours	mobil	a annli	cation				
$\frac{1}{2}$	De	sign a	the mo	pienie phile a	applics	ations	that a	re awa	are of	the re	sourc	e cons	traint	s of r	nobile
	de	vices.	une mo		ppnet	uons	that a	.10 um	ure 01	the r	500010	e com	uuiii	.5 01 1	noone
3	. De	evelop	advan	nced m	obile	applic	ations	that ac	ccess t	he data	abases	and th	e we	b.	
4	4. Develop useful mobile applications in the current scenario using Google Android Studio.														
CO	COURSE ARTICULATION MATRIX:														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO
CO1		М		Ч	м		T			U	1	2	1 М	2	<u>វ</u> ប
CO2		M	М	H	M		L						M		H
CO3		M	M	H	M		L						M		H
CO4		M		H	M		L						M		H
(L- Lo	w. M- 1	_ Modera	te. H-H	igh)	I	I	<u> </u>	1	I	i	I	1		_I	

TE	ХT	BOOKS:	
	1.	Jeff Friesen, "Le	arn Java for Android Development: Java 8 and Android", 5th Edition
		Paperback - 201	4.
	2.	Share Conder, L	auren Darcey, "Android Wireless Application Development" Pearson 3
		rd Edition.	
RE	FE	RENCES:	
1.	Zi	gurd Mednieks, L	aird Dornin, G, Blake Meike and Masumi Nakamura, "Programming
	An	ndroid", O"Reilly	, 2011.
2.	Je	ff Mcherter, S	cott Gowell, "Professional mobile Application Development",
	ра	perback,2012, Wi	iley India Private Limited.
3.	Re	eto Meier, Wrox W	Viley, "Professional Android 2 Application Development", 2010.
4.	Al	asdair Allan, ''iP	hone Programming", O"Reilly, 2010.
5.	W	ei-Meng Lee, "B	eginning iPhone SDK Programming with Objective-C", Wrox Wiley,
	20	10.	
6.	5. Stefan Poslad, "Ubiquitous Computing: Smart Devices, Environments and interactions		
	W	iley, 2009.	
7.	Be	ear Cachil, "iOS i	n Practise", Paperback, 2012.
8.	M	arkus Jakobsson,	"Mobile Authentication: Problems and Solutions", (SpringerBriefs in
	Ca	omputer Science),	Paperback, 2012.
9.	Pα	ula Beer, Carl S	immons, "Android App Development for Young Adults & The Rest of
	U_{\star}	S", Paperback, 20)15.
10.	Lu	c Bros., "Oracle	Mobile Application Framework Developer Guide: Build Multiplatform
	Er	terprise Mobile A	Ipps", Paperback, 2014.
11.	He	erbert Schildt, ".	<i>Java: The Complete Reference", Ninth Edition –The McGraw-Hill,</i>
	20	14.	
12.	He	eather Williamson	, "XML: The Complete Reference", The McGraw-Hill, 2001.
<i>13</i> .	Ti	m Duckett, Apre	ess, "Pro iOS Table VIews: for iPhone, iPad and IPod Touch",
	Pc	perback,2012.	
14.	Jo	e COnway, Aaro	n Hilegass, Christian Keur, "iOS Programming: The Big Nerd Ranch
	Gı	uide", Paperback,	2014.

ECE

17LOE001		REAL TIME SYSTEMS	L	Т	Р	С	
			3	0	0	3	
OBJECTIVES:							
٠	То ех	spose the students to the fundamentals of Real Time systems					
• To teach the fundamentals of Scheduling and features of programming Languag						8	
٠	To st	udy the data management system for real time					
٠	To in	troduce the fundamentals of real time communication					
٠	To te	ach the different algorithms and techniques used for real time s	yster	ns			
UNIT I	[INTRODUCTION			Ş	9	
Introduction – Issues in Real Time Computing – Structure of a Real Time System – Ta classes – Task Assignment and Scheduling – Task assignment – Mode changes and Fa Tolerant Scheduling.				ask ault			
UNIT I	Ι	PROGRAMMING LANGUAGES AND TOOLS					
Programming Languages and Tools – Desired language characteristics – Data typic Control structures – Multitasking – Low level programming – Task Scheduling – Tim Specifications – Programming Environments – Run – time support.			yping Tim	g — iing			
UNIT I	II	REAL TIME DATABASES			ļ	9	
Real tim Memory Disk Scl Real Tim	Real time Databases – Basic Definition, Real time Vs General Purpose Databases, Main Memory Databases, Transaction priorities, Transaction Aborts, Concurrency control issues, Disk Scheduling Algorithms, Maintaining Serialization Consistency – Databases for Hard Real Time Systems.				lain ues, ard		
UNIT I	V	FAULT TOLERANCE AND RELIABILTY			9	9	
Real – T Fault Err handling	Real – Time Communication – Fault Tolerance Techniques – Fault Types – Fault Detection. Fault Error containment Redundancy – Data Diversity – Reversal Checks – Integrated Failure handling.						
UNIT V EVALUATION TECHNIQUES			9	9			
Reliabili Hardwar – Tolera Hardwar	Reliability Evaluation Techniques – Obtaining parameter values, Reliability models for Hardware Redundancy – Software error models. Clock Synchronization – Clock, A Nonfault - Tolerant Synchronization Algorithm – Impact of faults – Fault Tolerant Synchronization in Hardware – Fault Tolerant Synchronization in software.						
	TOTAL : 45 PERIODS						

OUTO	COMES		
1.	Understand the	basics of	the real time systems.
2.	Analyse the pro-	ogrammin	g languages and tools.
3.	Remember the	real time	database.
4.	Evaluate real tir	ne comm	unication between devices
5.	Evaluate differe	ent fault to	plerant techniques.
ТЕХТ	BOOKS:		
1.	C.M. Krishna, K Editions, 1997.	Kang G. S	hin, "Real – Time Systems", McGraw – Hill International
2.	Rajib Mall, "Re	al-time sy	stems: theory and practice", Pearson Education, 2007
3.	Peter D.Lawrend McGraw Hill, 19	ce, "Real 988.	Time Micro Computer System Design – An Introduction",
REFE	RENCES:		
1.	Stuart Bennett, India, 1998.	"Real Tim	ne Computer Control – An Introduction", Prentice Hall of
2.	S.T. Allworth an	d R.N.Zol	bel, "Introduction to real time software design", Macmillan,
3.	2nd Edition, 198 R.J.A Buhur, D. International, 19	87. L Bailey, 999.	"An Introduction to Real – Time Systems", Prentice – Hall
4.	Philip.A.Laplan 3rd Edition, Apr	te, "Real ril 2004	Time System Design and Analysis", Prentice Hall of India,

L	Т	Р	С
3	0	0	3

OBJECTIVES:

•	Understand the overview of sensor networks.			
•	Learn the different types of sensor networks architecture.			
•	Be familiar with networking sensors			
•	Be exposing to the infrastructure establishment in sensor networks.			
•	• Learn the platforms and tools of wireless sensor networks.			

UNIT I OVERVIEW OF WIRELESS SENSOR NETWORKS

9

9

Challenges for Wireless Sensor Networks, Enabling Technologies For Wireless Sensor Networks.

UNIT II ARCHITECTURES

Single-Node Architecture - Hardware Components, Energy Consumption of Sensor Nodes, Operating Systems and Execution Environments, Network Architecture - Sensor Network Scenarios, Optimization Goals and Figures of Merit, Gateway Concepts.

UNIT III NETWORKING SENSORS

9

Physical Layer and Transceiver Design Considerations, MAC Protocols for Wireless Sensor Networks- S-MAC, The Mediation Device Protocol, Wakeup Radio Concepts, Address and Name Management, Assignment of MAC Addresses, Routing Protocols- Energy-Efficient Routing, Geographic Routing.

UNIT IV INFRASTRUCTURE ESTABLISHMENT

9

9

Topology Control, Clustering, Time Synchronization, Localization and Positioning, Sensor Tasking and Control.

UNIT V SENSOR NETWORK PLATFORMS AND TOOLS

Sensor Node Hardware – Berkeley Motes, Programming Challenges, Node-level software platforms, Node-level Simulators, State-centric programming.

TOTAL : 45 PERIODS

OUTCOMES:

•	Understand the concepts of wireless sensor networks
•	Analyze the architecture of sensor networks
•	Understand the protocols for wireless sensor networks with respect to some protocol design issues

•	Analyse the infrastructure establishment in Sensor networks.		
•	Analyze the sensor network platforms and tools.		
TEXT BOOKS:			
1.	Holger Karl & Andreas Willig, "Protocols And Architectures for Wireless Sensor Networks", John Wiley, 2005.		
2.	Feng Zhao & Leonidas J. Guibas, "Wireless Sensor Networks- An Information Processing Approach", Elsevier, 2007.		
REFERENCES:			
1.	Kazem Sohraby, Daniel Minoli, & Taieb Znati, "Wireless Sensor Networks- Technology, Protocols, And Applications", John Wiley, 2007.		
2.	Anna Hac, "Wireless Sensor Network Designs", John Wiley, 2003		

17I OF003
1/LUEUUJ

INDUSTRIAL AUTOMATION AND **ROBOTICS**

OBJECTIVES:

	INTRODUCTION TO ROBOTICS AND	9		
• To understand the automation				
•	To learn the various sensors			
•	To learn the various actuators			
•	To study the dynamics and kinematics	To study the dynamics and kinematics		
•	To know the evolution of robotics			

UNIT I

AUTOMATION Robotics: History of Robotics, Applications of Robotics, Current Research in Robotics, General Structure of Robotic Mechanical Systems, Classification of Robots based on

coordinate system, Classification of Robotics, Overview of robot subsystems, Components of Robot system-Manipulator, Controller, Power conversion unit etc, Specifications of robot. Commercially available Software Packages for Robot Simulation

UNIT II KINEMATICS AND DYNAMICS

12

Kinematics: Homogeneous co-ordinate vector operations, Workspace, Forward Kinematics forward solutions- Link coordinate frames, D-H matrix, Inverse Kinematics - Existence and Uniqueness of Solutions, Analytical Approaches - Reduction of Inverse Kinematics to Subproblems, Dynamics: Newton's equation, Euler equations, Dynamic Modeling of Robotic Manipulators - Two DOF Planar Robot with Two Revolute Joints, Generalized Coordinates and Speeds, Velocities, Partial Velocities, Accelerations, Generalized Inertia Forces, Generalized Active Forces, Equations of Motion, Special Issues in Kane's Method

UNIT III MECHANISMS ACTUATORS AND SENSORS

9

7

Some Popular Mechanisms - Four-bar Mechanism, Slider-crank Mechanism, Rack and Pinion, Cams and Cranks, Gear and Gear Trains, System Features, Kinematics and Kinetics, Serial Robots, Parallel Robots, Mechanical Structure, Joint Mechanisms.

Actuators: Electromagnetic Actuators, Fluid Power Actuators. Different types of grippers -Compressed Air, Vacuum, Hydraulic Fluid Power, Electrical Power & other methods of gripping. DC Motors, Stepper Motors, Servo Motor, Controlling of these motors.

UNIT IV SENSORS

Sensors: Encoders - Rotary and Linear Incremental Encoders, Tachometer, Quadrature Encoders, Absolute Encoders. Analog Displacement Sensors, Force and Tactile Sensors, Ultrasonic Transponder, Accelerometers, Gyroscopes, proximity sensors, Infrared Sensors, touch slip sensor, laser range finder, Vision-based Sensors, Color-tracking Sensors, Sensor

Mounting Arrangement, Reading the Pulses in a Computer, Design of the Circuitry				
UNIT V	AUTOMATION 8			
Structure the Produ Machines Automatic	Structure of Automatic Industrial Systems, Relationship between the Robot Intelligence the Product, Productivity of a Manufacturing Process, Kinematics and Control of Automatics Machines, Feedback Sensors, Transporting Devices, Feeding and Orientation Dev Automatic Assembling, Inspection Systems, Welding _ Automation.			
	TOTAL : 45 PERIODS			
OUTCO	OMES:			
•	Understand the basic concepts of working of robot			
•	Analyze the function of sensors in the robot			
•	Apply program to use a robot for a typical application			
•	Analyze Robots in different applications			
•	• Study the basic needs of automation of robots			
TEXT P	BOOKS:			
1.	Bruno Siciliano, Oussama Khatib (Eds.), _"Springer Handbook of Robotics"_, 2008,.			
2.	2. Jorge Angeles, _"Fundamentals of Robotic Mechanical Systems The Methods, and Algorithms"_ Second Edition, 2003, Springer-Verlag New Inc.,			
3.	Edwin Wise, _"Robotics Demystified_", 2005, The McGraw-Hill Companies,			
REFER	ENCES:			
1.	Thomas R. Kurfess, _"Robotics And Automation Handbook"_, CRC Press, 2004,			
2.	_Robotics: "Appin Knowledge Solutions (Firm)"_, Infinity Science Press, 2007,			
3.	J. Norberto Pires, Altino Loureiro and Gunnar Bölmsjo, _"Welding Robots - Technology, System Issues and Applications"_, Springer-Verlag 2006,			
4.	J.G Proakis, "Digital Communication", 4th Edition, Tata Mc Graw Hill Company, 2001.			

17LOE004	PRINCIPLES OF VLSI DESIGN	L	LT		С	
		3 0				
OBJECTI	VES:					
Understand the fabrication process of CMOS						
• To understand the electrical properties of circuits						
• 7	o Study the design of combinational and sequential circuit					
• 7	To learn the testing of CMOS					
• 4	Analyse the verilog HDL					
UNIT I	CMOS TECHNOLOGY				9	
A brief Histo effects, DC process enha	bry-MOS transistor, Ideal I-V characteristics, C-V characterist transfer characteristics - CMOS technologies, Layout design cements, Technology related CAD issues, Manufacturing issue	ics, N jn Ri s	lon lles,	ideal CM	IV (OS	
UNIT II	UNIT II CIRCUIT CHARACTERIZATION AND SIMULATION				9	
Delay estim Design marg Circuit chara	ation, Logical effort and Transistor sizing, Power dissipation, Reliability, Scaling- SPICE tutorial, Device models, Device cterization, Interconnect simulation	on, l char	Inter acte	conn rizati	ect, ion,	
UNIT III	COMBINATIONAL AND SEQUENTIAL CIRC DESIGN	UIT			9	
Circuit famil circuits, circ sequencing d	tes –Low power logic design – comparison of circuit families – uit design of latches and flip flops, Static sequencing eleme ynamic circuits – synchronizers	Sequ ent n	enci netho	ng st odolo	atic gy-	
UNIT IV	CMOS TESTING			9	9	
Need for testing- Testers, Text fixtures and test programs- Logic verification- Silicon debug principles- Manufacturing test – Design for testability – Boundary scan						
UNIT V SPECIFICATION USING VERILOG HDL					9	
Basic concepts- identifiers- gate primitives, gate delays, operators, timing controls, procedural assignments conditional statements, Data flow and RTL, structural gate level switch level modeling, Behavioral and RTL modeling, Structural gate level description of decoder, equality detector, comparator, priority encoder, half adder, full adder, Ripple carry adder, D latch and D flip flop.						
	TOTAL : 45 PER	RIOI	DS			

OUTCOMES:

•	Understand the basics of CMOS circuits.
•	To understand the CMOS process technology.
•	To understand the concepts of designing VLSI subsystems.
•	Analyze the techniques of chip design using programmable devices.
•	Remember digital system using hardware description language.
TEXT	T BOOKS:
1.	Weste and Harris: "CMOS VLSI DESIGN", (Third edition) Pearson Education, 2005
2.	J.Bhasker: "Verilog HDL primer", BS publication,2001
REFE	CRENCES:
1.	Uyemura J.P: "Introduction to VLSI circuits and systems", Wiley 2002.
2.	D.A Pucknell & K.Eshraghian , "Basic VLSI Design", Third edition, PHI, 2003
3.	M.J.S.Smith: "Application specific integrated circuits", Pearson Education, 1997
4.	<i>Ciletti "Advanced Digital Design with the Verilog HDL", Prentice Hall of India, 2003</i>

17LO	E005	APPLIED ELECTRONICS				С	
			3	0	0	3	
OBJE	CTIV	ES:					
•	D	escribe the basic principles of electronics					
•	Id	entify the electronic components and their various applications of	on bo	bard			
•	Trace and analyze the electronic circuits						
•	A	nalyse the telecommunication systems					
•	Т	study the concepts of PIC microcontroller					
UNIT	Ι	ANALOG CIRCUITS			ļ)	
Overvie BJT am	ew on plifier	semiconductors, diodes, transistor switches, capacitors, fields s, JFET amplifiers, MOSFET amplifiers.	and	ind	uctor	<u>s</u> –	
UNIT	II	APPLICATION OF ANALOG CIRCUITS			9)	
Operati power a	onal a mplifi	mplifiers, application of op-amps, active filters, 555 timer a ers – power supplies.	ind o	oscil	lator	s –	
UNIT	III	DIGITAL CIRCUITS			ļ)	
Overvie display	ew on device	logical circuits, logical operations, combinational and seques – converter circuits.	entia	ıl ci	rcuit	s –	
UNIT	IV	ELECTRONIC COMMUNICATION SYSTEMS			ļ)	
Audio transmi	and v ssion -	ideo systems – noise – telecommunications – cable trans - electronic control systems – process control systems.	miss	ion,	opt	ical	
UNIT	V	MICROPROCESSORS AND MICROCONTROL	LE	R	ļ)	
Input a microco	nd ou ontroll	put - microprocessors and programming - sensors and interfater - circuit simulation – circuit construction.	acing	g -]	The 1	PIC	
	TOTAL : 45 PERIODS						
OUTCOMES:							
•	• Acquires knowledge for building, testing and modifying simple circuits to complex circuits.						
•	Acquires the basic knowledge of electronics.						
•	Gains knowledge about the microprocessor and microcontroller.						
•	Understand the communication systems						

•	Study the applications of electronic circuits					
TEXT	TEXT BOOKS:					
1.	Owen Bishop, "Electronics – Circuits and Systems", 3 rd Edition, Newnes, 2010.					
2.	Michael Tooley B A, "Electronic Circuits: Fundamentals and Applications", 3 rd Edition, Newnes, 2006.					
REFE	REFERENCES:					
1.	John B.Peatman," Design with PIC Microcontrollers", Prentice Hall, 1998.					

17LOE0	06	WIRELESS NETWORKS	L	Т	Р	C	
			3	0	0	3	
OBJEC	ГIV	ES:	•	•			
•]	Lear	n the design of the wireless networks					
• 1	Und	erstand the concepts of wireless networks layer					
•	To s	tudy the wireless protocols with TCP enhancement					
•	Anal	yse the wireless wide area network					
• 1	Und	erstand the concepts of wireless networks and next generation n	etw	orks			
UNIT I		WIRELESS LAN				9	
layer, Lin Spectrum a UNIT II	ık m alloc	nanager Protocol, security - IEEE802.16-WIMAX: Physica ation for WIMAX MOBILE NETWORK LAYER	al la	ayer.		4C, 9	
Introduction IPV6-Network: R	on - vork	Mobile IP: IP packet delivery, Agent discovery, tunneling an layer in the internet- Mobile IP session initiation protocol	d er - me	ncap: obile	sulat ad-	ion, hoc	
	T	MOBILE TRANSPORT LAVER	ung.			9	
TCP enha retransmit/ TCP, Snoc	ancer fast	nents for wireless protocols - Traditional TCP: Congestion recovery, Implications of mobility - Classical TCP improves TCP, Mobile TCP, Time out freezing, Selective retransmission	on o eme n.	conti nts:	rol, Indi	fast rect	
UNIT IV	7	WIRELESS WIDE AREA NETWORK				9 ulation, ad-hoc 9 ol, fast ndirect 9 re: 3G- n speed 9 - 4G ems.	
Overview MSC, 3G- Downlink	of U SGS pack	TMS Terrestrial Radio access network-UMTS Core network AN, 3G-GGSN, SMS-GMSC/SMS-IWMSC, Firewall, DNS/DI et access (HSDPA)- LTE network architecture and protocol.	Archi	itect -Hig	ure: 1 gh sp	3G- eed	
UNIT V 4G NETWORKS					9		
Introduction Technolog	on – jies:	4G vision – 4G features and challenges - Application Multicarrier Modulation, Smart antenna techniques, OFDM-M	s of IMO	f 4C sys	3 – tems	4G	
		TOTAL : 45 PER	ΙΟΙ	DS			
OUTCO	ME	'S:					
• Ao ar	cqui chite	res knowledge about the latest 3G/4G and WiMAX networks acture.	and	its			

•	Understand the wireless network environment for any application using latest wireless protocols and standards.
•	Apply different types of applications for smart phones and mobile devices with latest network strategies.
•	Remember the concepts of networks layers and its applications.
•	Study the concepts and applications of WAN
ТЕХТ	BOOKS:
1.	Jochen Schiller, "Mobile Communications", Second Edition, Pearson Education 2012.(Unit I,II,III)
2.	Vijay Garg, "Wireless Communications and networking", First Edition, Elsevier 2007.(Unit IV,V)
REFE	CRENCES:
1.	Erik Dahlman, Stefan Parkvall, Johan Skold and Per Beming, "3G Evolution HSPA and LTE for Mobile Broadband", Second Edition, Academic Press, 2008.
2.	Anurag Kumar, D.Manjunath, Joy kuri, "Wireless Networking", First Edition, Elsevier 2011.
3.	Simon Haykin, Michael Moher, David Koilpillai, "Modern Wireless Communications", First Edition, Pearson Education 2013

EEE:

17EOE001	MATLAB PROGRAMMING	L	T	Р	С		
		3	0	0	3		
OBJECTIVES:	_						
•	To study basics of MATLAB programming						
•	To introduce MATLAB Functions and File processing						
•	To impart knowledge on MATLAB programming techr	nique	es				
•	To enable the students to plot the functions using MAT	LAE	3				
•	To develop skill in simple engineering applications MATLAB	de	veloj	omer	nt with		
UNIT I	INTRODUCTION				9		
Basics of MATLAI Multidimensional A Scalar and Array O	B programming–Variables and Arrays – initializing variabl Arrays – Sub arrays – Special Values–Displaying Output D perations – Hierarchy of Operations.	es ir ata -	n MA - Dat	ATLA ta Fil	AB – les –		
UNIT II	FUNCTIONS & FILES				9		
Built-in MATLAB Binary I/O Function	Functions – Elementary Mathematical Functions – User I ons – Advanced Function Programming – Introduction	Defin to	ned I MA	Func TLA	tions – B File		
Processing –, File C	Dening and Closing, Working with Data Files.				0		
UNIT III	PROGRAMMING TECHNIQUES				9		
Program Design Operators and Func LAB Program.	and Development–Relational Operators and Logical tions–Conditional Statements–Loops–The Switch Structure	Va re–D	ariab Debug	les–l gging	Logical g MAT		
UNIT IV	PLOTTING OF FUNCTIONS				9		
XY plotting function Polar Plot– Interact Regression– 3-D Problems-GUI.	ons– Subplots and Overlay plots–Plots With Error Bars– ive plotting– Putting Multiple Plots on the Same Page– F plots–Mesh and Surface Plots – Examples of MATI	Spe Func LAB	cial tion Ap	Plot Disc oplica	types– overy– ations–		
UNIT V	ENGINEERING APPLICATIONS				9		
Numerical Differentiation in single variable,: Higher derivatives, multiple variables, Newton- Cotes integration formulae, MATLAB functions for integration, Linear algebra in MATLAB, Gauss Elimination, LU decomposition and partial pivoting, Iterative methods: Gauss Siedel, Special Matrices: Tri- diagonal matrix algorithm- Engineering Applications-Optimization.							
OUTCOMES	TOTAL :45 PERI		8				
1 Artiqu	After successful completion of the course students able to	$\frac{1}{100}$	ion	work			
1. Articu 2 Under	stand the Basics of MATLAB programming tools function	iuiai	d fil	work es th	at are		
essent	al in solving engineering problems.	al	.u 111	<u> </u>	ai ui c		
3. In-dep	th knowledge of providing programming techniques and p	lotti	ng of	fun	ctions.		
4. Under	Understand the loops and Debugging of MATLAB programs.						
5. Under	stand the writing of programs & simulation in MATLAB forms	or ei	ngine	eerin	g		
TEXT BOOKS	TEXT BOOKS:						

1.	Amos Gilat, "MATLAB An Introduction With Applications", Wiley Publication, 6 th
	edition, 2016.
2.	Rudra Pratap, "MATLAB 7", Oxford University Press,2006.
3.	R.K. Bansal, A.K. Goel, "MATLAB and Its Applications In Engineering", Dorling
	kindeslay Pvt. Lt, India, 2009.
REFERE	NCES:
1.	Stephen j. Chapman,"MATLAB programming for engineers ",
	FifthEducation, United States of America, 2015.
2.	Otto S.R, Denier J.P., "An introduction to programming and numerical methods in
	MATLAB ", Springer verlag London limited,2005.

17EOE002	RENEWABLE ENERGY SOURCES	L	Τ	P	С		
		3	0	0	3		
OBJECTIVES	S:						
•	To introduce Different types of Renewable Energy Sources						
•	To educate the students on principle of solar energy						
•	To educate the students on wind energy conversion systems						
•	To educate the students on biomass energy and cogeneration	syst	ems				
•	To impart knowledge on tidal energy and geothermal energy						
UNIT I	INTRODUCTION				9		
Energy Conserva	tion and Energy Efficiency – Needs and Advantages, Different	t typ	es o	f Re	newable		
Energy Sources	- Energy Resources Availability in World -Environmenta	l as	pect	s of	energy		
utilization – Ener	rgy Conservation Act 2003 - Statistical Report on Renewabl	e en	ergy	/ sce	nario in		
India - Applicatio	ons.						
UNIT II	SOLAR ENERGY				9		
Solar Flat plate	and concentrating collectors – Solar heating and cooling	tec	hnic	ues	–Solar		
desalination – So	lar Pond – Solar cooker – Solar Drying – Solar pumping – S	Sola	the:	rmal	power		
plant – Solar pho	to voltaic conversion – Solar cells – PV applications.				1		
UNIT III	WIND ENERGY				9		
Wind energy esti	mation in World and in India – Types of wind energy system	ns –	Perf	orm	ance of		
Wind energy Svs	tem– Details of wind turbine generator – Safety and Environm	enta	l As	pects	5.		
UNIT IV	BIOMASS ENERGY			1	9		
Biomass direct c	ombustion – Biomass gasifier – Biomass: Types – Advanta	iges	&D	rawl	backs -		
Biogas plant –	Ethanol production – Bio diesel – Cogeneration: steam tu	irbir	ne c	ogen	eration		
systems, gas tu	rbine cogeneration systems, reciprocating IC engine cog	gene	ratio	n sv	ystems,		
combined cycle of	cogeneration systems – Applications of Cogeneration in utility	y se	ector	- B	iomass		
applications.		•					
UNIT V	OTHER RENEWABLE ENERGY SOURCES				9		
Tidal energy – W	Vave energy – Open and closed OTEC Cycles – Small hydro -	-Geo	othe	rmal	energy		
– Fuel cell system	ns - Stirling Engines.				0.		
	TOTAL :4	5 P	ER	IOD	S		
OUTCOMES	• After successful completion of the course students able to				~		
1	Understand about Solar Energy						
2	Understand about Wind Energy						
3	Understand about RioMass Energy						
<u> </u>	Understand about all renewable Energy Sources						
T. DEFEDENCE	The stand about an renewable Energy Sources.						
	NEFENEIVED:						
1.	1000	Jush	ers,	IVEN	Deini,		
2	S.P. Sukhatme "Solar Energy" Tata McGraw Hill Publish	hina	Co	mnai	w Itd		
<i>~</i> ··	New Delhi 1997	ung	0	npur	<i>чу L</i> ии.,		
3.	G.N. Tiwari, "Solar Energy – Fundamentals Design	n.	Mod	ellin	g and		
	applications", Narosa Publishing House. New Delhi. 2002.	-, 1		~~~~	0 4114		

17EOE003	ENERGY MANAGEMENT AND AUDITING	L	Τ	P	С		
		3	0	0	3		
OBJECTIVES:							
•	• To introduce the forms of energy, energy auditing types and roles of energy managers						
•	To impart knowledge on energy costing and importance of power factor in energy cost						
•	to study metering for energy management & power quality and	alyse	es				
•	To educate the students on different lighting systems						
•	To study energy economics techniques						
UNIT I	INTRODUCTION				9		
Types & Forr Auditing: Type of Energy Mar	ns of Energy - Primary / Secondary Energy Sources –EC A es, Classifications, Deliverables, Barriers – Benchmarking - Rol agers.	Act les &	2003 z Re	3 – 1 spon	Energy sibility		
UNIT II	ENERGY COSTING, MONITORING &TARGETING				9		
Billing : Com Consumption Correction – V power cost fro	ponents & Costs – kVA – Need & Control – Determination –Time of Day Tariff – Power Factor Basics – Penalty Con- Vheeling and Banking - Demand Side Management – compari- m various sources – steam cost from different sources.	of k ncep ison	VA ot fo on	dem r PF unit (and & - PF cost of		
UNIT III	METERING FOR ENERGY MANAGEMENT & POWER QUALITY ANALYSES				9		
Instruments Used in Energy systems: Load and power factor measuring equipment, Wattmeter, Flue gas analysis, Temperature and thermal loss measurements, Air quality analysis- Relationships between parameters-Units of measure-Typical cost factors- Utility meters – Timing of meter disc for kilowatt measurement - Demand meters - Paralleling of current transformers - Instrument transformer burdens-Multitasking solid-state meters - Metering location vs. requirements – Net metering - Metering techniques and practical examples							
UNIT IV	LIGHTING SYSTEMS & COGENERATION				9		
Concept of lighting systems - The task and the working space - Light sources - Ballasts - Luminaries - Lighting controls - Optimizing lighting energy - Power factor and effect of harmonics on power quality - Cost analysis techniques - Lighting and energy standards Cogeneration: Forms of cogeneration - feasibility of cogeneration- Electrical interconnection.							
UNIT V	ECONOMICS		_		9		
Energy Economics – Depreciation - Financial Analysis Techniques – Discount Rate, Payback Period, Internal Rate of Return, Net Present Value, Life Cycle Costing – ESCO concept – CUSUM Technique – ESCO Concept – ESCO Contracts							
TOTAL : 45 PERIODS							
OUTCOME	CS: After successful completion of the course students able	to					
1.Ana2Can	lyse the energy data of industries.						
2. Call	carry out energy accounting and baranening.						

3.	Can suggest methodologies for energy saving.
4.	Design Lighting systems.
5.	Explain the concepts of Energy Economics.
TEXT I	BOOKS:
1.	Energy Manager Training Manual (4Volumes) available at www.Energymanager
	training.com, a website administered by Bureau of Energy Efficiency (BEE), a
	statutory body under Ministry of Power, Government of India. 2004.
2.	Amit K. Tyagi, "Handbook on Energy Audits and Management", TERI, 2003.
3.	Barney L. Capehart, Wayne C. Turner, and William J. Kennedy, "Guide to Energy
	Managemen", Fifth Edition, The Fairmont Press, Inc., 2006.
REFER	ENCES:
1.	L.C. Witte, P.S. Schmidt, D.R. Brown, "Industrial Energy Management and
	Utilisation", Hemisphere Publ, Washington, 1988.
2.	Callaghn, P.W. "Design and Management for Energy Conservation", Pergamon
	Press, Oxford, 1981.
3.	Eastop T.D & Croft D.R, "Energy Efficiency for Engineers and Technologists",
	Logman Scientific & Technical, ISBN-0-582-03184, 1990.
4.	WC Turner; "Energy Management Handbook", Seventh Edition, (Fairmont Press Inc.,
	2007).

17EOE004	SMARTGRID	L	Τ	Р	Τ				
		3	0	0	3				
OBJECTIVES	:								
•	To introduce the architecture of smart grid								
•	To study the smart grid communications and its measurem	To study the smart grid communications and its measurement techniques							
•	To educate the students on load flow analysis in smart grid								
•	To impart knowledge on voltage stability in smart grid								
•	To introduce grid integration for renewable energy souces								
UNIT I	SMART GRID ARCHITECTURE				9				
Introduction – Co communication an Roles and Functi Components-Who	omparison of Power grid with Smart grid – power systend standards - General View of the Smart Grid Market Dron - Measures - Representative Architecture - Function lesale energy market in smart grid-smart vehicles in smart grid-smart smart grid-smart vehicles in smart grid-smart smart grid-smart smart grid-smart grid-smart smart	em riven ons rid.	enha s - s of s	ancer Stake Smar	nent – eholder t Grid				
UNIT II	SMART GRID COMMUNICATIONS AND IT	'S			9				
	MEASUREMENT TECHNIQUES								
Communication a	nd Measurement - Monitoring, Phasor Measurement U	Jnit	(PM	1 U),	Smart				
Meters, Wide area	a monitoring systems (WAMS)- Advanced metering infra	astru	ctur	e- G	IS and				
Google Mapping	Cools.				0				
	LOAD FLOW ANALYSIS IN SMART GRID			1	9				
Introduction to Lo	ad Flow Studies - Challenges to Load Flow in Smart Grid	and	we d Ea	akne	sses of				
and Algorithms I	riow Methods - Load Flow State of the Art. Classical, Exte	nae	а го orid	mu	lations,				
	SMADT CDID STABILITY	lant	giiu	•	0				
	SWART GRID STADILITT		(- 14 -		7				
Voltage Stability	Analysis 1001s – voltage Stability Assessment Technique	es-v orid	An	ge Si	tability				
assessment in sm	art grid-Approach of smart grid to State Estimation-Ener	giiu .ov	-All	agen	hent in				
smart grid.	art grid rippionen of smart grid to State Estimation Ener	63	man	ugen	ient m				
UNIT V	GRID INTEGRATION WITH RENEWABLE				9				
	ENERGY				-				
Renewable Energy	y Resources-Sustainable Energy Options for the Smart G	rid-	Pene	etratio	on and				
Variability Issues	Associated with Sustainable Energy Technology-Deman	d R	espo	nse	Issues-				
Electric Vehicles	and Plug-in Hybrids-PHEV Technology-Environmental I	mpl	icati	ons-S	Storage				
Technologies-Grid	integration issues of renewable energy sources.								
	TOTAL :45 PERI	OD	S						
OUTCOMES:	After successful completion of the course students able t	0							
1.	Explain the concepts and design of Smart grid.								
2.	Explain the various communication and measurement techr	nolo	gies	in sn	nart				
3.	Perform load flow in smart grid.								
4.	Analyze the stability of smart grid.								
5.	Integrate the renewable energy resources and storages with	sma	art gr	id.					
TEXT BOOKS			0						
1.	Stuart Borlase"Smart Grid: Infrastructure, Technolog CRCPress2012.	gyan	d i	Solut	tions",				

2.	anakaEkanayake,NickJenkins,KithsiriLiyanage,JianzhongWu,AkihikoYoko					
	yama, "Smart Grid: Technologyand Applications", Wiley2012.					
REFERENCES:						
1.	VehbiC.Güngör,DilanSahin,TaskinKocak,SalihErgüt,ConcettinaBuccella,Carl					
	oCecati, and Gerhard P. Hancke, "Smart Grid Technologies:					
	CommunicationTechnologiesandStandards",IEEETransactionsOn Industrial					
	Informatics, Vol.7,No.4, November2011.					
2.	Xi Fang, Satyajayant Misra, Guoliang Xue, and Dejun Yang "Smart Grid –					
	TheNewand ImprovedPowerGrid: ASurvey", IEEET ransaction on Smart					
	Grids, vol. 14, 2012.					

MECH:

17M0	DE001	DISASTER MANAGEMENT AND MITIGATION	L	Τ	Р	С			
			3	0	0	3			
OBJE	CTIVE	S:							
Upon c	ompletion	n of this course, the students will be able							
	•	Prevention is to reduce the risk of being affected by a disaster.							
	•	To illustrate different options for disaster prevention and emergen	cy n	nana	gem	ent.			
UNIT	Ι	INTRODUCTION TO DISASTER			9				
Meaning, Nature, Importance of Hazard, Risk, Vulnerability and Disaster-Dimensions & Scop						e of			
Disaster Management - India's Key Hazards -Vulnerabilities - National disaster management									
framew	ork - Dis	aster Management Cycle.							
UNIT	II	NATURAL DISASTER			9				
Natural	Disaster	s- Meaning and nature of natural disaster; their types and effects.	Floc	ds, c	lrou	ght,			
cyclone	e, earthqu	akes, landslides, avalanches, volcanic eruptions, Heat and cold	wav	es, C	Clim	atic			
change	: global v	varming, Sea level rise, ozone depletion.							
UNIT	III	ANTHROPOGENIC DISASTER			9				
Man M	ade Disa	sters- Nuclear disasters, chemical disasters, biological disasters, b	uildi	ng fi	ire, c	coal			
fire, for	rest fire,	oil fire, air pollution, water pollution, deforestation and indust	rial	wast	e wa	ater			
pollutio	on.								
UNIT IVAPPROACHES IN DISASTER MANAGEMENT9									
warning Informa relief –	g - Prep ation, edu - Assessr and Envir	paring disaster preparedness plan -Land use zoning - Preparedness plan -Land use zoning -Preparedness plan -Land use zoning -Prepar	edno ion ioct	ess - Im - Ec	throw med cono	y & ugh iate mic			
UNIT	V	DISASTER MITIGATION			9				
Meteor	ological	observatory - Seismological observatory - Hydrology Laborator	v ar	d In	dust	rial			
Safety	inspector	rate. Technology in Disaster Management -Emergency Manag	zeme	ent S	Syste	ems			
(EMS)	in the Di	saster Management Cycle -Remote Sensing and Geographic Info	rmat	ion S	Syste	ems			
(GIS) in	n Disaste	r Management.			•				
TOTA	AL: 45	PERIODS							
OUTO	COMES	• On completion of this course, students will be able to							
1.	Underst	and basic concepts of disaster and hazards.							
2.	Underst	and the various natural disasters.							
3.	Underst	and the various manmade disasters.							
4.	Underst	and the disaster management principles.							
5.	Underst	andthe modern techniques used in disaster mitigation andmanagen	nent.						
TEXT	BOOKS	:							
1.	Sharma	S.R, "Disaster management", A P H Publishers, 2011.							
2.	Gupta.H	I.K, "Disaster Management", University Press, India, 2003.							
3.	D. B. N	N. Moorthy, "Disaster Management: Text and Case studies".	,Dee	p an	d D	eep			
	Publications, 2007.								

REFE	RENCES:					
1.	VenuGopal Ra	io. K, " Geoinf	formatics for L	isaster Man	agement", Mang	glamPublishers
	and Distributo	rs, 2010.				
2.	Singh. R. E	3, "Natural	Hazards and	Disaster	Management:	Vulnerability
	andMitigation	", Rawat Public	cations, 2006.			
3.	Gupta. M. C, '	'Manuals on N	latural Disaster	managemen	nt in India", Nati	onalCentre for
	Disaster Mana	gement, IIPA, I	Vew Delhi, 2001			
4.	Rajan Kumar	Sahoo, Tilota	ma Senapati,	"Manageme	nt and Mitigatio	on of Natural
	Disasters", Rea	gal Publication,	2013.			
5.	Palanivel K., S	Saravanavel J.,	Gunasekaran S	, "Disaster I	Management" , Al	lied Publishers
	Pvt. Ltd., 2015					

		ENVIRONMENTAL	L	Т	Р	C		
17MOE002	2	MANAGEMENT						
			3	0	0	3		
OBJECTIVE	ES:							
Upon completion of this course, the students will be able								
To dev	velo	o a strategy for the improvement of quality of life;						
To pre	even	and solve environmental problems;						
• To wa	rn tl	reats and identify opportunities;			_			
UNIT I	N	ATURE AND SCOPE OF ENVIRONN	MEN	TA		9		
	P	ROBLEMS						
Environment	and	sustainable development - Natural and human environme	ntal d	istur	ban	ces –		
Global warmi	ng -	acid rain – ozone depletion – effects and control - climate ch	ange	conv	enti	ons –		
Kyoto protoco	$\frac{1}{1}$	India's efforts for Environmental protection – Public policy and	nd role	e of I	NGC)'s		
		ATER POLLUTION AND CONTROL		1		9		
Fresh water	and	its pollution – Natural processes – sources and pollutants	– pol		on d	ue to		
industrial, ag		and municipal wastes – effects on streams - limitati	ons o		spos	al by		
management:	Wa Wa	onsideration in streams – Oxygen Sag Curve – Strategies ic	M SUSI Watai	anna • acto	bie '	water		
		IR AND NOISE POLI LITION	water	acto	·.	0		
Pollutant emi		is - sources and sink – effects of air pollution on human her	alth v	eget	atio	n and		
climate– Glo	ssio	effects – prevention and control of air pollution – Control of	f nart	icula	tes -	– Air		
pollution surv	ev s	and sampling – Air quality monitoring - Air Act – Manageme	ent of a	air p	ollut	tion –		
Sound level –	Eff	ect of noise on people – Environmental noise control- noise po	ollutio	n ru	les 2	.000		
	S	OLID WASTE MANAGEMENT AND		SOI	L	9		
UNITIV	P	OLLUTION						
Sources - Ch	arac	teristics – Quantities – Collection methods – Processing and	dispos	sal te	echn	iques		
– Onsite Har	ndli	g, storage and processing - sanitary landfill - Incineration	on an	d py	roly	rsis –		
Composting -	- ae	robic and anaerobic of compositing - Recycling and reuse	e of s	olid	was	tes –		
Hazardous wa	astes	- Definition - Sources & types only - Integrated system for	waste	ma	nage	ement		
– The Basel	cor	vention Land use and degradation – Management problem	ns –	strat	egie	s for		
sustainable la	nd r	nanagement – soil pollution –wetland conservation.						
UNIT V	E	NVIRONMENTAL MANAGEMENT SYSTEM				9		
Terminology	– in	stallation and common motives of EMS – Environmental star	ndards	– IS	50 1	4000		
(Series) – bas	ıcpr	nciples – Environmental Audit – Environmental Impact asses	sment	t - Ti	rade	rules		
and environm	enta	I protection– Practices For Waste Minimisation And Cleaner	Produ	ctior	l.			
IUIAL:	43 J	2ERIODS						
OUTCOM	ES	On completion of this course, students will be able to						
1. Unde	. Understand the concept of sustainable development, climate change and roles of NGO's.							
2. Unde	rsta	nd the sources and management of Water pollution.	4 4 -	. 1				
3. Unde	rsta	id the causes of Air and Noise pollution and various managen	nent te	ecnni	que	s.		
+. Unde	rsto	ad the various Environmental Standards						
	1518 777							
TEXT BOO	JK	5 :	• / • •	-				
1. N.K.	Ube	roi, "Environmental Management", Excel Books, New Dell	ni(200	6).				

2.	Mallick A., "Environmental Science and Management", 1st Edition, Viva Books, 2014.						
3.	Prakash Talwar, "Environmental Management", Isha Books, 2006.						
REFE	REFERENCES:						
1.	S. Vigneahwaran, M. Sundaravadivel and D.S. Chaudhary, "Environmental Management",						
	SCITECH Publications(India) Pvt.Ltd, Chennai & Hyderabad (2004).						
2.	Mackenzie Davis, David Cornwell., "Introduction to Environmental Engineering", 4 th						
	Edition, McGraw-Hill Companies Incorporated, 2008.						
3.	Mary K. Theodore, Louis Theodore, "Introduction to Environmental Management", 1 st						
	Edition, CRC Press, 2009.						
4.	P.S. Bhushana Rao., "Environment Management", Deep & Deep Publishers, 2007.						
5.	T.V Ramachandra, Vijay Kulkarni, "Environmental Management", TERI Press New						
	Delhi, 2009.						

17MOE003	CC	MPOSITE MATERIALS	L	T	P	С		
			3	0	0	3		
OBJECTIVES								
Upon completio	n of thi	s course, the students will be able						
Develop	compo	osites and structures in this material that are high-perform	nance,	cost	-effe	ective		
and ecol	ogical							
Basic pri	nciples	s of composite effects, interactions at an interface, the p	proper	ties				
UNIT I	INTR INTE	ODUCTION TO REINFORCEMENT AND RFACE	MA'I	FRE	X [12		
Reinforcement –	Fibres -	– Glass fibre, Aramid fibre, Carbon fibre, boron fibre – Fabri	cation	– Pr	oper	ties –		
Applications – C	ompari	son of fibres – Particulate and whisker reinforcements.	Mati	rix m	ateri	ials –		
Properties.Wettability – Effect of surface roughness – Interfacial bonding – Methods for measuring bond								
strength.								
UNIT II	POLY	MER MATRIX COMPOSITES				8		
Types – Proces	sing –	Thermal matrix composites – Hand layup and spray	techni	ique,	fila	ment		
winding, Pultru	ition,	resin transfer moulding, autoclave moulding – Th	ermop	olasti	c m	natrix		
composites - In	jection	moulding, film stacking - Diaphragm forming - Therm	oplast	ic taj	pe la	ying.		
Glass fibre/poly	mer int	erface. Mechanical properties – Fracture. Applications.						
UNIT III	MET	AL MATRIX COMPOSITES				8		
Types. Importa	nt met	allic matrices. Processing - Solid state, liquid state, de	positi	on, i	nsitu	I. Sic		
fibre / Titanium	interfa	ce. Mechanical properties. Applications.	-					
UNIT IV	CERA	MIC MATRIX COMPOSITES				8		
Ceramic matrix	mater	ials – Processing – Hot pressing, liquid infiltration	techni	iaue.	La	nxide		
process, insitu	chemic	al reaction techniques – CVD, CVI, sol-gel process.	Interf	ace i	n Cl	MCs.		
Mechanical prop	perties -	– Thermal shock resistance – Applications.						
	GEO	METRICAL ASPECTS. FATIGUE AND C	REE	ΡΙ	Ν	9		
UNIT V	COM	POSITE MATERIALS						
Unidirectional la	ninas –	Volume fraction and weight fraction – Woven roving, in-p	lane ra	ando	m fik	ores –		
Fibre length and	ibre ori	entation distribution – Voids – Fibre orientation during flow.						
Estimus S.N.		Estimue helpeviewers of CMCs Estimus of porticle and	which	1.00 0	ainf.	maad		
raligue – S-N (brid or	- Faugue behaviours of CMCS - Faugue of particle and	wills	ker r	enno	Jiced		
		sinposites – Thermai langue – Creep.						
IUIAL: 45								
OUTCOME		completion of this course, students will be able to						
I. Analyse	e the fit	ber reinforced Laminate for optimum design.						
2. Underst	and the	e concepts of Polymer Matrix Composites.	<u> </u>	•				
3. Unders	Understand the different Metal Matrix Composites properties and manufacturing process							
4. Underst	Understand the different Ceramic Matrix Compositesproperties.							
5. Apply	Apply Fatigue and creep theory to study and analyse the Mechanical behaviour of							
	$z \mathbf{S}$							
1 Krichne		awla "Composite Materials Science and Engineering	" Sn	ringe	r 20	01		
2. Mathew	$\frac{1}{\sqrt{s} F L}$	and Rawlings R D. "Composite Materials: Engineering	ring s		scie	nce".		
CRC Pi	ress and	d Woodhead Publishing Limited, 2002.				,		
3. Derek I	Derek Hull, "An introduction to Composite Materials", Cambridge Univ. Press, 1988.							

REFE	ERENCES:	
1.	"Handbook of	Composites" – American Society of Metals, 1990
2.	Gibson, R.F., ' Hill, CRC pres	'Principles of Composite Material Mechanics'', Second Edition, McGraw- s in progress, 1994.
3.	1. Autar K. K. Press,2006	aw, "Mechanics of Composite Materials", Second Edition, CRC
4.	Halpin, J.C., ' 1984.	Primer on Composite Materials, Analysis", Technomic Publishing Co.,
5.	Mallick, P.K. a Properties" , H	nd Newman, S., "Composite Materials Technology: Processes and ansen Publisher, Munish, 1990.

RENEWABLE ENERGY SOURCES AND TECHNOLOGY

L	Т	Р	С	
3	0	Λ	3	

9

9

9

OBJECTIVES:

Upon completion of this course, the students will be able

- Enable understanding of renewable energy in the broadest terms
- Review the issues affecting effective deployment of renewable energy systems.
- Provide an over view of the different renewable energy technologies
- and their applications

UNIT I INTRODUCTION

World energy status, Current energy scenario in India, Environmental aspects of energy utilization, Environment - Economy - Energy and Sustainable Development, Energy planning. Reserves of Energy resources, Renewable energy resources - potentials -achievements – applications. Technical and social implications, issues in grid integration of power from renewable energy sources, Comparison between different Renewable energy sources.

UNIT II SOLAR ENERGY

Basic concepts, Solar radiation, Measurement, Solar thermal systems, Flat plate and concentrating collectors, Solar passive space, Solar heating and cooling techniques, Solar desalination, Solar dryers, Solar furnaces, Solar pumping, Solar greenhouse, Solar thermal electric power plant, Photo-voltaics, p-n junctions. Solar cells, PV systems, Standalone, Grid connected solar power satellite, Calculation of energy through photovoltaic power generation, Hybrid systems, Solar Engines: Stirling, Brayton engines.

UNIT III WIND ENERGY

Energy available from wind, General formula, Lift and drag. Basis of Wind energy conversion, Effect of density, Frequency variances, Angle of attack, Wind speed, Windmill rotors, Horizontal axis and Vertical axis rotors, Determination of torque coefficient, Induction type generators, Working principle of wind power plant and Site selection.

UNIT V BIOMASS ENERGY

Biomass – usable forms- composition- fuel properties – applications, Biomassresources, Biomass conversion technologies - direction combustion - pyrolysis –gasification -anaerobic digestion, Bioethanol and Biodiesel Production -Economics - Recent developments.Energy farming, Biogas technology – Domestic biogas plants, Community and institutional biogas plants – design consideration –applications.

UNIT V	OTHER RENEWABLE ENERGY SOURCES	9						
Tidal energy – Wave energy – Open and closed OTEC Cycles – small hydro –Geothermal energy								
- Social and	- Social and environmental aspects. Fuel cell technology -types, principle of operation -							
applications.Hy	applications. Hydrogen energy production – Storage– transportation – utilization.							
TOTAL: 45 PERIODS								
OUTCOME	S. On completion of this course, students will be able to							

OUTO	COMES:	On completion of this course, students will be able to				
1.	Emphasis the current energy status and role of renewable energy sources.					
2.	Understand the concepts of various aspects of Solar energy and utilization.					
3.	Understand the various aspects of Wind energy and utilization.					
4.	Familiarize various aspects of Biomass energy and utilization.					
5.	Understan	d various other renewable energy sources.				
ТЕХТ	BOOKS	:				

1.	Ashok Desai V, "Non-Conventional Energy", Wiley Eastern Ltd, 1990			
2.	Mittal K.M, "Non-Conventional Energy Systems", Wheeler Publishing Co. Ltd, 1997.			
3.	Ramesh R, Kurnar K.U, "Renewable Energy Technologies", Narosa Publishing House,			
	New Delhi, 1997.			
REFE	REFERENCES:			
1.	Freris, L.L, "Wind Energy Conversion systems", Prentice Hall, UK, 1990			
2.	Veziroglu.T.N, "Alternative Energy Sources", Vol 5 and 6, McGraw-Hill, 1978.			
3.	S.P. Sukhatme, "Solar Energy", Tata McGraw Hill, New Delhi, 1997.			
4.	Kothari P, K C Singal and Rakesh Ranjan, "Renewable Energy Sources and Emerging			
	Technologies", PHI Pvt. Ltd.,New Delhi, 2008.			
5.	G.D. Rai, "Non Conventional Energy Sources", Khanna Publishers, New Delhi, 1999.			

17M	OE005	IN	FELLECTUAL PROPERTY RIGHTS	L	T	Р	С		
				3	0	0	3		
OBJEC	CTIVES:								
Upon c	ompletion	of this	s course, the students will be able						
•	Protecting	the in	tellectual property rights of individuals or companies, IP	' law e	ncou	irage	es		
	economic	growt	h.						
•	Treating in	ntellec	tual property as largely equal to physical property, it imp	presses	s upo	n			
	economic	cultur	e the importance and sanctity of creativity and innovation	n					
•	Allowing	the ow	ners of intellectual property to capitalize on what they capitalize on what they capitalize on what they capitalize on what they capitalize on the second se	reate, j	prov	ides			
	financial incentives for new, creative ideas.								
UNIT	I I	NTR	ODUCTION			9)		
Backgr	ound and	Conc	epts - Brief History of - Institutions - Investing in	Know	ledg	e-M	arket		
Failures	s in Know	ledge	- IP, Public Sponsorship & Prize - IP Law Basics Mea	nsof I	P Pro	otect	ion -		
Patents	- Copyrig	hts - T	rade Secrets - Others - IP and Antitrust Property.				0		
UNIT		HE I	MPACTS OF IP ON THE PLANT/SEED IN	DUS	<u>TR</u>	Y	9		
The log	gic of IP -	Pater	nting vs. Company Secrets - Plant Patent Timeline Er	npirica	alEv	iden	ce in		
Plants:	A Puzzle	- Opti	mal Design of IP - Scarce Ideas vs.Non-scarce ideas -	Policy	/ Lev	vers	1n IP		
Design	- Breadth	- Lei	igin - Required Inventivesteps - Optimal Size of Rew	ard ar	na S	truct	ure -		
Entry C		ne Hor	ECTING CUMULATING INNOVATIONS	puons	•		0		
	III P		ECTING CUMULATIVE INNOVATIONS		[مر] ما		9		
Inree I Dolioy I	ypes of C	umula	tiveness - Basic V. Applied Research - Research 1001 Q	uanty	Lado	ers -	-		
		I Pros					0		
UNIT			FATION AND ENFORCEMENT				9		
Litigati	on and En	forcer	nent - Remedies for Infringement - How they matter E	nforce	emen	tof l	P by		
Technic	cal Means	- Lin	nited Sharing of Copyrighted Works TechnologyTrans	ster, L)iffu	sion,	, and		
Adoptio	Dhysical	Orks	and Network Effects Concepts and Issues - Direct vs	. Indi	rect	inet	work		
	- Physical	INC	VATION TODAY	ard Co	mpe	uuo	0		
			VATION TODAY		<u></u>	JD	9		
A Priva	te-Public	Partne	ership - University Innovation - Government Grant Pro	Cess I	vlixe	aPri	vate-		
Treaties	- Paris C	- IIIIC onven	tion BerneConvention TRIPS - PCT and WIPO - Nati	onal T	lue r Freat	men	y and		
Efficier	s - 1 ans C	on -H	remonization - Externalities and International Cooperation	onar i	ircai	men	t and		
ТОТА	$1 \cdot 451$		TODS	<u>, , , , , , , , , , , , , , , , , , , </u>					
	<u>іі. тэ і</u> Томес.		completion of this course, students will be able to						
	Understo	nd the	basics of intellectual property						
1.	Understa		basics of intellectual property.						
2.	Understa	nd the	impacts of IP on Plants/Seed industry						
3.	Understand protecting methods of innovations.								
4. 5	Understa	nd the	concept of litigation and enforcement.						
5.	Learn va	rious	treaties and acts on innovation.						
TEXT	BOOK	S:							
1.	Christoph	her $\overline{\mathbf{N}}$	lay, Susan K. Sell, "Intellectual Property Rights	", Ly	nne	Rie	enner		
2.	N. K. Acl	harva	"Text Book on Intellectual Pronerty Rights" Asia La	w Hoi	ise	2010).		
3	2 RRa	dhakri	shnan and S Balasubramanian "Intellectual Property	v Rioł	nts• ′	Tevt	and		
5.	Cases", First Edition, Excel books New Delhi, 2008								

REFERENCES:		
1.	Subbaram, N.	R. "Handbook Of Indian Patent Law And Practice", S. Viswanathan
	Printers And P	ublishers Pvt. Ltd., 1998.
2.	N.S. Gopalakri	ishnan & T.G. Agitha, "Principles Of Intellectual Property". 2 nd Edition,
	Eastern Book C	Company, 2014.
3.	3. Tanya Fran	nces Aplin, Jennifer Davis, "Intellectual Property Law: Text, Cases and
	Materials"	, 3 rd Edition, Oxford University Press, 2017.
4.	4. Neeraj Par	ndey, Khushdeep Dharni, "Intellectual Property Rights", PHI Learning,
	2014.	
5.	5. Rachna Si	ngh Puri, Arvind Viswanathan, "Practical Approach to Intellectual
	Property R	ights", I. K. International Publishing House Pvt. Ltd. Delhi 2009.

ENGINEERING ECONOMICS AND FINANCIAL ACCOUNTING

L	Т	Р	С
3	0	0	3

9

9

9

9

9

OBJECTIVES:

Upon completion of this course, the students will be able

- To make the students understand the basic concepts of managerial economics.
- To make the students understand the basics of demand, supply and related concepts.
- To make the students understand various production and cost concepts.

UNIT I INTRODUCTION

Managerial Economics - Relationship with other disciplines - Firms: Types, objectives and goals - Managerial decisions - Decision analysis.

UNIT II DEMAND & SUPPLY ANALYSIS

Demand - Types of demand - Determinants of demand - Demand function – Demand elasticity –Demand forecasting - Supply – Determinants of supply - Supply function -Supply elasticity.

UNIT III PRODUCTION AND COST ANALYSIS

Production function - Returns to scale - Production optimization - Least cost input - Isoquants – Managerial uses of production function.

Cost Concepts- Cost function - Determinants of cost - Short run and Long run cost curves Cost Output Decision - Estimation of Cost.

UNIT IV PRICING

Determinants of Price - Pricing under different objectives and different market structures - Price discrimination - Pricing methods in practice.

UNIT V CAPITAL BUDGETING

Investments - Risks and return evaluation of investment decision - Average rate of return - Payback Period - Net Present Value - Internal rate of return.

TOTAL : 45 PERIODS

- 1. Understand the basics of managerial economics and decisions.
- 2. Understand the concepts of demand and supply.
- 3. Understand various functions of production and cost analysis concepts.
- 4. Understand various pricing techniques.
- 5. Understand the concept of capital budgeting.

TEXT BOOKS:

1.	R. Kesavan, C.Elanchezhian, T. Sunder selvin, "Engineering Economics And Financial
	Accounting", laxmi publications (p) Ltd. First edition, 2005.
2.	M. Kasi Reddy, S. Saraswathy, "Managerial Economics and Financial Accounting",
	Prentice Hall of India Private Limited,2007.
3.	McGuigan, Moyer and Harris, 'Managerial Economics; Applications, Strategy and
	Tactics', Thomson South Western, 10th Edition, 2005.

REFERENCES:

1.	Salvatore Dominick, 'Managerial Economics in a global economy'. Thomson South
	Western, 4th Edition, 2001.
2	Pressure Chandra 'Eurodamentals of Financial Management' Tata Meanan Hill

2. Prasanna Chandra. 'Fundamentals of Financial Management', Tata Mcgraw Hill

	Publishing Ltd., 4th edition, 2005.
3.	N. Samuelson. Paul A and Nordhaus W.D., 'Economics', Tata Mcgraw Hill
	Publishing Company Limited, New Delhi, 2004.
4.	Paresh Shah, 'Basic Financial Accounting for Management', Oxford University Press, N
	ew Delhi, 2007.
5.	6. R. Panneerselvam, "Engineering Economics", PHI Learning PVT. Ltd. Delhi. 2013.

MATERIAL CHARACTERIZATION

0 3 0

Р

9

9

9

9

С

Т

L

3

OBJECTIVES:

Upon completion of this course, the students will be able

- To provide an introduction to materials characterization and its importance.
- To discuss different types of characterization techniques and their uses.

To review the topic of crystal structure and how structures can be determined using diffraction methods

UNIT I | METALLOGRAPHIC TECHNIQUES

Macro examination - applications, Metallurgical microscope - principle, construction and working, metallographic specimen preparation, optic properties - Magnification, numerical aperture, resolving power, depth of focus, depth of field, different light sources lenses aberrations and their remedial measures, various illumination techniques-bright field, dark field, phase contrast polarized light illuminations, interference microscopy, high temperature microscopy, quantitative metallography - Image analysis.

UNIT II X-RAY DIFFRACTION TECHNIQUES

Crystallography basics, reciprocal lattice, X-ray generation, absorption edges, characteristic spectrum, Bragg's law, Diffraction methods - Laue, rotating crystal and powder methods. Stereographic projection. Intensity of diffracted beams – structure factor calculations and other factors. Cameras - Laue, Debye-Scherer cameras, Seeman - Bohlin focusing cameras. Diffractometer – General feature and optics, proportional, Scintillating and Geiger counters 9

UNIT III ANALYSIS OF X-RAY DIFFRACTION

Line broadening, particle size, crystallite size, Precise parameter measurement, Phase identification, phase quantification, Phase diagram determination X-ray diffraction application in the determination of crystal structure, lattice parameter, residual stress - quantitative phase estimation, ASTM catalogue of Materials identification.

UNIT IV ELECTRON MICROSCOPY

Construction and operation of Transmission electron microscope - Diffraction effects and image formation, specimen preparation techniques, Selected Area Electron Diffraction, electronspecimen interactions, Construction, modes of operation and application of Scanning electron microscope, Electron probe micro analysis, basics of Field ion microscopy (FIB), Scanning Tunneling Microscope (STM) and Atomic Force Microscope(AFM).

UNIT V CHEMICAL AND ADVANCED THERMAL ANALYSIS

Surface chemical composition- Mass spectroscopy and X-ray emission spectroscopy (Principle and limitations) – Energy Dispersive Spectroscopy- Wave Dispersive Spectroscopy- Quadrapole mass spectrometer. Electron spectroscopy for chemical analysis (ESCA), Ultraviolet Photo Electron Spectroscopy (UPS), X ray Photoelectron Spectroscopy (XPS), Auger Electron Spectroscopy (AES), Electron Energy Analysers, Secondary ion mass spectrometry – Applications. Unit meshes of five types of surface nets – diffraction from di-periodic structures using electron, Low Energy Electron Diffraction (LEED), Reflection High Energy Electron Diffraction (RHEED)-TGA.

TOTAL: 45 PERIODS		
OUTO	COMES:	On completion of this course, students will be able to
1.	Understand principles of various metallographic techniques.	
2.	Understand X-ray diffraction techniques.	
3.	Analyse X-ray diffraction techniques.	
4.	Understand the working principles of various electron microscopic techniques.	

5.	Understand the	principles of different chemical and advanced thermal analysis methods.
ТЕХТ	BOOKS:	
1.	Cullity, B. D.,"	Elements of X-ray diffraction", 3rd Edition, Addison-Wesley Company
	Inc., New York	<i>z</i> , 2000.
2.	Phillips V A, "	Modern Metallographic Techniques and their Applications", Wiley
	Eastern India L	td.,1971.
3.	Khangaonkar F	<u>R</u> "An Introduction to Material Characterization", Penram INTL.
	Publishing(INDIA) Pvt. Ltd., First edition (2008)
REFE	ERENCES:	
REFE 1.	E RENCES: Brandon D. G,	"Modern Techniques in Metallography", Von Nostrand Inc. NJ,
REFE 1.	ERENCES: Brandon D. G, USA,1986.	"Modern Techniques in Metallography", Von Nostrand Inc. NJ,
REFE 1. 2.	ERENCES: Brandon D. G, USA,1986. Thomas G., "T	"Modern Techniques in Metallography", Von Nostrand Inc. NJ, ransmission electron microscopy of metals", John Wiley, 1996.
REFE 1. 2. 3.	ERENCES: Brandon D. G, USA,1986. Thomas G., "T Weinberg, F., '	"Modern Techniques in Metallography", Von Nostrand Inc. NJ, ransmission electron microscopy of metals", John Wiley, 1996. "Tools and Techniques in Physical Metallurgy", Volume I & II, Marcel
REFE 1. 2. 3.	ERENCES: Brandon D. G, USA,1986. Thomas G., " T Weinberg, F., ' and Decker, 19	"Modern Techniques in Metallography", Von Nostrand Inc. NJ, ransmission electron microscopy of metals", John Wiley, 1996. "Tools and Techniques in Physical Metallurgy", Volume I & II, Marcel "70.
REFE 1. 2. 3. 4.	CRENCES: Brandon D. G, USA,1986. Thomas G., "T Weinberg, F., ' and Decker, 19 Haines, P.J., "	"Modern Techniques in Metallography", Von Nostrand Inc. NJ, ransmission electron microscopy of metals", John Wiley, 1996. "Tools and Techniques in Physical Metallurgy", Volume I & II, Marcel 70. Principles of Thermal Analysis and Calorimetry", Royal Society of
REFE 1. 2. 3. 4.	ERENCES: Brandon D. G, USA, 1986. Thomas G., " T Weinberg, F., ' and Decker, 19 Haines, P.J.," Chemistry (RSC	 "Modern Techniques in Metallography", Von Nostrand Inc. NJ, ransmission electron microscopy of metals", John Wiley, 1996. 'Tools and Techniques in Physical Metallurgy", Volume I & II, Marcel 70. Principles of Thermal Analysis and Calorimetry", Royal Society of C), Cambridge, 2002.
REFE 1. 2. 3. 4. 5.	CRENCES: Brandon D. G, USA,1986. Thomas G., " T Weinberg, F., ' and Decker, 19 Haines, P.J., " Chemistry (RSC D. A. Skoog, F.	 "Modern Techniques in Metallography", Von Nostrand Inc. NJ, ransmission electron microscopy of metals", John Wiley, 1996. 'Tools and Techniques in Physical Metallurgy", Volume I & II, Marcel 70. Principles of Thermal Analysis and Calorimetry", Royal Society of C), Cambridge, 2002. James Leary and T. A. Nieman, "Principles of Instrumental Analysis",

17MOE008
1/MULUUð

GLOBAL WARMING AND CLIMATE CHANGE

Т	Р	С
0	0	3

9

9

9

9

L

3

OBJECTIVES:

Upon completion of this course, the students will be able

- To develop the familiarity and knowledge of the issue of global warming and related issues
- To make the aware of the challenges and obstacles that are faced when addressing global warming
- encourage to develop ideas and solutions to global warming •

UNIT I **EARTH'S CLIMATE SYSTEM**

Role of ozone in environment-ozone layer-ozone depleting gases - Green House Effect, Radiative Effects of Greenhouse Gases - The Hydrological Cycle - Green House Gases and Global Warming - Carbon Cycle.

UNIT II ATMOSPHERE AND ITS COMPONENTS

Importance of Atmosphere-Physical Chemical Characteristics of Atmosphere - Vertical structure of the atmosphere-Composition - Atmospheric stability-Temperature profile of the atmosphere -Lapse rates –Temperature inversion-effects of inversion on pollution dispersion.

IMPACTS OF CLIMATE CHANGE UNIT III

Causes of Climate change : Change of Temperature in the environment - Melting of ice Pole-sea level rise-Impacts of Climate Change on various sectors -Agriculture, Forestry and Ecosystem -Water Resources - Human Health - Industry, Settlement and Society - Methods and Scenarios -Projected Impacts for Different Regions- Uncertainties in the Projected Impacts of Climate Change - Risk of Irreversible Changes. 9

UNIT IV OBSERVED CHANGES AND ITS CAUSES

Climate change and Carbon credits- Initiatives in India - Kyoto Protocol-Intergovernmental Panel on Climate change- Climate Sensitivity and Feedbacks -The Montreal Protocol - UNFCCC -IPCC -Evidences of Changes in Climate and Environment - on a Global Scale and in India .

UNIT V **CLIMATE CHANGE AND MITIGATION MEASURES**

Clean Development Mechanism - Carbon Trading - examples of future Clean Technology Biodiesel - Natural Compost - Eco - Friendly Plastic - Alternate Energy - Hydrogen - Bio-fuels -Solar Energy - Wind - Hydroelectric Power - Mitigation Efforts in India - Adaptation funding-Key Mitigation Technologies - Energy Supply - Transport - Buildings - Industry - Agriculture -Forestry - Carbon sequestration - Carbon capture and storage (CCS)- Waste MSW & Bio waste, Biomedical, Industrial waste – International and Regional cooperation.

TOTAL: 45 PERIODS			
OUTCOMES: On		On completion of this course, students will be able to	
1.	Understandthe earth's climate system.		
2.	Understand the various layers and composition of earth atmosphere.		
3.	Understand the impacts of Climate Change on various sectors.		
4.	Know various observed climate changes and its causes.		
5.	Understand the concept of mitigation measures against global warming.		
TEXT BOOKS:			

Dash Sushil Kumar, "Climate Change – An Indian Perspective", Cambridge 1.
	University Press (India Pvt. Ltd), 2007.										
2.	J. Houghton, "	Global Warming The Complete Briefing", Cambridge Univ. press, 2015.									
3.	7. Jerry Silver, "Global Warming and Climate Change Demystified" ,McGraw- Hill,2008.										
REFE	RENCES:										
1.	Watson, Robert T., Marufu C. Zinyowera, and Richard H. Moss. "Impacts, adaptations and mitigation of climate change: scientific-technical analyses, 1996.										
2.	J.M. Wallace a	nd P.V. Hobbs, "Atmospheric Science", Elsevier / AcademicPress 2006.									
3.	Jan C. van Dar	n, Impacts of "Climate Change and Climate Variability on									
	Hydrological H	Regimes", Cambridge University Press, 2003.									
4.	T. M. Letcher	"Climate Change: Observed impacts on planet Earth", Elsevier, 2015									
5.	8. Farmer, G.	Thomas, Cook, John, "Climate Change Science: A Modern									
	Synthesis"	Springer Netherlands, 2013.									

ONE CREDIT COURSES

17800	C 001	T	OOLS FOR MACHINE LEARNING	ACHINE LEARNING L T									
	OBJECTIVES:												
OBJECTIVES:													
	• To gain knowledge on basics of R programming												
	• To learn about functions, lists, packages in R programming												
	To get introduced to the basics of WEKA												
UNIT	I INTRODUCTION TO R												
R Overv	view - R I	nstallati	on - R Basic Syntax - R datatypes - R Variables, c	onsta	ants a	and V	⁷ ectors						
- R oper	ators - R	Conditi	onal Statements.										
UNIT	IT II R PROGRAMMING												
R Funct	tions - R	lists - l	R Arrays - R packages - R Programming Excel a	and H	Binar	y Fil	es - R						
Object of	oriented -	R String	gs - R Date and Time - R Input and Output.										
UNIT	III	INTE	RODUCTION TO WEKA				5						
Introduc	ction – I	nterface	e - Data Format - ARRF File format - Pre-pr	oces	sing	- Bi	uilding						
Classifi	ers – Clus	tering.											
			TOTAL : 15PER	IOI)S								
OUTC	COMES:		On completion of this course, students will be abl	e to									
1.	Know th	e basic	concepts of R programming.										
2.	Apply of	oject ori	ented concepts to real time applications.										
3.	Understa	nd the	WEKA tool.										
REFE	RENCE	S:											
1.	R Tool- v	v3schoo	ols.in.										
2.	2. Bostja	n Kaluz	za "Instant WEKA".										

17SO(C002	MICROSOFT OFFICE SUITE	L	Τ	Р	С								
		0	0	1										
OBJE	OBJECTIVES:													
•	To be	familiar with the working of MS WORD												
•	• To understand the features Of MS EXCEL													
•	To lea	arn about basics of creating presentations using micro	osof	t pov	ver p	oint								
UNIT	I MS	WORD				5								
Introduction to Microsoft XP Basics and the Internet - Introduction to Microsoft Word 2013 - Working with Documents and the Keyboard -Navigating Through a Word Document - Basic Text Editing - Text Formatting - Paragraph Formatting- More Ways to Format Text and Paragraphs - Style Formatting - Page Formatting – Templates -Working With Graphics and Pictures – Tables - Desktop Publishing - Long Documents - Technical Documents - Mail Merge - Proofing, Printing, and Publishing - Comparing, Merging, and Protecting Documents - Customizing and Expanding Word.UNIT IIMS EXCELIntroduction to MS Excel 2013 - Navigating Excel 2013 - Worksheets and Workbooks - Entering Information into MS Excel 2013 - Introduction to Working with Cells, Rows, and Columns - Formatting Data and Cells - Formatting Rows and Columns - Editing Cells, Rows, Columns - and Workboots														
- Charts	s and Diagrams	- Creating Data Lists - Managing Data - Pivot T	nag Table	es ai	nd G	harts -								
Printing	Worksheets and	Workbooks – Templates - Protecting, Saving, and S	hari	ng V	Vork	books.								
Introduce Themes Workin Other T Video - Saving,	UNIT IIIMS POWERPOINT5Introduction to Microsoft Power Point 2013- The Basics of Creating Presentations - Applying Themes and Layouts to Slides - Working with Objects - Entering, Editing, and Formatting Text - Working in Outline View - Proofing Presentations - Inserting Pictures, Graphics, Shapes, and Other Things - Inserting Tables into Presentations - Charts and SmartArt - Adding Sound and Video - Adding Transitions and Animation - Master Slides - Printing and Running Slide Shows - Serving Sharing and Empertures													
		TOTAL : 15 PER	ΙΟΙ	DS										
OUTC	COMES:	On completion of this course, students will be able	to											
1.	Create docume	nt, formatting, inserting tables, mail merging using Ma	S-w	ord.										
2.	Format rows a	nd columns, calculations, working with formulas,	inse	erting	g ch	ats and								
3.	 diagrams, protecting worksheets using MS-Excel. 3. Prepare slides, applying themes, inserting picture, adding sound effects, animation etc using MS-Powerpoint. 													
KEFE	KENCES:		~	C	•	1 2012								
1.	Beth Melton, Mark Dodge and Echo Swinword, "Microsoft Office Professional 2013 Step by Step".													

17800	C 003	03PROJECT USING ARDUINOLTP200												
	OBJECTIVES:													
OBJECTIVES:														
	•	Be fan	niliar with the basics of arduino											
	Learn about digital and analog inputs													
• Understand the controlling of servo motor with joy stick-indexing														
UNIT	UNIT I INTRODUCTION TO ARDUINO													
Arduin	o: Introdu	action-U	Inderstanding electronics elements (Resistors, Cap	oacit	ors,	Tran	sistors,							
Relays	etc.)-LED	s-Blink	ing of ODD and EVEN states of LEDs- Traffic	Ligł	nt Sy	stem	-Serial							
Monitor	ring-Conti	rolling o	of LEDs from Computers-Reading analog and digitation	al inj	outs.									
UNIT II DIGITAL AND ANALOG INPUTS														
Digital	Inputs: C	Controlli	ng LED using push button-Switching ON a relay.											
Analog	Inputs:	Control	ling a DC Motor and PWM -Changing the bright	ness	of I	LED	using							
potentio	meters-L	CD Dis	plays-Displaying a Message in LCD Screen- Sc	reen	Na	vigat	ion on							
LCD-D	isplaying	the roor	n temperature using LM 35 temperature sensor.											
UNIT	III	SER	VO MOTORS				5							
Servo I	Motors: (Control	ing Servo Motor with Joy Stick-Indexing of Ser	rvo 1	Moto	or-Di	rection							
Control	of Servo	Motor-S	Synchronizing 2 Servo Motors.											
			TOTAL : 15 PEI	RIO	DS									
OUTC	COMES		On completion of this course, students will be able	e to										
1.	Know th	e worki	ng principles of arduino system,											
2.	Understa	and the	usage of temperature sensor.											
3.	Analyze	the app	lications of servo motor.											
REFE	RENCE	CS:												
1.	Simon M	lonk, "H	Programming Arduino".											
2.	Brian Ev	vans, "E	Seginning Arduino Programming.											

17500	C 004	SOF	TWA	RE PR	OJEC	CTN	MANA	GEN	IENT	L	Т	Р	С	
OBJECTIVES:														
	•	To get	introduc	ed to a	dvanced	d met	thods an	d too	ls of proje	ect m	anag	gemei	nt	
	•	To learn about various risk management techniques												
• To obtain knowlwdge about organizational and human aspects in Project Organizations												ct		
UNIT	Ι	INTRODUCTION TO CPM/PERT TOOLS 5												
Introduc	Introduce advanced methods and tools of project management: CPM/PERT - Design Structure											ructure		
Matrix -	System I	Dynami	с.											
UNIT	II	RISK	MAN.	AGEN	MENT	1							5	
Critical applicat (intersp	Chain - I ion of m ersed) - Ca	Discrete nethods ase Stud	Event S (strengt lies - Ris	imulati hs, lin k Mana	ion - Ea nitations agement	arned s) a t - Re	Value nd strat eal Optic	Mana egic ons in	gement - issues - Projects	Und Ind	ersta 1stry	and ro Ex	ealistic amples	
UNIT	III	PRO	JECT (ORGA	NIZA	TI	ON		-				5	
Obtain Progran organiza multiple	an appred Manage ational and projects	ciation ment - d huma in paral	for orga managin aspects lel.	nization ng mul in - Pro	nal and tiple pr oject Or	l hui rojec rgani	man asp ts in pa izations	ects trallel - Prog	in - Pro -Obtain gram Mai	ject an nager	Orga appro nent	aniza eciati - ma	tions - on for naging	
		_					TOTA	\L :	15 PE	RIO	DS			
OUTC	COMES:		On com	pletion	of this of	cour	se, stude	ents w	ill be abl	e to				
1.	Understa	and the	CPM/PE	RT tool	ls.									
2.	Apply th	e risk n	nanageme	ent to v	arious k	kinds	of proje	ects.						
3.	Manage	multiple	e projects	s simult	taneousl	ly.								
REFE	RENCE	S:												
1.	Bob Hughes and Mike Cotterell. "Software Project Management".													

17SOC	CO05 LINUX ADMINISTRATION L T												
		3 0											
OBJECTIVES:													
•	To un	lerstand the bas	ics of Linu	X									
•	To Le	rn about variou	ıs Filesyste	m Types									
•	• To be familiar with User File Management												
UNIT I	UNIT I INTRODUCTION TO OPEN SOURCE												
UNIX, Linux and Open Source-Duties of the System Administrator-Super users and the Root Login-Sharing Superuser Privileges with Others (su and sudo Commands)-TCP/IP Networking Fundamentals-Online Help.													
UNIT I	UNIT II FILE SYSTEM												
Special F with mkf File and I	Files (Device Fil s-The lost+four Disk Manageme	es)-I nodes-Har d Directory-Rep nt Tools.	d File Link bairing File	s-Soft File Systems w	Links-Creatir ith fsck-The	ng No Jouri	ew F nalin	File S	ystems ribute-				
UNIT I	II USE	R MANAGE	MENT						5				
Setting F /etc/group Accounts Concepts xfsdump	Setting Policies -User File Management -The /etc/passwd file - The /etc/shadow file -The /etc/group file -The /etc/gshadow file -Adding Users -Modifying User Accounts - Deleting User Accounts - Working with Groups -Setting User Environments -Login Configuration File-Backup Concepts and Strategies -User Backups with the tar Command -System Backup Options -The xfsdump and xfsrestore Commands												
				TOTA	L: 15 PEI	RIO	DS						
OUTCO	OMES:	On completion	of this cou	ırse, studen	ts will be able	e to							
1.	Work on the op	n source system	ns.										
2.	Manage file sys	ems in the oper	source.										
3.	Administrate us	er environments											
REFER	RENCES:												
	1. Evi Nemeth, Garth Snyder, Trent R. Hein, Ben Whaley "UNIX and Linux System Administration Handbook".												

17500	C006	Ι	NET	WOF	RK	K SI	SIM	MU	JLA	AT] [ON	T	O	OI	S		L	,	Т	Р		С
																1							
OBJECTIVES:																							
	•	To get	et intro	duced	d to s	o sin	mul	ılati	ion	of	co	omp	oute	er n	etw	vor	ks						
	•	To be	e famil	iar wit	ith tł	the	e im	nple	eme	enta	atio	on	of	eve	nt s	sim	ulat	ion					
	To learn about mobile adhoc networks																						
UNIT	I INTRODUCTION TO SIMULATION TOOLS																						
Simulation of computer networks – Computer networks and Layering concepts – System modeling – basics of computer network simulator – Time depended simulation – Example – a Single Channel Queuing system.											stem – a												
UNIT	II	IMP	LEN	IENT	ГАТ	TI	IOI)N (OF	FE	EV		NT	C S	IM	[U]	LA	TIC	N				
Coventie of discr Schedule as Route	etion to on – Runi ete event er – Simu er.	ning NS t Simul lator –	rk sin S2 Sir ilation - Netw	nulaton nulato in N ork Ol	or – or – NS2 Objec	– B – Lii 2 – ects	Bas inka - N s : C	sic kage NS2 Cre	Ar e be 2 Si eatic	rchi etw Simu on,	ula Co	ectu en C atio	ore DTo on figu	cl a cor urat	Ins nd icep ion	c+ ot -	+ ir - E Pack	on – n NS2 vent et Fo	L 2-I ar orw	mp nd varc	ctori leme Hane ling	es enta dlei – N	and tion rs – lode
UNIT	III	MOE	BILE	AD	HO	C	CN	NE Z	TV	NO)R	RK	S										
Link and Customi – Post si	d Buffer zing pack mulation	Manage kets – T process	gemen ΓCP – ssing ,	t – Pa UDP- Debug	acke -Win ggin	tet,] [irelo ing ,	Pae eless	acke ss m traci	et h nobi	hea bile	de ad d r	er a dhoo resu	nd cn ult	He etw cor	eade vork npil	er 1 <s -<br="">lati</s>	Fori - De on -	nat - evelo - Cas	- D pir e s	oata 1g r tud	a Pay new i ly.	yloa mo	ad – dule
											T	'O '	TA	L	: 1	15	PI	ERI	DI) S			
OUTC	OMES :	:	On o	comple	letio	on o	of t	this	s co	ours	se,	, stu	ıde	ents	wi	ll b	e at	ole to					
1.	Know th	e conce	epts of	fnetw	/ork	k sir	imu	ulat	tor.														
2.	Install N simulation	NS2, w on.	workir	g on	the	he	sin	imul	lati	ion	e	envi	iroı	nm	ent,	, iı	npl	emen	t	dis	crete	e e	vent
3.	Define p	acket fo	ormat	, devel	elopi	oing	g ne	new	mo	odu	le	int	the	wi	rele	ess	adh	oc ne	etw	ork	KS.		
REFE	RENCE	S:																					
1.	Ekram H	lossain	and T	Teeraw	vat l	Isso	sari	riyal	ıkul,	l, "I	Int	troc	duc	ctio	n to	No	etwo	ork S	im	ulai	tor N	VS2	